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Abstract 
 

We present a database correlation method 
combined with Bayesian estimation for mobile location 
in GSM networks. The final location request can be 
estimated using different ways. Three methods are 
introduced and investigated in terms of location 
accuracy. Field measurements with off-line simulations 
have been performed in a suburban area, which is the 
dominant environment type in many parts of European 
cities. We think that location accuracy requirements in 
such environments should be relaxed, otherwise more 
work have to be conducted to achieve accuracies 
comparable to those in urban and dense urban areas.  
 
1. Introduction 
 

A key problem in wireless networks is the 
positioning of mobile stations (MSs). In this problem, 
the position of a MS is determined by the utilization of 
location sensitive parameters. The FCC adopted 
standards for location accuracy and reliability of 
emergency calls [1] that further motivated the interest 
in the field of mobile location, which can be traced 
back to the 1970s [2]. It is believed that inexpensive 
but still accurate MS positioning systems are of great 
commercial importance. Therefore, a lot of research 
efforts are carried out in the area. Throughout the 
literature, the terms mobile location, positioning and 
localization are used interchangeably. An overview of 
localization methods are provided in [3]. 

MS positioning is usually performed using one of 
these methods: (1) Time-of-arrival (TOA), (2) Angle-
of-arrival (AOA), (3) Time-difference-of-arrival 
(TDOA) and enhanced observed time-difference-of-
arrival (E-OTD), (4) Network-assisted GPS (A-GPS), 
and (5) Enhanced cell-id. The evaluation criteria for 
the different positioning methods include accuracy, 
cost, coverage, system impact, and power 
consumption. 

TOA techniques need mutual synchronization of the 
base stations (BSs), which is difficult to achieve 
leading to poor location accuracy. AOA methods suffer 
from large positioning errors caused by multipath 
propagation. Moreover, special antennas have to be 
installed at the BSs. TDOA based techniques need at 
least three BSs, which could not be fulfilled in rural 
areas. The main shortcomings of A-GPS solutions are 
power consumption, the need of clear view to at least 
four satellites, and the installation of additional 
hardware (reference GPS receivers and GPS receivers 
in MSs). 

Enhanced cell-id methods provide an attractive 
alternative as they utilize only network available 
information and do not require any additional hardware 
installations at BSs or in MSs. This is advantageous in 
terms of cost, coverage and system impact compared to 
other methods. However, the accuracy is ranging from 
about 100 m up to a couple of kilometers depending on 
type and characteristics of the area covered by the 
network. 

One solution to improve positioning accuracy of 
enhanced cell-id techniques is the database correlation 
method (DCM). This method is also referred to as 
database comparison, location fingerprinting, pattern 
recognition and pattern matching. In such techniques, a 
database of location dependent parameters is 
constructed using field measurements [4], [7] or radio 
wave propagation prediction tools [5], [6]. Later a 
moving MS collects measurements to be compared 
with the entries in the database in order to yield 
position estimates. Different location dependent 
parameters could be used with DCM. In [4]-[6], the 
received signal levels (RxLev) from surrounding BSs 
are used as the location dependent parameter. In [7], 
the channel impulse response (CIR) is utilized for this 
purpose. However, the bandwidth of GSM is too small 
for accurate positioning based on database comparison 
of the CIR only [7]. 

We present a DCM based on Bayesian estimation 
that works as a pattern matching technique, and three 



methods used to conclude final location estimates. The 
proposed technique was applied to measurements of 
the received signal strength (RxLev) and timing 
advance (TA) in a GSM network covering a suburban 
area. The location accuracy has been investigated by 
off-line simulations. 

The rest of the paper is organized as follows. The 
database setup is described in section 2. Section 3 
presents the basics of Bayesian estimation and its 
implementation together with three methods for final 
location calculation. Experimental results and 
conclusion are given in sections 4 and 5 respectively. 
 
