
Implementing Projections of Abstract
Interorganizational Business Processes

Julius Köpke, Johann Eder, Markus Künstner

Department of Informatics-Systems, Alpen-Adria Universität Klagenfurt, Austria
{julius.koepke, johann.eder, markus.kuenstner}@aau.at

http://isys.uni-klu.ac.at

Abstract. Distributed interorganizational business processes are con-
stituted by cooperating private processes of different partners. These
private processes must be aligned to fulfill the overall goal of the (virtual)
interorganizational process. Process views are considered as an excellent
concept for modeling such interorganizational processes by providing a
good balance between the information needs and privacy requirements
of the partners. We follow a top-down development approach, where first
an abstract global process is designed. Then each task of the global pro-
cess is assigned to one of the partners. Finally a partitioning procedure
is applied to generate views of the global process for each partner. The
partners can then develop or adopt their private processes based on their
views. We present a novel algorithm for the automatic partitioning of any
block-structured process with any arbitrary assignment of partners and
prove its correctness.

1 Introduction

Interorganizational cooperations between business partners are nowadays con-
sidered to be crucial for increasing productivity. In recent years many approaches
were developed to support process cooperation with web technologies [7, 15, 2]
in general and in particular with SOA-based protocols between business part-
ners [1]. There are two main approaches: Orchestrations where a local (private)
process is executed and controlled by a single orchestration engine and com-
municates with external services, that can be entry or exit points of partner
processes; or choreographies which define a communication protocol (message
exchanges) between collaborating business partners, which can be interpreted as
a decentralized global process [13].

Process views [5] are an appropriate approach to represent the externally
observable behavior of business processes and to balance the request for privacy
and loose coupling between processes with the communication demands for col-
laboration. Most approaches for process-views such as [6, 2, 11] follow a bottom
up or global as view approach. A view is derived from a private process definition
which is actually instantiated and executed in a process engine at runtime. The
integration of such cooperating views constitutes an interorganizational business
process.



Views can also be used to distribute the steps of a global (interorganizational)
process definition. In this top-down or local as view approach first an abstract
process is defined as a global interorganizational process. The activities contained
in this process definition are then distributed onto the involved partners. Since
the process definition is abstract, it means that none of the steps are executed
globally but that each step which is defined in the global process is executed by
one of the participating processes. The projection of the global process onto a
particular participant defines a view, i.e. a workflow derived from the abstract
global process. The views of the global process specify the obligations of the
partners (execution of steps defined in the global process) and the externally
observable behavior of the private processes (choreography). The p2p approach
presented in [19, 16] is an example for such a top-down modeling approach.

In this paper we present an automatic process partitioning algorithm that
can be used in a top-down development approach. Starting with a global pro-
cess each step of the process is assigned to one of the partners. In a next step
the global process with partner assignments is partitioned fully automatically
into views for each partner. We prove that the union of the generated views
correctly realizes the fully distributed execution of the global process. While
top-down process projection approaches have already been proposed in [16, 19,
17], we overcome limitations of existing approaches by supporting the correct
partitioning of any block-structured global process with any arbitrary partner
assignment and by explicitly addressing the distribution of decision variables to
achieve deterministic rather than indeterministic processes.

2 Process Model

We provide the preliminaries for our approach with a meta-model. It is based on
the capabilities of full-blocked workflow nets supporting sequence, PAR split/join,
XOR split/join, and LOOP split/join as control flow patterns [18, 14]. We focus
on fully blocked workflow-nets as they prevent typical flaws of unstructured busi-
ness processes dealing with data [3] and are also in line with the WS-BPEL[12]
standard. The meta-model in Figure 1 shows the essential components of this
model in a simple way. The representation of algorithms in the following sections
is based on this meta-model. Fully blocked workflow - nets can be represented ei-
ther as graphs or as hierarchies of (abstract) activities. The meta-model captures
both representations - the transformation between these two representations is
straightforward. Therefore, we use the appropriate representation in our differ-
ent algorithms.
A process is defined by activity-declarations, variable declarations and the control-
flow between activities expressed by steps that refer to activities (activity-steps)
or that define the control-flow in terms of sequences, XOR-, Parallel-, and Loop-
constructs. We also introduce abstract steps which represent any abstract activ-
ity as black boxes. A step is associated with partners to define which partner
is responsible for the execution. For activity-steps one partner can be assigned.
For the control steps PAR, XOR, and LOOPS two potentially different part-

2



 name {unique}

Activity

+getPartners() : Partner []

+getFirstPartner() : Partner

+getLastPartner() : Partner

Step

 label {unique}

 interMediatePartners : Partner[]

