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Abstract. Semantic annotations assign concepts of a reference ontology
to artifacts like documents, web-pages, schemas, or web-services. When
an ontology changes, these annotations have probably to be maintained
as well. We present an approach for automatically checking whether an
annotation is invalidated by a change in the reference ontology. The
approach is based on annotation paths and on the explicit definition of
change-dependencies between ontology artifacts. Ontology change-logs
and change dependencies are then exploited to identify those annotation
paths which require maintenance.
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1 Introduction

Semantic annotations were developed to assign semantics to various documents,
e.g. XML-Schemas, XML documents, web-pages, or web-services by linking el-
ements of these documents to elements of a reference ontology [20],[13]. When
the reference ontology evolves, these annotations might have to be maintained
as well. To ease the maintenance effort it is highly desirable to identify those
annotations which have to be maintained in contrast to those which are invari-
ant to the changes. So the goal of the research reported here1 was to develop a
technique to automatically identify those annotations which need attention as
a consequence of a given set of ontology changes. The method should deliver
all annotations where the annotations itself or instance data (might) need to
be changed and it should return the smallest possible set of annotations (no
false negatives and as little false positives as possible). Furthermore, the anal-
ysis of the necessity of maintenance should also deliver strategies for changing
the annotation, if possible.

The proposal is based on annotation path expressions [14] as a method for
semantic annotations. Annotations consists of paths of concepts and properties
of the reference ontology. These annotation paths were developed to grasp the

1 This work was partially supported by the Austrian Ministry of Science and Research;
program GEN-AU, project GATIB



semantics more precisely and to provide a pure declarative representation of
the semantics opposed to the more procedural lifting and lowering scripts of
traditional XML-Schema annotation [13] methods. These annotation paths can
automatically be transformed to ontology concepts. The ontology concepts can
then be used to create semantic matchings between annotated elements from
different schemas or different versions of the same schema. An example for an
annotation is /invoice/hasDeliveryAddress/Address/hasZipCode which could be
used to annotate a zip-code element in an XML-Schema for invoices. The example
assumes that invoice and address are concepts of the reference ontology and
hasDeliveryAddress is an object-property and hasZipcode is a datatype-property.
Another motivation for the development of annotation paths was to provide a
better basis for maintaining annotations when the reference ontology is changed.
In [14] we have introduced different types of invalidations of the annotations
when the ontology changes:

– Structural invalidation:An annotation path references concepts and prop-
erties of the reference ontology. All referenced concepts and properties must
exist in the ontology and basic structural requirements must be met. For ex-
ample /invoice/hasDeliveryAddress/Address/hasZipCode gets invalid if the
concept Address is removed from the reference ontology.

– Semantic invalidation: An annotation path is invalid if its semantic repre-
sentation (an ontology concept) imposes contradictions to the reference on-
tology. For example /invoice/hasDeliveryAddress/Address/hasZipCode gets
semantically invalid if the domain of hasDeliveryAddress is changed to order
and invoice is defined to be disjoint from order.

These types of invalidations can be tracked by structural checks and simple
reasoning over the ontology representation of the annotation path. When an
annotation got invalid it needs to be repaired. Thus, evolution-strategies [19]
are required in order to maintain the annotations. For example, if a referenced
concept is removed we may use the super-concept for the annotation instead. If
it was renamed we need to rename the element in the annotation paths as well.
In this paper we will focus on another kind of invalidation: Changes of the
semantics of the annotations which lead to a misinterpretation of annotated
data without invalidating the annotation structurally or semantically. We will
describe this problem in the following section with an illustrative example. We
will first present the notion of semantic changes and discuss if such changes to the
semantics of an annotation can, still, be derived from the plain ontology in section
2 and describe and define the explicit dependency definitions in section 3 and 4.
In section 5 we show how the explicit definitions can be used to track semantic
changes. In section 6 we present a prototype-implementation of the approach.
Section 7 gives an overview about the related work. The paper concludes in
section 8.