2. Database Preparation 
 

A 3D deterministic radio propagation prediction 
model, described in [8], was used to construct our 
database of RxLev’s at known locations. Robust 
location estimation with DCM depends mainly on 
three factors: (1) assuring that searching in the 
database is restricted to an area where the MS is really 
located. This could be achieved by utilizing TA (timing 
advance) and sector information of the serving cell. (2) 
The pattern matching technique used to evaluate 
location candidates. For this purpose we use Bayes 
estimation (section 3), which is a robust technique in 
multi-hypotheses situations usually occurring in the 
context of RxLev-based mobile location. (3) Deciding 
how to yield a final location estimate from the 
available hypotheses. We present three methods for 
this factor (section 3.2) and compare their 
performances (section 4). 

The localization algorithm can take advantage if the 
locations that are served by every BS antenna are 
determined. In this case, it is guaranteed that no 
position outside the coverage area of the BS antenna 
would be returned by the algorithm when the deviation 
between predicted and measured power levels are large 
or when the situation is highly ambiguous due to an 
increased number of possible location candidates. Thus 
the prediction database is preprocessed so that for 
every BS antenna an array of the locations belonging to 
its coverage area is constructed. Every array entry 
consists of location coordinates data, predicted RxLev 
at that location, and location distance to the serving 
BS. Figure 1 shows an example of the preprocessing 
step results. Here, the BS has three sector antennas. 
The locations served by each antenna are depicted in 
different colors. The black dot represents the location 
of the BS. 
 

 
 

Figure 1. Results of the preprocessing step for a 
sectorized cell 

 
3. Bayesian Estimation 
 

The Bayesian estimator (BE) [9] is a concept that 
only provides a probabilistic framework for state 
estimation. There are two different implementations of 
BE that differ mainly in the way they represent belief 
distributions over the state space. The first 
implementation represents continuous belief 
distributions, where the second represents discrete 
distributions. 

In the context of mobile location using DCM, the 
state space is divided into grids (pixels) with a 
specified resolution. Therefore, we will be concerned 
with the discrete version of the BE. BE estimates the 
posterior belief distribution of a MS position given a 
map (database) of predicted signal strengths and a 
series of signal strength measurements. In other words, 
it estimates the state of a dynamical system, i.e. 
partially observable Markov chain, using measurement 
data. In this context, the dynamical system is the 
mobile terminal and its environment, and the state is 
the MS position relative to that environment. 
 
3.1. Mathematical Principles of Bayesian 
Estimation 
 

The BE assumes that the environment is Markovian, 
i.e. if the current state is known; past and future data 
are conditionally independent. The key idea is to 
estimate a posterior probability density over the state 
space conditioned on the measurement data. This 
posterior is called the belief and is denoted 
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Where )( tsBel is the MS belief state at time t, ts is 

the state at time t, 0...to denote the measurement data 

delivered from time 0 up to time t, 0...1−ta denote the 
actions (movements) performed by the terminal user 
from time 0 up to time t-1, and m is the model of the 
environment, i.e. a map (or database) of predicted 
RxLev. It is assumed that measurements and terminal 
user actions occur in an alternative sequence. 

The desired posterior is estimated by applying in 
order Bayes rule, Markov assumption, theorem of total 
probability, and once again the Markov assumption to 
expression (1). Hence, we obtain the following 
recursive equation 
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Whereη is a normalization factor, ),|( msop tt is 

the measurement model, and ),,|( 11 massp ttt −− is 
the MS motion model. Detailed derivation of equation 
(2) is provided in [10]. 

As the actions performed by the terminal user 
(pedestrian) cannot be directly obtained (without 
additional inertial sensors) unlike vehicles that have 
complete motion models, we have decided to 
implement equation (2) non-recursively only in the 
pedestrian positioning case. Here the prior or initial 
belief )( 1−tsBel is initialized by a uniform distribution 
over the state space for every run of the filter. 
 
3.2. Implementation of the Discrete Bayesian 
Estimator 
 

The key idea is to represent the belief )(sBel at any 
time by a set of n weighted location candidates 
distributed according to )(sBel as follows 
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Where )(is is the location candidate i, and )(iw is a 

non-negative numeric value called weight that 
determines the importance of the location candidate i. 