AbstractStep

 name {unique}

Partner

 label {unique}

Variable

 label {unique}

ActivityStep

+Type : {XOR,PAR,LOOP,SEQ}

ControStep

 to : Partner

sendStep

 from : Partner

receiveStep

 messageType

CommunicationStep

+label

Process

1..*

1..*

0..1
0..*

0..1

0..1

1

0..1

0..*

0..*

0..1 0..*

0..*

0..*

0..1

0..1

*

*

sends/receives

calls

lastPartner

contains

containscontains

stepBstepA

decisionVariable

firstPartner

{ firstPartner = lastPartner }

Fig. 1. Workflow Meta-Model

ners (firstPartner) and (lastPartner) can be assigned that are responsible for
the split (decision or parallel invocation) and the join (synchronization) respec-
tively. In this meta-model we abstract from data with the exception of decision
variables. XOR− and LOOP− blocks are typically associated with a condi-
tion which is a boolean expression based on variables. In interorganizational
P2P workflows these expressions are not viable since they would require that
all variables in the condition expressions are synchronized between the partners.
Therefore, we restrict the control flow decisions to single boolean variables. This
approach can also be interpreted as one partner executes an expression and com-
municates the result to the involved partners. This restriction does not reduce
the applicability of our model since any input process can be transformed to
a process where all decisions are based on simple boolean variables by adding
additional steps that write the results of the boolean expressions to decision
variables.
For XOR− and LOOP− blocks the firstPartner is responsible for the deci-
sion. Therefore, he must be able to compute the value of the decision variable.
Sequences, PAR, and XOR have two sub-blocks, Loops have one sub-block. For
XOR−blocks the sub-block stepA is executed if the decision variable is true,
otherwise stepB. In case of loops the sub-block stepA is executed, if the decision
variable is true, otherwise the loop is not entered or terminated. The sub-block
stepA is the first block of a sequence, stepB is the second one. For all steps
the method getPartners() returns a list of all partners that are (recursively) in-
volved in the step. Partners communicate with communication steps (sendSteps
and receiveSteps) which realize the control flow and pass decision variables.

3



FB

FB

DA

DADA

FB

GC

SA,B

SA,B

SB,C

RB,A

RC,B

SB,C

GC

GCGlobal Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

RB,A

RC,B

Fig. 2. Partitioning of Sequences

3 Projecting a Global Process to Views for each Partner

As in [16, 19] we propose the following procedure for defining interorganizational
workflows: (1) define a global (abstract) workflow, (2) assign each step in the
workflow to a partner (3) partition the process. (4) Create private processes
based on the generated views. The global process is executed by the distributed
execution of the private processes. While the work in [16, 19, 17] concentrates on
the question whether a private process correctly implements a (public) view (is
in accordance with) our aim is to provide a partitioning procedure that does not
impose any restrictions on the global process and on the partner assignments.
Additional design rationales are: (1) the resulting views should be as simple
as possible, and (b) unnecessary message exchange should be avoided. E.g. a
partner should only know about control structures and receive only messages
that are absolutely required. In the following we discuss our partitioning method
by examples for each control structure. Our approach operates in two phases:
First the global process is augmented with communication steps that realize the
interorganizational control-flow and variable passing. In a next step views for
the partners are created by projection.

Sequence Blocks: In Figure 2 an example for the partitioning of a sequence is
shown. The global process contains the steps DA, FB and GC in a sequence. D
is defined to be executed by A, F is executed by B and G is executed by C. In
order to support a distributed execution the global process is first augmented
with pairs of send- and receive- steps whenever a step is followed by another step
which is assigned to a different partner. In particular in the example send- and
receive- steps are inserted between DA and FB and between FB and GC in the
augmented global process. The corresponding views for each partner are shown
on the right. They are created by simply projecting only steps that are assigned
to the specific target partner.

Parallel Blocks: An example for the augmentation and partitioning of a parallel
block is shown in Figure 3. Partner A is responsible for the parallel split. The
partners B and C execute their tasks F and G in parallel. Partner D is respon-
sible for the synchronization. The process is augmented by send- and receive-
steps between partner A and B, and A and C and finally between B and D and
C and D. While the parallel split and join steps remain in the views of partner

4



FB

FB

GC

FBSA,B

SA,B RD,B

RD,C

SB,DRB,A RD,B SB,D

SC,DRC,A RD,CSA,C

SA,C

SC,D

GC

GC

PS

PS

PS PS
A

A

A D

PJ

PJ

PJ PJ
D

D

A D

Global Process

Augmented Global Process

View for Partner A View for Partner D

View for Partner B

View for Partner C

RB,A

RC,A

Fig. 3. Partitioning of Parallel Blocks

A and D, partners B and C do not need to know about the parallel execution
and get only sequences in their views.

FB

HB

HB

HB

FB

GCFB

SA,B

SD,B

SA,D

SA,C

RC,ASB,D RD,B

SB,D

RD,C

RD,B

SC,A

RC,A RD,CSA,C SC,D

SA,B SA,D

RD,A

RB,ARB,A

RB,D

RB,DRD,A

GC

GC

XS

XS

XS

XS

XS

A

A

A

D

B

XJ

XJ

XJ

XJ

XJ

D

D

A

D

B

Global Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

View for Partner D

Fig. 4. Partitioning of XOR-Blocks

XOR-Blocks: XOR-blocks are based on some decision variable. The owner of
the XOR-split takes the decision. All partners who need to execute the XOR
split themselves are informed about the decision by a message transporting the
decision variable. In the example in Figure 4 partner A is responsible for the
XOR split and distributes the decision variable to B and D. Partner C does
not need to know about the decision because he does not need to have a XOR-
block in his view. After the XOR-split the control-flow must be forwarded. This
is realized by a send- and receive- steps between A and C. There is no such
communication required between A and B because B can proceed as soon as
the value of the decision variable was received.. The XOR join is executed by

5



partner D. Therefore, like for parallel join nodes the last partner in each branch
needs to pass the control-flow to the join partner. However, the join partner
requires the decision variable from partner A to know whether the incoming
message will arrive from B or from C.
In the example partner C has a sequence of steps in his view rather than an
XOR-Block. This simplification is possible because C takes exclusively part in
one branch of the XOR-block (and in no other step before, after, or parallel to
this XOR-block). Therefore, C does not need to know about the XOR-block at
all. Such a simplification is not possible for partner B because B must know
whether step F needs to be executed before step H or not.

