
To appear in Proc.Confenis 2006

Maintaining Temporal Warehouse Models

Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3
1 University of Vienna, Dept. of Knowledge and Business Engineering

Rathausstrasse 19, 1010 Wien, Austria
johann.eder@univie.ac.at
2 Panoratio Database Images, Inc.

Theresienstrasse 4, 80333 Muenchen, Germany
christian.koncilia@panoratio.de

3 University of Klagenfurt, Dept of Informatics-Systems
Universitaetsstrasse 65-67, 9020 Klagenfurt, Austria
karl.wiggisser@isys.uni-klu.ac.at

Abstract. DWT is a tool for the maintenance of data warehouse structures
based on the temporal data warehouse model COMET. Data warehouse
systems do not provide support for maintaining changes in dimension data.
DWT allows keeping track of modifications made in the dimension-structure
of multidimensional cubes stored in an OLAP (On-Line Analytical Processing)
system. We present the overall structure of the DWT system, which allows to
upload and download warehouse models in different modeling notations in a
time conscious manner, load edit scripts describing changes between versions
of warehouse models and apply these edit scripts. We present the workflows
for maintenance of warehouse models and discuss how maintenance can be
supported with the various integrated tools of DWT .

1 Introduction

Data Warehouses are integrated materialized collections of data typically from
different heterogeneous data sources. They provide sophisticated support for
aggregating, analyzing and comparing data to support decision making. The most
popular architecture for data warehouses is the multidimensional datamodel, where
transaction data (also called cells or fact data) is described in terms of masterdata
also called dimension members). Usually, members are hierarchically organized in
dimensions.

Data warehouses are well prepared to deal with modifications in transaction data,
e.g. the changing values of the fact Turnover over the time can be covered by
introducing a dimension Time. Not surprisingly, most multidimensional models
feature a time dimension. Surprisingly, however, data warehouses are not well
prepared for changes of the structure of dimensions in spite of their requirement for
serving as long term memory and the observation that such modifications happen
frequently, too. It is, however, vital for the accuracy and correctness of results of
OLAP queries that modifications in the structure of dimensions are correctly taken

derntl
Text Box
Eder J., Koncilia C., Wiggisser K. (2006). Maintaining Temporal Warehouse Models, Research and Practical Issues of Enterprise Information Systems, IFIP TC 8 International Conference on Research and Practical Issues of Enterprise Information Systems (CONFENIS 2006) April 24-26, 2006, Vienna, Austria, Springer Verlag, Series: IFIP International Federation for Information Processing , Vol. 205, Tjoa, A. Min; Xu, Li; Chaudhry, Sohail (Eds.), 2006, XXIX, 782 p., Hardcover, ISBN-10: 0-387-34345-8, ISBN-13: 978-0-387-34345-7, pp 21-30

2 Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3

into account, in particular, when comparing data over several periods, computing
trends, or computing benchmark values from data of previous periods.

Maintenance of structural modifications in data warehouses is a crucial point for
keeping track of structural modifications and considering these modifications in
analytical queries. There are several approaches to cope with this problem, [1-5] are
some of them. Some of them (e. g. [1, 2]) allow changes only on instance level, i. e.
changing the members. Others (e. g. [5]) work only on the schema level, i. e. allow
changing dimension and hierarchy definitions. In [6, 7] we presented the COMET
metamodel for temporal data warehousing, which allows a versioning on both,
schema and instance level.

Here, we present our temporal data warehouse maintenance system DWT built
upon the COMET metamodel. We show, how the COMET model can be realized
with a layered architecture where a temporal store is employed by non-temporal
OLAP tools. We show the architecture of the system, its functionality, and the ways
the system can be used. A discussion of design considerations and implementation
issues of the prototype complement the paper.

2 System Overview and Functionality

Changes in the dimensional structures of OLAP cubes can cause serious problems,
and today's data warehouse systems do not provide appropriate means for solving
them. Based on the COMET temporal data warehouse metamodel, we present the
DWT system, which is intended for dealing with such problems. The main
functionalities of the DWT system are:
• Import and Export of OLAP Cubes: import cubes from and export cubes to

virtually any OLAP system via generic interfaces.
• Management of Structure Versions: select a particular structure version from

the DWT database, create new structure versions, and maintain relations and
differences between two contiguous versions.

• Detection of Differences: tag differences between two structure versions, either
by comparing them, importing a change list, or by manual input from the user.

A data warehouse administrator is able to adjust the OLAP cubes due to

environmental changes: store the changes into the DWT database and create a set of
different structure versions for a cube, each tagged with a timestamp, defining its
valid time. Any structure version that was valid at an arbitrary point in time can be
re-established.