All weights sum up to 1, thus, the continuous 
belief )(sBel , is approximated by a discrete 
probability function defined by the location candidates. 

)(iw is calculated for every location candidate 
according to the measurement model as 
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Where M is the number of the main and 
neighboring observed BSs ( 7≤M in GSM 
networks), RxLevσ is the standard deviation of the 

measured RxLev, jRxLev is the measured RxLev from 

the j-th observed BS, and
jDBRxLev is the database 

RxLev prediction value of  j-th observed BS at )(is . 
The final location estimate ŝ is calculated using one 

of the following three methods: 
 

• Taking the location candidate with the highest 
weight as the location estimate. This is the 
estimate at which the posterior is maximum 
and known as the maximum likelihood 
estimate (MLE). 

 
                  )(maxargˆ sBels =                                 (5) 
 

• Taking the weighted average of all candidates 
representing the belief as the location 
estimate. This is the mean value of the 
posterior distribution and known as the 
weighted average estimate (WAE). It will 
coincide with MLE only in case of unimodal 
and symmetric posterior distributions. 
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• Taking the average of the k  ( nk < ) best 

weighted candidates as the location estimate. 
This is called the trimmed average estimate 
(TAE). 
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4. Experimental Results 
 
4.1. Experimental Setup 
 

Field tests have been carried out in an E-Plus GSM 
1800 MHz network operating in a suburban area in 
Hannover, Germany. The measurements were collected 



every 4 seconds by a pedestrian along a route of about 
2.4 km with a total number of 250 measurement 
reports. Every report was stamped by a GPS position, 
which is considered as the true location reference for 
evaluation purposes of the proposed algorithm. The 
prediction data available with us covers an area of 9 
km2 (with a resolution of 5 m) and contains 6 BSs 
(each with three sector antennas) and four indoor 
antennas. 
 
4.2. Simulation Results 
 

We investigated the accuracy of the localization 
algorithm by off-line simulations using the three 
proposed methods for location estimation. The 
percentile localization error curves for the different 
methods are depicted in Figure 2 and summarized in 
Table 1. The results show that taking the MLE as the 
location estimate is not recommended as this is highly 
affected by noisy RxLev measurements and database 
inaccuracies. The WA provides better estimations as it 
considers all samples with respect to their weights, 
thus reducing the effects that degraded the previous 
estimation method. However, the trimmed average 
method still yields better location estimates than WA. 
This method has shown less sensitivity to erroneous 
RxLev measurements and helped neglecting outlier 
candidates. Simulation results have also shown that the 
real MS location is almost always in the region of the 
10% best weighted location candidates. 
 
5. Conclusion 
 

We presented simulation results of mobile terminal 
localization in a GSM network operating in a suburban 
area. The proposed localization technique is a database 
correlation method that utilizes Bayesian estimation. 
The Bayesian estimator is an efficient probabilistic 
framework for parameter estimation in multi-
hypotheses contexts such as mobile location based on 
the received signal strength. Different methods for 
final location estimation has been presented and 
compared in terms of localization accuracy. The 
experiments were performed in a suburban 
environment, which is very common in European 
cities. Our goal was to achieve positioning accuracy 
comparable to that reached in urban areas that have a 
high BS-to-area ratio. We belief that more work should 
be done to further enhance the positioning accuracy in 
suburban areas, which have a considerable number of 
network subscribers also provided with location-based 
services. We have achieved results with a mean 
positioning error of 194 m and a standard deviation of 
216 m. However, this accuracy is still acceptable for 

many services, taking into account the characteristics 
of the test environment. 

It is planned to integrate an inertial measurement 
unit (IMU) in our localization system in order to fully 
exploit equation (2) for the pedestrian case. 
 

 
 
Figure 2. Cumulative distribution functions (CDF) of the 

localization error using the three methods for final 
location estimation 

 
 

Table 1. Summary of the mean, 67%, and 95% 
percentiles localization errors for the location estimation 

methods 
 
Localization 

Error 
MLE WA Trimmed 

Average 

67% 295 m 254 m 216 m 

95% 567 m 361 m 395 m 

Mean 248 m 217 m 194 m 
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