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Abstract— A discrete Bayesian filter (DBF) was developed to 

work as a pattern matching technique with database correlation 
for mobile location. The database is constructed using a 3D 
deterministic radio wave propagation prediction model. Three 
methods to yield final location estimates are presented and 
compared according to their accuracy. We carried out field 
measurements in a GSM network deployed in a suburban 
environment, which is very common and widespread in Europe. 
We show that more work has to be done in order to make 
positioning accuracy as good as in urban and dense urban areas. 
 

Index Terms— Discrete Bayesian filter (DBF), database 
correlation, mobile location. 
 

I. INTRODUCTION 
A key problem in wireless networks is the positioning of 

mobile stations (MSs). In this problem, the position of a MS is 
determined by the utilization of location sensitive parameters. 
The FCC adopted standards for location accuracy and 
reliability of emergency calls [1] that further motivated the 
interest in the field of mobile location, which can be traced 
back to the 1970s [2]. It is believed that inexpensive but still 
accurate MS positioning systems are of great commercial 
importance. Therefore, a lot of research efforts are carried out 
in the area. Throughout the literature, the terms mobile 
location, positioning and localization are used 
interchangeably. An overview of localization methods are 
provided in [3]. 

MS positioning is usually performed using one of these 
methods: Time-of-arrival (TOA), Angle-of-arrival (AOA), 
Network-assisted GPS (A-GPS), Time-difference-of-arrival 
(TDOA) and enhanced observed time-difference-of-arrival (E-
OTD), and Enhanced cell-id. The evaluation criteria for the 
different positioning methods include accuracy, cost, 
coverage, system impact, and power consumption.  

TOA techniques need mutual synchronization of the base 
stations (BSs), which is difficult to achieve leading to poor 
location accuracy. AOA methods suffer from large positioning 
errors caused by multipath propagation. Moreover, special 

antennas have to be installed at BSs. The main shortcomings 
of A-GPS solutions are power consumption, the need to a 
clear view to at least four satellites, and the installation of 
additional hardware. In addition, multipath propagation 
degrades TOA estimation. TDOA based techniques need at 
least three BSs, which could not be fulfilled in rural areas.  
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Enhanced cell-id methods provide an attractive alternative 
as they utilize only network available information and do not 
require any additional hardware installations at BSs or in MSs. 
This is advantageous in terms of cost, coverage and system 
impact compared to other methods. However, the accuracy is 
ranging from about 100 m up to a couple of kilometers 
depending on type and characteristics of the area covered by 
the network. 

One solution to improve positioning accuracy of enhanced 
cell-id techniques is the database correlation method (DCM). 
This method is also referred to as database comparison, 
location fingerprinting, pattern recognition and pattern 
matching. In such techniques, a database of location 
dependent parameters is constructed using field measurements 
[4], [7] or radio wave propagation prediction tools [5], [6]. 
Later a moving MS collects measurements to be compared 
with the entries in the database in order to yield position 
estimates. 

Different location dependent parameters could be used with 
DCM. In [4]-[6], the received signal levels (RxLev) from 
surrounding BSs are used, whereas in [7], the channel impulse 
response (CIR) is utilized for this purpose. However, the 
bandwidth of GSM is too small for accurate positioning based 
on database comparison of the CIR only [7].  

We present a DCM based on Bayesian filtering that works 
as a pattern matching technique, and three methods to yield 
location estimates. We applied our technique to measurements 
of the received signal strength and timing advance (TA) in a 
GSM network covering a suburban area. The DCM is 
introduced in section II. Section III presents the basics of 
Bayesian filtering. Experiments and results are given in 
section IV. Finally, the paper is concluded in section V.  

II. DATABASE CORRELATION METHOD 

A. Database Construction and Utilization 
A 3D deterministic radio propagation prediction model 

described in [8] was used to construct our database. Robust 
location estimation with DCM depends mainly on three 
factors. The first is to assure that searching in the database is 



 
 

restricted to an area where the MS is really located. This could 
be achieved by utilizing TA (timing advance) and sector 
information of the serving cell. The second factor relies on the 
pattern matching technique used to evaluate location 
candidates. For this purpose we use Bayesian filtering, which 
is a robust technique in multi-hypotheses situations usually 
occur in the context of RxLev-based mobile location. The 
third is to decide how to yield a final location estimate from 
the available hypotheses. We present three methods in section 
III.B. 