Maintaining Temporal Warehouse Models 3

Fig. 1. Overall architecture of the system

2.1 General System Architecture

Figure 1 shows the overall architecture of the DWT system. The system's basis is a
relational database that holds all versioning information. It consists of:
• The Structure Data, which holds the structure versions of the cubes and the

changes between them (e. g. changed members, inserted dimensions)
• The Transformation Functions, which describe the relations between members

of different structure versions.
• The Fact Data, which holds the cell data to be transformed with the help of
• the transformation functions.

The database is queried and filled by the DWT administration tool. This is the

central part for managing the versioning process. The main components of the
administration tool are the Structure Selection, the Version Management, and the
Difference Detection component. The structure selection component is responsible
for extracting one particular structure version from the database. The version
management component is responsible for creating new structure versions from
existing OLAP cubes combined with results from the difference detection
component. The difference detection describes differences between imported cubes
and stored structure versions (details in 2.5).

4 Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3

2.2 Interfaces

To interact with OLAP systems, the DWT application has two generic interfaces: to
import cubes from and to export cubes to an OLAP system. For each OLAP system
to be supported, one has to implement these two interfaces.

The import interface reads the data from an OLAP system. Within the DWT tool,
the data is temporalized, i. e. every element is timestamped, defining its valid time
and augmented with versioning information, i. e. relations to elements already stored
in the database. The export interface works vice versa. It gets a single version of a
cube with all its temporal and versioning information from the structure selection
component. As the external OLAP system does not support such temporal
information, it is removed during the export and the pure OLAP data is written to the
external OLAP system.

The interfaces are shown in the top of Fig. 1. At the moment we have
implementations for Hyperion Essbase [8] and a subset of the Common Warehouse
Metamodel (CWM) [9], as shown in the architecture. The administrator interacts
with both, the selected OLAP system (e. g. Hyperion Essbase), and the DWT
administration tool. With the OLAP tool, he can do all update operations on cubes,
as usual. With the DWT tool he is able to incorporate these changes into the
database.

2.3 Conceptual Database Model and Temporalization

A sketch of our conceptual model for the backend database is given in [7]. Here we
can only give a brief summary of the main design ideas.

As the database has to store structure data and fact data, the model includes
tables for all integral parts of an OLAP cube, i. e. the cube itself, dimensions,
members, hierarchies, cell data, and all necessary relations between them. All these
elements, except the cell data, are subjects to versioning and are, therefore,
temporalized with respect to the schema given in Fig. 2. Two of the main elements in
an OLAP cube are a hierarchy and members belonging to that hierarchy. Figure 2a
shows the nontemporal model of these two elements and the relation between them.
Figure 2b shows the same elements and relation in a temporalized environment. The
Hierarchy and the Member classes have both been split into two classes. The
Member class is still the class representing the concept, and therefore holding all
associations to other classes. But as all attributes may change over the time, we
introduced a new class named MemberVersion which holds the values for the
attributes at the given valid time. The ValidTime attribute of the Member is the sum
of all valid times of the different versions. For each point in time, a Member is valid,
there must exist exactly one valid MemberVersion, and for each point in time, a
MemberVersion is valid, the corresponding Member has to be valid too. The same
principles also apply for hierarchies, dimensions, and cubes. The association between
Hierarchy and Member gets timestamped too. As such an association may be valid in
more than one structure version, the ValidTime is a multiple attribute here. The
constraint for such an association defines that there must not be any point in time,

Maintaining Temporal Warehouse Models 5

where the association is valid, but one of the associated classes is not. Of course, this
schema does also apply to all other relations.

 (a) Nontemporal Model (b) Temporal Model

Fig. 2. Concept of Temporalization

2.4 Functionality and Workflow

We have to consider, where to really alter the OLAP cubes and where to do the
integrity checking, with respect to DWT . We decided to use the external/external
approach for our system for the following reasons:

With external/external all updates and checks are not done in the DWT tool, but
in the external OLAP application. DWT then provides the means for importing
cubes, detecting and tagging changes, and incorporate them into the database. The
advantages of this approach are the low implementation costs, easy extensibility, and
that users can work with the OLAP tool they are familiar with. A disadvantage is that
there is no direct control of the data- and controlflow outside the DWT system.

With internal/external all updates are done within the DWT tool, but the integrity
checking is done by the external OLAP tool. The advantages of this approach are the
possibility of logging changes and the partial control of the data- and control�ow.
Disadvantages are the high implementation costs, because each supported OLAP
system needs its own implementation of the maintenance component. Furthermore
the users have to get familiar with a new tool for altering OLAP cubes.

With internal/internal all changes and checks are done within the DWT tool. The
advantages of this approach are the complete control of the data by the DWT tool,
the logging of update operations, and that there is no need for an online connection
to the OLAP system. The disadvantages are again the high implementation costs and
the high export for an extension to additional OLAP systems.

