
Avoidance of Deadline-violations for Inter-organizational Business
Processes

Johann Eder
University of Vienna, Austria

Department of Knowledge and Business Engineering

Horst Pichler and Stefan Vielgut
University of Klagenfurt, Austria

Department of Informatics-Systems

Abstract

Workflow time management allows the prediction of
eventually arising deadline violations and enables proac-
tive initiation of evasive actions. This saves time, avoids
unnecessary task-compensations and therefore de-
creases costs. Current time management approaches as-
sume that communication with external tasks, which
are enacted by the process, is conducted in a block-
ing or synchronous manner. As inter-organizational
processes frequently communicate in a non-blocking
manner we examined basic asynchronous commu-
nication patterns and provided a mapping for each
pattern in order to use it for time management pur-
poses.

1. Introduction

Workflow management systems, are used to improve
processes by automating tasks and getting the right in-
formation to the right place for a specific job function.
As automated business processes often span several en-
terprises, the most critical need in companies striving
to become more competitive is a high quality of ser-
vice, where the expected process execution time ranks
among the most important quality measures [11]. Ad-
ditionally it is a necessity to control the flow of infor-
mation and work in a timely manner by using time-
related restrictions, such as bounded execution dura-
tions and absolute deadlines, which are often associ-
ated with process activities and sub-processes [7]. How-
ever, arbitrary time restrictions and unexpected delays
can lead to time violations, which typically increase the
execution time and cost of business processes because
they require some type of exception handling [17].

Although currently available commercial products
offer sophisticated modelling tools for specifying and
analyzing workflow processes, their time-related func-
tionality is still rudimentary and mostly restricted

to monitoring of constraint violations and simulation
for process re-engineering purposes [4, 10]. Workflow
time management deals with these problems and al-
lows for instance the prediction of response times or
proactive avoidance of constraint violations. In re-
search several attempts have been made to provide so-
lutions to advanced time management problems (e.g.
[3, 4, 6, 8, 10, 15]).

Nowadays business processes spread over the bound-
aries of companies and integrate customers, suppliers
and partners to achieve inter-organizational business
goals. Inter-organizational workflows may therefore be
assembled from several external processes and services
[1]. More than ever slow external services will have a
disastrous impact on the overall process response time,
cause deadline violations and increase the cost of the
process. It seems to be an obvious idea to apply time
management approaches to avoid these problems. The
problem is that asynchronous communication patterns
are not supported by existing time management ap-
proaches and that inter-organizational business process
communication is asynchronous by nature. In this pa-
per we examine basic asynchronous process communi-
cation patterns [1, 16, 19], show how they affect the
process execution and duration, and adapt our time
management algorithms and calculation operations to
cope with the new requirements.

The paper is organized as follows. In Section 2 we de-
scribe basic workflow and time management concepts.
Section 3 list several synchronous and asynchronous
communication patterns. Then we define some neces-
sary prerequisites in Section 4 in order to define map-
pings of the communication patterns for time manage-
ment calculations, as explained in Section 5. How to ap-
ply the concepts to a workflow system is dealt with in
Section 6 and finally the paper finishes with some con-
clusions and a brief outlook in Section 7.



2. Workflow Time Management

2.1. A Workflow Model

A workflow basically describes a structured process
consisting of activities and control flow dependencies
between them (see also [18]). Figure 1 shows the graph-
ical representation of elements using a directed graph.
Activities, represented by rectangles, correspond to in-
dividual steps in a process. Dependencies, displayed as
edges, determine the execution sequence of activities.
At runtime an activity will instantiated and executed
as soon as its predecessor node is finished. Control
nodes, visualized as circles or ovals, represent workflow
control structures. The label of a control node identi-
fies its type. A circle with a dot depicts the start of a
workflow and an empty circle depicts its end. A circle
labeled with OS represents an or-split, which decides,
based on a run time evaluated condition, which succes-
sor node will be executed next. In our model this node
uses xor-semantics, as exactly one successor must be se-
lected. The or-join, labeled with OJ, marks the end of
an or-structure and allows the continuation as soon as
one predecessor is finished. And-splits and and-joins,
labeled with AS and AJ, are used to define parallel ex-
ecution of several branches. All branches after the and-
split will be executed in parallel and the and-join syn-
chronizes all these branches, such that continuation is
allowed if and only if all its predecessor nodes are fin-
ished. For our time management-related examinations
on synchronous and asynchronous communication pat-
terns we restrict the graph to be full-blocked [18] with-
out cycles. Full-blocked workflows can be decomposed
to basic building blocks (sequence, and, or) that may
be nested but must not overlap. Workflows adhering to
this concept eliminate the possibility of deadlocks, un-
wanted multiple instances, or livelocks during execu-
tion, but they also constrain the degree of modelling
freedom. Therefore we plan to relax these restrictions
in further publications (see also Section 7).