Global Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

LS

LS

LS

LS

LS
A

A

B

C

A

BB C

C

C

c

LJA

E

E

E
A

A

A

SA,B

SA,B

SA,B

SB,C

SB,C

SC,A

SC,A RA,CRC,B

RC,B

RA,C

SA,C

SA,C SA,D

SA,C

RB,A

RB,A

RC,A

RB,A
RB,A

RC,A

SA,B SA,C

RC,A

RC,A

B

B

C

b

B

C

LJ

LJ

LJ

LJ

A

B

A

C

Fig. 5. Partitioning of Loop-Blocks

LOOP-Blocks: Loops are partitioned into views in analogy to XOR-blocks. The
first partner in the loop (assigned to the loop-split node) is responsible for the
decision. Therefore, the first partner distributes the decision variable to the
partners that take part in the loop. An example is shown in Figure 5. As for
XOR−blocks, the first partner in the loop body (B) does not need to be explic-
itly called by A because he receives the decision variable from A and can directly
execute the loop split and the activity step. After each iteration of the loop the
current version of the decision variable is distributed to all relevant partners by a
sequence of send- and receive- steps that are added directly before the loop-join.

4 Automatic Generation of Views

After we have introduced the general idea of the partitioning processes we will
now present an algorithm that realizes the discussed methods fully automatically.
As in the examples the approach is based on two phases: Augmentation and
projection.

6



4.1 Augmentation

The augmentation algorithm is shown in Algorithm 1. It directly operates on
the hierarchic process representation as discussed in Section 2. It is called with
the root block of a process (inBlock) and recursively traverses the process tree.
Depending on the type of the input block (inBlock) the different augmenta-
tion patterns introduced in Section 3 are applied. In particular, in case of se-
quences send- and receive steps are inserted between two subsequent elements
< e1, e2 >, if e1.lastPartner 6= e2.firstPartner and if the steps are not com-
munication steps. In case of XOR− and LOOP−blocks the helper function
addConditionMessages() is used to distribute the decision variable from the
partner that executes the split (block.firstPartner) to all partners that are
different from block.firstPartner and that take part in the block (directly or
indirectly). In case of an XOR−block the conditional messages are only added
if the partner takes part in both branches, or when the partner is responsi-
ble for the join (is the last partner), or when the partner takes part in only
one branch and he also takes part in some other block which is not a child
of the current block). Finally the control flow needs to be correctly passed
not only between elements in a sequence but also between different partners
in PAR−, XOR− and LOOP− blocks. This is realized by the helper pro-
cedures augmentSplit() and augmentJoin() that add the required send- and
receive- steps between the partner responsible for the split (block.firstPartner)
and the first partner of stepA (block.stepA.firstPartner) and the first partner
of stepB (block.stepB.firstPartner, not for loops) and between the last partner
of the block and the last partner of stepA (block.StepA.lastPartner) and the
last partner of stepB (block.StepB.LastPartner, nor for loops) respectively. The
called procedures addConditionMessages(), addSendReceive(), augmentSplit(),
and augmentJoin() add the required send- and receive steps such that the triple
(sendNode.to, receiveNode.from, messageType) is always unique.

4.2 Projection

After the global process is augmented with send- and receive- steps the views for
each partner are created by simply projecting the steps to the specific partners.
In order to project the augmented global process to some partner p, the following
steps are performed: (1) Blocks that do not contain any direct or indirect partner
assignment to p are removed. (2) Control steps (XOR, LOOP, PAR), where p
takes part in are rewritten to p. Thus, the first and the last partner (split and join
node in graph representation) are assigned to p. (3) A special case are abstract
steps that may contain multiple partners. For such blocks the block itself is
projected to p by removing all partner assignments (firstPartner, lastPartner,
interMediatePartners) that are not equivalent to p. All these operations can
easily be realized in a simple traversal of the view. The corresponding procedure
projectProcess() is shown in algorithm 2. It is called with an augmented global
workflow inBlock and a partner p. The output of the procedure is the view for
partner p.

7



Algorithm 1 Augmentation of a Global Process

1: Procedure augmentProcess
Input: RootBlockOfGlobalProcess inBlock

2: if (inBlock.type = ActivityStep or inBlock.type = Abstract) then
3: return
4: end if
5: if (inBlock.type = SEQ or inBlock.type = XOR or inBlock.type = PAR) then
6: augmentProcess(inBlock.StepA); augmentProcess(inBlock.StepB);
7: end if
8: if (inBlock.type = SEQ) then
9: if ((inBlock.StepA.lastPartner != inBlock.StepB.firstPartner) and

!(stepOf(inBlock.StepA.lastPartner).type = CommunicationStep and
stepOf(inBlock.StepB.firstPartner).type = CommunicationStep)) then

10: addSendReceive(inBlock)
11: end if
12: end if
13: if (inBlock.type = XOR) then
14: for all (partner ∈ inBlock.getPartners()) do
15: if partnerOnlyInOneBranch(partner,inBlock) then
16: augmentSplit(inBlock)
17: end if
18: end for
19: augmentJoin(inBlock)
20: for all (partner ∈ inBlock.getPartners()) do
21: if (partner 6= inBlock.firstPartner and (partnerInBoth-

Branches(partner,inBlock) or partner = inBlock.lastPartner or
(partnerOnlyInOneBranch(partner,inBlock) and !partnerOnlyInThis-
Block(partner,inBlock)))) then

