
An Architecture for Proactive Timed Web
Service Compositions

Johann Eder1, Horst Pichler2, and Stefan Vielgut2

1 Department of Knowledge and Business Engineering
University of Vienna, Austria

2 Department of Informatics-Systems
University of Klagenfurt, Austria

Abstract. Web Services-based business processes spread over the
boundaries of companies, requiring the integration of customers, suppli-
ers and partners to achieve inter-organizational business goals. Accord-
ing to organizational rules temporal constraints, like deadlines, must be
defined for processes. Violation of these constraints usually results in
increased cost and reduced quality of service. Advanced workflow time
management approaches allow the prediction of eventually arising time
constraint violations and enables proactive initiation of evasive ”self heal-
ing” actions. This saves time, avoids unnecessary task-compensations and
therefor decreases costs. In this paper we present an architecture for Web
Service Composition environments which enables the usage of advanced
predictive and proactive time management features.

1 Introduction

The next step in the evolution of web services are composite web services to
support business processes within organizations as well as business processes
spanning several organizations like supply chains. Thus the most critical need
in companies will be to provide services with a better quality than their com-
petitors. To assess the quality of service (QoS) it is necessary to define measures
which are significant indicators for certain quality aspects, where expected or
guaranteed process duration ranks among the most important characteristics
[15]. Slow web services, invoked by a composite web service, can have an dis-
astrous impact on the overall process response time and even worse result in
the violation of time constraints, like a process deadlines. Thus techniques are
needed to predict these durations and possible constraint violations based on the
anticipated response time of participating web services, enabling us too exchange
certain services or to optimize them for faster execution.

These are established problems in workflow management, a closely related
application area. Workflow management systems, are used to improve processes
by automating tasks and getting the right information to the right place for a
specific job function. Additionally it is a necessity to control the flow of infor-
mation and work in a timely manner by using time-related restrictions, such as
bounded execution durations and absolute deadlines, which are often associated

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 323–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

324 J. Eder, H. Pichler, and S.Vielgut

with process activities and sub-processes [10]. However, arbitrary time restric-
tions and unexpected delays can lead to time violations, which typically increase
the execution time and cost of business processes because they require some type
of exception handling [21]. Although currently available commercial products
offer sophisticated modelling tools for specifying and analyzing workflow pro-
cesses, their time-related functionality is still rudimentary and mostly restricted
to monitoring of constraint violations and simulation for process re-engineering
purposes [6]. Workflow time management deals with these problems and allows
for instance the prediction of response times or proactive avoidance of constraint
violations. In research several attempts have been made to provide solutions to
time management problems (e.g. [5,6,8,11,14,19]).

Nowadays inter-organizational workflows are likely to be assembled from sev-
eral external processes and services. This can be accomplished by aggregating
distributed web services into a web service composition. More than ever slow
external services will have a disastrous impact on the overall process response
time, cause deadline violations and increase the cost of the process. It seems to be
an obvious idea to apply time management approaches to avoid these problems,
which requires some adaptations to the original algorithms.

In this paper we present a novel time manager architecture for web service
composition environments, where we focus on BPEL executable processes [4,1].
We list and explain required build time and run time components, along with a
brief introduction into the necessary parts of time management theory.

The paper is organized as follows. In Section 2 we describe basic workflow
time management concepts. Section 3 gives an overview of the architecture. Sec-
tions 4 explains already implemented build time components in detail, whereas 5
outlines run time components along with some ideas for still unsolved problems.
The paper finishes with some conclusions and a brief outlook in Section 6.

2 Workflow Time Management in a Nutshell

The basic concepts of workflow time management are rooted in project plan-
ning methods like the Critical Path Method (CPM) or the Program Evaluation
Review Technique (PERT) [10]. They determine, among other things, a valid
execution interval for each activity in the process. This interval is delimited by
the earliest point in time an activity can start, which is determined by preceding
activities, and the latest point in time it must end, in order to meet the process
deadline. The intervals are calculated based on the knowledge about process
control flow structure, the average or estimated durations of activities and time
constraints. The phases of time management, its concepts and main ideas are
best explained with an example.