2.2. Time Management in a Nutshell

We claim that the control flow structure, the av-
erage or estimated durations of activities and overall
process deadlines (maximum allowed workflow dura-
tion) can be utilized for time management purposes.
The main concepts and benefits of workflow time man-
agement are best explained by means of a simple ex-
ample. Figure 1 shows a workflow consisting of three
activities A, B and C which must be sequentially exe-
cuted. In many workflow systems activities have addi-
tional attributes holding expected execution durations,
which are mainly used for simulation and process re-

time

A B C

0 1 65432 121110987

deadline=13

13

B.d
B.d

B.st

Start End4 4 3

B.eps B.epeB.las B.lae

deadline

A.d
C.d

Figure 1. Time properties of activity B.

engineering purposes [18, 14]. In the example the du-
rations are A.d = 2, B.d = 3 and C.d = 5 time units
(e.g. hours). Assume that control nodes, like Start or
End, usually have a duration of 0. Additionally an over-
all process deadline of δ = 12 is defined, which must
not be exceeded.

For predictive or proactive time management [17, 7]
we have to calculate additional time information for
each node at build time, which will later on be used at
run time. The basic concepts are rooted in project plan-
ning methods like the Critical Path Method (CPM) or
the Program Evaluation an Review Technique (PERT)
[7]. They determine, among other things, expected and
valid execution intervals for nodes. The interval is de-
limited by the earliest point in time an activity can
start and the latest point in time it must end. The time
line in Figure 1 shows these execution intervals for ac-
tivity B. It uses a relative time, where 0 denotes the
start time of the workflow. All other points in time are
declared or calculated relative to this start time [12].

2.2.1. Sequences Figure 1 visualizes a work-
flow consisting of three activities executed in sequence.
Explicit time properties are the estimated dura-
tion of activities in basic time units, which are
A.d = 4, B.d = 4 and C.d = 3 and a deadline of
δ = 13, stating that the overall workflow execu-
tion must not exceed 13 time units. Based on this
information four implicit time properties can be cal-
culated for each node (e.g. for activity B): a)
Considering the sum of durations of preceding ac-
tivities the earliest possible start of activity B is
B.eps = 4. b) The according earliest possible end is
B.epe = B.eps+B.d = 8. Since we assume that there is
no delay between activities (which may be relaxed us-
ing lower bounds, see 4.1) we can state that EP-values
are calculated in a forward pass: Start.eps = 0,
Start.epe = Start.eps + Start.d, A.eps = Start.epe,
A.epe = A.eps + A.d, B.eps = A.epe and so on.
c) To take the deadline of 13, into account, the
point of view has to be reversed, now starting from
the end of the workflow. By subtracting the du-



A

B

C

AS AJ D
4

4

3

1

deadline=13

Figure 2. Workflow with parallel execution.

rations of succeeding activities from the deadline,
the latest allowed end B.lae of activity B is deter-
mined as B.lae = 13 − 3 = 10. That means if at pro-
cess run time B ends at 10 it is still possible to reach
the overall deadline of 13. d) Analogously the latest al-
lowed start time is B.las = B.lae−B.d = 6. Therefore
we can state that LA-values are calculated in back-
ward pass: End.lae = δ, End.las = End.lae − End.d,
C.lae = End.las, C.las = C.lae − C.d, B.lae = C.las,
and so on.