2 Semantic Changes and their Automatic Detection

Semantic changes are consequences of changes in the reference ontology which
do not invalidate the annotation semantically or structurally, but might lead
to misinterpretations. We illustrate such semantic changes with the following
example:

Fig. 1. Example Ontology

In figure 1 an example ontology2 that represents parts of the European Union
is depicted. We now assume that we have an annotation of an XML-Schema-
element with the annotation path /EU/hasPopulation. Some changes were made
to the ontology: Slovenia was added as an additional MemberCountry and an
additional Commissioner -instance was added and persons now have the prop-
erty hasBirthdate. The differences between the old and the new ontology ver-
sion are marked in dark-grey. Now obviously the semantics of an annotation
/EU/hasPopulation of some element in an XML Schema are changed because
the parts of the European union were changed. This change does not influence
the validity of the annotation itself - but the semantics of the annotation has
changed. Documents that were annotated with the old ontology version will have
a lower population number than documents of the current version. This imposes
problems because it leads to the misinterpretation of the data. For example a

2 The member countries are modeled in form of concepts and specific commissioners
as instances in order to show problems that may occur when concepts or instances
evolve.



human reader might come to the conclusion that the EU has a higher birthrate
after the change. The goal of this paper is the automatic generation of warnings
for such changes.
Since an ontology is used to express the semantics of a domain it should be
possible to derive the changes of the semantics of annotations automatically.
To avoid that each annotation has to be checked, if any ontology element has
changed, we need to reduce the set of ontology elements which might invalidate
a specific annotation. Ontology views [16] are methods to reduce the size of an
ontology. Ontology module extraction [7] techniques can be applied for the same
purpose. These methods generate a sub-ontology that only contains relevant ele-
ments for a given starting point (set of concepts). The starting point in our case
is the semantic representation of an annotation path expression. When such sub-
ontologies are created for the old and the new ontology version we can check, if
there were changes between the sub-ontology versions. Since the sub-ontologies
only contain elements that are relevant for the annotation in question we should
be able to significantly reduce the number of false-positives.
Typical methods for the generation of sub-ontologies begin with a concept in
question and then add more and more concepts that are related. The relation
is expressed in form of sub/superclass relations or object-properties. We will
illustrate the general idea of the generation of a sub-ontology with an example:

– The starting point is EU/hasPopulation
– This leads the inclusion of the concept EU
– The consistsOf property on EU requires the addition of MemberCountry
– MemberCountry requires the addition of its super-concept: Country with the

property hasInhabitants
– MemberCountry requires the addition of Slovenia, Austria, Germany, ...

When we now compare the view of the old and the new ontology version we
can figure out that Slovenia was added. We would throw a warning that the
semantics of EU/hasPopulation was possibly changed. In this example we have
assumed that we include all datatype-properties of a concept in the view and all
concepts that are in the range of the object properties of the included concepts.
In addition, all super- and sub-concepts as well as individuals of the included
concepts are added. Unfortunately, such an algorithm would thus, include much
more concepts:

– The hasCommission property of EU requires the addition of EUCommission
– The hasPresident property of EUCommision requires the addition of Presi-

dent.
– The hasMember property of EUCommision requires the addition of Com-

missioner.
– The Commissioner concept requires the addition of its instances.
– ....

At the end the entire ontology would be included in the view. Thus, all changes
that happened between the old and the new ontology version are assumed to



be relevant for EU/hasPopulation. This is certainly not true. In order to avoid
this behavior the set of properties that are followed to build the view needs
to be much smaller. Thus, strategies are required to choose the proper object-
properties that should be followed. But where is the difference between consistsOf
and hasCommission? From where can we know that if we want to build the view
for EU/hasPopulation we need to follow the consistsOf property and that if we
want to create the view for EU/numberOfCommissioners we need to follow the
hasCommision property?
Thus, strategies are required in order to keep the view small and meaningful.

3 Requirements for Explicit Dependency-Definitions

As shown in the last section there is typically no knowledge about what may
be invalidated semantically by changes since this is not an invalidation of the
logical theory (which could be calculated) but a change of the semantics of the
annotations. The reason for this is that the ontology does not fully specify the
real-world domain. Therefore, a straight forward solution is the addition of the
missing knowledge to the ontology. This means sentences like ”The population
of the EU is changed when the MemberCountries change” should be added to
the ontology. Obviously this a very wide definition because we have not stated
anything about the types of relevant changes. Is it changed when the name
of a country changes or only if a specific attribute changes? In general which
operations may invalidate our value? The examples of the population of the EU
can be described as the aggregation of the population of the member countries.
Thus, we need a way to describe such functions. These observations lead to the
following requirements for change-dependency definitions:

1. The change-dependent concept or property must be described including the
context. For example hasPopulation of EU and hasPopulation of City might
depend on a different set of ontology elements.