2.1 Process Build Time

Process Modelling. An expert or process designer models the process and
augments it with necessary temporal information. Figure 1 visualizes a workflow

An Architecture for Proactive Timed Web Service Compositions 325

time

A B C

0 1 65432 121110987

deadline= 13

13

B.d
B.st

Start End4 4 3

B.eps B.lae

deadline

A.d
C.d

Fig. 1. Valid Execution Interval of Activity B

consisting of three activities executed in sequence. Explicit time properties are
the estimated duration of activities in basic time units, which are A.d = 4,
B.d = 4 and C.d = 3 and a deadline of δ = 13, stating that the overall workflow
execution must not exceed 13 time units.1

Calculation of the Timed Graph. The output of this phase is called Timed
Graph which augments the process model with valid execution intervals for each
node or activity. The time line in Figure 1 shows these execution intervals for
activity B. A relative time model is used, where 0 denotes the start time of the
process. All other points in time are declared or calculated relative to this start
time [16]. Based on this information the valid execution interval for activity B is
calculated as follows: an activity must not start until all predecessors are finished
(since we assume that there is no delay between activities), therefore the earliest
possible time B may start is determined by the sum of predecessor durations:
B.eps = 4. To take the deadline of 13, into account, the point of view has to be
reversed, now starting from the end of the workflow. By subtracting the durations
of succeeding activities from the deadline, the latest allowed end B.lae of activity
B is determined: B.lae = 13 − 3 = 10. In the figure one can also spot the time
span B.st, which depicts the slack or buffer time; this time may be consumed
by B without endangering the deadline.2 The EPS-values for all activities are
calculated in a forward pass and the LAE-values in a backward pass, as described
in e.g. [14], where along with simple sequences also conditional, alternative and
parallel execution structures are considered, as well as upper and lower bound
constraints. In order to cope with run time uncertainties like varying execution
durations and branching and looping behavior (treatment of blocked loops) a
stochastic model was introduced in [11,12], where each time value is represented
as histogram, which allows statements for certain confidence thresholds.

1 Although it can not be recommended to represent durations with simple scalar time
values, we will still use this representation to reduce the complexity of explana-
tions. In the prototypical implementation we used the probabilistic model presented
in e.g. [11,12], where time values are represented as histograms, which allow more
differentiated statements about the temporal status of a process.

2 Slack time is produced by relaxed deadlines or on shorter branches of parallel
structures.

326 J. Eder, H. Pichler, and S.Vielgut

2.2 Process Instantiation

The workflow engine starts, controls and terminates the control flow of process
instances. When starting a new process instance the time manager has to load
the according timed graph and adjust it to the current date and time. This step
is called Calendar Mapping, which in its simplest form just adds the current date
and time to each EPS and LAE-value in the timed graph.

2.3 Process Run Time

Monitor State of Execution. During process execution a time management
component must map each currently executed activity with its counterpart-node
in the timed graph.

Predictive Time Management. The prediction component has several func-
tions: it may be used to predict the rest execution time of the process [11] or to
forecast the arrival time of future tasks for certain workflow participants (based
on EPS-values) [9]. For this paper the most important feature is the prediction
of eventually arising future deadline violations based on LAE-values. E.g. if B
ends later than 13 (time units after the start of the process) one can state that
it is likely that the deadline will be violated after finishing C. In contrast to
reactive time management, which solely reacts on constraint violations that al-
ready occurred, predictive time management forecasts violations and enables the
system to initiate evasive actions [14].

Proactive Time Management. Proactive time management will be started
after the prediction of violations. Its purpose is to trigger appropriate evasive ac-
tions. Consider our running example: before C is even started according evasive
actions can be invoked in order to hold the deadline, for instance exchanging
activity C with an alternative shorter activity C′. We claim that early predic-
tion of time constraint violations and their pro-active treatment saves costs and
therefor increases the quality of service [12].

