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Abstract - Database correlation methods for 

mobile location could be enhanced by efficient 
preprocessing of available information. We used 
least-squares filtering to study the relationship 
between the predicted signal strength and distance 
to serving base station (BS) in order to provide 
more knowledge during the online location process. 
A Bayes filter has been built to achieve robust 
online weighting of location candidates. The final 
location estimation is done using one of three 
different methods. The positioning accuracy of the 
whole system using these estimation methods are 
tested in a suburban area, which is a very common 
environment in European cities. In such 
environments, the average cell radius is much larger 
than of urban cells. This requires the relaxing of 
FCC location accuracy requirements for suburban 
cells or the need of more work to meet these 
accuracies. 

1. Introduction 
The obligation for emergency call location set by the 

FCC [1] and the importance of location-based services 
(LBS) for mobile computing and internet are the major 
driving forces of the increasing interest in location 
techniques for mobile wireless terminals. The main 
methods of positioning a mobile station (MS) are 
satellite-based and cellular system based technologies. 
An overview of these technologies is given in [3] and 
[4]. 

In cellular networks, MS positioning is usually 
achieved by one of the following techniques: (1) Cell-
id, (2) Time-of-arrival (TOA), time-difference-of-
arrival (TDOA), and enhanced observed time-
difference-of-arrival (E-OTD), (3) Angle-of-arrival 
(AOA), and (4) Network-assisted GPS (A-GPS). These 
techniques have different properties in terms of 
accuracy, cost, coverage, system impact, and power 
consumption. 

Cell-id methods are the simplest to implement since 
no hardware extensions are required at the base or 
mobile stations. However, positioning accuracy is in 
the range of hundred meters up to several kilometres 
depending on the characteristics of the area under 
concern. TOA-based techniques need mutual 
synchronization of at least three BSs, which is difficult 
to achieve. AOA methods require the installation of 
special antennas at BSs. Moreover, TOA and AOA 
techniques suffer large positioning errors due to 

multipath propagation. A-GPS solutions main 
drawbacks are power consumption, the need of a clear 
view to four satellites, and the necessity to install 
additional receivers. 

Cell-id techniques still provide an attractive 
alternative as they utilize only network available 
information. This is an advantage over the other 
methods in terms of cost coverage and system impact. 
There are many ways to improve positioning accuracy 
of cell-id approaches; one of them is the database 
correlation method (DCM) [6] – [10]. The key idea of 
DCM is the construction of a database of reference 
locations. The reference entries contain values of 
location sensitive parameters. Construction of the 
database can be performed by field measurements [6], 
[7] and [10], or using radio wave propagation 
prediction tools [8] and [9]. Later a moving MS 
collects network measurements to be matched with the 
database entries in order to yield location estimates. 
Location sensitive parameters employed for database 
construction include received signal levels (RxLev) [6] 
– [9] and channel impulse response (CIR) [10]. CIR is 
used in high bandwidth systems such as UMTS, where 
accurate timing measurements and the measurement of 
channel multipath profile are enabled. It is especially 
useful as a position fingerprint in areas with sufficient 
amount of distinct topography, whereas in flat areas the 
CIR characteristics are not more significant than those 
of RxLev. However, the bandwidth of GSM is too low 
to allow CIR measurements to contribute efficiently to 
positioning based on DCM. 

We have developed a database correlation method 
based on RxLev as a location dependent parameter. 
Two filtering techniques were utilized to further help 
resolving ambiguities during the positioning process. 
Least-squares (LS) filtering was used in the off-line 
phase (preprocessing step) of our technique in order to 
characterize the relationship between predicted RxLev 
at some location and the distance of that location to the 
serving BS. This procedure has been applied to all BSs 
in our test area. In the online phase, Bayes filtering was 
employed to determine the importance of every 
location candidate. We also present three methods for 
the final location estimation that yield different 
accuracies. The proposed location algorithm was 
implemented and applied to measurements of RxLev 
and TA in a GSM network deployed in a suburban 
area. Positioning accuracy was investigated offline, and 
the results are provided in section 4. A scheme of the 
overall location system is given in Fig. 1. 