22: addConditionMessages(inBlock,partner)
23: end if
24: end for
25: end if
26: if (inBlock.type = PAR ) then
27: augmentSplit(inBlock); augmentJoin(inBlock);
28: end if
29: if (inBlock.type = LOOP ) then
30: for all (partner ∈ {inBlock.getPartners()}) do
31: if (partner 6= inBlock.firstPartner) then
32: addConditionMessages(inBlock,partner)
33: end if
34: end for
35: augmentSplit(inBlock); augmentProcess(inBlock.StepA);
36: end if

4.3 Cleanup

After the views are created for each partner some cleanup steps are executed
using an additional traversal of the views. The following cleaning actions are

8



Algorithm 2 Create a View for a Specific Partner

1: Procedure projectProcess
Input: RootBlockOfAugmentedGlobalProcess inBlock, Partner p

2: if ({p} ∩ inBlock.getPartners() == {}) then
3: hide(inStep)
4: return
5: end if
6: if (inBlock.type = Simple}) then
7: return
8: end if
9: if (inBlock.type = Abstract}) then

10: projectAbstractStep(inBlock,p)
11: return
12: end if
13: if (inBlock.type = SEQ) then
14: projectProcess(elem.StepA,p)
15: projectProcess(elem.StepB,p)
16: end if
17: if (inBlock.type ∈ {XOR,AND,LOOP}) then
18: projectBlock(inBlock,p)
19: projectProcess(inBlock.stepA,p)
20: if (inBlock.type 6= LOOP) then
21: projectProcess(inBlock.stepB,p)
22: end if
23: end if

performed for each view:
(1) If a PAR − Block has one empty branch (StepA or StepB is null) in the
view, then the PAR−Block is replaced by a sequence. (2) If a XOR−Block has
one empty branch (StepA or StepB is null) and the first and last partner of the
corresponding XOR-Block in the global process is not assigned to the partner
of the view (the partner of the view is not responsible for the split and join),
and the partner of the view is not assigned to any other block that is executed
before or after the XOR-block, then the XOR− block is replaced by a sequence.
(3) Sequences that are containing only one element are eliminated.
The procedure cleanupView() shown in Algorithm 3 is called with an input view
inBlock and a view partner p. The algorithm returns a cleaned and optimized
view for partner p. The procedure traverses the hierarchical process tree recur-
sively and applies the patterns stated above depending on the block type. If
inBlock is of type SEQ, the helper function replaceSequenceByStep() is called if
the sequence contains exactly one element. The method replaceSequenceByStep()
fulfills requirement number(3) and replaces the sequence by the contained block.
If inBlock is of type AND, the helper function replacePARBySequence() will be
called if exactly one branch of the block is empty. This method fulfills the require-
ment number (1) by removing the PAR block and replacing it by a sequence. If

9



Algorithm 3 Cleanup of a Private View

1: Procedure cleanupView
Input: View inBlock, Partner p

2: cleanupView(inBlock.stepA)
3: if inBlock.type != LOOP then
4: cleanupView(inBlock.stepB)
5: end if
6: if inBlock.type = SEQ and inBlock.size = 1 then
7: replaceSequenceByStep(inBlock)
8: else if inBlock.type = AND then
9: if (inBlock.stepA = null or inBlock.stepB = null) and !(inBlock.stepA = null

and inBlock.stepB = null) then
10: replacePARBySequence(inBlock)
11: end if
12: else if inBlock.type = XOR then
13: if (inBlock.stepA = null or inBlock.stepB = null) and !(inBlock.stepA = null

and inBlock.stepB = null) and partnerOnlyInOneBranch(inBlock, partner) and
!partnerIsOriginalOwnerOfSplitOrJoin(inBlock, partner) then

14: replaceXORBySequence(inBlock)
15: end if
16: end if

inBlock is of type XOR, the helper function replaceXORBySequence() is called
to fulfill requirement number (2) if the conditions stated above hold.

5 Simple Merge of Views

While the process partitioning approach is already finished after augmentation
and projection we will now discuss how a set of views V = vp1 ... vpn of all n part-
ners that adhere to some global process can be merged in order to reconstruct the
global process. We can assume that the generated views are structurally equiva-
lent in the sense that no equivalence transformations [4] of the views need to be
applied in order to merge them. We will discuss a simple process merge method
that exploits this property and operates on the graph representation of the views
here. Each view v ∈ V can be represented as a graph (V,E) (in particular a di-
rected, attributed, acyclic graph). Each node in v has a type ∈ {XOR-Split,
XOR-Join, PAR-Split, PAR-Join, LOOP-Split, LOOP-Join, ACTIVITY-STEP,
Send-Step, Receive-Step, AbstractStep}. The nodes of each view are connected
by the set of directed edges v.E. Outgoing edges of XOR-Split and LOOP-Split
nodes are annotated with true and false. All further properties of the graph
representation are equivalent to those discussed in the meta-model as discussed
in Section 2: All nodes have an attribute node.partner that represents the part-
ner that executes the corresponding step. For each Send-Step the target partner
is represented with the attribute node.to. For receive steps the sending partner
is defined by node.from. In addition for send-and receive steps the message type
node.messageType and the send variable node.sendV ar are known. According

10



to our process partitioning procedure the triple (sendNode.to, receiveNode.from,
messageType) is always unique. Each abstract step has an attribute for the
first partner node.first, the last partner node.last and a set of partners in be-
tween node.partners. Activity-steps and abstract steps have a label defined by
node.label. Steps with the same label in different views define the same node.

5.1 Observations of the properties of a single view

We will now discuss some properties of a single view Vpx of some partner px
with regard to the merged global process Vunion.

1. Any edge (n1, n2) ∈ Vpx.E where n1.type = send ∧ n2.type 6= send ∧
(n1.sendsV ar 6= n2.decisionV ariable cannot be part of Vunion.