2. The definition of the change-dependency should allow fine grained defini-
tions of dependencies. For example it should be possible to define that EU-
/hasPopulation is dependent on the population of the MemberCountries. It
would not be sufficient to state that it is dependent on population in general.

3. It should be possible to define that one artifact is dependent on a set of other
artifacts.

4. Multiple dependencies should be possible for one change-dependent concept
or property.

According to the first requirement the dependent artifact needs to be specified
precisely. This can be realized with the annotation path syntax. Therefore, the
path EU/hasPopulation defines that the hasPopulation property on the concept
EU is the subject of a dependency definition. The second requirement supposes
that not only the subject should be described via path expressions but also the
object of a change-definition should be described in terms of path expressions.
Unfortunately, the plain annotation path syntax does not fulfill the third re-
quirement. It, therefore, needs to be enhanced with expressions to address sets.



Dependencies on Sets and Aggregations: Some ontology artifact may be change-
dependent on a set of other artifacts. In our running example the population
of the EU depends on the set of MemberCountries. More precisely it is not
dependent on the set of MemberCountries in general but on the sum of the
hasInhabitants property of each MemberCountry. In general, there are different
kinds of sets in an ontology: subclasses, sub-properties and instances. Therefore,
all those must be expressible. The sum function is only one aggregation function.
Typical other aggregation functions are are min, max, count, and avg. In addition
to aggregation functions another kind of function over sets is of interest: The
value function. It can be used to state than one artifact is directly dependent on
the values of a set of other artifacts. The subclasses and instances operator can
be used in a path wherever a concept is allowed and the sub-properties operator
can be used wherever a property-step is allowed. We will illustrate the ideas with
examples:

1. EU/hasPopulation is dependent on
/EU/consistsOf/sum(subclasses(MemberCountry))/hasInhabitants.

2. EU/numberOfCommissioners is dependent on /EU/hasCommission/
EUCommission/hasMember/count(instances(Commissioner)).

3. MemberCountry/hasInhabitants is dependent on
MemberCountry/subproperties(hasInhabitants).

4. /city is dependent on value(subclasses(city))

The first example calculates the sum of all hasInhabitants properties of all sub-
classes of member − countries, while the second one just counts the number
of commissioner instances. The first example defines an abstract sum because
the ontology cannot contain any information about the number of inhabitants on
class level. It only defines that the value becomes invalid if the ontology structure
changes in a way that the function would operate on a changed-set of ontology
artifacts. In contrast the second example can return a defined number because it
is a simple count operation. In addition, it defines the change-dependency over
instances. In this case the ontology may contain instance data. In the third exam-
ple it is assumed that the hasInhabitants property has sub-properties and that
a change of the sub-properties will also invalidate EU/hasPopulation. Examples
for sub-properties could be hasMalePopulation and hasFemalePopulation.
The last example shows the value function. It defines that elements that are an-
notated with /city are change-dependent on all the subclasses of city. Therefore,
a rename of a subclass of city requires a rename of the specific city-element in
XML-documents as well.

4 Definition of Change-Dependencies

In order to introduce the proposed change-dependency definitions we will first
define our ontology model. We use an abstract ontology model which can be com-
pared to RDFS[2] shown graphically in figure 2. It contains the relevant aspects



of typical ontology languages. Basically an ontology consists of concepts, proper-
ties and individuals. Concepts and properties are hierarchically structured. An
individual is an instance of a set of concepts. A property has a domain that
defines the set of classes that have this property. Properties are divided into
object-properties and datatype-properties. Object-properties form relationships
between classes and, therefore, have a range that defines the set of classes which
are targets of the property. Datatype-properties have a definition of the data
type. Properties are modeled on the class level while an instantiation of a prop-
erty is done on instance-level using property assertions. Concepts may restrict
the usage of properties. A restriction has a type and a value. The type can be
a typical OWL [1] cardinality- or value- restriction. The type indicates the type
of restriction (min, max, value) the value indicates the value that is attached to
this restriction. Individuals can have propertyAssertions that indicate that an
individual instantiates some property. In case of an object-property the target
of a propertyAssertion is another individual. In case of datatype-properties it
is some data-value. This abstract ontology model covers the important concepts
of most ontology languages. By using this abstract model we can apply the work
on different ontology formalisms that can be transformed to our representation.
This does not require to transform the whole ontologies to our ontology model.
It is sufficient to formulate the changes that occur to the ontology in terms of
our ontology-model. Depending on the used ontology formalism reasoning may
induce additional changes that we can simply also add to our change-log by
comparing the materialized ontology version before and after the change.