 
Fig. 1. Scheme of the proposed location system 

2. Database Construction and 
Preprocessing 

The database was constructed using a 3D 
deterministic radio wave propagation prediction model. 
More details on this model are given in [11]. The 
database contains predicted RxLev values for a 
populated suburban area in Hannover, north Germany, 
at reference locations. Moreover, data about the BSs in 
the given area were also provided. These include 
geographical locations, antenna height, azimuth and 
tilt, effective isotropic radiated power, channel 
numbers, cell identifiers, etc. Fig. 2 shows an example 
of the predicted RxLev values for one cell antenna. To 
increase the usability of the database we carried out 
two stages of off-line processing (preprocessing). In 
the first stage (section 2.1), more information from the 
raw database have been extracted and stored to help 
enhance the positioning accuracy and performance of 
the online algorithm. Least-squares processing has 
been applied to every cell in order to study the 
relationship between predicted RxLev at some location 
and the distance of that location to the serving BS 
(section 2.2). 

 
 

Fig. 2. Map of RxLev (dBm) generated by the radio wave 
propagation prediction tool for a base station antenna. The simulation 
is performed over an area of approx. 9 km2 divided into pixels (621 x 
588 pixels in the longitudinal and latitudinal directions respectively) 

with a resolution of 5 m 
 

In general, the positioning accuracy of DCM 
depends mainly on three factors: (1) determining where 
to search in the database, (2) using a reliable technique 
to evaluate the location candidates, (3) effectively 
estimating the location from the candidates. The first is 
achieved by TA measurements, sector information of 
the serving BS, and the relationship between RxLev 

and distance to serving BS obtained by the LS 
regression (see section 2.2). We use Bayes filtering and 
introduce three location estimation methods (see 
section 3) to fulfil the second and third factors 
respectively. 

2.1. Database Preprocessing 

The pixels served by every cell antenna are 
determined (Fig. 3) and sorted in an array according to 
their distances to the cell antenna. This will guarantee 
that no location outside the coverage area of the cell 
antenna will be returned by the location algorithm 
when the deviation between predicted and measured 
RxLev’s are large or when the situation is highly 
ambiguous due to an increased number of equally 
probable location candidates. Moreover, the six 
strongest (in terms of RxLev) neighbouring cell 
antennas are determined for every pixel. This will help 
concentrate on the real location candidates taking into 
account neighbour cell-id’s that appear the 
measurement report. Thus, every array entry contains 
pixel-id, pixel coordinate (midpoint of the pixel), 
RxLev’s/id’s from/of serving and the six strongest cell 
antennas, and distance of the pixel to serving cell 
antenna. This constellation simplifies the online 
location estimation process. 
 

 
 

Fig. 3. Preprocessing results are shown for a BS with three sectors. 
Pixels served by each sector antenna are depicted in different colours. 

BS location is represented by a black dot 

2.2. Least-Squares Batch Processing 

Finding the best polynomial curve fit using the least 
squares (LS) method [12] to a set of data is still 
considered one of the most significant techniques. It is 
a procedure developed by Gauss and Legendre [2] and 
is also known as the least squares filtering or 
estimation. We applied the LS technique to signals, 
which can be described by a polynomial. One major 
concern in utilizing the LS technique is to choose the 
correct-order polynomial to use to best fit the data set 
of interest. Therefore, a good knowledge of the 
problem at hand must be available. This knowledge is 
based on understanding the dynamics of the problem 
and on information derived from mathematical 
techniques previously applied to the problem. 



Our goal was to learn about the relationship between 
 at some location  and the distance  of 

that location to the serving BS antenna using the 
prediction data in order to reduce the area (as specified 
by TA measurements) in which we search for the MS 
location. For extracting information about the 
characteristics of the signal under study, we assumed a 
polynomial model to represent the signal and estimated 
the coefficients of the selected polynomial by choosing 
a goodness of fit criterion. The LS criterion is the sum 
of the squares of the individual discrepancies between 
the desired polynomial and given data set values. 
Finally, we minimized the sum of squares of the 
individual discrepancies in order to obtain the best 
coefficients for the selected polynomial. 

iRxLev i *
id

Every BS antenna serves a set of n pixels. For each 
pixel i we have prediction data  where 

 is the distance from the centre of pixel i to its 

serving BS, and  is the predicted RxLev at 
pixel i. 
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We would like to fit the prediction data with the best 
polynomial using the LS method, i.e., the prediction 
data should be manipulated in order to find the 
polynomial that will best model the relationship 
between  and . This relationship could be 
described as [13] 
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Where R  is the square of the summation of all the 
residuals or differences between measurements and 
prediction data. 