2. Any edge (n1, n2) ∈ Vpx.E is impossible in Vunion if n2.type = abstract ∧
n2.first 6= px or n1.type = abstract ∧ n1.last 6= px

A send-step is connected to some receive step of another process during merg-
ing. If it is additionally connected to some local step this results in unwanted
token multiplication in the merged global process. However, this behavior does
not happen in the distributed execution of the private process because the pro-
cesses are synchronized with a succeeding receive step. Token multiplication /
parallelism is only allowed for the distribution of decision variables (1). Incom-
ing control-flow to abstract steps can only exist to the first partner, outgoing
control-flow can only exist for the last partner of an abstract step. All other
incoming and outgoing control flows of abstract steps are only valid in a specific
view (2).
Therefore, we first remove all edges that match properties (1) or (2) before we
proceed with our merge method. The corresponding algorithm for the prepara-
tion of views for merge is shown in Algorithm 4.

5.2 Merging of prepared views

After the views are cleaned based on the observations of section 5.1 we can merge
the views. View merging basically operates in three stages: (1) A merged graph
Vunion that contains all the edges and all the nodes of all input-views is cre-
ated. (2) In a next step matching send- (s) and receive nodes (r) where (s.to =
r.from and s.messageType = r.messageType) are merged. In particular, whenever
a match is found send- and- receive nodes are eliminated and the previous node
of the send-node is connected to all successors of the send-node as well as to all
successors of the receive-node. We also need to preserve the annotations of edges
which is relevant for XOR and loops. (3) In a last step all abstract nodes with
the same label are merged and all XOR-Split, Loop-Split and Loop-Join nodes
are merged, when they have the same previous node. Finnaly, unconnected ele-
ments (subgraphs with no connection to the merged graph) will be removed of
the resulting graph.

11



Algorithm 4 Prepare a View for Merge

1: Procedure prepareForMerge
Input: View inView
Output: View without globally impossible edges, inView

2: for all ((n1, n2) ∈ inV iew.E) do
3: if (((n1.type = send ∧ n2.type 6= send ∧ n1.sendsV ar 6= n2.decisionV ariable)))

) then
4: inV iew.E = inV iew.E \ {(n1, n2)}
5: end if
6: if ( (n1.type = AbstractStep ∧ inV iew.partner 6= n1.lastPartner) then
7: inV iew.E = inV iew.E \{(n1, n2)}
8: end if
9: if ((n2.type = AbstractStep ∧ inV iew.partner 6= n2.firstPartner) then

10: inV iew.E = inV iew.E \{(n1, n2)}
11: end if
12: end for
13: return inView

An algorithm that realized the discussed merging approach is shown in Algo-
rithm 5. It gets a set of prepared views as an input and returns a merged view
Vunion. As a first step of the procedure the union of all prepared views (edges
and vertices) is computed and stored in Vunion.E and Vunion.V (1). For merg-
ing send-receive-pairs an iteration over all matching send (s) and receive (r)
nodes is executed if the message types as well as the communicating partners
are equal (s.to = r.from). In the loop the predecessor of the send s.prev is
connected to each successor of send (getSucceedingNodes(s)) and each succes-
sor of receive (getSucceedingNodes(r)) by adding the edges to Vunion.E. As a
last step the send and receive nodes are removed from Vunion.V (2). The second
loop iterates over all abstract steps c1 and c2 and merges them if they have
the same label. The helper function mergeAbstractSteps() is responsible for
merging the partner assignments (first, last and in between) as well as moving
incoming and outgoing edges of c2 to c1. The last loop iterates over all nodes
n1 and n2 of type XOR-Split, Loop-Split and Loop-Join to merge them. For
each pair (n1, n2) another iteration over all predecessors of n1 and n2 is exe-
cuted in order to check which nodes must be merged. The are merged if n1 is
different to n2 and they have the same type and the same annotation of incom-
ing edges (getAnnotation(prev1, n1) = getAnnotation(prev2, n2)). The helper
function mergeSteps() is then used to move incoming and outgoing edges of n2
to n1 and delete n2 from Vunion.V (3). As a very last step of the algorithm the
method clean() is be called to remove remaining fragments of the graph (sub-
graphs which are not connected to the merged graph) in order to get the final
merged global workflow.

12



Algorithm 5 Merge Views

1: Procedure mergeViews
Input: Set of prepared Views of each partner V = Vp1...Vpn

Output: Merged View, Vunion

2: Vunion.V = Vp1.V ∪ Vp2.V... ∪ Vpn.V
3: Vunion.E = Vp1.E ∪ Vp2.E... ∪ Vpn.E
4: // Remove corresponding send-receive nodes and connect nodes directly
5: while (∃ (s, r) ∈ {{Vunion.V | type = send } × {Vunion.V | type = receive } |

s.MessageType = r.MessageType ∧ s.to = r.from}) do
6: //Connect all succ. of send- and receive nodes to s.prev and save annotations
7: an1 = getAnnotation(s.prev,s)
8: for all (s2 ∈ getSucceedingNodes(s)) do
9: Vunion.E = Vunion.E ∪ {(s.prev, s2)}