Implicit time properties can be utilized to specify
a valid time interval for the execution of each activ-
ity. The EP-values may, during workflow execution, for
instance be used to notify a participant about the ex-
pected start time of his future tasks or predict the over-
all workflow (rest) duration. The LA-values may be
used to predict possible future deadline violations. If
for example B would end at 11 it is likely that the
deadline will be violated after finishing C. As 11 ex-
ceeds the LAE of B immediately evasive actions can be
enacted in order to hold the deadline (e.g. assign ad-
ditional manpower); the system predicts a deadline vi-
olation and can proactively avoid it. This saves costs
and increases the quality of service.

2.2.2. Parallel Execution In workflows with paral-
lel structures the longest path between and-split and
and-join determines the duration and the intervals. In
the example in Figure 2 the activities B and C will be
executed in parallel. The and-join must wait for both
activities to finish, therefore its EPS is determined by
the maximum EPE of the predecessors: B.epe = 8 and
C.epe = 5 thus AJ.eps = 8. For the backward calcu-
lation of LA-values the same applies for the and-split,
the path to the end-node with the longest duration de-
termines its LAE-value, therefore the minimum LAS-
value of the successors is used: B.las = 6 and C.las = 9
thus AS.lae = 6.

2.2.3. Conditional Execution At build time the
workflow modeler can not know which decisions will be
made at or-splits during workflow execution. Addition-
ally activity durations will differ from expected average
values. Therefore some time management approaches
(e.g. [10, 15]) already incorporated minimum and max-
imum bounds for durations, EP- and LA-values . In or-
der to further increase the forecast precision we addi-

tionally introduced a probabilistic model which cap-
tures duration distributions and expected branching
behavior for or-splits [8]. In this paper we use, for the
sake of simplicity, average duration values. Neverthe-
less a bounding or probabilistic approach may be ap-
plied. For a detailed description of our probabilistic
model and how to calculate EP- and LA-values we re-
fer to [9].

3. Communication Patterns

3.1. Problem Statement

So far existing time management approaches are
based on one assumption: activities, may they be
atomic or complex, are interpreted as basic execution
units which must be finished in order to proceed with
workflow execution. But in real business processes one
is often confronted with the situation that external ser-
vices, applications or sub-processes may be started, us-
ing a blocking (synchronous) or non-blocking (asyn-
chronous) communication model. These models are es-
pecially needed for inter-organizational business pro-
cesses (IOBPs) which may nest several sub-processes
or services from different organizations. To enable our
time management algorithms to cope with these mod-
els it is necessary to examine possible structural sce-
narios and how they affect calculation of EP- and LA-
values. Recent publications on web service communi-
cation and web service composition (e.g. [1, 16, 19])
already identified several basic synchronous and asyn-
chronous communication patterns, which we utilized
for our purposes. Note that the communication is real-
ized by exchanging messages between processes. There-
fore we explain some of the patterns in the context of
the main process, which we focus on, that sends or re-
ceives messages to or from an external process.

3.2. Synchronous Patterns

In a synchronous or blocking model the requester
waits for the response of the provider before it contin-
ues execution. The advantage of this model is its sim-
plicity, as the process state does not change until the
response has been received. Additionally it is much eas-
ier for modelers to comprehend the process structure
hence debugging is eased. The obvious disadvantage is
that blocking the execution of the main process, es-
pecially when long running external processes are in-
volved, increases its execution duration tremendously.

SCP1 - Request/Reply is the basic model for syn-
chronous communication. The main process sends



a request to the external process and blocks un-
til a response is returned.

SCP2 - Solicit Response is an inverted SCP1. The
external process sends a request to the main pro-
cess, which sends a response after the request has
been processed.

SCP3 - Synchronous Polling is an extension
of SCP1. Again the main process sends a re-
quest and blocks. Subsequently it checks in de-
fined intervals if the response has been returned,
then it stops further polling-attempts and pro-
ceeds with execution.

3.3. Asynchronous Patterns

Although synchronous communication is appropri-
ate in many situations it may be suboptimal when long-
running external services or sub-processes are called. In
an asynchronous or non-blocking model the requester
sends a request to the provider and continues exe-
cution without delay. At a later point in time it re-
ceives a response (callback1) from the provider, which
of course implies that the main process contains an
activity which waits to receive this response. Asyn-
chronous communication loosely couples sender and
receiver. This accelerates process execution and com-
pensates communication problems (e.g. network prob-
lems).