Expression (1) is a first-order polynomial. Thus 
coefficients  and  are determined by solving the 
following system of equations 
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Fig. 4 shows the relationship between the received 

signal strength and logarithm of distance to serving cell 
antenna using the database prediction values and the 
LS regression model, for an example cell. We can see 
that the complex relationship has been simplified 
(linearized) by the LS regression procedure. 

At time j if the measured signal strength is  

then an estimated distance to the serving BS antenna 
 is calculated as 
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Where  is an estimation error. Combining the 
information gained from (4) with TA measurements 
can further specify the area in which we look for 
location candidates as illustrated in Fig. 5.  

e

3. Bayes Filtering and Location 
Estimation 

Bayes filtering is a concept that provides a 
probabilistic framework for state estimation [14]. The 
implementation of Bayes filter depends on the way we 
represent the belief distributions (continuous or 
discrete) over the state space. In the case of our mobile 
location problem, the state space is divided into grids 
(pixels) with a specified resolution. Therefore, a 
discrete Bayes filter (DBF) [15] was implemented for 
estimating the location of a mobile terminal. Bayes 
filter estimates the posterior belief distribution of a 
mobile location at a certain time based on a series of 
RxLev measurements and a database of RxLev 
predictions associated with known locations, i.e., it 
estimates the state of a dynamical system, which is a 
partially observable Markov chain [16], using 
measurement data. As the mobile environment is 
assumed to be Markovian, past and future 
measurements are conditionally independent if the 
current state is known. In this context, the dynamical 
system is the mobile terminal and its environment, the 
state is the mobile location in that environment and the 
network measurements, which include TA and RxLev 
from serving and neighbouring BSs.  

The key idea is to approximate the belief  
at any time  by a set of n  weighted location 
candidates. The belief is the posterior distribution over 
the state space and is denoted as 
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Where  is the mobile belief state at time t ,   

is the state a time ,  denote the measurement 

data obtained from time 0 up to time t , and  is the 
model of the environment, i.e., a database of RxLev 
associated with known locations. A complete 
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mathematical derivation of the proposed Bayes filter is 
provided in [17]. 

The belief  is then approximated as )( tsBel
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Where  is the location candidate i , and  is a 
non-negative numeric value called weight that 
determines the importance of . Location candidates 
are those which lie within the measured TA range and 
within the area bounded by and 
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respect to the serving cell as explained in section 2.2. 
The weight  is calculated for every location 

candidate according to the log-normally distributed 
measurement model as 
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Where  is the measurement model, ),|( msop tt M  
is the number of observed BSs (serving and 
neighbouring). In GSM networks, .  

is the measured RxLev from the j-th observed BS, 
 is the database RxLev prediction value of 

the j-th observed BS at , and 

7≤M jRxLev

jDBRxLev
)(is RxLevσ  is the 

standard deviation of RxLev measurements. 
The weights are then normalized so that 

, thus the belief  is approximated 

by a discrete probability function defined by the set of 
location candidates. 
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The MS movements cannot be directly measured 
without an extra inertial sensor, which is not the case 
here. Therefore, the prior belief is initialized as a 
uniform distribution over the whole candidate locations 
every time the Bayes filter is run. 

The final location estimate  is obtained by one of 
three different methods: 

ŝ

 
1. Maximum likelihood estimate, where the 

location estimate is the candidate with the 
highest weight, i.e., 
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2.  Weighted average, where the location 

estimate is the weighted average of all 
candidates representing , i.e., )( tsBel
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Expression (9) is the mean value of the 
posterior distribution . It will coincide 
with (8) only in case of unimodal and 
symmetric posterior distributions. 

)( tsBel

 
3. Trimmed average , where the location 

estimate is the average of a certain number (k) 
of the best weighted candidates, i.e., 

 

∑
=

=
k

i

is
k

s
1

)(1ˆ , <                            (10) k n

 
Note that the belief distribution 
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)()( ,)( =≈  is sorted 

according to weights before the final location 
estimate is calculated. The optimal value of k  
is determined experimentally. 
 

The performance accuracy of the above mentioned 
location estimation methods are given in the next 
section. 