B. Database Preprocessing 
The localization algorithm can take advantage if the pixels 

(locations) that are served by every BS antenna are 
determined. In this case, it is guaranteed that no position 
outside the coverage area of the BS antenna would be returned 
by the algorithm when the deviation between predicted and 
measured power levels are large or when the situation is 
highly ambiguous due to an increased number of probable 
location candidates. Thus, the prediction data is preprocessed 
so that for every BS antenna an array of the locations 
belonging to its coverage area is constructed. Every array 
entry consists of location coordinates, predicted received 
power level at that location, and distance to the serving BS. 
Note that the midpoint of every pixel is considered as its 
coordinates. Fig. 1 shows an example of the preprocessing 
step results. Here, the serving BS has three sector antennas. 
The locations covered by each antenna are depicted in 
different colors. The black dot represents the location of the 
BS. 
 

 
 
Fig. 1. Results of the preprocessing step for a sectorized cell where the pixels 
(locations) served by each sector antenna are depicted in different color. The 
black dot represents the BS location. 

III. BAYESIAN FILTERING 
Bayesian filtering (BF) [9] is a concept that only provides a 

probabilistic framework for state estimation. There are two 
different implementations of Bayesian filter that differ mainly 
in the way they represent belief distributions over the state 

space. The first implementation represents continuous belief 
distributions, where the second represents discrete 
distributions.  

As the state space is divided into pixels with a specified 
resolution in the context of mobile terminal localization, we 
will be concerned with the discrete version of the Bayesian 
filter. BF estimates the posterior belief distribution of a MS 
position given a map (database) of predicted signal strengths 
and a series of signal strength measurements. In other words, 
it estimates the state of a dynamical system, i.e. partially 
observable Markov chain, using measurement data. In this 
context, the dynamical system is the mobile terminal and its 
environment, and the state is the MS position relative to that 
environment. 

A. Mathematical Foundations of Bayesian Filtering 
BF assumes that the environment is Markovian, i.e. if the 

current state is known; past and future data are conditionally 
independent. The key idea is to estimate a posterior 
probability density over the state space conditioned on the 
measurement data. This posterior is called belief and is 
denoted 
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Where is the MS belief state at time t, is the state 

at time t, denote the measurement data delivered from 

time 0 up to time t, denote the actions (movements) 
performed by the terminal user from time 0 up to time t-1, and 
m is the model of the environment, i.e. a map (or database) of 
predicted RxLev. It is assumed that measurements and 
terminal user actions occur in an alternative sequence. 
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The desired posterior is estimated by applying Bayes rule1, 
Markov assumption, theorem of total probability2, and once 
again the Markov assumption to expression (1) in this stated 
order. Hence, we obtain the following recursive equation 
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Whereη is a normalization factor, is the 

measurement model, and is the MS 
motion model. Detailed derivation of equation (2) is provided 
in [11]. 
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As the actions performed by the terminal user (pedestrian) 
cannot be directly obtained (without additional inertial 
sensors) unlike vehicles that have complete motion models, 
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we have decided to implement equation (2) non-recursively 
only in the pedestrian positioning case. Here the prior or 
initial belief is initialized by a uniform distribution 
over the state space for every run of the filter. 

)( 1−tsBel

B. Implementation of the Discrete Bayesian Filter 
The key idea is to represent the belief at any time by 

a set of n weighted location candidates distributed according 
to as follows 
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Where is the location candidate i, and is a non-

negative numeric value called weight that determines the 
importance of the location candidate i. 
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All weights sum up to 1, thus, the continuous 
belief , is approximated by a discrete probability 

function defined by the location candidates. is calculated 
for every location candidate according to the measurement 
model as 
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Where M is the number of the main and neighboring 

observed BSs ( in GSM networks),7≤M RxLevσ is the 

standard deviation of the measured RxLev, is the 

measured RxLev from the j-th observed BS, and is 

the database RxLev prediction value of  j-th observed BS 
at . 

jRxLev

jDBRxLev

)(is
The final location estimate is calculated using one of the 

following three methods: 
ŝ

 
1. Taking the location candidate with the highest 

weight as the location estimate. This is the estimate 
at which the posterior is maximum and known as 
the maximum likelihood estimate (MLE). 
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2. Taking the weighted average of all candidates 
representing the belief as the location estimate. 
This is the mean value of the posterior distribution 
and known as the weighted average estimate 
(WAE). It will coincide with MLE only in case of 
unimodal and symmetric posterior distributions. 
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3. Taking the average of the  (k nk < ) best 

weighted candidates as the location estimate. This 
is called the trimmed average estimate (TAE). 
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IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 
Field tests have been carried out in an E-Plus GSM 1800 

MHz network operating in a suburban area in Hannover, 
Germany. The measurements were collected every 4 seconds 
by a pedestrian along a route of about 2.4 km with a total 
number of 250 measurement reports. Every report was 
stamped by a GPS position, which is considered as the true 
location reference for evaluation purposes of our algorithm. 
The prediction data available with us covers an area of 9 km2 
and contains 6 BSs (each with three sector antennas) and four 
indoor antennas. The database resolution is 5 m. 

