
Choreographies as Federations of
Choreographies and Orchestrations�

Johann Eder, Marek Lehmann, and Amirreza Tahamtan

University of Vienna
Dept. of Knowledge and Business Engineering

first name.last name@univie.ac.at

Abstract. We propose a new conceptual model for choreographies of
web-services. Choreographies are seen as virtual workflow models shared
among participants. Subsets of these participants might have more re-
fined models known only to them. So we see choreographies actually as
federations of process models (choreographies as well as orchestrations).
In this paper we discuss this layered concept, and present a metamodel
with the following distinguishing features: It is fully distributed and does
not require a central or global authority. It captures the control flow
and the data flow aspects of the processes. Choreography models can
be (re)used in several other choreographies. Additionally, we provide a
procedure which checks whether choreographies fit together, i.e. the con-
formance of the federation relationship between models.

1 Introduction

Web Service composition has received recently a lot of interest, both in academia
and industry. It enables software integration within and across boundaries of
cooperating organizations. The real added value of Web Services lies in their
composition and this is the place where several overlapping and competing stan-
dards have been proposed. Proposals like BPEL4WS [3], WS-CDL [8], WSCI [7]
address some aspects of both choreography and orchestration, but the distinc-
tion between the two is not very clear. Moreover, there is still a big gap between
choreography and orchestration models, i.e. it may be very difficult to answer
whether a given orchestration really realizes a given choreography. A coherent
and integrated view on both choreography and orchestration is still missing.

Web Services are loosely-coupled and autonomous. From this perspective it
is essential that an organization is able to define its own business process de-
scribed as a composed Web Service and control the execution of this process or
at least the execution of parts of it. This is the task of the orchestration. On the
other hand, the same organization must adjust its internal executable processes
to protocols used in cooperative and interorganizational processes described by
choreographies. Furthermore, this organization may take part in several chore-
ographies and several choreographies may be reflected as a single orchestration.
� Work partly supported by the Commission of the European Union within the project

WS-Diamond in FP6.STREP.

J.F. Roddick et al. (Eds.): ER Workshops 2006, LNCS 4231, pp. 183–192, 2006.
© Springer-Verlag Berlin Heidelberg 2006

184 J. Eder, M. Lehmann, and A. Tahamtan

In this paper we propose a new metamodel which gives a consistent and
integrated view on both choreographies and orchestrations and their mutual re-
lationships. We use an extension of our workflow metamodel [6,9] which enables
convenient and flexible representation and analysis of choreographies and orches-
trations. Moreover, we propose a novel approach to combine several choreogra-
phies into more complex federated choreographies. Our federated choreographies
are more flexible than typical compositional approaches.

2 Federated Choreographies

A Web Service choreography specifies a communication protocol for all involved
partners. The outcome of the choreography is a virtual process definition viewed
from the global perspective where all partners are treated equally [4]. On the
other hand, Web Service orchestration refers to an executable process run by
a single partner. It contains information about message exchanges, definition
of business logic, execution order of activities and internal actions (e.g. data
transformations) [11]. Each of the partners involved in a global choreography
realizes the in the internal orchestration only its own parts of this choreography.

This typical scenario [4,11] assumes one choreography shared among all part-
ners and a set of private orchestrations (one for each partner). Besides, two part-
ners involved in one choreography may also take part in another choreography
that is not visible to other partners in the first choreography, however essential
for the realization of its goal. For example, when shopping online we take part
in a choreography, where we know the following partners and steps: we order
something at a seller, pay by a credit card and expect to receive the items from
a shipper. At the same time the seller takes part in several other choreographies
which are not visible to us, e.g. the seller and the shipper realize another protocol
they agreed upon containing other actions like money transfer from seller’s bank
to the shipper for balancing shipment charges. These choreographies overlap in
some parts but cannot be composed into a single choreography. Moreover, such
choreographies must be realized by orchestrations of partners that take part in
them. In the above example the seller implements an orchestration enacting the
different interaction protocols with the buyer, shipper and the bank.