ACP1 - One-way (Message Passing) The main
process sends a message to the external pro-
cess and as it does not expect a reply it immedi-
ately continues with execution.

ACP2 - Notification is an inverted ACP1. The ex-
ternal process sends a message to the main pro-
cess, without expecting a response.

ACP3 - Request/Response is the combination of
ACP1 and ACP2. The main process sends a mes-
sage to the external process. The external pro-
cess processes the request, which may take some
time, and sends a notification (callback) when it
is finished. In the meantime the main process pro-
ceeds execution. Naturally a mechanism must ex-
ist which receives the notification.

ACP4 - Request/Multiple Response is an ex-
tended ACP3. The main process sends a message
to the external process, which returns sev-
eral notifications, each at a different point in
time.

1 For details on the implementation of callbacks, for instance
with correlation-ids, we refer to [1].

ACP5 - Publish/Subscribe is topic-based messag-
ing. In a publish-subscribe system, senders label
each message with the name of a topic (”publish”),
rather than addressing it to specific recipients. The
messaging system then sends the message to all
subscribers that have asked to receive messages
on that topic (”subscribe”). This form of asyn-
chronous messaging is a far more scalable architec-
ture than point-to-point alternatives. Senders need
only concern themselves with creating the original
message, and can leave the task of servicing recip-
ients to the messaging infrastructure. It is a very
loosely coupled architecture, in which senders of-
ten do not even know who their subscribers are.

ACP6 - Broadcast can be interpreted as an inverted
ACP5. A message is send to the messaging infras-
tructure, which delivers a message to a selected
or subscribed list of receivers. Each of the re-
ceivers decides how to further process this mes-
sage. The sender does not expect any acknowl-
edging responses. Similar to ACP5 broadcast may
significantly increase network traffic, therefore it
should be used carefully and for very specific pur-
poses only.

ACP7 - Request/Response with polling is used
if callbacks from external processes are not pos-
sible or allowed. The main process calls an exter-
nal process using a blocking SCP1 Request/Reply,
where the reply is an acknowledged-message from
the receiver. Afterwards the main process contin-
ues. At a later point in time, when the main pro-
cess needs the results, it calls the external pro-
cess again; this time it uses SCP3 synchronous
polling until it receives the response. Subsequently
the main process may proceed. In order to find
out if these operations correlate, which means that
they belong to the same communication sequence,
each message must be augmented with the same
correlation-id, which is unique in both participat-
ing systems.

ACP8 - Request/Response with posting is
needed for business-critical or confidential mes-
sages. It consists of a SCP1 request/reply fol-
lowed by SCP2 solicit response. The main pro-
cess sends a message to the external process,
blocks and waits for the immediate acknowledg-
ing response. Later the external process sends
an answer which must again be immediately ac-
knowledged by the main-process. Again each
message must be augmented with a correlation-id.



A
1

DCB
3

lbc: 7

2 1

Figure 3. Workflow with a lower bound con-
straint.

4. Prerequisites

4.1. Lower Bounds

Our solution is based on lower bound constraints [7].
A lower bound is defined between a source and a target
activity which are not necessarily adjacent. It demands
that when the source activity has been finished the tar-
get activity must not start until a defined time span has
passed. Imagine a simple workflow with activities A, B,
C and D which are to be executed in a sequence (see
also Figure 3). Additionally a lower bound of lbc = 7
has been defined between A and D. Assume that af-
ter the execution of activity A its successors B and C
have been executed and that the execution of B and C
lasted 5 time units. Now D has to wait another 2 time
units before it may start. For time management calcu-
lation the lower bound constraint behaves like a paral-
lel execution path. The EPS of the ”joining” activity D
is determined by the sum of the duration of the longest
path from the ”splitting” activity A and A.epe, which
results in D.eps = 8 (as the longest ”path” is deter-
mined by the lower bound). Analogously for the back-
ward calculation the longest path between A and D de-
termines A.lae = 2. Please note that in this scenario a
lower bound less than 5 hours (which is the sum of du-
rations of B and D) would have had no effect on the
execution duration of the workflow and the execution
intervals of its activities, as in this case the longer reg-
ular path via B and D would determine the interval
values.

