

Semantic Annotation of XML-Schema for

Document Transformations

Julius Köpke and Johann Eder

Author's Version of

Julius Köpke and Johann Eder “Semantic Annotation of XML-Schema for Document Transformations”.

In: On the Move to Meaningful Internet Systems: OTM 2010 Workshops, Lecture Notes in Computer

Science Volume 6428, 2010, pp 219-228

The final publication is available at link.springer.com:

http://link.springer.com/chapter/10.1007%2F978-3-642-16961-8_39

Semantic Annotation of XML-Schema for

Document Transformations

Julius Köpke and Johann Eder

Department of Informatics-Systems, University of Klagenfurt, Austria
firstname.lastname@uni-klu.ac.at

WWW home page: http://isys.uni-klu.ac.at

Abstract. The W3C recommendation Semantic Annotations for WSDL
and XML-Schema (SAWSDL [7]) has the primary goal of annotating web
service descriptions with a semantic model. In addition to the annotation
of WSDL documents it can also be used to annotate arbitrary XML-
Schemas. In this paper we will discuss the application of SAWSDL to
create declarative annotations of XML-Schema. We will show problems
that arise and present a solution that creates SAWSDL compliant an-
notations with the required expressiveness. Such an annotation method
can then be used to assist automatic document transformations between
different schemas. The transformations can act as an enabler for inter-
operable applications that exchange XML-documents.

1 Introduction

Semantic annotation is proposed to be a good solution to enable interopera-
ble applications [11]. Semantic annotations represent the relationships between
an annotated artifact (web page, XML document, schema, web service, etc.)
and a reference ontology. Semantic annotation at the instance level (web pages,
XML-documents, ...) received a lot of attention [11], however annotation at the
XML-Schema level [7] is used in a much lesser degree. Semantic annotations of
XML-Schema can be used to lift data from XML documents to some semantic
representation such as RDF [8] or OWL [3]. A transformation of a document
from a source XML-Schema to a document that complies with the target XML-
Schema can therefore be created by lifting the data from the source document to
it’s semantic representation, (e.g. ontology instances) make some computations
on the ontology-level and lower it back to the XML representation of the target
schema. Such an approach is very flexible but requires the computation of every
single instance document on the ontology level. Preliminary tests have shown
that even with a very small ontology the speed of a direct XSLT transformation
is significantly faster compared to the loading of the instance data, reasoning
over the ontology and lowering the data back to the target XML representation.
To achieve industry-scale performance we therefore propose to generate XSLT
transformation scripts with the knowledge from the ontology. This requires the
annotation of the source and the target schema in a declarative way. Such an
annotation allows the matching of the source and the target schema at build

Fig. 1. Example reference ontology

time. This matching can then be used to create transformation scripts [4] (e.g.
XSLT) that directly operate on the XML documents without the need to lift
instance data to the ontology.

Both approaches are addressed in the W3C recommendation SAWSDL. The
lifting and lowering approach is realized by the specification of references to
arbitrary scripts that perform the lifting or lowering of instance data. The
declarative annotations can be realized by so called model-references. A model-
reference forms a reference between a schema element (XML-Element, XML-
Type or XML-Property declaration) and a concept of some semantic model. In
this paper we will investigate the applicability of SAWSDL model-references for
the declarative annotation of XML-Schemas with a reference ontology. We dis-
cuss shortcomings and present an annotation method that solves these problems
while being compatible with SAWSDL. Such an annotation can then be used
as a basis for a system that transforms instance documents from an annotated
source schema to an annotated target schema.

2 Motivating example

In order to show shortcomings of model-references we will first introduce an
example. We will try to use model-references for the direct annotation of a sim-
ple XML-Schema of a business document (see figure 2) with a small reference
ontology (see figure 1). The domain of a SAWSDL model-reference is an XML-
Element, XML-Type or XML-Attribute declaration of an XML-Schema. The
range is a list of URIs that point to concepts of a semantic model. If multiple
URIs are specified every URI applies to the annotated element. No further rela-
tionships between the different URIs can be specified.

Fig. 2. Sample XML-Schema with model-references

In figure 2 an example order document is shown. It is directly annotated
with the reference ontology (see figure 1). We will now investigate whether the
correct meaning of each element can be defined.

– The element BuyerZipcode could not be annotated at all because the zip-
code is modeled in form of a data-type property and not by a concept in the
ontology. The same problem exists for the BuyerStreet element and for the
name of an item.