Fig. 2. Ontology Meta-Model



Based on this ontology model we define annotation paths that are used to an-
notate artifacts of an XML-Schema with a reference ontology. Both annotation
path and dependency-definitions are modeled in the meta-model in figure 3. An
AnnotationPath consists of a sequence of AnnotationPathSteps. Each step has
a position and a uri that points to some property or concept of the reference on-
tology. According to the referenced ontology artifact an AnnotationPathStep is
either a conceptStep or a propertyStep with the subclasses objectPropertyStep

and dataTypepropertyStep. Each step except the last step has a succeeding step.
Each step except the first step has a previous step. An annotation path has a
defined first and a defined last-step.
A DependencyDefinition has one hasSubject relation to an AnnotationPath

and one or more hasObject relations to dependencyDefinitionPath. Each de-
pendencyDefinitionPath consists of a number of DependencyPathSteps. A Depen-
dencyPathStep is a subclass of an annotationPathStep which is extended with
an optional setExpression. The setExpression has a type (subclasses, subprop-
erties, instances) and an optional function which has a type that can be value,
min, max, avg, count. Each DependencyDefinitionPath has a hasAnnotation-
Path relation to one AnnotationPath. This specific annotationPath is created by
casting all steps to standard AnnotationPathSteps. An annotationPath can be
represented in form of an ontology concept. This concept can be obtained with
the method getConcept().

In order to meet the requirements that were introduced in the last section some
integrity constraints on AnnotationPath and DependencyDefinitionpath are
required. We refer the interested reader for the complete definition of annotation
Path to [14].

4.1 Integrity Constraints on AnnotationPath

1. The first step must be a ConceptStep.
2. An AnnotationPath must not contain DependencyPathSteps.
3. The last step must be a ConceptStep or a dataTypePropertyStep.
4. When a conceptStep has a previous step then the previous step must be an

ObjectPropertyStep.
5. The next step of a ConceptStepmust be anObjectPropertyStep or aDataType-

PropertyStep.
6. A DataTypePropertyStep can only exist as the last-step.
7. A ConceptStep must not reference to another AnnotationPath.

4.2 Integrity Constraints on DependencyDefinitionPath

1. All integrity constraints of standard steps except (2) and (7) also apply on
DependencyDefinitionPath.

2. Only the last two steps may have a setExpression including a function.
3. The setExpression of type subclasses is only allowed for conceptSteps.



4. The setExpression of type instances is only allowed for conceptSteps.
5. The setExpression of type subproperties is only allowed for propertySteps.

Fig. 3. Meta-Model of the Change-Dependency Definitions

5 Detection of Semantic Changes

In order to detect if the semantics of an annotation path got invalid by a change
we first introduce the change-model for our ontology-model. The changes are
stored in a change-log and the detection of relevant changes is realized by rules
that operate on the statements of the change-log and the old and the new on-
tology versions.

5.1 Change-Log

The change-log consists of a set of changes C. Each change c ∈ C is a tuple
c = (op, tid, p1, ...pn). Where op defines the kind of change, tid is a unique
identifier of a change and also creates an order over the changes. A change
with a lower tid was made before a change with a higher tid. The parameters
p1 .. pn are parameters for the change. A multi-version ontology O has differ-
ent versions O1...On. Each version has a timestamp tid that uniquely identifies
the version and also creates an order over the different versions. The set of
changes that were made between two ontology versions On and On+1 is denoted
Changes(On, On+1, C).



Changes(On, On+1, C) = {∀c ∈ C|c.tid ≥ On.tid ∧ c.tid ≤ On+1.tid}

There are different change operations. We will discuss the different operations
in the next section. For readability reasons we present the changes in form of
predicates. Thus, c.op is the name of the predicate. In addition each change has
an inverse change c−1 that compensates the change-effect of the change c. We
assume that the changes in Changes(On, On+1, C) are free of redundancies be-
tween On and On+1 such that no change is compensated by an inverse change
in the change-log.