4.2. External Processes

Now consider the processes in Figure 4. Activity A
sends a message which activates an external process.
The main process continues with its execution and, as-
suming that the execution duration of B and C again
is 5 time units, has to wait for the results of the ex-
ternal process at activity D in order to proceed. One
can easily see that the calculation of the duration of
the main process and the execution intervals of its ac-
tivities do not differ from the above explained variant
using a lower bound. Since the external process may re-

A
1

DCB
3 2 1

Main Process

External Process or Service

X Y
4 3

Response Time: 7

Deadline: 10

send receive

Figure 4. Calling an external process.

side anywhere, and therefore its structure may be un-
known, it must be treated as a black box. The only
knowledge required is its expected execution duration
or response time. Hence for time management calcu-
lations asynchronous external services can be treated
like lower bound constraints. A required prerequisite is
to connect the adhering sending activity A (exit-node)
and the receiving activity D (entry-node) with a lower
bound.

4.3. Response Time

In order to explain the integration of synchronous
and asynchronous communication patterns into our
time management calculation algorithms we have to
clarify what we focus on. We are interested in the ef-
fects different types of communication patterns have
on the duration of the main process and the delay they
might produce between different activities of the very
same. Please note that we calculate our time models
for the main process only, therefore our primary in-
terest in external services or processes is their response
time. For time management it is not important to know
how communication works in process automation sys-
tems. We assume that the system relies on a communi-
cation infrastructure which forwards request-messages
from the main process and receives response-messages
from external processes. This may be implemented us-
ing message queues [1].

Furthermore we do not differ between communica-
tion, execution or waiting time for external services;
we use an overall response time which suffices for our
needs. As messages are queued they may be retrieved
before they are needed in the process. Therefore it is
important to notice that the response time is measured
as the time span between the outgoing message leaving
the out-queue and the correlating ingoing message en-
tering the in-queue2. Response times may be estimated

2 On details how messages are correlated in order to associate
them to their appropriate process instances we refer to [1].



A

exit

C

OS OJ entry
1

Figure 5. Unsound Workflow.

or gathered from empirical experience, for instance ex-
tracted from the message-log which holds information
about prior communication-sequences or from a third
party (see [11, 5]). The duration of entry and exit-
nodes, which basically only send or receive messages
to or from the messaging system, will usually be ex-
tremely low compared to other durations and response
times, e.g. milliseconds vs. minutes, hours or even days.
As their influence on other time properties is negligi-
ble assume them to be 0 if not stated otherwise.

4.4. Sound Asynchronous Processes

A workflow is sound if and only if, for any case, the
process terminates properly, i.e., termination is guar-
anteed, there are no dangling references, and deadlock
or livelock are absent. Although soundness has been
defined on a petri-net based model it can analogously
be applied on a graph based model. For further in-
vestigations about the soundness of workflows we re-
fer to [2, 13]. Full-blocked workflows, which we con-
centrate on, will always be sound if synchronous com-
munication patterns are used; this does not apply for
asynchronous communication. E.g. the workflow in Fig-
ure 5 is full-blocked but not sound. In the upper condi-
tional branch an external process is called and synchro-
nized after the or-join. The problem is that during pro-
cess execution the lower branch may be chosen which
does not call the external process. This poses a prob-
lem as at the entry-node a message is expected which
will never be received. To tackle this problem it is nec-
essary to restrict the model to certain structures (see
[19]) or to use tools to check the soundness of a pro-
cess with asynchronous communication. In the follow-
ing we assume that processes are sound.

5. Mapping of Patterns

This section describes how synchronous and asyn-
chronous communication patterns can be represented
in a workflow graph in order to apply time manage-
ment calculations (on the main process). Figures 6, 7,
8 and 9 visualize these mappings.

