Distributed Workflow and View Definition
Languages

Nico Kerschbaumer

Department of Informatics-Systems, University of Klagenfurt,
A-9020 Klagenfurt, Austria,
{eder,nico}@isys.uni-klu.ac.at,

WWW: http://www.uni-klu.ac.at/tewi/inf/isys/

1 Introduction

Interorganizational cooperations between geographically distributed business part-
ners are nowadays crucial to stay competitive in a very fast paced and changing
market. A lot of research has been conducted in the recent years to develop ap-
proaches to support communication with SOA-based protocols between business
partners. Choregraphies are used to define the communication protocol between
interacting business partners. Such protocols are fully decentralized, that means
there is no one that runs this multi partner spanning interorganizational work-
flow. Still, cooperation between maybe competitive companies is a very sensitive
matter, because on one hand they have to work together to fullfil a common
business goal that is profitable for both, while on the other hand they have to
keep business secrets private to stay competitive. A very promising solution that
allows a good balance between openness which is needed for cooperation and pri-
vacy to protect business secrets is the concept of workflow views. A workflow
view is a workflow itself which contains parts of an internal workflow and is cre-
ated by applying operations onto the original workflow like for example hiding
of certain activity steps or aggregating a set of steps to a new step. All partners
that need to cooperate provide views on their private internal processes and then
solely communicate through their public views [1, 2]. In this report we introduce
two languages that allow the specification of interorganizational workflows that
communicate through views:

Distributed Workflow Definition Language(DWDL) : The DWDL allows
the specification of workflows and is described in detail in section 2.

Workflow View Definition Language(WfVDL) The WfVDL allows to spec-
ify view generation operations based on a DWDL document and is discussed
in detail in section 3.

The languages are based on the Workflow Definition Language(WDL) which
was introduced in a prototypical workflow management system called Phanta Rei
[3]. The prototype was further developed and released as a commercial W{MS
called @FEnterprise which also supports the specification of workflows with WDL
[4]. Our languages follow the restrictions of full blocked workflows. This means

every split is followed by a corresponding join. Full-Blocked Workflows are less
expressive than par-blocked or non-blocked workflows. For example they do not
allow jumps. There are cases where a workflow can not be expressed using a full-
blocked definition. In [5] it could be shown that such workflows that can not be
translated to a full-blocked form get invalid as soon as data-flow comes into play,
because of unforeseeable concurrency problems. This means for our approach
that is used for control-flow and data-flow full-blocked workflows are a good
choice with the right expressiveness. A workflow is a DAG G= (S, T,A,V,R, D)
composed of a set of steps S, transitions T, activities A, variables V, roles R, and
datatypes ID. Activities are reusable entities that are executed in order to execute
an activity-step. Variables are visible for the corresponding workflow instance.
Steps can access data from variables by using in, out or inout parameters that are
defined in the correspondincg activities. Each variable has a type that is defined
as an XML-Type in some XML-Schema document. Roles can be either internal
or external. Internal roles are used to define which role may start a specific step,
while external roles are used to indicate who should receive data and from whom
data should be received. Data that is exchanged between workflows is realized
by sending and receiving steps. These special steps are executed by the system
and can send a set of variables to a remote party (sending step) or receive data
from a remote party (receiving step). A receiving step can only have out data
(This means data is written to the variables of the workflow instance), a sending
step can only have input variables since all data is read from the workflow and
send as it is.

2 Distributed Workflow Definition Language(DWDL)

Workflows are defined by a custom distributed workflow definition language
(DWDL) that is based on full-blocked workflows and asynchronous communica-
tion patterns for remote calls. The language is restricted to the main concepts
that are needed to define distributed workflows with regard to a good readabil-
ity. We expect that mappings to standard workflow languages are achievable
with reasonable effort. The language contains the following concepts: Workflow
parameters, variable declarations, activity declarations, interfaces, transforma-
tions, tickets, labels, local steps, receiving steps, calling steps, control steps and
roles / actors. Listing 1.1 shows the DWDL in EBNF notation. A DWDL docu-
ment is similar in structure to an ordinary procedural program and contains the
following parts:

Workflow Header Every workflow has a name and a set of optional arguments.
Arguments are stored data variables which are passed into the workflow.
Declaration Part The declaration part consists of three units: name space
imports, data declaration and workflow declaration. The first unit allows
one to import XML-schema namespaces which provide the possible data
types for variables. In the data declaration part variables which are used
in the workflow have to be declared. A variable can be of any XML-type
included in a imported namespace. The workflow declaration part serves for

the specification of the process information and contains used activities with
its corresponding parameters and data types.