3 Architecture for Timed Web Service Compositions

Figure 2 proposes an architecture for a BEPL-based web service environment
which enables proactive time management. The architecture consists of the Pro-
cess Engine and the Time Managers Build Time and Run Time components.

Time Manager Build Time Components

1. The Parser loads the BPEL-definition, parses it and generates an according
Process Graph.

2. The Data Collector augments the graph with additional temporal process
information, like expected activity durations and time constraints.

An Architecture for Proactive Timed Web Service Compositions 327

BPEL

Process Definition

Process Graph

9hours 5hours

1hour
Extended Graph

Parser Data Collector Timed Graph Calculator

Timed Graph

9hours 5hours

1hour

2hours

Time Manager - Build
Time Components

Model DB

Process Engine

History
3d Party QoS

Duration, Branching, Constraints

Instance 1

Instance 2

Instance 3

Log Events

Instance Graph 3Events

Intervention

Experts

Instance Graph 2

Instance Graph 1

Instance Models
(Calendar Mapped)

Prediction

Instance Model
Mapper

Time Manager -
Run Time Components

Start
Process

Proaction

Temporal Status

User, Administrator

2hours

Fig. 2. Time Manager Architecture

3. The resulting Extended Graph is fed into the Timed Graph Calculator, which
generates the Timed Graph.

4. And finally the Timed Graph is stored in the Model Database.

Process Engine
1. The BPEL-Process Engine starts new process instances and controls their

execution (communication with web services).
2. During the execution of process instances certain events, like start or termi-

nation of process activities, are signaled to the run time component of the
time manager.

3. In order to avoid possible future violations of time constraints the process
engine reacts to intervention signals from the time manager.

Time Manager Run Time Components
1. When a process is started by the process engine an according signal will be

sent to the time manager.
2. The Instance-Model Mapper loads the according timed graph from the model

database and generates a calendar-mapped copy, called Timed Instance
Graph, for the process instance.

328 J. Eder, H. Pichler, and S.Vielgut

3. Each time an activity of the process instance starts or ends an according
signal will be sent to the instance-model mapper.

4. The Prediction Component periodically checks the temporal status of the
instance and raises an exception if time constraints are likely to be violated.
Additionally it provides an interface to monitor the temporal status of each
process instance (e.g. likelihood of deadline violations, expected remaining
execution time) which may be accessed by users, service requestors or process
administrators.

5. In this case the Proactive Component jumps into action, tries to find an al-
ternative (shorter) execution plans in order to prevent a future deadline vi-
olation, and sends according intervention instructions to the process engine.

The current status of the prototypical implementation and research tasks is as
follows: the build time components are completed and now we focus on the
proactive part, namely service exchange algorithms. For the Java-based imple-
mentation of the prototype the following tools and technologies were used: Oracle
BPEL Server, Eclipse + Oracle BPEL Designer Plugin, Apache Tomcat, Axis
Soap Engine and the Xerces2 XML-Parser [22].

4 Build Time Components

4.1 Parser: Generating the Process Graph

The first step is to parse the web services-based process definition in order to
generate a graph-based process representation, which is necessary for the time
management calculations performed later. In a service oriented architecture en-
terprizes or their applications respectively communicate via loosely coupled web
services, which are described by standards like the Web Service Description Lan-
guage (WSDL) [24,1]. As these services do very often not operate in isolation,
but in the context of a business process, a description language must be used to
define e.g. the data flow between and the execution order of web services. The
Process Execution Language for Web Services (BPEL, BPELWS) is such a lan-
guage [4,1]. Note that we concentrate on executable business processes, which
require, similar to processes in workflow systems, a central process execution
engine that enacts and controls process instances. In a services-based scenario
the engine communicates either synchronously or asynchronously with external
web services, which form the steps in a business process. BPEL provides several
base activities to communicate with web services, like invoke, receive or reply.
Additionally it provides so called structural activities to define the control flow
between base activities, like sequence, switch, flow or while. As BPEL originates
from block-structured (XLANG) and activity diagram-based (WSFL) languages
the control flow of a BPEL process definition can be represented a directed graph
with control nodes [3]. Therefore the transformation of a BPEL-definition into
a process graph poses no further problems for the Parser.