4. Experiments and Results 
The field tests were performed in an E-Plus GSM 

1800 MHz network operating in suburban area in 
Hannover, north Germany. The database available with 
us covers an area of about 9 km2 with 22 cells and only 
few of them are completely contained in the test area. 
The pixel resolution is 5 m. The expression suburban 
describes the topology of the environment and its 
network characteristics and does not indicate a low 
populated area. Almost all buildings in the test field are 
lower than the heights of the deployed BS antennas. 
Cell radius is about 2 km unlike in urban areas, in 
which it lies between 50 m and 1000 m. These 
characteristics are very common in European cities due 
to regulation controlling maximum building height. 
Accordingly, it is expected to get less accurate location 
estimates than for urban areas. 

The measurements were collected every four 
seconds by a pedestrian along a route of about 2.4 km 
with a total of 250 measurement reports. All reports 
were stamped by a GPS position as ground truth for 
evaluating the location algorithm. 

We investigated the performance of the proposed 
algorithm using the three methods of location 
estimation with and without LS processing by offline 
evaluation of the field measurements. The cumulative 
distribution functions (CDF) of location error are 
shown in Fig. 6 and summarized in Table I. The figures 
show that LS processing of the database increases the 
location accuracy, because it helps rejecting location 
candidates that are far away from the true MS 
Location. The distance estimate of the LS model 



refines the area determined by TA measurements, in 
which we look for location candidates by considering 
the most probable locations associated with a given 
RxLev value. Moreover, the most accurate estimations 
are provided by the trimmed average method, because 
it considers only the best candidates of the posterior 
distribution. The use of maximum likelihood estimate is 
not recommended as it is very sensitive to noisy 
measurements and database inaccuracies. It has 
delivered less accurate results even with LS processing. 
The explanation is that it takes the candidate location 
with the predicted RxLev value that coincides with the 
measured RxLev value as the location estimate. This is 
very unreliable as many candidates have the same 
predicted RxLev value and choosing the final location 
estimate depends on the sorting strategy used to 
arrange all candidates according to their importance. 
This sensitivity, however, is reduced by the weighted 
average method. Again, averaging only a certain 
amount (about 10%) of the best weighted candidates 
(trimmed average) yielded the best results. 

To the best of our knowledge, location techniques 
using database correlation in suburban areas has not yet 
satisfied the FCC location accuracy requirements if the 
database is constructed using propagation models 
rather than field measurements. Propagation models 
provide less accurate databases, but enables easy 
maintenance and update process. On the contrary, 
databases constructed using field measurements are 
more realistic and accurate, but with higher overhead 
costs due to the need to cover the whole considered 
area by field measurements, which is difficult to 
achieve, maintain and update. Therefore, more accurate 
estimation techniques should be developed to bridge 
this gap. However, literature survey confirms that our 
results still yield the most accurate estimates in such 
environments so far. The structural nature of these 
areas and the strength of GSM signals, result in large 
cell sizes in European wireless layouts, leading to 
degradation in MS location estimates. 
 

 
 

Fig. 4. Relationship between the received signal strength and 
logarithm of distance to serving antenna for an example cell using the 

prediction database and the LS linear model 

 
Fig. 5. Exploiting equation (4) to further specify the area in which we 

search for MS location candidates 
 
 

 
Fig. 6.a 

 

 
Fig. 6.b 

 
Fig. 6. CDF of location error with and without LS processing using 

the three location estimation methods 
 
 
 
 



Location Error Maximum 
Likelihood 

Weighted 
Average 

Trimmed 
Average 

67% 323 m 231 m 200 m 
95% 579 m 358 m 377 m With LS 

Processing 
mean 256 m 189 m 179 m 
67% 295 m 254 m 216 m 
95% 567 m 361 m 395 m Without LS 

Processing 
mean 248 m 217 m 194 m 
67% -9.5% 9% 7% 
95% -2% 1% 4.5% 

Improvement 
due to LS 
Processing mean -3% 13% 8% 

 
TABLE I: Location error of the proposed database correlation 

algorithm with and without the least-squares processing 

5. Conclusion 
We have presented a database correlation method 

for mobile location in GSM networks. Off-line 
preprocessing including least-squares batch filtering of 
the raw database has been performed to increase the 
correlation efficiency. The proposed location algorithm 
utilizes Bayes filtering in the online phase to determine 
the importance of every location candidate, and the 
final location estimation is achieved by one of three 
methods. The accuracy of these methods has been 
determined experimentally by testing in a suburban 
environment. The suggested location algorithm 
provided very acceptable results taking into account the 
low BS density in the test environment. 
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