Global Atomic Changes: Atomic changes are basic changes that add or
remove concepts, properties or instances. It must be ensured by the ontology
management system that a removal of a concept, property or instance is only
possible when the artifact is not, still, referenced. The table shows the basic
add-operations and their inverse delete operations.

c c−1

addConcept(tid,uri) delConcept(tid,uri)
addOProp(tid,uri) delOProp(tid,uri)
addDProp(tid,uri) delDProp(tid,uri)
addInstance(tid,uri) delInstance(tid,uri)

Hierarchy Changes: In addition to theses basic operations the following op-
erations that maintain the hierarchy of the artifacts are required. They are used
to express changes in the concept- or property-hierarchy.

c c−1

addChildC(tid,childUri,parentUri) remChildC(tid,childUri,parentUri)
addChildOProp(tid,childUri,parentUri) remChildOProp(tid,childUri,parentUri)
addChildDProp(tid,childUri,parentUri) remChildDProp(tid,childUri,parentUri)
addInstToC(tid,instanceUri,conceptUri) remInstToC(tid,instanceUri,conceptUri)

Update Changes: Update changes are used to modify the domain and range
of properties as well as to maintain restrictions over properties on concepts and
to modify property assertions on individuals. The rename operations change the
URI of a specific concept, property or individual. We assume that these opera-
tions are global in the sense that every usage of the URI is changed automati-
cally. In addition we assume that these operations are added to the change-log
as atomic operations. Therefore, a rename does only show up as a rename but
not as a delete and subsequent insert in the change-log. The inverse operations
of update-changes are update operations of the same type but with swapped
parameters.

– updateRestriction(tid, conceptUri, propertyUri, oldValue, oldType, newValue,
newType)



– updateDomain(tid, propertyUri, {oldConceptUri}, {newConceptUri})
– updateRange(tid, propertyUri, {oldconceptUri}, {newconceptUri})
– updateType(tid, propertyUri, oldDataType, newDataType)
– updatePropertyAssertion(tid, instanceUri, propertyUri, oldValue, newValue)
– renameConcept(tid, oldUri, newUri)
– renameProperty(tid, oldUri, newUri)
– renameIndividual(tid, oldUri, newUri)

Composite Changes: In addition to the basic operations a set of composite
operations is of interest. A merge operation merges a a set of concepts, properties
or instances to one single concept, property or instance. The inverse operation
of a merge is a split.

c c−1

mergeC(tid,{conceptUri},conceptUri) splitC(tid,conceptUri,{conceptUri})
mergeP(tid,{propertyUri},propertyUri) splitP(tid,propertyUri,{propertyUri})
mergeI(tid,{instanceUri},instanceUri) splitI(tid,instanceUri,{instanceUri})

A composite operation is reflected as a sequence of other change-operations. In
order to specify that an explicit change-operation is part of a composite change
the atomic operation is annotated with the tid of the corresponding composite
change with statements of the form:
ChangeAnnotation(tidOfCompositeChange, tidOfAtomicChange)

5.2 Implicit Changes

In addition to explicit changes there are implicit changes. These changes can di-
rectly be caused by explicit changes or by classification according to the source
ontology language. For direct explicit changes we except the following implicit
changes to be automatically included in the change-log by the ontology manage-
ment system.

– If a concept is added or removed as a child of an existing concept and the
existing concept or one of its parents has a restriction on a property then a
restriction change is made on the added or removed concept implicitly.

– If a property is added or removed as a child of another property then the
domain and range of the added or removed property is changed implicitly.

– If an individual is added or removed to/from a concept then it is added/re-
moved to all its super-concepts implicitly.

The implicit changes as shown above and additional changes that can be derived
by comparing the materialized ontology versions of the ontology before and after
each change are stored in the change-log. The comparison algorithm can benefit
from the fact that the change-log contains information about renames, additions
and removes. Therefore, the complexity is strongly reduced since each element
from the source and target ontology can directly be mapped. In order to trace



which change caused the addition of these implicit changes the implicit changes
are annotated with predicates of the form causedBy(impl tid, tid). This allows
to keep the change-log clean of redundant implicit changes if the change that
caused the implicit changes is compensated by an inverse operation.

5.3 Detection of Semantically Invalid Annotation Paths

Now we define semantic invalidation as a change affecting the semantics of an
annotion path as follows.
The predicate subClassOf(subc, superc,On) states that subc is a subclass of the
superclass superc according to the ontology version On. As an equivalent class is
logically defined as being sub- and superclass at the same time we assume that ev-
ery class is a subclass of itself. The predicate subPropertyOf(subp, superp,On)
expresses the sub-property-relationship analogously.

