

Cell references of a formula (2/2)

- Additional equations to estimate the degree of dispersion will be defined.
 - Manhattan and Euclidean distances will be applied in place of the $|DX_i \cdot DY_i|$ product.
 - Since references can be balanced or unbalanced, angles between 2-D vectors of references will be calculated.
- Column and row spans.
 - These measures supplement the dispersion.
 - A matrix of only about twenty times twenty cells is visible to the spreadsheet developer or user.

- Width and height of cell ranges.
 - Each cell in a range is accessed and processed separately.
 - Ranges tend to be more auditable than a group of cells with different formulae, but they exhibit a risk potential because of possible invalid references.
- Data binding triples.
 - The sharing of data among modules.
- Percentage of unreferenced data cells.
 - Every data cell or range has to be referenced, because all input values must be analysed.

Measuring error rates (1/2)

- Cell error rate.
 - Percentage of non-label cells containing errors.
 - It is estimated to be between 1% and 2%.
- Bottom-line error rate.

$$E = 1 - (1 - e)^{N}$$

- Error rates multiply along cascades of subtasks.
 - Bottom-line values are computed through cascades of formula cells.
 - Any cell error leads to an incorrect result.

Directions for further work

- The proposed metrics will be:
 - applied to actual spreadsheets and validated,
 - substituted with more appropriate metrics,
 - supplemented with additional complexity factors,
 - correlated to quantitative process measurements,
 - correlated to cell error rates,
 - used in an automated analysis tool.