– The BuyerCountry element is annotated with the concept country. This
does not fully express the semantics because we do not know that the ele-
ment should contain the country of the buying-party. In addition the Seller-
Country element has exactly the same annotation and can therefore not be
distinguished.

– The attribute Price is annotated with the concept Price. Unfortunately this
does not capture the semantics. We do not know the subject of the price (an
item) and we do not know the currency.

In the examples above we assumed that we have only annotated data-carrying
elements. If we would in addition also annotate the parent elements in this case
the order element we could add a bit more semantic information. It would be
clear that the annotations of the child-elements of the order-element can be seen
in the context of an order. Unfortunately this would not help for the ambiguities
between the BuyerCountry- and the SellerCountry element. In general it would
require a very strong structural relatedness between the ontology and the an-
notated XML-Schema which we cannot guarantee when many different schemas
are annotated with a single reference ontology. In addition SAWSDL does not
define that there are any relations between the annotations of parent and child

Fig. 3. Sample XML-Schema document with proposed annotation method

elements. Nevertheless such annotations could help to give additional knowledge
to structural XML-matching methods such as [10]. Another solution would be
the usage of a more specific reference ontology, which contains concepts that
fully match the semantics of each annotated element. For example it would need
to contain the concept InvoiceBuyerCountry and InvoiceBuyerZipCode. Enhanc-
ing a general reference ontology with all possible combinations of concepts leads
to a combinatorial explosion. This is definitely not suitable for the annotation
with a general reference ontology but can nevertheless be used if very specific
ontologies are used for the annotation.

3 Annotation Method

As shown in the introduction the direct usage of model-references is not suitable
for the direct annotation of an XML-Schema with a reference ontology. To over-
come this shortcoming we propose to create the required more specific ontology
concepts out of well defined path expressions at runtime of the schema-matching
engine. We will first introduce the path expressions with some examples and pro-
vide the formal definitions in section 3.1. The example schema document in figure
3 is annotated with the proposed path expressions. We will discuss some exam-
ples: The element BuyerZipcode is annotated with /Order/deliverTo/Address

/hasZipCode. The annotation of the BuyerCountry element is /Order/billTo/
Buyer/hasCountry/Country. The steps that are marked bold refer to concepts.
The other steps refer to object-properties or data-type properties of the reference
ontology. Now the BuyerCountry element can be clearly distinguished from the
SellerCountry element and the elements BuyerZipcode and BuyerStreet can be
annotated. The shown paths refer to concepts, object properties and data-type
properties. Another requirement could be to address instances of the ontology.
For example the path /Order/billTo/Buyer[Mr Smith]/hasCountry/Country

defines that the Buyer is restricted to one specific buyer with the URI Mr Simth.

In most cases we assume that a simple annotation path as shown in the exam-
ples above is sufficient for an annotation. Nevertheless there can be cases where
additional restrictions are required: When using a simple path expressions as
shown above the Price attribute of the example schema could be annotated
with /Order/hasitems/Item/hasPrice/Price. Unfortunately this does not ex-
press the currency of the price. Since the example ontology has no specialized
price-concept for each currency we need to define the price within the annotation.
The correct currency of a price can be defined by a restriction of the price con-
cept. This restriction is denoted in square brackets and expresses that the price
must have a hasCurrency property that points to the concept Euro. This leads
to the full annotation of the Price attribute: /Order/hasitems/Item/hasPrice/
Price[hasCurrency/Euro].

3.1 Formal definition of the annotation method

In order to define the annotation method we will first introduce definitions for
the reference ontology and an annotated schema.

Definition 1 Ontology:

An ontology O is a tuple O = (C,DP, OP, I, R), where C is a set of concepts
(also often referred as classes), DP as set of data-type-properties, OP a set
of object-properties, I a set of individuals and R a set of restrictions. Each
element in C, DP and OP is a tuple (uri, definition). All URIs of concepts can
be obtained by C.uri, URIs of properties by DP.uri and OP.uri and URIs of
instances by I.uri respectively.