Workflow Body The body is the main part of a workflow specification. Be-
tween the keywords begin and end the control and the data flow of the
process are defined.

The following paragraphs describe the main concepts of the DWDL followed
by an EBNF representation in listing .

Workflow A workflow definition in DWDL consists of a header and a body. The
header includes namespace imports of XML schemas, variable declarations based
on the XML types of the imported schemata and activity definitions which can
be reused in any step. The workflow body contains a number of steps.

Namespace Imports A namespace imports an internal or external XML schema
which includes data types and roles.
Example: Namespace sns=http://someurl.com/aDoc.xsd

Variables Variables are used to store data and can be of any XML type. A
variable is declared with the keyword VAR, the name of the variable and the
namespace followed by a ”:” and the XML-Type of the variable.

Example: VAR $myVariable sns:BigDecimal

Activities An activity declaration is used to declare the input and output data of
an activity and also to implement the activity in the body of the declaration. The
declaration contains the name of the activity and their parameters. A parameter
can be in, out or inout. Whereas in means that the parameter is read by the
activity but not changed, out means the parameter is not read but the activity
but written and inout means the variable is read and after some processing
written back to the workflow instance. Example: Activity PrepareOrder(in
sns:0rderDocument)

Steps We support three different kinds of steps. Control steps , activity steps
(every step that uses some activity) and communication steps that can be either
send or receive. Control and activity steps are executed by internal roles while
communication steps are executed directly by system.

1. Control Step: A control step is a XOR-split, XOR~join, PAR-split or PAR-
join, i.e. conditional- and parallel splits.

2. Choice Step: Is a deferred choice as described in the workflow patterns [6].

3. Activity Step: An activity step is an internal step that uses a predefined
activity which can be reused and defines the formal parameters.

4. Communication Step: Communication steps are either of type sending or
receiving and are used to communicate with external partners. A sending
steps sends data to the partner that has the external role and a receiving
step receives data from an external partner with a certain role.

Roles We differ between internal roles and external roles. Internal steps are
executed by internal roles while our communication steps use external roles for
the interorganizational communication between business partners. An external
role is used in a send step, i.e. we transfer data to an external partner as a role
that can take part in workflow or in a receive step in which we expect data from
a certain role .

Formal Parameters Activities define the formal parameters which consist of a
type based on a namespace import and a mode(in,out,inout).

Actual Parameter Steps have actual parameters which are filled with variables.

Listing 1.1. EBNF of the DWDL

Workflow := ”Workflow” NAME ” (” ARG{”,” ARG} ”)”

g
{IMPORTS} {VARDEF} {TICKETDEF}
{ROLEDEF} {IFDEF} {ACTDEF}
{WFDEF}

ARG = VARNAME;
IMPORTS = "NAMESPACE’ NAME ”=" XSD;

VARDEF = "VAR’ VARNAME VAR.TYPE;
VARNAME = 7\ $”"NAME;

TICKETDEF = ”CORRELATION” TICKET-NAME VAR-TYPE;
TICKETNAME = ” x”NAME;

ROLEDEF = INTR|EXTR "ROLE”> ROLENAME ROLE_TYPE;
INTR = ”intR
EXTR = "extR
ROLENAME = NAME;

IFDEF = "INTERFACE’ IF_.MODE PROTOCOL IF_-NAME
ACTDEF = ”ACTIVITY” ACTNAME ” (” [FORM.PARAM{”,” FORMPARAM}] ”)”;
FORM_PARAM = MODE VAR.TYPE;

MODE = ”IN” |”OUT” |”INOUT"” ;

IF.MODE = "SEND” |RECEIVE”

WFDEF = { STEPS };