Definition 1 Semantic Invalidation of an Annotation-Path:

Given an ontology version On, a succeeding ontology version On+1, a set of
changes Changes(On, On+1) abbreviated by C, a set of explicit dependency-
definitions DEP , and a set of XML-Schema-annotations A. An annotation path
a ∈ A is semantically invalid if:

semInvalid(a,C,DEP,On, On+1)← InvalidByDep 6= {}

RelevantDependencies is the set of definitions where the corresponding sub-
ject is an equivalent- or superclass of the annotation path a:
RelevantDependencies = {∀dep ∈ DEP |subClassOf(a, dep.subject, On)}
InvalidByDep is the set of change-dependency definitions where one of the ob-
jects got invalid because it contains a step that is invalid or if the semantics of
the annotation path of the object itself got changed.

InvalidByDep = {∀dep ∈ RelevantDependencies|(hasObject(dep, obj)
∧ isInvalid(obj)) ∨ (hasAnnotationPath(obj, annotationPathObject)
∧ semInvalid(annotationPathObject, C,DEP,On, On+1))}

Thus, dependency-definitions are transitive. If a depends on b and b depends
on c then a is invalid when c is invalid.

A DependencyDefinitionPath is invalid if at least one of its steps is invalid:
isInvalid(obj)← ∃step ∈ obj.steps ∧ InvalidStep(step)
When a step is invalid is described in the next subsections.

Rules for the Invalidation of Steps: For the sake of simplicity we will define
the invalidation of steps in form of rules omitting quantifiers. In addition all
rules operate on the change-set defined by Changes(On, On+1, C). Rules for the
detection of additions operate on On+1 while rules for the detection of removals



operate on On−1. The rules 1-3, 6, 8, 10 create possible invalidations, while
the others create invalidations. Possible invalidations are invalidations where an
invalidation may have taken place but additional review by the user is required.

1. A PropertyStep gets possibly invalid, if the domain of the property or of a
super-property has changed.
PropertyStep(?step) ∧ subPropertyOf(?step.uri, ?superProperty,

On+1) ∧ updateDomain( , ?superProperty, , )
⇒ InvalidStep(?step,′DomainOfPropertyChanged′)

2. A property-step is possibly invalid, if the range of the property or a super-
property has changed.
ObjectTypePropertyStep(?step)∧subPropertyOf(?step.uri, ?superProperty,

On+1) ∧ updateRange( , ?superProperty, , )
⇒ InvalidStep(?step,′RangeOfPropertyChanged′)
The same holds for the change of the data type of a datatype-property anal-
ogously.

3. A concept-step gets possibly invalid, if a restriction on the property of the
next step has changed.
ConceptStep(?step) ∧ isSubConceptOf(?step.uri, ?superuri, On+1) ∧
hasNextStep(?step, ?next)∧subPropertyOf(?next.uri, ?supernexturi, On+1)
∧ updateRestriction( , ?superuri, ?supernexturi, , , , )
⇒ InvalidStep(?step,′RestrictionOnNexStepChanged′)

4. A set expression over subclasses without a function becomes invalid, if a
subclass is added.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptOf(?suburi, ?step.uri, On+1) ∧ addChildC( , ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassAdded′)

5. A set expression over subclasses without a function becomes invalid, if a
subclass is removed.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptOf(?suburi, ?step.uri, On) ∧ remChildC( , ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassRemoved′)

6. A set expression over subclasses without a function becomes possibly invalid,
if a restriction on the property of the next step is changed in one of the sub-
concepts.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ subclasses′)
∧ subConceptOf(?suburi, ?step.uri, On+1) ∧ hasNextStep(?step, ?next)
∧ subPropertyOf(?nextpropuri, ?next.uri, On+1) ∧



updateRestriction( , ?suburi, ?nextpropuri, , , , )
⇒ Invalid(?step.′RestrictionOnSubclassChanged′)

7. A set expression over instances without a function becomes invalid, if in-
stances are added or removed to/from the specified concept or one of its
subconcepts. We will only depict the rule for the addition here.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ instances′) ∧
subConceptOf(?conceptUri, ?step.uri, On+1)
∧ addInstToC( , , ?conceptUri)⇒ Invalid(?step,′ InstancedAdded′)