Definition 2 Annotated XML-Schema:

An annotated XML-Schema S is a tuple S = (T,E, A), where T is a set of types,
E a set of elements, and A is a set of semantic annotations. An XML-Schema
forms a tree structure. Each t ∈ T has a type e.type = {simple | complex}, an
optional name t.name and an optional SAWSDL mode reference t.annotation

∈ A. An element e ∈ E can have an optional type e.type ∈ T , an optional
SAWSDL model-reference e.annotation ∈ A and a set of attributes e.attribute.
Each attribute a ∈ e.attribute can have a simple type a.type ∈ T and an optional
model-reference a.annotation ∈ A. Each annotation must be a valid annotation
path according to definition 3 and 4.

Definition 3 Annotation Path:

The set of all annotation path expressions is P . An annotation path p ∈ P is a
sequence of steps. Each step is a tuple s=(uri, type, res). The value s.uri of a
step is some URI of an element of the reference ontology O. The type s.type can
be cs for a concept-step, op for an object-property step or dp for a data-type-
property step. The URI s.uri determines the type of the step: s.uri ∈ C.uri ⇒
s.type = cs; s.uri ∈ OP.uri ⇒ s.type = op; s.uri ∈ DP.uri ⇒ s.type = dp.

Only concept-steps may have a set of restrictions s.res. Each restriction ∈ s.res

can either be an individual ∈ I.uri or a restricting path expression. Such a
path expression adds a restriction to the corresponding step s. If s.res contains
multiple restrictions they all apply to the corresponding step s (logical and).
The succeeding step of s in p can be obtained by s.succ, the previous step by
s.prev. The first step of p is denoted fs and the last step ls.

Definition 4 An annotation path is structurally valid iff:

– fs.type = cs - The first step must refer to a concept.
– ls.type = {dp|cs} - The last step must refer to a concept or a data-type

property.
– ∀s ∈ p|s.type = cs ∧ s 6= ls ⇒ s.succ.type = {dp|op} The successor of a

concept-step must be an object-property or data-type-property step.
– ∀s ∈ p|s.type = op ⇒ s.succ.type = {cs} An object-property step must be

followed by a concept-step.
– ∀s ∈ p|s.type = cs ∧ s 6= fs ⇒ s.prev.type = op The previous step of a

concept-step must be an object-property step (except the fist step).
– ∀s ∈ p|s.type = op ⇒ s.prev.type = cs The previous step of an object-

property step must be a concept-step.
– ∀s ∈ p|s.type = dp ⇒ s = ls Only the last step can refer to a data-type

property.

3.2 Reuse of global types or elements

If the annotated XML-Schema reuses types or elements (via type or ref proper-
ties) and both the element and the referenced element or type are annotated then
the semantics need to be constructed based on the annotation of the element
and the annotation of the referenced element. Due to the hierarchical structure
of XML this needs to be applied recursively.
Let e be an element with the annotation e.annotation and the XML-Type e.type.
Let s be an annotated sub-element of the XML-Type e.type. Then the complete
path of s needs to be constructed by combining the annotation e.annotation

and s.annotation. In particular the combination is achieved by removing the
last step of e.annotation and concatenating it with s.annotation.
As an example we may have an XML-element called DeliveryAddress. It is it-
self annotated with the annotation path /Order/deliverTo/Address. It has a
type definition address. The address type itself contains various elements. One of
them is street which is annotated with /Address/hasStreet. In order to construct
the complete semantics of the street element that has the parent element De-
liveryAddress we need to build the path /Order/deliverTo/Address/hasStreet.
This path combination needs to be performed by the schema matching engine. It
must be noted that this path combination adds structural dependencies between
the schema and the reference ontology. Therefore one XML-Type should only be
reused for semantically related entities. This approach is a specialization of the
SAWSDL model reference propagation.

4 Transformation of an Annotation Path to an Ontology

Concept

In the last section we have defined an annotation path expression as a sequence
of steps. In order to specify the semantics of such a path expression it has to
be represented as an ontology concept. This allows concept-level reasoning over
the annotated elements in order to assist the matching of schema elements.
The name/URI of such a concept is the corresponding path expression and can
therefore directly be used as a SAWSDL model-reference. OWL defines concepts
with logical expressions in form of restrictions over it’s individuals. We will
illustrate the generation of concepts with an example.