Figure 3 shows a set of statecharts which describe the workflow in the different
components. Figure 3a shows the flow for the complete application.

The Export (see Fig. 3b) is quite simple: The user selects one particular structure
version, and a cube representing this version is created in the OLAP system.
Referring back to the main functionalities, this is composed of Structure Selection
and Cube Export.

6 Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3

 (b) Export to OLAP

 (a) Overall DWT State Chart (c) Proactive Maintenance

 (d) Reactive Maintenance
Fig. 3. State Charts describing the Behavior of the DWT Application

The Reactive Maintenance (see Fig. 3d) is a bit more complicated: After

selecting and reading the cube from the OLAP system, there is either a
corresponding version for this cube stored in the DWT database to be updated, or
there is not. In the first case, the first thing the user has to choose, is the level of
support for the change detection: No Support, Structure Comparison and Change List
(details in 2.5). After all changes are correctly tagged the user specifies the valid
time for the new version and the system stores it into the database. In the latter case,
i. e. no prior structure version for the imported cube exists, the user just gives the
valid time for the cube. Then the system stores the cube structure into the database as
initial structure version. Referring back to the main functionalities, the reactive
maintenance uses all main functionalities except for the cube export, i. e. Cube
Import, Cube Selection, Difference Detection, Version Creation, and Relation
Management between versions.

For the Proactive Maintenance (see Fig. 3c) the user has to select the dimensions
he wants to change. The DWT tool exports these dimensions into a temporary

Maintaining Temporal Warehouse Models 7

maintenance cube in the OLAP system, where the user does all desired changes.
After all changes are done in the OLAP system, the user triggers a reactive
maintenance with the maintenance cube, so all differences are detected and stored
into the database. Referring back to the main functionalities, the proactive
maintenance uses all of them, i. e. Cube Selection, Cube Export, Cube Import,
Difference Detection, Version Creation and Relation Management between versions.

Fig. 4. EBNF Syntax of a Change File

2.5 Identification of Changes

Identification of changes between structure versions and establishing relations
between two versions of a changed element is a crucial part during the versioning
process. As a changelog may not be available, we have to define other means of
change detection.

The naive approach is not providing Any Support at all. Thus, the user is
responsible for tagging all differences between the structure versions. This method is
the last fallback solution, as it is time consuming and error prone.

The second possibility is Structure Comparison. The system applies a feasible
comparison algorithm to the cube structures and detects a list of differences. Such a
comparison can for instance be graph based, as described in [10]. Due to the
heuristic and inductive nature of comparison algorithms, the results may contain
errors. Therefore, the administrator must have the possibility to review the results
and manually correct them if necessary.

If, on the other hand, the OLAP system provides the functionality to create a log
of the changes applied to a cube, or there is any other possibility to obtain a list of
changes outside the DWT tool, it is not necessary to identify them again during the
import, but the user may import a change file consisting of a number of
MatchingLines with the syntax describe in Fig. 4. The characters for the Separator or
PathDelimiter are implementation dependent and may vary for different OLAP
systems, as they may occur in a member's name. Members are identified by a path
from the root to this member, or, if member names are unique, just by this name.

A MatchingLine may either represent the deletion, the insertion, or the change of
a member, which may be any combination of update, rename, and move. Generally,
it has the form OLDID;NEWID with the following semantics: The member identified

MatchingLine = Delete|Insert|Change;
Delete = Identifier Separator;
Insert = Separator Identifier;
Change = Identifier Separator Identifier;
Identifier = Path|Name;
Name = ValidCharacter {ValidCharacter};
Path = PathDelimiter Name {PathDelimiter Name};
Separator = ";";
PathDelimiter = "\";
ValidCharacter = any character valid in a member's name

8 Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3

by OLDID in the old structure version represents the same element as the member
identified by NEWID in the new structure version. If no OLDID is given, the member
identified by NEWID was inserted into the structure. If no NEWID is given, the
member identified by OLDID was deleted from the structure. If both of them are
present, this indicates a change. In this case, the correct operations can easily be
detected by searching the members in both structures and comparing their properties
and position. A change file may not be complete, i. e. not describe all changes
between the structure versions. In this case, the user has to select additional means
for identifying the remaining differences until all changes are tagged. After all
changes are identified and tagged, the results are passed to the version management
component. The administrator assigns a valid time and the new structure version is
stored.

3 Implementation

The implementation is in Java 1.4, the backend database is Oracle 9i. The
communication between database and the DWT tool uses JDBC. The interface
implementation to Hyperion Essbase is done via the native Hyperion Essbase Java
API. The relational schema for the DWT database was highly optimized for
achieving good performance.