8. A set expression over instances becomes possibly invalid, if the succeeding-
step is a property-step and property assertions on instances for that property
are modified.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ instances′) ∧
subConceptOf(?conceptUri, ?step.uri, On+1)∧hasNextStep(?step, ?next)∧
PropertyStep(?next) ∧ instanceOf(?insturi, ?conceptUri) ∧
updatePropertyAssertion( , ?insturi, ?next.uri, , )
⇒ Invalid(?step,′ PropertyAssertionChanged′)

9. A set expression over sub-properties becomes invalid, if a sub-property is
added or removed. We will only depict the rule for the addition here.
PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ subproperties′) ∧
subPropertyOf(?suburi, ?step.uri, On+1)
∧(addChildOProp( , ?newc, ?suburi)∨(addChildDProp( , ?newc, ?suburi))
⇒ Invalid(?step,′ SubpropertyAdded′)

10. A set expression over sub-properties becomes possibly invalid, if the domain
or range of a sub-property is changed. uDomainOrRange is the superclass
of updateDomain and updateRange

PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, ) ∧ equals(?exp.type,′ subproperties′)
∧ subPropertyOf(?suburi, ?step.uri, On+1) ∧
uDomainOrRange( , ?suburi, , )
⇒ Invalid(?step,′DomainOrRangeOfSubpropertyChanged′)

Functions on Set Expressions: The rules in the last section excluded the
existence of functions over setExpressions. Therefore, any change that has con-
sequences for the setExpression is considered to invalidate the step. When a
function is given then the problematic change-operations depend on the used
function and, therefore, additional rules are required. The sum-function is vul-
nerable to add and delete operations but is resistent to local merge or split



operations. All other aggregation functions are vulnerable to add, del, split,
and merge. The value function is vulnerable to renames of sub-concepts or sub-
properties as well as to delete, split and merge operations. Therefore, specific
rules for the different kinds of functions are required. Since merge and split are
complex change-operations the rules need to operate on the annotation of the
changes (ChangeAnnotation(...)). Due to space limitations we will only pro-
vide rules for sum-functions with added sub-concepts and value-functions with
renames.

1. A concept-step with a sum-function over sub-concepts gets invalid, if sub-
concepts are added or removed and the add and remove operations are not
linked to local split or merge operations. A non-local split operation hap-
pens when the source concept was a sub-concept of the step and one of the
new concepts is not, still, a sub-concept of the step according to the current
ontology version. The following rule represents the case of the addition of
sub-concepts.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ?fu) ∧ equals(?fu.type,′ sum′) ∧
subConceptOf(?suburi, ?step.uri, On+1)∧addChildC(?tid, ?newc, ?suburi)
∧!(splitC(?stid, ?source, ?suburi) ∧ ChangeAnnotation(?stid, ?tid)
∧ subConceptOf(?source, ?step.uri, On) ∧
!(splitC(?stid, ?source, ?otherSplitUri)∧notequals(?otherSplitUri, ?newc)
∧ addChildC(?tid, ?otherSplitUri, ?otherAddUri)
subClassOf(?otherAddUri, ?step.uri, On+1)))
⇒ Invalid(?step,′ SubclassAdded′)

2. A concept-step with a value-function gets invalid if one of the sub-concepts
is renamed or deleted. We will show the rule for the renames here.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ?fu) ∧ equals(?fu.type,′ value′) ∧
subConceptOf(?oldUri, ?step.uri, On+1) ∧
renameConcept( , ?oldUri, ?newUri)
⇒ Invalid(?step,′ V alue− Changed′)

6 Proof of Concept Implementation

We have implemented this approach for computing semantic invalidations of an-
notation paths using the Jena API3 and the pellet4 reasoner. The input for the
algorithm consists of a set of annotation paths, a set of dependency-definition
paths, and information about renames, splits and merges. The output is a sub-
set of the input annotation path where the semantics has (possibly) changed.