1 C l a s s : Order/ b i l lTo /Buyer [Mr Smith] / hasCountry/Country
2 Equ iva l entC la s s e s (
3 Country and inv
4 (hasCountry) some
5 (Buyer and {Mr Smith} and inv (b i l lTo) some (Order)
6))

Listing 1.1. Representation of an annotation path in OWL

In listing 1.1 the OWL representation of the path /Order/billTo/Buyer

[Mr Smith]/hasCountry/Country is depicted. It creates a specialization of a
country concept. In particular a country that has an inverse hasCountry object-
property to a Buyer. This buyer must be an individual of the enumerated class
{Mr Smith} and must have an inverse billTo relation to an Order.
Obviously such a translation can be achieved fully automatically by iterating
over the steps of the path. The generation of the concepts can be realized by the
schema-matching engine. The generated concepts are only required as long as a
matching is created.
In general a standard annotation path as shown in the example always creates
a sub-concept of the last concept-step. Therefore the inverse of the object prop-
erties must be used. Annotation paths p that are used in restrictions p ∈ s.res

of some concept-step s always create sub-concepts of the corresponding concept
with the URI s.uri. Thus the object-properties can directly be used.

5 Validation of Annotations

In the last sections we have defined the structure of an annotation path and have
shown how an annotation path can be transformed to an OWL concept. This
does not guarantee that the generated concepts do not introduce contradictions
to the ontology. As an example we may have a path:
/Order/deliverTo/PoBox and the ontology defines that the deliverTo may
never point to a post office box. When this path is represented as an OWL
concept it can never contain individuals and thus introduces contradictions to
the ontology.
In addition the ontology may contain data-type restrictions that restrict values of

data-types to specific types such as string or integer. If such restrictions exist in
the ontology they must also exist in the schema. The constraints in the schema
must be at least as restrictive as in the ontology. Another type of restriction
that may occur in the ontology are cardinality restrictions. For example the
ontology may define that an invoice must have a maximum of one order address
hasAddress. The schema must then also restrict the max-occurs value of the
corresponding element. Due to the Open World Assumption of OWL it is not
needed to check if an element occurs often enough but it must be ensured that
an element can not occur too often in the schema.

The considerations above lead to the definition of the consistency of an an-
notated schema:

Definition 5 A schema S and a set of annotation paths P are consistent with
an ontology O iff:

1. Every annotation path p ∈ P is structurally valid (see definition 4).
2. Every annotation path p ∈ P can be expressed as an OWL-concept in O

that is a sub-concept of OWL-Thing.
3. All annotated elements in S are more ore equally constraining the values as

the corresponding data-type properties in O do.
4. No cardinality restrictions in O are violated by S.

Obviously these requirements can be checked fully-automatically: The first
check can be realized on the structural level. Each referenced concept and prop-
erty must be a concept or property of the reference ontology and the restrictions
from definition 4 must not be violated. The second check is a typical reasoning
task that can be done by any OWL reasoner. Checks 3 and 4 can be realized by
traversing the schema and querying the restrictions from the ontology.

6 Related Work

In contrast to the annotation of web resources there is only a small number of re-
lated work in the field of XML-Schema annotation. To the best of our knowledge
there is no comparable approach for a concrete and formal definition of declar-
ative semantic annotations for XML-Schema that allows class-level reasoning
over the annotated elements. We see the application of the annotations in the
possibility to create more precise schema matchings than traditional structure
based approaches [10]. As soon as a matching can be found transformations can
be created that transform the actual documents on the XML-level [4]. In [2] an
annotation method for RDFS-Schemata is presented. The annotation method
is similar to our’s as it also expresses the annotations as simple paths that are
transformed to ontology concepts. In contrast to our approach it directly sup-
ports the definition of operators like split or join in order to allow the annotation
of elements which carry data that needs to be transformed before they can be
linked to the ontology, which we plan to realize in an additional ontology layer.
In contrast to our approach it is not formally described, it does not directly