We propose a new approach where existing choreographies can be combined
into a federated choreography and extended according to the need. We treat both
choreographies and orchestrations as workflows. A choreography coordinates sev-
eral orchestrations owned by different partners and a single orchestration may
realize parts of several choreographies. Choreographies can be federated into
more complex ones. Moreover, as all choreographies and orchestrations are work-
flows, they can be composed out of other choreographies by means of complex
activities and control structures available in our workflow models.

The idea of federated choreographies is presented in Fig. 1. It consists of two
layers. The first layer consist of federated choreographies shared between dif-
ferent partners, e.g. a Purchase processing choreography shared between Buyer,
Seller, and Shipper. A choreography may support another choreography. This

Choreographies as Federations of Choreographies and Orchestrations 185

Fig. 1. Federated choreographies

means the former contributes to the latter and partially elaborates it. The sec-
ond layer consist of orchestrations that realize the choreographies. Each partner
provides its own realization of relevant parts of the according choreographies, e.g.
the Seller has an orchestration which realizes its part in all three choreographies.

The presented approach is fully distributed. Each partner has local models of
all choreographies in which it participates. All local models of the same chore-
ography are identical. Additionally, each partner holds and runs its own model
of the orchestration. There is no need for a centralized coordination.

In order to ensure the compatibility of the system, a conformance test between
orchestrations and the choreographies that they realize as well as an intra-layer
conformance test in the choreography layer is necessary.

The choreography in Fig. 2 describes the ”Purchase Processing” choreography
in Fig. 1. Three partners participate: a Buyer, a Seller and a Shipper. The Seller
upon receiving a request quote from the Buyer answers if the requested item
is deliverable or not. If the item is deliverable, the buyer places an order, the
seller processes the order and forwards the shipment details to the shipper. The
shipper ships the products to the buyer and informs the seller about the details.
The seller upon receipt of information sends the bill to the buyer. When the
buyer has received both the bill and the ordered goods, makes the payment to
the seller. The process terminates upon receipt of the payment by the seller.

186 J. Eder, M. Lehmann, and A. Tahamtan

Fig. 2. Purchase processing choreography between Buyer, Seller and the Shipper

This choreography involves interactions between the Buyer and the Seller, the
Seller and the Shipper and between the Buyer and the Shipper. Each of these
interactions can be represented as a separate choreography. These choreogra-
phies may be combined by the means of composition as described in [8] where
existing choreography definitions can be reused and recursively combined into
more complex choreographies. But we claim that a relationship between chore-
ographies can be more sophisticated than merely a composition. In our example
the relationship between the Seller and the Shipper includes not only the passing
of shipment details from the Seller to the Shipper but it also involves payment
of shipment charges through the seller’s bank. This is described by a separate
choreography between the Seller, Shipper and Bank. This choreography shown in
Fig. 3 has additional activities and partners which are not visible in the previous
one. This choreography contributes to the ”Purchase Processing” and elaborates
the interaction between the Seller and Shipper.

Choreographies describe just abstract processes, whereas an orchestration de-
scribes an executable process run by one of the partners. Each partner involved
in choreographies must provide their realization. The orchestration of the Seller
is presented in Fig. 4. It implements the behavior of the Seller in both presented
choreographies. Notice that the Shipper and other partners must provide their
own private orchestrations which we omit here for the aim of brevity.

Choreographies as Federations of Choreographies and Orchestrations 187

Fig. 3. The Shipment processing choreography between Seller, Bank and the Shipper

3 Metamodel

Our metamodel enables the representation of both choreographies and orches-
trations which are described as workflow models. Therefore, choreographies and
orchestrations can be modeled using typical workflow control flow structures.
Moreover, it provides a coherent view on both choreographies and orchestra-
tions and their mutual relationships, thus bridging the gap between abstract
and executable processes. The metamodel allows to describe several choreogra-
phies on different levels of detail and an orchestration responsible for a private
implementation of these choreographies. Choreographies and the orchestration
can share the same activities. An activity visible in one choreography can be
extended by its relationships with other activities in a federated choreography.
On the other hand, an activity visible in a choreography can have a complex
implementation described in an orchestration. Thus, choreographies and orches-
trations together with their activities can be viewed on different levels of detail
and in context of different relationships. Our metamodel presented in Fig. 5

188 J. Eder, M. Lehmann, and A. Tahamtan

Fig. 4. Seller’s Orchestration

focuses only on the control flow aspects of a workflow definition. Because of lack
of space we had to omit the data aspects.