An Architecture for Proactive Timed Web Service Compositions 329

4.2 Data Collector: Generating the Extended Graph

In many workflow systems activities have additional attributes holding expected
execution durations, which are mainly used for simulation and process re-
engineering purposes [23,18]. Additionally time constraints can be defined to
e.g. enable the enforcement of organizational rules.

Extended Information. In addition to the control flow structure defined in the
process definition, time management algorithms need the following information
to calculate their temporal models:

– Response Time: Each activity must be augmented with the expected dura-
tion, or since we talk about services, call it response time.

– Time Constraints: Several types of time constraints exist. An overall process
deadline is a time constraint which restricts the execution duration of the
whole process. A lower bound constraint is defined between a source and a
target activity which are not necessarily adjacent in the graph. It defines a
minimum time that must pass after finishing the source activity, before the
target activity is allowed to start. An an Upper Bound Constraint defines
a maximum time that is allowed to pass between the source and the target
activity.

Data Sources. The function of the Data Collector is to gather this additional
information and extend the process graph with it, where the following data
sources may be accessed:

– Experts: Information stemming from organizational rules, like time con-
straints, must be introduced by expert process modelers. If no other sources
are available experts may additionally make estimations about service re-
sponse times.

– Process History: If knowledge about past process execution exists, response
times can also be extracted from the process history. The process history (or
process log) stores events which occur during process execution, for instance
the start or end of activities, along with according time stamps.

– Third Party: Sometimes the extraction of response times tends to be a prob-
lem, especially in flexible environments where autonomous web services, ac-
cessed by the composition, are frequently changing. For these cases response
times could also be stored and administered by trusted third parties, which
offer an interface to access statistics, similar to or as an extension of a (Web)
Service Level Agreement-architecture [7,15].

In order to automate data collection we extended the original WSDL of each
service contained in the composition with a time management interface which
provides methods (e.g. getResponseTime) to access extended data. The (hidden)
implementation of these methods provides access to one of the above mentioned
types of the data sources and can be uniformly accessed via the web service in-
terface. The implementation may for instance be a query to an experts database
or forwarding the request to a third party interface.

330 J. Eder, H. Pichler, and S.Vielgut

4.3 Timed Graph Calculator

As BPEL-definitions can be represented as graphs and all possible structural
activities are supported by according control flow structures, as addressed in
e.g. [14,11,12], it already seems that time management algorithms as explained
in Section 2 can be applied without further adaptations. Unfortunately existing
workflow time management approaches are based on one assumption: activities
are interpreted as basic execution units which must be finished in order to pro-
ceed with workflow execution. But in Web Service scenarios external services,
applications or sub-processes are started, using a blocking (synchronous) or non-
blocking (asynchronous) communication model. To enable our time management
algorithms to cope with these models it was necessary to examine the structure
of communication scenarios and how they affect EPS- and LAE-values. Recent
publications on web service communication and web service composition, e.g.
[1,20,3], already identified several basic synchronous and asynchronous commu-
nication patterns, which we had to consider in our time management calculation
algorithms. A detailed description of how to handle each pattern can be found
in [13].

Synchronous Patterns. In a synchronous or blocking model the requester waits
for the response of the provider before it continues execution. The advantage of
this model is its simplicity, as the process state does not change until the response
has been received. The obvious disadvantage is that blocking the execution of
the main process, especially when long running external processes are involved,
increases its execution duration tremendously. For synchronous communication
patterns no special mapping is necessary since after the invocation of an external
service process execution will be blocked until the response is received, which is
exactly the behavior of so called atomic activities in workflow systems.