As the main target OLAP system on this stage is Hyperion Essbase, data
warehouse outlines are represented by trees and the tree comparison algorithm
defined in [10] is used to compare the two structure versions.

Figure 5 shows the screen after the matching between the two trees. The left tree
denotes the structure version stored in the DWT database, the right tree represents
the imported cube. Members in the DWT tree that are marked with a cross (e. g.
Phantom V, Silver Spirit) could not be matched to any member in the imported tree.
Members in the imported tree that are marked with a triangle (e. g. BMW 1, Silver
Spirit II) could not be matched to any member in the DWT tree.

After the matching is completed, all yet unmatched nodes could have either been
deleted/inserted or renamed. As the fully automated determination of renamings is
not possible, we proposed a heuristic approach which calculates the most likely
renamings [10]. The user has to check them and do corrections if necessary. Each
accepted renaming results in an additional node matching. As the matching and
renaming detection of graph nodes heavily relies on heuristics, the algorithm may
return wrong results. Thus, the user must have the possibility to correct the node
matchings before the change detection is executed. The user may break up a detected
matching and/or define new matchings between unmatched nodes.

Figure 6 shows the screen after the comparison algorithm has finished. Members
marked with a triangle (e. g. BMW 1, a new car in the product portfolio) have been
inserted, members marked with a C have been changed (the engine power for Rolls-
Royce cars is no longer given in kW but in HP), the R indicates a renaming and the
M denotes a move (e. g. BMW is now a part of the united BMW&Rolls-Royce).
During the calculation of the differences, the algorithm is transforming the old
version of the tree, thus after the algorithm has finished, both trees have to be

Maintaining Temporal Warehouse Models 9

identical, therefore deleted nodes (e. g. Phantom V, which was taken out of the
product portfolio) cannot be seen any longer. The dialog box in Fig. 6 shows how to
assign the valid time to the new structure version after having clicked the save
button.

Fig. 5. Screen after Node Matching

Fig. 6. Final Result of the Structure Comparison

Additional functionalities - e. g. administrative tasks or user management - which

do not contain much scientific challenges are not described here.

10 Johann Eder 1, Christian Koncilia 2, and Karl Wiggisser 3

4 Conclusion

Due to changes of the represented real world, OLAP structures have to change as
well. As current implementations of DWH systems, surprisingly, do not support such
changes, we defined the COMET Metamodel for temporal data warehouses. In this
paper we present the DWT tool for maintaining temporal warehouse models. We
describe the principal use cases and their representation in the main workflows
within the tool. The administrator is enabled to store versions of a warehouse
structure into a database, identify changes between different structure versions, and
to re-establish any previously stored structure version. We present the general
architecture and the conceptual database model, comprising temporal and versioning
information. DWT offers three ways for identifying differences between two
subsequent versions: a semiautomatic structure comparison if only snapshots are
available, changelog application, and manual change identification.

The major advantage of such a backend tool is that the users and administrators
can use their favorite OLAP frontend for doing the analysis of data and for
registration of changes. The backend then makes the whole architecture temporal, i.e.
provides temporal versions of the dimension structure of a data warehouse and
allows that any structure version can be selected by valid time and be uploaded into
the OLAP frontend. Using standard interfaces, this allows also for a mapping of
dimension structures between different OLAP tools.

5 References

1. P. Chamoni and S. Stock. Temporal Structures in Data Warehousing. In Proc. 1st
DaWaK, 1999.
2. R. Kimball. Slowly Changing Dimensions, Data Warehouse Architect. DBMS
Magazine, 9(4), April 1996. http://www.dbmsmag.com/.
3. A. Vaisman. Updates, View Maintenance and Time Management in
Multidimensional Databases. Ph.D. thesis, Universidad de Buenos Aires, 2001.
4. J. Yang. Temporal Data Warehousing. Ph.D. thesis, Stanford University, 2001.
5. M. Blaschka. FIESTA: A Framework for Schema Evolution in Multidimensional
Information Systems. Ph.D. thesis, Technische Universität München, 2000.
6. J. Eder, C. Koncilia, and T. Morzy. A Model for a Temporal Data Warehouse. In
Proceedings of OES-SEO 2001 Workshop, pages 48--54. 2001.
7. J. Eder, C. Koncilia, and T. Morzy. The Comet Metamodel for Temporal Data
Warehouses. In Proc. of the 14th CAISE. 2002.
8. Hyperion Solutions Corporation. Hyperion Essbase. http://www.hyperion.com/.
9. Object Management Group. The Common Warehouse Metamodel V1.0, 2001.
http://www.omg.org/cwm.
10. J. Eder, C. Koncilia, and K. Wiggisser. A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures. In Proc. of the 7th DaWaK. 2005.