STEPS = {NORMALSTEP | CONDITIONAL}

NORMALSTEP = (LABEL”:” INTERNAL|RECSTEP|CALLSTEP) ;
INTERNAL = 7INTERNAL” ROLENAME ACT.NAME 7 (7 { VARNAME} |
VAR.NAME {”,” VARNAME} 7)7;
RECSTEP ="RECEIVE” INTRROLENAME ACTNAME ” (”
ACTUAL_PARAM ” /” VARNAME {”,” ACTUALPARAM ”/” VARNAME}
"FROM” EXTRROLENAME “"RECEIVE VIA” IF.NAME
{”REQUIRE” TICKET-NAME ”"==" TICKET-NAME}
CALLSTEP = "SEND” ACT.NAME 7 (7
VARNAME {”,” VARNAME} ”7)”

7TO” EXTRROLENAME “SEND VIA” IF_.NAME
[” CORRELATE WITH” TICKET.NAME [INSTANTIATE AS TransformationEXPR];

CONDITIONAL = XOR | PAR;

XOR = "IF” 7 (” XOR-COND ”)” »THEN’ {STEPS} ”ELSE” {STEPS} ”ENDIF” ;
PAR = ”ANDSPLIT” { ”"BRANCH’ BRANCH.NAME {STEPS} } "ANDJOIN” ;
CHOICE = ”CHOICE” { "BRANCH’ BRANCHNAME {STEPS} } ”ENDCHOICE” ;

ACTNAME = VAR.TYPE = ROLE.TYPE = LABEL = ACTUALPARAM = NAME = SIGN{SIGN };
SIGN = "A..Z” | "a..z” | 70..97 | "_7;

2.1 Control Flow Specification

As explained before, activities can be reused in workflow steps which are then
executed from the workflow engine. DWDL offers a variety of control structures
to specify the order of execution of steps. In the following we describe the sup-
ported control flow constructs and explain which combination of constructs are
forbidden in a distributed workflow.

Figure 1 shows a sequential execution order of workflow steps and is specified
by simply listing the corresponding step one after another, each separated by a

semicolon.

InternalRolel Taskl;
InternalRole2 Task2;

Fig. 1. Workflow Sequence

Figure 2 shows an exclusive choice, i.e. the well known if-then-else construct.
The evaluated condition is a boolean expression based on variables used in the
workflow. To fulfil the full-blocked structure every split, i.e. IF' has to be asso-

ciated with its corresponding join, i.e. ENDIF.

InternalRolel Taskl; yes X no

IF(<condition >)

THEN XOR-SPLIT
InternalRole2 Task2; <condition>

ELSE Task2 Task3
InternalRole2 Task3;

ENDIF

InternalRole3 Task4; 0

Fig. 2. Workflow with XOR-Split

Figure 3 shows an and-split node which can help to reduce the execution
time of a workflow by performing workflow steps in parallel. After the split node
steps are executed in parallel for all appearing branches. The and-join node
synchronizes all pathes, that means that the execution of the workflow can only

continue after all parallel branches have finished.

InternalRolel Taskl; +
ANDSPLIT
BRANCH A AND-SPLIT
InternalRole2 Task2;
BRANCH B
InternalRole2 Task3;
ANDJOIN
InternalRole3 Task4;

Fig. 3. Workflow with AND-Split

Figure 4 shows a choice node which has the following semantics and con-
straints. The choice constructs waits for a message of an external business part-
ner and executes a path depending to which step the message is send. To support
this behavior each branch following a choice node needs to have a receive step
before other steps can occur. There is no synchronization needed because only
a single path will be picked and executed.

InternalRolel Taskl;
CHOICE
BRANCH A
InternalRole2 Task2;
BRANCH B
InternalRole2 Task3;
ENDCHOICE
InternalRole3 Task4;

CHOICE

Fig. 4. Workflow with Choice

Figure 5 shows how send and receive activities between two interacting busi-
ness partners are defined.