Asynchronous Patterns. Although synchronous communication is appropri-
ate in many situations it may be suboptimal when long-running external services
or sub-processes are called. In an asynchronous or non-blocking model the main
process sends a request to the provider and continues execution without delay. At
a later point in time it receives a response (callback) from the provider, which of
course implies that the main process contains an activity which waits to receive
this response. Asynchronous communication loosely couples sender and receiver.
This accelerates process execution and compensates communication problems
(e.g. network problems). But for time management it poses a problem as vi-
sualized on the left-hand side in Figure 3: a web service composition consists
of a sequence of activities, where the first one invokes an external web service,
which itself hides a process. As the communication is non-blocking, the process
engine continues execution with succeeding activities (which may for instance
be blocking calls to other services). The last activity receive synchronizes the
external web service, as it waits for the response message.3

3 For details on callbacks and how response messages are correlated to their appropri-
ate process instances, e.g. using correlation-ids, we refer to [1].

An Architecture for Proactive Timed Web Service Compositions 331

lbc: 12

invoke receiveCB
5 4

Composition

External Web Service

X Y
9 3

Response Time: 12

Deadline: 10

request response

invoke receiveCB
5 4

Composition Deadline: 10

Fig. 3. Invocation of an External Web Service

Assuming that the duration of invoke and receive is 0, one could be tempted
to state that the overall execution duration of the composition is 9, which is less
than the deadline of 10. But of course it is necessary to consider the response
time of the invoked service which is 12, therefore the deadline will be violated.
One can see that the time span between invoke and receive is determined by the
maximum of the duration of the regular path and the duration of the external
service. Please note that in this scenario an external web service with a response
time less than 9 hours (which is the sum of durations of B and D) would have had
no effect on the execution duration of the workflow and the execution intervals of
its activities, as in this case the longer regular path via B and D would determine
these values.

In order to calculate the timed graph we have to introduce a temporal re-
lationship between the invoking and the receiving activity, where asynchronous
communication with a web service can be easily mapped to a lower bound con-
straint (see right-hand side in Figure 3). The forward and backward calculations
may then be performed as explained in [14], which states that for activities
which are connected by a lower bound constraint the longest path determines
the according time intervals. A required prerequisite is to connect the invoke and
the adhering receive activity with a lower bound. This can be automated during
parsing if the BPEL-definition contains according partner links and bindings
[1,22]. Note also that since the invoked service may reside anywhere its struc-
ture will be unknown and it must therefore be treated as a black box. The only
knowledge required is its expected response time which can for instance be de-
termined by retrieving the QoS-information on this service from a trusted third
party.

4.4 Model Database

At the last step of the build time phase the timed graph must be stored in the
Model Database. The model database holds a timed graph for each time-managed
process. The model is stored as an XML-representation of the timed graph model,
which consists of nodes, edges and temporal relations. Nodes hold temporal
information (EP- and LA-values) and a mapping to the WSDL-specification and
according partner links. Edges connect nodes and temporal relations represent
time constraints like lower bounds.

332 J. Eder, H. Pichler, and S.Vielgut

5 Run Time Components

5.1 Instance-Model Mapper

To monitor the progress of a process instance and its temporal status the time
manager needs to be notified of certain events, which are: start of a process or
activity, end of a process or activity and the abnormal termination of a process.
Each of these events must be signaled to the Instance-Model Mapper which reacts
as follows:

Start Process. The mapper generates a copy, called Timed Instance Graph, of
the according timed graph which it loads from the model database. Afterwards
each EPS and LAE-value in this graph is mapped to the real calendar, which
means that the current date and time is added. Consider the example from Sec-
tion 2: in the original model the valid execution interval is defined as relative
distance to the start time 0 of the process, e.g. B.eps = 4 and B.lae = 10. As-
suming that the time unit used is hours and the (current) time at the start of the
process is Monday 1st, 8am the interval in the instance graph will be calendar-
mapped as follows: B.eps = Monday 1st, 12am and B.lae = Monday 1st, 6pm.
Of course this applies for the intervals of all activities the timed instance graph,
as well as for the overall deadline which is mapped to Monday 1st, 9pm. Addi-
tionally the execution pointer is initialized with a reference to the start activity
(in the timed instance graph).