B. Simulation Results 
We investigated the accuracy of our localization algorithm 

by off-line simulations using the three proposed methods for 
location estimation (see III.B). The experiments have been 
performed using the prediction database with and without the 
preprocessing step. This has allowed us to see how much 
accuracy improvement is achieved using the preprocessed 
database. When experimenting without preprocessing, the 
location candidates were selected according to the azimuth 
information of the BS sector antennas. Each antenna covers a 
sector with an angle of 120°. The sector radius is determined 
using TA information ±275 m [10] (assuming a maximum 
error of ±0.5 bits for TA measurement). In this case, the area 
of the sector is taken as the coverage area of the sector 
antenna. Fig. 2 shows for TA=0 the coverage area of a sector 
antenna as determined by the preprocessing step and the 
borders of the area that would be considered using antenna 
azimuth without preprocessing. Here, the radius of the sector 
equals 550+275=825 m. It is clear that the preprocessed 
database considers only locations that are actually served by 
the sector antenna. 

The cumulative distributions of the localization error for the 
different methods of location estimation are depicted in Fig. 3 
and summarized in Table I. The results show that taking the 
MLE as the location estimate is not recommended as this is 
highly affected by noisy RxLev measurements and database 
inaccuracies. The WAE provides better estimations as it 
considers all candidates with respect to their weights, thus 
reducing the effects that degraded the previous estimation 
method. However, taking the average of a specified 
proportion (k = 10%) of the best weighted candidates still 
yields better location estimates than WAE. TAE has provided 
less sensitivity to erroneous RxLev measurements and helped 



 
 

neglecting outlier candidates. Simulation results have shown 
that the real MS location is almost always in the region of the 
10% best weighted candidates. It is also shown that the 
preprocessed database has improved the standard deviation 
and the mean of the localization error for the three location 
estimation methods. 

V. CONCLUSIONS 
We presented simulation results of mobile terminal 

localization in a GSM network operating in a suburban area. 
Our localization technique is a database correlation method 
that utilizes Bayesian filtering for pattern matching. Bayesian 
filtering is an efficient probabilistic framework for parameter 
estimation in multi-hypotheses contexts such as mobile 
location based on the received signal strength. A 3D 
deterministic radio wave propagation prediction tool, used for 
cellular network planning, was employed for the database 
construction.  

Different methods for final location estimation has been 
presented and compared in terms of localization accuracy. The 
experiments were performed in a suburban environment, 
which is very common in European cities. Our goal was to 
achieve positioning accuracy comparable to that reached in 
urban areas that have a high BS-to-area ratio. We belief that 
more work should be done to further enhance the positioning 
accuracy in suburban areas, which have a considerable 
number of network subscribers also provided with location-
based services. We have achieved results with a mean 
positioning error of 194 m and a standard deviation of 216 m. 
However, this accuracy is still acceptable for many services, 
taking into account the characteristics of the test environment 
(low BS density). 

 

 
 
Fig. 2. For TA=0, the coverage area of a sector antenna as determined by the 
preprocessing step are illustrated (red spots) along with the borders of the area 
that would be considered when using only the antenna azimuth information 
(black arc and lines). 

 

 
 
Fig. 3a. Cumulative distribution functions (CDF) of the localization error 
using the three methods of location estimation with preprocessing. 

 
 

 
 
Fig. 3b. Cumulative distribution functions (CDF) of the localization error 
using the three methods of location estimation without preprocessing. 

 
 

TABLE I 
ACCURACY OF THE PROPOSED METHODS FOR FINAL LOCATION 

ESTIMATION WITH AND WITHOUT PREPROCESSING 
 

Localization Error MLE WAE TAE 

67% 295 254 216 
95% 567 361 395 

With 
Preprocessing 

mean 248 217 194 
67% 378 275 229 
95% 610 428 361 

Without 
Preprocessing 

mean 294 240 197 
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