A workflow is either a choreography or an orchestration. A workflow uses ac-
tivities. An activity is either a task, a complex activity or a (sub-)workflow. An
activity can be used to compose complex activities and workflows. An activity
occurrence in such a composition is represented by an activity step. One ac-
tivity can be represented by several activity steps in one or several workflows
or complex activities and each activity step belongs to exactly one activity. In
other words, activity steps are placeholders for reusable activities. The control
structure of a complex activity is described by its type (seq for sequence, par for
parallel and cond for conditional).

An activity may be owned by a partner. Orchestrations and tasks must have
an owner, whereas choreographies must not have an owner. A partner may have
several roles and one role can be played by several partners. A role may take
part in a workflow and call an activity step provided by another role. Thus a
single parter can use different roles to participate in a workflow.

The notion of a step is very important for the presented metamodel. Both
workflows and complex activities consist of steps. Between the subsequent steps
there can be a transition from a predecessor to a successor which represents
control flow dependencies between steps.

Choreographies as Federations of Choreographies and Orchestrations 189

-wfid[1]

-name[1]

Workflow

-aid[1]

-name[1]

Activity

+getChildren()

-type[1]

ComplexActivityTask

-sid[1]

Step
1

*

-sub

*

-super*

0..1

*

1..*

*

uses

{disjoint, complete}
ActivityStep

-type[1]

-predicate[0..1]

ControlStep

-join
0..1

-split
0..1

is_counterpart

{disjoint, complete}

-pred
*

-succ
*

transition

0..1

*

consist_of

Partner

ChoreographyOrchestration

*

*

federated

*

*

takes_part_in

0..1 *

owns

**

realizes

0..1

* repy_for

-c
a
lle

r

*

-c
a

lle
e

*

Role

*

* h
a

s

-p
ro

v
id

e
r

*

►

consist_of►

►

►

►

►

►

p
a

re
n

t
►

belongs_to◄

Fig. 5. Metamodel for Federated Choreographies

A complex activity may be decomposed in a given workflow into steps that
constitute this complex activity only if all the activities corresponding to these
steps are also used and visible in this workflow. Therefore, a workflow can be
decomposed and analyzed on different levels of detail with complex activities
disclosing their content, but without revealing protected information on the im-
plementation of these complex activities. To allow a correct decomposition, a
complex activity must have only one activity without any predecessors and only
one activity without any successors. The same applies to workflows.

A step can be either an activity step or a control step. As mentioned above, ac-
tivity steps are placeholders for reusable activities and each activity step belongs
to exactly one activity. Activity steps can be called in a workflow definition. An
activity step may be used as a reply for a previous activity step. A single activity
step may have several alternative replies.

A control step represents a control flow element such as a split or a join. Cur-
rently we allow conditional and parallel structures, i.e. the type of a control step
is one of the following: par-split, par-join, cond-split or cond-join. An attribute
predicate is specified only for steps corresponding to a conditional split and rep-
resents a conditional predicate. Conditional splits have XOR semantics. A split
control step may have a corresponding join control step what is represented by
the recursive relation is counterpart. This relation is used to represent well struc-
tured workflows [6] where each split node has a corresponding join node of the
same type and vice versa.

190 J. Eder, M. Lehmann, and A. Tahamtan

A workflow model can be represented as a directed graph with two kinds of
nodes corresponding to activity steps and control steps. The edges correspond
to transitions between steps and determine the execution sequence. A complex
activity can be decomposed into a subgraph with one input node and one output
node. In the graphical notation we use additionally two control nodes: start node
and end node places before the start activity and after the end activity of the
workflow, respectively. A sample workflow graph is presented in Fig. 2.