Start Activity, End Activity. The mapper updates the execution pointer
such that it references the currently executed activity (in the timed instance
graph).

End Process, Cancel Process, Termination Due to Failure. The mapper
discards the timed instance graph.

5.2 Predictive Time Manager

This component checks periodically and on arrival of certain events if the cur-
rent execution status is likely to cause time constraint violations in the future.
E.g. activity B finishes at time Monday 1st, 7pm and the process enginge sig-
nals end of activity B to the time manager. By comparing the actual end time
of B with its latest allowed end time B.lae = 6pm the time manager finds
out that a deadline violation is likely to occur. Actually it predicts that af-
ter the execution of C the process will most likely finish at 10pm, which is
1 hour after the calendar-mapped deadline, and therefore 1 hour to late. It
raises an according exception which must be handled by the Proactive Time
Manager.

As an additional feature the prediction componentent provides an interface
to monitor the temporal information and status of each process instance which

An Architecture for Proactive Timed Web Service Compositions 333

may be accessed by users, service requestors or process administrators. Service
requestors might for instance be interested in the expected completion date/time
of a certain process instance. Process administrators might want to know the
temporal status of an instance. In [14] the traffic light model was introduced,
which proposes different temporal states that are set according to the likelihood
of a deadline violation: green (everything ok), yellow (problems possible) and
red (violation most likely to occur).

5.3 Proactive Time Manager

When this component catches an exception the process is already late, which
means that the rest of the process must be sped-up in order to reach the given
deadline. We just started to research methods to exchange services with faster
alternatives. Of course it is possible that these alternative services have some
drawbacks (which is the reason that they were not chosen in the first place), e.g.
they might be more expensive. The first input parameter for such an algorithm
is the amount of time that must be saved; consider the running example: activity
B is late by one hour, therefore the succeeding activities must be accelerated by
at least one hour, in order to meet the deadline. Additionally such an algorithm
will need to know which services are exchangeable, along with a set of alternative
services for each of them (we plan to realize a static approach in the prototypical
implementation). The next step is the generation of an alternative constraint-
violation free process execution plan. This is not so straightforward as it seems
at first glance. E.g. exchanging a service with a shorter alternative might not
affect the execution duration of the process at all, if it for example resides on
a path where still slack time is available. Additionally it might be necessary to
exchange more than one service. However, in every case a partial recalculation
of the timed instance graph will be necessary. Finally the process engine must
be informed about the changes it has to apply on the (still running) process
instance.

6 Current Work, Future Work and Conclusions

The prediction and proactive avoidance of deadline violations decreases costs of
processes and increases their quality of service. In this paper we proposed a time
manager architecture for web service composition environments, showed how to
apply workflow time management algorithms, explained in detail how build time
and some run time components work and provided some ideas of how to solve still
open run time problems. To prove the feasibility of our concepts we implement a
web services-based time management framework, where we currently concentrate
on the run time aspects, especially on repair and service exchange algorithms.
Additionally we examine the applicability of proactive time management features
on other quantifiable quality dimensions, like cost or reliability. The integration
of proactive repair mechanisms into process automation environments is subject
of ongoing research.

334 J. Eder, H. Pichler, and S.Vielgut

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer Verlag, ISBN 3-540-44008-9, 2005.

2. W. M. P. van der Aalst and H. A. Reijers. Analysis of discrete-time stochastic
petrinets. In Statistica Neerlandica, Journal of the Netherlands Society for Statis-
tics and Operations Research, Volume 58 Issue 2, 2003.

3. Petia Wohed and Wil M.P. van der Aalst and Marlon Dumas and Arthur H.M. ter
Hofstede. Pattern Based Analysis of BPEL4WS. QUT Technical report, FIT-TR-
2002-04, Queensland University of Technology, Brisbane, 2002.

4. Business Process Execution Language for Web Services Version 1.1 - BPEL4WS
Specification. BEA, IBM, Microsoft, SAP and Siebel, 2004.