Partner A Partner B

L

?
Task3

InternalRolel Taskl;

SEND Task2 to PartnerB;
RECEIVE InternalRole2 Task3
from PartnerB;
InternalRole3 Task4;

Fig. 5. Workflows with Send and Receive Activities

Besides the constraint of a full-blocked workflow model we also need to con-
sider a problem that can occur in an interorganizational scenario. If we take a
look at the example of Figure 6, we see two interacting business with an exclu-
sive choice in their processes. The path which partner B must pick depends on
the decision in the of partner A, therefore we forbid such interactions because
deadlocks can occur very easy and frequently.

Partner A Partner B
yes x no yes X no

XOR-SPLIT l I XOR-SPLIT l
<condition>

7 I <condition>
- Task2 @ T

1

1

Fig. 6. Choreography with two XOR-Splits

To overcome the problem shown in Figure 6 and still be able to model such
processes we utilize a solution presented in the BPMN 2.0 specification [7]. If
the initiating partner has an exclusive choice which influences what message is
send to which step of an external partner, then the receiving end must model
their corresponding process with a choice construct as seen in Figure 7. When
we use a choice the process will wait simultaneously in both receiving steps and
continue the path that receives the first message while discarding the other path.

Partner A Partner B

es no
Y X

XOR-SPLIT CHOICE
<condition>

?

= Task2 ¢ Ty
1
1

Fig. 7. Choreography with XOR-Split and Choice

Example DWDL Definition A workflow can be expressed in our Workflow
definition language. We will show the primary concepts of the language in a
small example (see listing 1.2). The example document represents a seller or-
chestration. In the example listing 1.2 the header includes a namespace import
followed by variable declarations based on types of the imported schema. The
first step in line 15 is a communication step that receives some order document
from some remote party that holds the Buyer role. Afterwards an activity step is
performed by some internal role called StockEmployee. The step is based on the
activity CheckStock(...). As declared in the activity definition in line 11. It reads
some order document and writes a stock report. Every step in the workflow body
needs some label to address the step via a view. This label can be omitted if a
referenced Activity is used only once in the workflow. In this case the labelname
is equal to the activityname.

Listing 1.2. DWDL definition of the Seller Orchestration

(S

© 00~ o

10
11

14|

#Workflow Header
Namespace sns = http://example.com/businessdocument . xsd

#Variable definitions

VAR $OrderDocument sns:OrderDocument

VAR $OrderConfrimation sns:OrderConfirmation

VAR $PickupReply sns:PickupReplyMessage

VAR $DeliveryReply sns:DeliveryReplyMessage

#Activity Declarations

Activity CheckStock(in sns:OrderDocument, out sns:StockReport) {...}
Activity PrepareOrder(in sns:OrderDocument) {...}

#Workflow Body

15 RECEIVE ReceiveOrder ($OrderDocument) from BuyerRole

1

StockEmployee CheckStock ($OrderDocument, $OrderConfrimation)

17 SEND SendConfimration ($OrderConfirmation ,$OrderDocument) to BuyerRole

1

StockEmployee PrepareOrder ($OrderConfrimation)

19 SEND RequestPackagePickup ($OrderConfrimation) to ShipperRole
20| RECEIVE ReceivePickupConfirmation ($PickupReply) from ShipperRole
21| RECEIVE ReceiveDeliveryConfirmation ($DeliveryReply) from ShipperRole

3 Workflow View Definition Language(W{fVDL)

The view definition language is used to create views on Workflows. A view is
always created for one remote role. A view can contain the whole or a subset of
steps of the original workflow. The view can:

Expose steps that should be included in the view
— Rename steps

— Rename variables

— Rename roles

— Define transformations for send and receive steps

This means the view can expose only wanted aspects of the workflow. In addi-
tion the view can realize interoperability between different partners by allowing
the definition of transformations on the view level. The expose statement can
be applied on all steps. If an expose statement is used for a non-communication
step this is for informational purposes only. The exposition of communication
steps allows the definition of interfaces.

Workflow View Definition Document A W{VDL document is based on a work-
flow specified in a DWDL document and created for a certain role. It consists
of a header that is similar to that of a DWDL document and a body. The body
contains a series of operation which define how the view will be generated.
Example: Create View aView.vdl based on aWorkflow.dwdl

for Seller {...}

Rename Operation The rename operation allows us to rename steps and roles
for the generated view.