10: addAnnotation(getAnnotation(s,s2),s.prev,s2);
11: addAnnotation(an1,s.prev,s2);
12: end for
13: for all ((r2) ∈ getSucceedingNodes(r)) do
14: ... // Do the same as above for the succeeding nodes of r
15: end for
16: Vunion.V = Vunion.V \ {s, r} // Remove matching send and receive nodes
17: end while
18: // Match and merge abstract nodes
19: for all ((c1, c2) ∈ {Vunion.V |type = abstrtact} × {Vunion.V |type = abstract}) do
20: if (c1 6= c2 ∧ c1.label = c2.label) then
21: mergeAbstractSteps(c1, c2)
22: end if
23: end for
24: // Match and Merge equivalent XOR-Split, LOOP-Split, LOOP-Join steps
25: relevantNodes = {Vunion.V |type ∈ {XOR− Split, LOOP − Split, LOOP − Join}
26: for all ((n1, n2) ∈ relevantNodes× relevantNodes) do
27: for all (prev1, prev2) ∈ getPreviousNodes(n1)× getPreviousNodes(n2)) do
28: if (n1 6= n2∧n1.type = n2.type∧prev1 = prev2∧getAnnotation(prev1, n1) =

getAnnotation(prev2, n2)) then
29: mergeSteps(n1, n2)
30: end if
31: end for
32: end for
33: Vunion = Clean(Vunion);
34: return Vunion)

5.3 Correctness of merged views

The merging method as discussed in the previous section may produce a global
process that is not behaviorally equivalent to the distributed execution of the
input views. By splitting the input views into pieces during preparation and
reconnecting them by matching send- and receive steps the order of steps in the
views is not guaranteed to be preserved in the merged result. Additionally, the
condition for the predecessor relation between any two steps may be different in

13



the the merged result and the views. E.g. In some view a step a may be followed
by a step b in all cases but in the merged result b is only executed under a specific
condition.

Definition 1. A merge-result is correct for the set of input views V ,
iff:

∀ v ∈ V : ∀ (n1,n2) ∈ prec(V ) ∃ (g1,g2) ∈ prec(Vunion) such that n1 = g1
∧ n2 = g2 ∧ condPrec(n1, n2, v) = condPrec(g1, g2, Vunion)
prec(wf) defines the predecessor relation between all activity- or abstract steps
in the process wf . condPrec(n1, n2, wf) returns the set of conditions under
which n2 is a predecessor of n1 in the process wf .

An algorithm that checks the correctness of a merged global process with
respect to its input views is shown in Algorithm 6. The procedure correctMerge()
gets a merged graph mergedGraph and a set of non-prepared, original views V
as an input and returns true if the first input is a correct merge of the views,
false otherwise. The step matrix represents the predecessor relation between
all activity- and abstract steps and the conditions under which the predecessor
relation between the steps holds. In order to check the correctness of a merge the
global step matrix is compared with each view step matrix. We realize the step
matrix as a two dimensional array with indexes specified by steps (vertices of the
graph) and values containing matrix entries. A matrix entry is a pair of relation
(in our case we only use the predecessor relations PRE ) and condition. Moreover,
a condition is a set of pairs holding variable names and values (true or false). By
using this data structure we can express both the predecessor relationship of each
pair of steps as well as the conditions under which the predecessor relationship
holds. To achieve the checking of the merged graph two methods are used.
The helper function createStepMatrix() is responsible for computing the step
matrices. It iterates over all possible pairs of steps (v1,v2) that only contain steps
of type Simple and Abstract and computes the matrix entries. A matrix entry
is set if v1 is a predecessor of v2. Beside the entry relation also the condition
under which the predecessor relationship holds is added using the additional
helper function getCondition(v1,v2). After iterating through all combinations of
steps the matrix is returned.
The next helper function compareStepMatrices() is responsible to compare the
global process with one of the view matrices. To achieve that an iteration over the
global step matrix is used to compare each matrix entry with the corresponding
entry in the view matrix. The method returns false if one matrix entry is different
between the global matrix and the view matrix.

6 Evaluation of the Automatic Partitioning Approach

A partitioning is correct, if the global process and the set of communicating
local processes are behaviorally equivalent, i.e. if the distributed execution of
the ensemble of communicating process generated by the partitioning algorithm

14



Algorithm 6 Checking the Correctness of a Merge

1: Procedure correctMerge
Input: Merged workflow graph mergedGraph, Set of original view graphs V =

Vp1...Vpn

Output: Boolean result
2: StepMatrix stepMatrixMerged = createStepMatrix(mergedGraph)
3: for all (view ∈ V ) do
4: StepMatrix stepMatrixView = createStepMatrix()
5: if (!compareStepMatrices(stepMatrixMerged, stepMatrixView)) then
6: return false
7: end if
8: end for
9: return true

10:

11: Procedure createStepMatrix
Input: WorkflowGraph graph
Output: StepMatrix stepMatrix
12: for all (v ∈ graph.V ) do
13: if ( v.type != Simple and v.type != Abstract ) then
14: graph.V = graph.V \ {v}
15: end if
16: end for
17: StepMatrix stepMatrix[][]
18: for all ((v1,v2) ∈ graph.V ) do
19: if (v1.isPredecessor(v2)) then
20: Relation relation = PRE
21: Condition condition = getCondition(v1,v2)
22: stepMatrix[v1][v2] = (relation,condition)
23: end if
24: end for
25: return stepMatrix
26:

27: Procedure compareStepMatrices
Input: StepMatrix global, StepMatrix view
Output: Boolean result
28: for all ((g1,g2) ∈ global ) do
29: if (view.partner ∈ g1.partners and view.partner ∈ g2.partners) then
30: MatrixEntry viewEntry = getCorrespondingViewEntry(g1.label,g2.label,

view);
31: if (global[g1][g2] != viewEntry) then
32: return false
33: end if
34: end if
35: end for
36: return true

admits the same traces of activity invocations as a centralized execution of the
global process would. A sufficient condition for this behavioral equivalence is

15



when a correct merging of the set of derived processes is identical to the global
process.