5.1. Mapping of Synchronous Patterns

SCP1 - Request/Reply As the process blocks ex-
ecution after sending a message, there must be
no activities between the exit-node and the entry-
node. The duration of the external process is de-
fined by a lower bound. This pattern may also be
represented by one complex activity [7]. A complex
activity is used to abstract and hide process struc-
tures, which in this case are external. Its duration
is defined by the overall duration of the hidden
structure. Nevertheless we stick to the entry/exit-
node notion as it may then be easily mapped to
e.g. web service composition environments where
request and reply are interpreted as atomic activ-
ities.

SCP2 - Solicit response The main process must
wait for a message from an external process
at the entry point in order to process the re-
quest. As this pattern assumes that no prior re-
quest has been sent from the main process, the du-
ration of the entry-node must be set to an average
waiting time. It is, unlike the response time, de-
termined by the average time span the activity
in the process has to wait for the incoming mes-
sage, which may already be in the in-queue. This
information can be extracted from the work-
flow log or estimated. The succeeding activity
A stands as placeholder for an arbitrary num-
ber of activities or control flow structures. For
our purposes it is not important that the call-
ing external process is blocked during the execu-
tion of A. The exit-node sends the response to
the requesting external process. For time man-
agement calculations it is not necessary to
know that the entry-node and the exit-node ad-
here to the same communication sequence, there-
fore no connecting construct similar to a lower
bound is needed. This pattern is unlikely to oc-
cur in a driving main process, which treats other
processes as mere service providers.

SCP3 - Synchronous polling For time manage-
ment calculations it is not important to know
the number of polling attempts. The only in-
formation needed is again the response time,
which is the time span between the original re-
quest and the last successful polling attempt.
Therefore it can be treated like SCP1.

5.2. Mapping of Asynchronous Patterns

ACP1 - One Way The main process sends a mes-
sage to the external process at the exit-node. As it



exit entry
response-time

SCP1

entrySCP2 exit
wait-for-msg

SCP3

A
duration-A

exit entry
response-time

Figure 6. Mapping of Synchronous Patterns.

exitACP1 entryACP2
wait-for-msg

exit entry
response-time

ACP3 A
duration-A

Figure 7. Mapping of Patterns ACP1-ACP3.

does not wait for a response there is no synchro-
nization required.

ACP2 - Notification The main process must wait
for message from an external process at the en-
try point. As this pattern assumes that no prior
request has been sent from the main process, the
duration of the entry-node must be set to an av-
erage waiting time. Like SCP2 this pattern is un-
likely to occur in a driving main process, which
treats other processes as mere service providers.

ACP3 - Request/Response As the process does
not block execution after sending a message,
there may be an arbitrary number of activi-
ties, represented by A, which are executed be-
tween the the exit and the entry-node. The
response time of the external process is de-
fined by lower bound between the exit and
the entry-node. Time management calcula-
tions are to be conducted as described in Subsec-
tion 4.1.

ACP4 - Request/Multiple Response As the pro-
cess does not block execution after sending a mes-
sage, there may be an arbitrary number of ac-
tivities, represented by A, after the exit-node.
But now the main process expects multiple re-
sponses from the external process, which are re-
ceived in multiple entry-nodes (see upper graph in
Figure 8). Therefore a lower bound must be de-
fined between the exit-node and each entry-node.
Another possibility is visualized in the lower part
of the figure. Here the messages are received in

exit entry1
response-time-1

ACP4

A
duration-A

entry2B

response-time-2

duration-B

exit

entry1
response-time-1

A
duration-A

entry2B
response-time-2

AS duration-B AJ

Figure 8. Mapping of Pattern ACP4.

parallel branches of the main process; although
the structure is different the concept of applying
lower bounds between each combination does not
change (the same applies if the and-structure is ex-
changed by or-structure). The determination of a
response time for each combination poses no prob-
lem if an entry-node expects a specific type of mes-
sage, which can only be received by this entry-
node. If some or even all entry-nodes are imple-
mented to receive the same type of message an av-
erage response time may be used for each lower
bound.

ACP5 - Publish/Subscribe This pattern can
be mapped using a combination of other pat-
terns. With SCP1 or ACP1 we model the sub-
scription, depending on wether the main pro-
cess has to wait for acknowledgement or not.
ACP2 is used for each point in the main pro-
cess where a publication message is expected. The
waiting time for ACP2 is the average time span be-
tween two publications. Of course it makes sense
to differ between waiting times for specific top-
ics, in case it is known which message to expect at
an entry-node. In our opinion this pattern is un-
likely to appear in the course of a business pro-
cess. It may probably be used to start a process
when such a message is received, which has no in-
fluence on time management calculations as the
starting time of the workflow is always initial-
ized with 0.