address XML-Schema and it does not allow direct document transformations
on the XML-layer. In [1] another approach for the annotation of models is pro-
posed. At first a meta-model that is expressed in OWL is created for every type
of model (Relational database, XML-Schema, ...) which should be annotated.
Afterwards an individual for a specific schema is created. This means there is a
representation of the concrete schema as an instance in the ontology. Annota-
tions are just mappings between the reference ontology and the individuals of
the schema. This solution is therefore not based on direct XML-level annotations
as proposed by SAWSDL.
In [12] an approach is presented that automatically discovers mappings between
XML-Schemas and ontologies with the help of a given set of simple correspon-
dences between the schema and the ontology. It assumes a structural relatedness
and the discovered mappings are expressed in form of rules. Since first order logic
rules can only modify instances this approach is well suited for a lifting approach
that transforms XML-Data to ontology instances. In contrast our method cre-
ates ontology concepts that form declarative descriptions which are a basis to
build XML-level transformations without the need of lifting instance data to the
ontology at runtime. In [5] the differences between ontologies and XML-Schemas
are discussed. The authors propose to model the domain via an ontology and
transform this specification to an XML-Schema or database schema. In [6] a
system is proposed that automatically creates annotations for Web Service de-
scriptions. It can use a reference ontology but does not need one. If no reference
ontology is provided the ontology is created during the approach. The provided
annotations are basically enhancements of the schema-elements with vocabulary
of the ontology. They do not provide a complete declarative description. Never-
theless approaches that automatically generate annotations like [12] or [6] can
possibly be a basis to semi-automatically create annotations for our annotation
method.

7 Conclusion

In this paper we have proposed a method for the declarative semantic annotation
of XML-Schema that enhances the semantic expressiveness of SAWSDL-model-
references. The annotation method has two representations. On the XML-level
there are well-defined annotation paths that can be added to XML-Schemas
by schema designers without deep ontology engineering skills. These annotation
paths can automatically be transformed to ontology concepts. These concepts
provide a declarative description of the annotated elements and can be used for
class-level reasoning over schema elements in order to create mappings between
XML-schemas. These mappings can then be used for the generation of scripts
that transform instance-data from one schema to another. We are currently
working on a prototype that realizes these transformations. It must be noted that
our annotation method does not directly resolve all possible conflicts [9] between
the schema and the reference ontology. For example if the attribute granularity
of the ontology and the schema differs no direct annotation is possible. We

plan to solve such heterogeneities with an additional ontology layer that also
adds knowledge for explicitly defined transformations. In our scenario the actual
transformation of instance documents takes place on the XML-level without the
need to interact with the ontology and is therefore well-suited for applications
with a huge amount of instance documents. In addition to our annotation method
we have provided mechanisms to check whether the annotations are valid with
regard to the ontology.

References

1. Domenico Beneventano, Sabina El Haoum, and Daniele Montanari. Mapping of
heterogeneous schemata, business structures, and terminologies. In DEXA ’07:

Proceedings of the 18th International Conference on Database and Expert Systems

Applications, pages 412–418, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

2. Giorgio Callegari, Michele Missikoff, Osimi M, and Francesco Taglino. Semantic
annotation language and tool for information and business processes - appendix f:
User manual, athena deliverable d.a3.3 available at the leks (laboratory for enter-
prise knoweldge and systems) web site http://leks-pub.iasi.cnr.it/astar/. Technical
report.

3. Mike Dean and Guus Schreiber. OWL web ontology language reference. W3C
recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-owl-
ref-20040210/.

4. Haifeng Jiang, Howard Ho, Lucian Popa, and Wook-Shin Han. Mapping-driven
xml transformation. In WWW ’07: Proceedings of the 16th international conference

on World Wide Web, pages 1063–1072, New York, NY, USA, 2007. ACM.
5. Michael Klein, Dieter Fensel, van Harmelen Frank, and Ian Horrocks. The relation

between ontologies and xml schemata. In Workshop on Applications of Ontologies

and Problem-Solving Methods, August 2000.
6. Peep Küngas and Marlon Dumas. Cost-effective semantic annotation of xml

schemas and web service interfaces. Services Computing, IEEE International Con-

ference on, 0:372–379, 2009.
7. Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic

annotations for wsdl and xml schema. IEEE Internet Computing, 11(6):60–67,
2007.

8. Eric Miller and Frank Manola. RDF primer. W3C recommendation, W3C, Febru-
ary 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

9. Michele Missikoff and Francesco Taglino. Semantic mismatches hampering data
exchange between heterogeneous web services. In W3C Workshop on Frameworks

for Semantics in Web Services, 2005.
10. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, 10(4):334–350, 2001.
11. Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-

Vera, Enrico Motta, and Fabio Ciravegnac. Semantic annotation for knowledge
management: Requirements and a survey of the state of the art. Web Semantics:

Science, Services and Agents on the World Wide Web, 4(1):14–28, 2006.
12. An Yuan, Alex Borgida, and John Mylopoulos. Discovering and Maintatining

Semantic Mappings between XML Schemas and Ontologies. Journal of Computer

Science and Engeneering, 5:1–29, December 2007.