Definition 2. Correctness of a Partitioning:

A partitioning P (p) = {vp1, ..., vpn} of a process p for n partners is correct,
iff: The representation of p as a graph is structurally equivalent to the correct
merge of the views in graph representation:
toGraph(p) ≡ mergeV iews({toGraph(vp1), ..., toGraph(vpn)}) ∧
correctMerge(mergeV iews({toGraph(vp1), ..., toGraph(vpn)}), P (p)).

This narrow definition of equivalence is applicable because we know that
our algorithms will not require to apply any equivalence transformations [4]
such as changing the structure of the hierarchy before the graphs are merged or
compared.

Theorem 1 (Correct Partitioning). Any global process is correctly partitioned
into views for k partners using the presented partitioning approach.

Proof 1. We prove the theorem by induction over the nesting depth of the
global process. A process W of nesting depth 0 can only be one activity-step
and the partitioning is equal to the process and is trivially correct.

We assume that processes of nesting levels up to n are partitioned correctly
and show that under this assumption the processes of nesting level n + 1 are
correctly partitioned. A process of nesting level n + 1 can be a XOR-, LOOP-,
SEQUENCE-, PAR- Block with a sub-block of nesting level n.

We use abstract steps as place-holders for the sub-blocks. This is possible
because they have exactly the same properties as any other block: They are
defined by a first partner, a last partners and an optional set of intermediate
partners (see Figure 1).

We prove by exhaustive analysis of cases, i.e. for all four types of control
steps and all possible assignment configurations of partners to steps that the
partitioning is correct in the following way: We generate a global process, par-
tition the process substituting the abstract step with its projections (which are
correct according to the induction assumption) and merge the generated views
and compare the result with the global process.

In Figure 6 the generic cases for nesting level n+1 for sequences, parallel
and loop blocks are shown. Each generic case is annotated with a set of slots
#1, ... #n that are placeholders for partners. For example a loop has 5 slots
that can be filled with up to 5 different partners. Slots #1,#2,#4,#5 are single
valued slots (they must be filled with exactly one partner), while the slot #{3}
can be filled with sets of partners including the empty set. The possible partner

16



Example Partner Assignments LOOP

SEQ

PAR

LOOP

Generic Block
A

Generic Block
A

Generic Block
AGeneric Block

B

Generic Block
B

PS

LS

PJ

LJ

#1

#1

#8

#5

#1

#2

#2#4

#5

#{2}

#{3}

#{3}#{5}

#{6}

#3

#4

#4#6

#7

1 1 { } 1 1 
1 1 { } 1 2 
1 1 { } 2 1 
1 1 { } 2 2 
...

...
1 2 {3} 4 3 
1 2 {3} 4 4 
1 2 {3} 4 5 

Fig. 6. Generic Cases for Sequence-, Parallel- and Loop- blocks

Generic Block
B

Generic Block
A

Generic Block
C

XS XJ

#3 #10

#4

#1

#7

#{5}

#{2}

#{8}

#6

#1

#9

Fig. 7. Generic Cases for XOR−Blocks

assignments range from all slots (1, 1, {1}, 1, 1) are filled with the same partner
to each slot has a different partner (1, 2, {3}, 4, 5). We include multi-valued slots
with the empty set and any set of partner of size 1. Sets bigger than one do not
constitute an additional assignment configuration for the partitioning algorithm
and were therefore not tested.

While sequences, PAR− and LOOP− blocks are not context dependent (the
partitioning only depends on the current block), the augmentation and projec-
tion of XOR−blocks is context-dependent. An XOR-block is transformed into a
sequence in the view of a partner p and the corresponding decision variable is not
sent to p, if p does not take part in the other branch of the XOR-block and if p
does not take part in any other block that is not a parent of the XOR block. See
line 21 in Alg. 1 and line 13 in Alg. 3. While the condition that a partner does
not occur in both branches of a XOR (partnerInBothBranches(partner,inBlock))
is local to the current block, the condition that a partner only takes part in this
block (partnerOnlyInThisBlock(partner,inBlock)) is dependent on the context.
The two possible non local context instantiations are that the partner either
takes part in another block or that a partner does not take part in another

17



block. Both non local context instantiations must be covered by the analysis of
XOR−blocks. According to the augmentation and projection algorithm it makes
no difference in what block type outside of the current XOR-block the partner
in question p takes part. Therefore, it is sufficient to analyze all possible cases,
when an XOR-block is nested into a sequence of two steps to simulate all pos-
sible context instantiations. The case of a XOR nested in a sequence including
its 10 slots for partner assignments is shown in Figure 7.

We have implemented all required algorithms and could show that all cases
are correctly partitioned by our partitioning algorithm.