ACP6 - Broadcast The broadcast is mapped using
a single exit-node, like in ACP1, as the selection
of receivers and sending multiple messages is con-
ducted by the messaging system.

ACP7 - Request/Response with Polling The
first request with acknowledgement is mod-
elled using a SC1 request/reply. When the main
process needs the results it starts polling the ex-



exit entry
response-time-

ack

ACP7

A
duration-A

exit entry
response-time-

ack
SCP1 SCP3

response-time

exit entry
response-time-

ack

ACP8

A
duration-A

entry exit

SCP1 SCP2'
response-time

B
duration-B

Figure 9. Mapping of Patterns ACP7-8.

ternal process, which is modelled using a SC3 re-
quest/reply with polling. The response time, rep-
resenting the actual execution time needed by
the external service to process the primary re-
quest, must be introduced as lower bound be-
tween the first and the second entry-node. At
the first entry-node the main process is noti-
fied by the external process that the primary
request arrived. At the second entry-node the fi-
nal response is received by the main-process.
Alternatively SCP1 and SCP3 may be mod-
elled as complex activities, as they are blocking
anyway. This simplifies the model a little bit, be-
cause the extra acknowledged-response times can
simply be modelled as durations of the com-
plex activities.

ACP8 - Request/Response with Posting Again
the first request with acknowledgement is mod-
elled using SC1 request/reply. After the execution
of A, the main process has to wait for the re-
sponse from the external process before it can re-
turn an acknowledged-message. Therefore SCP2’,
a solicit response variant, is used. The (com-
plex) activity B may among other things for in-
stance generate the acknowledged-message.
The difference between SCP2’ and the origi-
nal SCP2 is that the entry node is not augmented
with an average waiting time. The response mes-
sage will be received when the external process
finished its execution. Therefore it is sufficient
to introduce a lower bound between the pri-
mary exit- and the second entry-node augmented
with the response time, which represents the dura-
tion of the external process. Finally the main pro-
cess will send an acknowledged-message at the
second exit-node.

6. Application

The main purpose of time management is to express,
process and interpret queries on different time proper-
ties. This information can be used to achieve several ob-
jectives, e.g.to make statements about the expected du-
ration or the probability of violating time constraints
(see also Section 2). Integration of time management
for workflows with asynchronous communication pat-
terns consists of the following major steps:

1. Process modelling: model the process accord-
ing to the business needs and integrage selected
external services or processes.

2. Apply time management data: enhance the
workflow with time management-related data, like
durations and deadlines. Additionally introduce
lower bound constraints between entry and exit-
nodes and augment them with appropriate re-
sponse times. If the workflow has already been
used for some time empirical information can be
gathered, by extracting data from the workflow
and messaging system logs.

3. Calculate time management relevant infor-
mation according to Section 2.

4. Utilize build time information. The informa-
tion calculated so far may for instance be used to
predict the expected duration for a workflow or to
check if deadlines are defined to tight.

5. Process instantiation and run time. For each
workflow instance the actual start time (real calen-
dar date and time) must be stored. At run time the
time management component has to monitor the
temporal status of all running workflow instances.
To achieve this each running workflow instance
must be synchronized with the time model. The
time attributes of these activities must then be
mapped to real calendar dates (by adding the in-
stances start time). Now time predictive or proac-
tive management methods may be applied in order
to forecast and avoid eventually upcoming dead-
line violations as described in Section 2.

7. Conclusion and Future Work

The prediction and proactive avoidance of deadline
violations decreases costs of processes and increases
their quality of service. In this paper we examined ba-
sic asynchronous process communication patterns fre-
quently used in inter-organizational processes, showed
how they affect the execution and duration, and pro-
vided mappings for our workflow time management al-



gorithms and calculation operations in order to cope
with the new requirements.