5. G. Baggio and J. Wainer and C. A. Ellis. Applying Scheduling Techniques to
Minimize the Number of Late Jobs in Workflow Systems. In Proc. of the 2004
ACM Symposium on Applied Computing (SAC). ACM Press, 2004.

6. C. Combi and G. Pozzi. Temporal conceptual modelling of workflows. LNCS 2813.
Springer, 2003.

7. J. Cardoso and A. Sheth and J. Miller. Workflow Quality of Service. Proceedings
of the International Conference on Integration and Modeling Technology and Inter-
national Enterprise Modeling Conference (IEIMT/IEMC’02), Kluwer Publishers,
2002.

8. P. Dadam and M. Reichert. The ADEPT WfMS Project at the University of Ulm.
In Proc. of the 1st European Workshop on Workflow and Process Management
(WPM’98). Swiss Federal Institute of Technology (ETH), 1998.

9. J. Eder, W. Gruber, M. Ninaus, and H. Pichler. Personal Scheduling for Workflow
Systems. LNCS 2678, Springer Verlag, 2003.

10. J. Eder and E. Panagos. Managing Time in Workflow Systems. Workflow Hand-
book 2001. Future Strategies Inc. Publ. in association with Workflow Management
Coalition (WfMC), 2001.

11. J. Eder and H. Pichler. Duration Histograms for Workflow Systems. In Proc. of the
Conf. on Engineering Information Systems in the Internet Context 2002, Kluwer
Academic Publishers, 2002.

12. J. Eder and H. Pichler. Probabilistic Workflow Management. Technical report,
Universitt Klagenfurt, Institut fr Informatik Systeme, 2005.

13. J. Eder and H. Pichler. Avoidance of Deadline Violations for Interorganizational
Business Processes. Seventh International Baltic Conference on Databases and
Information Systems DB&IS, Technika, 2006.

14. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems.
LNCS 1626. Springer, 1999.

15. M. Gillmann, G. Weikum, and W. Wonner. Workflow management with service
quality guarantees. In Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 2002.

16. H. Jasper and O. Zukunft. Time Issues in Advanced Workflow Management Appli-
cations of Active Databases. In Proc. of the 1st International Workshop on Active
and Real-Time Database Systems. Workshops in Computing, 1995.

17. B. Kiepuszewski, A. ter Hofstede, C. Bussler. On Structured Workflow Model-
ing. In: Proceedings of the 12th Conference on Advanced Information Systems
Engineering (CAISE). Stockholm, Sweden, June 2000.

18. M. Laguna and J. Marklund. Business Process Modeling, Simulation and Design.
ISBN 0-13-091519-X. Pearson Prentice Hall, 2005.

An Architecture for Proactive Timed Web Service Compositions 335

19. O. Marjanovic and M. Orlowska. On modeling and verification of temporal con-
straints in production workflows. Knowledge and Information Systems, 1(2), 1999.

20. E. Newcomer. Understanding Web Services. Verlag: Addison-Wesley, ISBN 0-201-
75081-3, 2002.

21. E. Panagos and M. Rabinovich. Predictive workflow management. In Proc. of
the 3rd Int. Workshop on Next Generation Information Technologies and Systems,
Neve Ilan, ISRAEL, 1997.

22. S. Vielgut. Time Management in Web Service Orchestrations. Master Thesis,
University of Klagenfurt, 2005.

23. Workflow Process Definition Interface. A Workflow Management Coalition Speci-
fication. Document number WFMC-TC-1025, 2002.

24. E. Christensen and F. Curbera and G. Mereditih and S. Weerawarana Web Service
Definition Language 1.1 - WSDL Specification IBM, Microsoft, 2001.

	Introduction
	Workflow Time Management in a Nutshell
	Process Build Time
	Process Instantiation
	Process Run Time

	Architecture for Timed Web Service Compositions
	Build Time Components
	Parser: Generating the Process Graph
	Data Collector: Generating the Extended Graph
	Timed Graph Calculator
	Model Database

	Run Time Components
	Instance-Model Mapper
	Predictive Time Manager
	Proactive Time Manager

	Current Work, Future Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