Ezpose Operation The expose operation allows the exposing of internal work-
flow steps of a DWDL document. Partners are only allowed to call exposed
communication steps, however it is possible to include other internal steps for
information purposes into the view which allows partners to track the status
of the interorganizational process. Furthermore we support data transformation
in an expose statement which can transform the internal representation of data
to a form an external can process and vice versa. Other methods supported in
an expose statement are map and aggregate, the first one is used to map the
internal parameters to external view parameters and the latter one allows the
aggregation of steps.

Listing 1.3. EBNF of the WfVDL

VIEW := VIEW_HEADER
” Create View” (VIEW_ID|URI) [”name=" VIEW_NAME]
”based on” WF.ID
”? for” EXTERNAL.ROLE VIEW._BODY ;

VIEW_HEADER := {{RENAMES}{NAMESPACEIMPORTS}{IF.DECLARATION} };
RENAMES := {ROLE_RENAMES|VARRENAMES };

NAMESPACEIMPORTS := ”import” {ABBREV ”:” URI ”;”};
ROLE_RENAME := ”rename role” INTERNAL.ROLE ”to” INTERNAL_ROLE;
VAR_RENAMES := ”rename var” VARIABLE ”to” VARIABLE;

VARIABLE="$”VARNAME;

VIEW-BODY := ”{” {STATEMENT ”;”} »}”;
STATEMENT := ”Expose” STEP_LABEL

[” as” EXTERNALNAME]

[EXPOSE_BODY |
EXPOSE.BODY := ”{” {EXP.OPERATION} ”}”;
EXP_OPERATION := {MAP.STATEMENT}{CHANGE STATEMENT};
MAP.STATEMENT : = “"map” (SEND_MAP|REC_.MAP)
REC-MAP := VDLPOS ”to” WDLPOS | TRANSFORM-REC to WDLPOS
SEND_-MAP := WDLPOS ”to” VDLPOS | TRANSFORMSEND to VDLPOS
WDLPOS := "WDL’ NUMBER
VDLPOS := ”VDL” NUMBER
TRANSFORMSSEND := ”transform ("WDLPOS {”,” WDLPOS } ”,” EXPR ”,” XML.TYPE)
TRANSFORM.REC := ”transform (” VDLPOS{”,” VDLPOS} ”,” EXPR ”,” XML.TYPE)
CHANGESTATEMENT := {”change” IF_.NAME ”to” IF_.NAME| ”change” ROLENAME ”to” ROLE.NAME
EXPR := XPath|XQuery |XSLT|URI;
VIEW.NAME := ORCHESTRATION.LABEL := PARAMETERNAME := STEP.LABEL := EXTERNALNAME
:= ROLENAME := INTERFACENAME := ABBREV := WORKFLOWNAME := WF_ID := SIGN {SIGN};
SIGN = "A..2" | “a..2” | 0..9% | »_»;

Aggregate Operation We can aggregate a set of internal steps and represent them
in the view as a single step to hide private process details or to keep the global
process clean of unnecessary information. An aggregate can include internal steps
as well as communication steps with the following restriction. A communication
step may only be part of an aggregate if the role for which the view is generated
is neither part of the send to clause or receive from clause of the communication
step that will be aggregated.

Example: Aggregate (ReadData, ProcessData, WriteData) as Processing

Transformation A transformation allows us to transform internal or externally
received XML documents to another XML document underlying a different
schema. The operation takes as input a set of parameter position, an expression
and the resulting datatype. The expression can be any XQuery statement and
the result can be mapped accordingly with our map operation. The position of
parameters are labeled with W DLy ... W DL, for internal and VDLgy...V DL,
for external parameters.

Example transforming the data of the two internal parameters WDL0 and WDL2
to a variable called $aVariable of type Integer which is then used as an input to
the external parameter in the view VDLO:

transform(WDLO,WDL2,EXPR, Integer) to VDLO/aNameSpace:Integer:$aVariable

Map Operation The map operation is used to provide a mapping from internal
parameters to external view parameters or from variables that are the result of
a transformation to a parameter.