7 Related Work

Workflow View mechanisms typically allow to hide and aggregate elements of a
process in order to provide a good balance between the information that needs to
be shared for the cooperation and privacy concerns of the partners. Most process
view approaches such as [6, 2, 11] allow to define views on private processes which
is especially useful for outsourcing or producer/consumer scenarios. In contrast
to the aforementioned view approaches we have presented a top-down approach
that allows to derive views from a global process. This scenario is also addressed
by the p2p approach to interorganizational workflows [19, 20] and more recently
with multi party contracts [17]. Both approaches are based on extensions of petri-
nets and therefore abstract from the data perspective using indeterminism. This
is especially problematic, when decisions need to be synchronized between differ-
ent partners. In contrast to our approach the partitioning procedure presented
in [19, 20] does not guarantee that the resulting partitions are valid for any as-
signments of partners. Instead they define that a partitioning is only correct if all
resulting partitions are valid interorganizational workflow nets. This restriction
was partly addressed in [17], where open workflow nets are used for modeling.
However, a valid partitioning is still restricted: Interfaces places between part-
ners must always be bilateral. This results in problems for possible partitions.
For example the outgoing flow of a XOR (a place with two outgoing transitions)
cannot relate to different partners. The same holds for XOR joins. Therefore,
it is up to the designer to create a global process that can be partitioned cor-
rectly based on the requirements. We do not need to impose such restrictions
and we operate on deterministic models. We achieve this by an augmentation
phase that automatically injects the required communication steps for decisions
and control-flow between the partners. This allows us to guarantee that any
full-blocked process, can be partitioned automatically based on any arbitrary
partner assignment.
Another field of related research is the top-down interaction modeling of chore-
ographies including data (message contents) which is addressed in approaches
such as [9, 10]. However, they have a different scope: In interaction modeling the
entities of concern for projection are limited to messages while ignoring tasks. In
our case not messages but processes are partitioned and the exchanged messages

18



are generated automatically.
An alternative top-down process partitioning method for global processes was
presented in [8]. It translates XOR and LOOP constructs in the global process to
deferred choice/deferred loop constructs in the views. This is an elegant solution
that minimizes message exchanges in some cases. However, it does not com-
ply with non-local constraints which can result in wrong projections. Another
problem is that the approach requires broadcast-messages for the termination of
loops. Both problems are solved by our approach.

8 Conclusions

We have presented a novel process partitioning method for the top down devel-
opment of distributed interorganizational processes. The general idea is that the
cooperating partners first agree on a global business process. In a next step each
step of the global process is assigned to one of the partners. Finally our parti-
tioning algorithm is used to automatically derive process views of each partner.
The views contain the (abstract) tasks that should be realized by the partners
and the required control structures and communication steps that specify the
distributed execution (choreography) of the global process. In contrast to exist-
ing approaches we can guarantee that every full-blocked process can correctly
be partitioned for any arbitrary partner assignment and we generate determinis-
tic processes by explicitly addressing the distribution of decision variables. The
partitioning algorithm is an essential module in designing P2P processes.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Springer, Berlin, Germany, October 2003.

2. I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng., 56(2):139–173, Feb. 2006.

3. C. Combi and M. Gambini. Flaws in the flow: The weakness of unstructured busi-
ness process modeling languages dealing with data. In On the Move to Meaningful
Internet Systems: OTM 2009, volume 5870 of Lecture Notes in Computer Science,
pages 42–59. Springer, 2009.

4. J. Eder and W. Gruber. A meta model for structured workflows supporting work-
flow transformations. In Proceedings of the 6th East European Conference on Ad-
vances in Databases and Information Systems, ADBIS ’02, pages 326–339, London,
UK, UK, 2002. Springer.

5. J. Eder, N. Kerschbaumer, J. Köpke, H. Pichler, and A. Tahamtan. View-based
interorganizational workflows. In Proc. 12th Int. Conf. Computer Syst. and Tech.
(CompSysTech’11), pages 1–10. ACM, 2011.

6. R. Eshuis and P. Grefen. Constructing customized process views. Data Knowl.
Eng., 64(2):419–438, Feb. 2008.

7. H. Groiss and J. Eder. Workflow systems for inter-organizational business pro-
cesses. ACM SIGGroup Bulletin, 18:23–26, 1997.

19



8. N. Kerschbaumer. View-Based Interorganizational Workflows. Phd-thesis,
Alpen Adria Universitaet Klagenfurt, Universitaetsstrasse 65-67, 9020 Klagenfurt,
November 2011.

9. D. Knuplesch, R. Pryss, and M. Reichert. Data-aware interaction in distributed
and collaborative workflows: Modeling, semantics, correctness. In CollaborateCom,
pages 223–232. IEEE, 2012.

10. H. Nguyen, P. Poizat, and F. Zaidi. Automatic skeleton generation for data-aware
service choreographies. In Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, pages 320–329, Nov 2013.

11. A. Norta and R. Eshuis. Specification and verification of harmonized business-
process collaborations. Information Systems Frontiers, 12(4):457–479, Sept. 2010.

12. OASIS. OASIS Web Services Business Process Execution Language (WSBPEL)
TC. Technical report, ”OASIS”, Apr. 2007.

13. C. Peltz. Web services orchestration and choreography. IEEE Computer,
36(10):46–52, October 2003.

14. W. M. P. van der Aalst. Verification of workflow nets. In ICATPN, volume 1248
of Lecture Notes in Computer Science, pages 407–426. Springer, 1997.

15. W. M. P. van der Aalst. Process-oriented architectures for electronic commerce
and interorganizational workflow. Information Systems, 24(8):115–126, 1999.

16. W. M. P. van der Aalst. Inheritance of interorganizational workflows: How to agree
to disagree without loosing control? Information Technology and Management,
4(4):345–389, 2003.

17. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multi-
party contracts: Agreeing and implementing interorganizational processes. Com-
put. J., 53(1):90–106, 2010.

18. W. M. P. van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, July 2003.

19. W. M. P. van der Aalst and M. Weske. The p2p approach to interorganizational
workflows. In Advanced Information Systems Engineering, pages 140–156. Springer,
2001.

20. W. M. P. van der Aalst and M. Weske. The p2p approach to interorganizational
workflows. In Seminal Contributions to Information Systems Engineering, pages
289–305. Springer, 2013.

20