The workflow graphs are a convenient and human readable representation of
workflow models. For conformance tests we use workflow nets (WF-Nets) [2]
which are an extension of classical Petri nets [10] and can be analyzed with all
the techniques developed for Petri nets. A WF-Net contains exactly one place
without any predecessors (source) and exactly one place without any successors
(sink). Moreover, the net graph extended with an additional transition from
the sink place to the source place is strongly connected, i.e. for each node n
there exists a path from the source place to n and from n to the sink place.
We use WF-nets with a set of special transitions added to express branching
decisions in a more human readable form: AND-split, AND-join, XOR-split and
XOR-join.

The mapping from the presented workflow graphs to WF-Nets is straightfor-
ward: start and end control nodes are mapped onto source and sink place re-
spectively; each activity steps is mapped onto a labeled transition with a single
input and output place; each split control node is mapped onto a corresponding
split transition with a single input place and at least two output places and each
join control node is mapped onto a corresponding join transition with at least
two input places and exactly one output place. Edges in the original graph are
mapped onto dummy transitions connecting subsequent transformed nodes. Fi-
nally, dummy transitions can be reduced by Fusion of Series Places (FSP) [10].
A sample mapping of a graph in Fig. 2 is presented in Fig. 6.

4 Conformance Test

Essentially the participating partners are autonomous organizations that may
have existing workflows for their orchestrations as well as for their interactions
with other organizations and they favor to use the existing workflows instead of
designing new ones from scratch and integrate them in the organization. It is
pivotal to ensure that utilization of these orchestrations and choreographies lead
to no conflict with other choreographies and orchestrations. The basic require-
ment of the model is the inter and intra-layer conformance of orchestrations and
choreographies. This means the orchestration and choreographies must main-
tain all the assumptions made by the choreography they support or realize. It is
possible to check the structural conformance of the system based on the projec-
tion inheritance [1,5] and notion of branching bisimulation [12] as equivalence
relation of workflows. The question if two workflows are branching bisimilar is a
decidable problem. Because of space limitations we are not able to provide the
full description of conformance tests in this paper.

Choreographies as Federations of Choreographies and Orchestrations 191

Fig. 6. The WF-Net of workflow graph in Fig. 2

5 Conclusions

Federated choreographies aim at modularizing web service choreographies. Fed-
erations can be built top-down - applying the famous ”divide and conquer”

192 J. Eder, M. Lehmann, and A. Tahamtan

paradigm - or they can be built bottom-up, re-using existing choreographies for
the construction or negotiation of larger choreographies. The meta-model we
propose supports all these usages. The automated checking of conformance be-
tween choreographies and also orchestrations can be used for federations built
top-down as well as for those built bottom-up. Design principles and processes
for both ways of constructing choreographies which guarantee conformance are
subject of ongoing research.

References

1. Wil M. P. van der Aalst and Twan Basten. Inheritance of workflows: an approach
to tackling problems related to change. Theor. Comput. Sci., 270(1-2), 2002.

2. Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. Tony Andrews et al. Business process execution language for web services
(bpel4ws). ver. 1.1, BEA, IBM, Microsoft, SAP, Siebel Systems, 2003.

4. Alistair P. Barros, Marlon Dumas, and Phillipa Oaks. Standards for web service
choreography and orchestration: Status and perspectives. In BPM 2005 Workshops,
LNCS 3812, Springer, 2005.

5. Twan Basten. In Terms of Nets: System Design with Petri Nets and Process
Algebra. PhD thesis, TU Eindhoven 1998.

6. Johann Eder and Wolfgang Gruber. A meta model for structured workflows sup-
porting workflow transformations. In ADBIS 2002, LNCS 2435, Springer, 2002.

7. Assaf Arkin et al. Web service choreography interface (wsci) 1.0. W3C, 2002.
8. N. Kavantzas et al. Web services choreography description language (ws-cdl) 1.0.

W3C, 2004.
9. Marek Lehmann. Data Access in Workflow Management Systems. Number 94 in

DISDBIS. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006.
10. Tadao Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,

77(4):541–580, April 1989.
11. Chris Peltz. Web services orchestration and choreography. IEEE Computer,

36(10):46–52, 2003.
12. Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in

bisimulation semantics. J. ACM, 43(3):555–600, 1996.

	Introduction
	Federated Choreographies
	Metamodel
	Conformance Test
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