Example mapping the first internal to the first external parameter:

map WDLO to VDLO

Example mapping two internal parameters via a transformation to an external
view parameter that is filled by a variable of type Biglnteger which is defined in
an imported namespace:

map transform(WDLO,WDL1,EXPR,aNameSpace:BigInteger)

to VDLO/aNameSpace:BigInteger:$Var

Example View Definition In listing 1.4 an example view definition is shown.
It creates the view of the sellers orchestration from listing 1.2 for a specific
german buyer that holds the role Buyer. In order to setup a cooperation we will
expose the ReceiveOrder step as EmpfangeBestellung and the SendConfirmation
step as SendeBestaetigung to the Buyer. All other steps should not be visible
in the view for the Buyer. In addition the buyer uses another XML-Schema
this means data needs to be transformed. In detail the SendConfirmation step
of the seller in line 17 of listing 1.2 sends the original order document and a
confirmation document. The buyer can only cope with one single confirmation
document that contains elements of both. The described view is defined in listing
1.4. A view definition needs to declare all namespaces that are used in variables
which are defined in the view (see line 2). The declaration of namespaces and
variables is analogues to the their definition in workflows. The body of a view
definition contains a sequence of expose statements. An expose statement has the
form: Expose followed by the label of the step in the workflow. With the optional
as statement the step can be renamed. The expose statement is followed by the
expose body that is surrounded by curly brackets. Within the block a number of
map statements can be used. Line 9 expresses that the variable $BestellDokument
that is at the first position in the view should be transformed by the expression
EXPR and afterwards be send to the first parameter in the receiving workflow.
Analogues to the transformation of a receiving step line 13 expresses that the
first two parameters (WDLO,WDL1) from the step in the workflow should be
transformed to one single variable called $EmpfangsBestaetigung that is at the
first position of the step in the view. In the latter two examples EXP stands for
any XQuery expression.

Listing 1.4. View Definition for Buyer

0D oS W

#View Header

Namesapce Buyer: http://Buyer.xsd;

VAR $BestellDokument Buyer:OrderDocument

VAR $EmpfangsBestaetigung Buyer:OrderDocument

#View Body
Create View BuyerView based on SellerWorkflow for Buyer {
Expose ReceiveOrder as EmpfangeBestellung {
map transform ($BestellDokument at VDLO via EXPR) to WDLO;
}

Expose SendConfirmation as SendeBestaetigung {
map transform (WDLO, WDL1 via EXPR1) to $EmpfangsBestaetigung at VDLO;
}

The given view definition creates a view. The view is on the one hand some kind
of interface definition that allows the buyer to setup its workflow/view in order
to cooperate on the other hand it is used to actually run the transformation in
the SmartViewProxy. The resulting workflow document is the following:

Listing 1.5. Resulting WDL definition for Buyer

1| #Workflow Header
2l Namespace Buyer=http://Buyer.xsd;

Variable definitions
VAR $BestellDokument Buyer:OrderDocument
VAR $EmpfangsBestaetigung Buyer:OrderDocument

Workflow Body
RECEIVE EmpfangeBestellung ($Bestelldokument) from BuyerRole
SEND SendeBestaetigung ($EmpfangsBestaetigung) to BuyerRole

SN RS RN '

o

4 Conclusion and Future Work

We introduced two new languages, the DWDL and WfVDL. The DWDL allows
us to specify full-blocked workflows which can span multiple business partners.
The communication is realized by executable views on DWDL documents which
are created with a view definition language WfVDL.

References

1. Chebbi, 1., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng. 56(2) (2006) 139-173

2. Amirreza, T.N., ed.: Web Service Composition Based Interorganizational Work-
flows: Modeling and Verification, Saarbrcken, Germany, Sudwestdeutscher Verlag
fuer Hochschulschriften AG (5 2009)

3. Johann, E., Groiss, H., Liebhart, W.: The workflow management system panta rhei.
In: NATO Advanced Study Institute on Workflow Management Systems (WFMS),
Istanbul, Turkey, Springer-Verlag (1 1998)

4. GmbH, G.I.: @enterprise

5. Combi, C., Gambini, M.: Flaws in the flow: The weakness of unstructured business
process modeling languages dealing with data. In Meersman, R., Dillon, T.S., Her-
rero, P.,; eds.: OTM Conferences (1). Volume 5870 of Lecture Notes in Computer
Science., Springer (2009) 42-59

6. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1) (2003) 5-51

7. OMG - Object Management Group: BPMN 2.0 Specification (August 2009)

A EBNF of the DWDL in JavaCC

PARSER.BEGIN (DWDLParser)
package parser.dwdl;

public class DWDLParser
private static String workflowName = "";
private static ISymboltable _symboltable = new SymbolTablelmpl ();

public DWDLParser () {
_symboltable = new SymbolTableImpl ();

}
public static void main(String args []) throws ParseException, FileNotFoundException {
if (args.length != 2)
System .out.println (" The, source, and, the, output, file, parameter jmust_ exist!");
} else {
InputStream stream = (InputStream)new FilelnputStream (new File (args[0]));
DWDLParser parser = new DWDLParser(stream);
/) set the source file as first workflow name
setWorkflowName (args [0]);
try {
parser.Start ();
CompilerMessage . printOK (parser . getWorkflowName ());
} catch (TokenMgrError ex)
CompilerMessage . printError ((ICompilerError)ex, parser.getWorkflowName ());
} catch (ParseException ex)
CompilerMessage . printError ((ICompilerError)ex, parser.getWorkflowName ());
} catch (DWDLException ex)
CompilerMessage . printBError ((ICompilerBrror)ex, parser.getWorkflowName ());
}
}
}

private static ISymboltable getSymbolTable () {
return _symboltable;
}

public static String getWorkflowName () {
return workflowName ;
}

private static void setWorkflowName (String name) {
workflowName = name;
}

private static void setWorkflowName (IToken workflowToken) {
setWorkflowName (workflowToken . toString ());
}

}
PARSER_END (DWDLParser)

SKIP : { "y" }
SKIP : { "\r" | "\t® | "\n" }
TOKEN

‘WORKFLOW: " WORKFLOW" >
VAR: "VAR" >
ROLE: "ROLE" >

IN: "IN" >
OouT: "oUuT" >
INOUT: "INOUT" >

SEND: "SEND" >

RECEIVE: "RECEIVE" >
SEND_VIA: "SEND_ VIA" >
RECEIVE_VIA: "RECEIVE_ VIA" >
INTERFACE: "INTERFACE" >
PROTOCOL: "PROTOCOL" >
NAMESPACE: " NAMESPACE" >
INTERNAL: "INTERNAL" >
IF: "IF" >

THEN: " THEN" >

ELSE: "ELSE" >

ENDIF: "ENDIF" >
ANDSPLIT: " ANDSPLIT" >
BRANCH: "BRANCH" >
ANDJOIN: " ANDJOIN" >
CHOICE: " CHOICE" >
ENDCHOICE: "ENDCHOICE" >
REQUIRE: "REQUIRE" >
FROM: "FROM" >

TO: "TO" >

ANANANANNANNNNNNNNNNNNNNNNNNNN

INTERNAL_ROLE: " INTERNAL_ ROLE" >

EXTERNAL_ROLE: "EXTERNAL ROLE" >

ACTIVITY: "ACTIVITY" >

LEFT_PARENTHESIS: " (" >

RIGHT_-PARENTHESIS: ")" >

LEFT_-BRACE: "{" >

RIGHT_BRACE: "}" >

COLON: ":" >

DOT: . v >

SLASH: "/" >

SEMICOLON: ";" >

LOGICAL_EQUAL:

BUCK: "$" >

STAR: "#*" >

COMMA: ", " >

EQUAL: "=" >
< IDENT: <LETTER> (<LETTER> | <DIGIT>)x >

BUCK.IDENT: < BUCK > < IDENT > >

STAR-IDENT: < STAR > < IDENT > >

XML TYPE: < IDENT > (< COLON > < IDENT >)x >

XSD.NAME: < IDENT > (< COLON > | < DOT > | < LETTER > | < DIGIT > | < SLASH >

Lxsd" >

ANAN AANANANANAANNANNNNNNNNN

e e

< LETTER: ["A" — "z"] | ["a® — "zv] | "_v >
< DIGIT: ["0" — "9"] >

-~

void Start () throws DWDLException : {}

workflow () <EOF>
}

void workflow () throws DWDLException : { IToken workflowToken; ISymbol sym; }

< WORKFLOW >
workflowToken=< IDENT >

// add the workflow symbol to the scope
sym = new Symbollmpl(workflowToken .toString (), ISymbol.Workflow);
try {
getSymbolTable ().addSymbol (sym) ;
} catch (DWDLException ex)
throw new DWDLException (ex.errorNumber (), ex.getSymbol(), workflowToken);
}

store workflow mname for the parser (error messages)
setWorkflowName (workflowToken) ;