Currently we design and implement a Web Services-
based time management framework. It will be used
to examine complex asynchronous communication-
sequences between multiple communicating processes
and how they affect our time management algo-
rithms. Another research objective is to extend the
mappings for full-blocked and arbitrary cyclic struc-
tures. The integration of time management into
process automation environments is subject of ongo-
ing research.

References

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services:
Concepts, Architectures and Applications. Springer Verlag,
ISBN 3-540-44008-9, 2005.

[2] W.M.P. vanderAalst andH.A.Reijers. Analysis of discrete-
time stochastic petrinets. In Statistica Neerlandica, Journal
of the Netherlands Society for Statistics and Operations Re-
search, Volume 58 Issue 2, 2003.

[3] G. Baggio and J. Wainer and C. A. Ellis. Applying Schedul-
ingTechniques toMinimize theNumberofLateJobs inWork-
flow Systems. In Proc. of the 2004 ACM Symposium on Ap-
plied Computing (SAC). ACM Press, 2004.

[4] C. Combi and G. Pozzi. Temporal conceptual modelling of
workflows. LNCS 2813. Springer, 2003.

[5] J. Cardoso and A. Sheth and J. Miller Workflow Quality of
Service. Proceedings of the International Conference on In-
tegration and Modeling Technology and International Enter-
prise Modeling Conference (IEIMT/IEMC’02), Kluwer Pub-
lishers, 2002.

[6] P. Dadam and M. Reichert. The adept wfms project at the
university of ulm. In Proc. of the 1st European Workshop on
Workflow and Process Management (WPM’98). Swiss Fed-
eral Institute of Technology (ETH), 1998.

[7] J. Eder and E. Panagos. Managing Time in Workflow Sys-
tems. Workflow Handbook 2001. Future Strategies Inc.
Publ. in association with Workflow Management Coalition
(WfMC), 2001.

[8] J. Eder and H. Pichler. Duration Histograms for Workflow
Systems. In Proc. of the Conf. on Engineering Information
Systems in the InternetContext2002,KluwerAcademicPub-
lishers, 2002.

[9] J. Eder and H. Pichler. Probabilistic Workflow Manage-
ment. Technical report, Universitt Klagenfurt, Institut fr
Informatik Systeme, 2005.

[10] J. Eder, E. Panagos, and M. Rabinovich. Time constraints in
workflow systems. LNCS 1626. Springer, 1999.

[11] M. Gillmann, G. Weikum, and W. Wonner. Workflow man-
agement with service quality guarantees. In Proceedings of
the 2002 ACM SIGMOD International Conference on Man-
agement of Data. ACM Press, 2002.

[12] H. Jasper and O. Zukunft. Time Issues in Advanced Work-
flowManagementApplications ofActiveDatabases. InProc.
of the 1st International Workshop on Active and Real-Time
Database Systems. Workshops in Computing, 1995.

[13] B. Kiepuszewski, A. ter Hofstede, C. Bussler On Structured
Workflow Modeling. In: Proceedings of the 12th Conference
on Advanced Information Systems Engineering (CAISE).
Stockholm, Sweden, June 2000.

[14] M.LagunaandJ.Marklund BusinessProcessModeling, Sim-
ulation and Design. ISBN 0-13-091519-X. Pearson Prentice
Hall, 2005.

[15] O. Marjanovic and M. Orlowska. On modeling and verifica-
tion of temporal constraints in productionworkflows. Knowl-
edge and Information Systems, 1(2), 1999.

[16] E. Newcomer. Understanding Web Services. Verlag:
Addison-Wesley, ISBN 0-201-75081-3, 2002.

[17] E. Panagos and M. Rabinovich. Predictive workflow man-
agement. In Proc. of the 3rd Int. Workshop on Next Gener-
ation Information Technologies and Systems, Neve Ilan, IS-
RAEL, 1997.

[18] Workflow Process Definition Interface. A Workflow Man-
agementCoalition Specification.DocumentnumberWFMC-
TC-1025, 2002.

[19] P. Wohed, W. M. P. van der Aalst, M. Dumas and A. H. M.
ter Hofstede Pattern Based Analysis of BPEL4WS In: QUT
Technical report,FIT-TR-2002-04.QueenslandUniversity of
Technology, Brisbane, 2002.