3 http://jena.sourceforge.net/
4 http://clarkparsia.com/pellet/



Additionally, explanations for the semantic invalidations are provided. The sys-
tem transforms the materialized source and target ontology to instances of our
ontology-meta-model as shown in figure 2. In a next step SPARQL5 queries
are used to generate the change-log. Each log-entry is an individual of a change-
ontology. The change ontology is a representation of the change-hierarchy defined
in section 5.1.
The rules as proposed in section 5.3 are implemented in form of SPARQL queries
that operate on instances of the change-log and the instances of the meta-
ontology. The required negation is implemented in form of SPARQL filters.
The special property subClassOf(c1, c2, ?v) (and subpropertyOf(p1, p2, ?v) anal-
ogously) is realized in form of two distinct properties subClassOfOld(c1, c2) and
subClassofNew(c1, c2) that are added to the instances of the source and target
ontology version of the ontology meta-model. Most invalidation rules can directly
be represented in SPARQL, while some more complex queries need additional
post-processing. The prototype demonstrated the feasibility of our approach.

7 Related Work

In [10] the consistent evolution of OWL ontologies is addressed. The authors de-
scribe structural, logical and user-defined consistency requirements. While the
structural and logical requirements are directly defined by the used ontology
formalism the user-defined requirements describe additional requirements from
the application domain that cannot be expressed with the underlying ontology
language. The authors do not make any suggestion on how these requirements
should be expressed. Therefore, our approach can be seen as one specific form of
user-defined-consistency requirements. The main difference is that in our case the
artifact that becomes inconsistent if a user-defined consistency-definition is vio-
lated is not the ontology itself but instance-data in XML-documents. In [4] func-
tional dependencies over Aboxes (individuals) are addressed. The dependencies
are formulated in the form antecedent, consequent and an optional determinis-
tic function. The antecedent and consequent are formulated via path expressions
which can be compared to our approach. The dependencies are directly trans-
formed to SWRL-rules. Therefore, the functional dependencies directly operate
on the individuals (Abox) and additional knowledge can be added to the Abox.
In addition, data that does not comply with the rules can be marked as in-
consistent. In contrast to our approach, the approach is limited to the instance
layer which makes it unusable for our scenario where instance-data from XML-
documents is never added to the Abox. Therefore, knowledge about changes
needs to be evaluated in order to predict semantic-changes of the semantics of
instance-data.
In [18] the validity of data-instances after ontology evolution is evaluated. An
algorithm is proposed that takes a number of explicit changes as input and calcu-
lates the implicit changes that are induced by the explicit changes. These explicit
and implicit changes can then be used to track the validity of data-instances.

5 http://www.w3.org/TR/rdf-sparql-query/



The general idea of the approach is that if an artifact gets more restricted exist-
ing instances are invalidated. Since the approach only takes into account implicit
changes that can be computed based on explicit changes it does not support the
explicit definition of change-dependencies.
Our work heavily depends on the existence of an expressive change-log between
two versions of an ontology. The automatic detection of changes that happened
between two versions of an ontology are covered with approaches like [15], [9]
or [11]. If a change-log exists this can also be used as a basis to generate more
expressive changes as required by our approach. Approaches that operate on
a change-log in order to generate additional changes are [12], [17]. Methods to
efficiently store and manage different ontology versions are presented in [8],[5].
While there is only limited work on dependencies in the field of ontologies it
is traditionally broadly studied in the database community. Recent and related
research in this field is for example [3] and [6]. In [3] a model and system is pre-
sented that keeps track of the provenance of data that is copied from different
(possibly curated) databases to some curated database. Changes in the source
databases may influence the data in the target databases. Therefore, provenance
information is required to track those changes. In [6] the problem of provenance
in databases is formalized with an approach that is inspired by dependency anal-
ysis techniques known from program analysis or slicing techniques. In contrast
to our approach both provenance approaches cope with changes of instance data
and do not address changes of schema/meta-data.

8 Conclusion

In this paper we have addressed the problem of semantic changes of annotations
that occur due to the evolution of their reference ontologies. As ontologies have
to keep up with changes in the modeled domain (the real world) such changes
occur frequently. Unrecognized semantic changes (may) lead to incorrect results
for document transformations, semantic queries, statistics etc. based on semantic
annotations. So there is an urgent necessity to maintain semantic annotations
when a reference ontology changes. As experience shows, high maintenance costs
are a severe obstacle against wide adoption of techniques. We presented a tech-
nique to identify those annotations which have to be considered for maintenance
due to changes in the reference ontology. This should ease the burden of main-
tenance considerably.
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13. Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic
annotations for wsdl and xml schema. IEEE I.C., 6:60–67, 2007.
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