}
< LEFT-PARENTHESIS >
< RIGHT_-PARENTHESIS >
< LEFT_BRACE >
// Variable definition

imports ()
| variable_definition ()
| role_definition ()
| activity-definition ()

) *
(
step ()
*
< RIGHT_BRACE >
}
void imports () throws DWDLException : { }
{
< NAMESPACE >
< IDENT > // import name
< EQUAL >
< XSD.NAME >
{
}
//< SEMICOLON >
}
void variable_definition () throws DWDLException : { IToken name, type; }
{

< VAR >
name = < BUCK.DENT > // wvariable name
type = < XML.TYPE > // wariable type

}
void role_definition () throws DWDLException : { }
{

internal_role ()
| external_role ()
}
void internal_role () throws DWDLException : { }
{

< INTERNAL_ROLE >

< IDENT > // role name
¥
void external_-role () throws DWDLException : { }
{

< EXTERNAL_-ROLE >

< IDENT > // role name
}
void activity_definition () throws DWDLException : { }
{

< ACTIVITY >
< IDENT > // activity name
< LEFT-PARENTHESIS >
[
form_parameter ()
(
< COMMA >
form_parameter ()

) *

]
< RIGHT_PARENTHESIS >
// < SEMICOLON >

3

void form_parameter () throws DWDLException : { }
mode ()
< XML.TYPE > // type of the parameter

}

void mode() throws DWDLException : { }
< IN >

| < OUT >

| < INOUT >

}

void step () throws DWDLException : { }
normal_step ()

| conditional_step ()

3

void normal_step () throws DWDLException : { }
{
< IDENT > // label
< COLON > // :

(
internal_step ()
| receive_step ()
| send_step ()
)
}

void internal_step () throws DWDLException : { }

{
< IDENT > // role name
< IDENT > // activity mname
< LEFT_PARENTHESIS >
[

< BUCKIDENT > // wariable name

(
< COMMA >
< BUCKIDENT > // wariable name

) =

]
< RIGHT_-PARENTHESIS >
}

void xor() throws DWDLException : { }
< IF >
xor_condition ()

< THEN >

step ()

) *

< ELSE >
step ()

*

< ENDIF >
}
void conditional_step () throws DWDLException : { }
{

xor ()
| parallel_split ()
| choice ()
void xor_condition () throws DWDLException : { }

< LEFT-PARENTHESIS >
// condition
< RIGHT_PARENTHESIS >

}
void parallel_split () throws DWDLException : { }
< ANDSPLIT >
(
< BRANCH >
< IDENT > // branch name
step ()
) *
) *
< ANDJOIN >
}
void choice () throws DWDLException : { }
< CHOICE >
(
< BRANCH >
< IDENT > // branch name
(
step ()
)
) *
< ENDCHOICE >
¥
void receive_step () throws DWDLException : { }
{
< RECEIVE >
< IDENT > // internal name
< IDENT > // activity mname
< LEFT_PARENTHESIS >
[
< IDENT > // parameter
< SLASH >
< BUCKIDENT > // parameter name
(
< IDENT > // parameter
< SLASH >
< BUCKIDENT > // parameter name
) *
]
< RIGHT_PARENTHESIS >
< FROM >
< IDENT > // from ecazternal name
+

void send-step () throws DWDLException : { }
{
< SEND >
< IDENT > // activity name
< LEFT_PARENTHESIS >
[
< BUCK.IDENT > // parameter name
(

) *
]
< RIGHT-PARENTHESIS >

< TO >
< IDENT > // exzternal role

< BUCK.IDENT > // parameter name

