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Abstract—In this paper we present a database correlation method 
combined with Bayes filtering as a pattern matching technique 
for mobile terminal localization in GSM suburban environments. 
A 3D deterministic radio wave propagation prediction model is 
used for the database construction. Bayes filter provide a robust 
technique to deal with multi-hypotheses situations usually occur 
in cellular localization when the location dependent parameter 
considered is the radio power level. Furthermore, three methods 
used to yield a location estimate from the resulted hypotheses are 
presented and compared according to their performance. Results 
show very acceptable location accuracies relative to the 
considered suburban area, which is a typical environment in 
many populated parts of Germany. 
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I.  INTRODUCTION 
Mobile station (MS) positioning is a key problem in 

wireless networks. It is the problem of determining the position 
of a MS using location sensitive parameters. The FCC adopted 
standards for location accuracy and reliability of emergency 
calls [1] that further motivated the interest in the field of mobile 
location, which can be traced back to the 1970s [2]. 
Furthermore, inexpensive but still accurate MS positioning 
systems are believed to be of great commercial importance and 
a lot of research is carried out in the area. 

A. Localization Techniques 
The terms mobile location, positioning and localization are 

used interchangeably throughout the literature. An overview of 
localization methods is given in [3]. MS positioning is usually 
performed using one of the following methods: 

• Time-of-arrival (TOA), 

• Angle-of-arrival (AOA), 

• Network-assisted GPS (A-GPS), 

• Time-difference-of-arrival (TDOA) and enhanced 
observed time-difference-of-arrival (E-OTD), and 

• Enhanced cell-id 

The evaluation criteria for the different positioning 
techniques include accuracy, cost, coverage, system impact, 
and power consumption. 

The main drawback of TOA techniques is the need of 
mutual synchronization of the BSs, which is difficult to achieve 
leading to poor location accuracy. AOA methods suffer from 
large positioning errors caused by multipath propagation. 
Furthermore, special antennas have to be installed at base 
stations. Power consumption, the need to a clear view to at 
least four satellites, and the installation of additional hardware 
are the main disadvantages of A-GPS solutions. Furthermore, 
multipath propagation degrades TOA estimation. TDOA based 
techniques need at least three BSs, which could not be fulfilled 
in rural areas. 

Since enhanced cell-id methods utilize only network 
available information and don’t require any additional 
hardware installations at BSs or in MSs, they seem to be the 
first alternative to take into consideration. This is advantageous 
in terms of cost, coverage and system impact in comparison 
with other methods. However, the accuracy is ranging from 
about 100 m up to a couple of kilometers depending on type 
and characteristics of the area covered by the network. 

Database correlation is one way to achieve accuracy 
improvement of enhanced cell-id positioning methods. They 
also appear in the literature under the names database 
comparison, location fingerprinting, pattern recognition and 
pattern matching. In these techniques, a database of location 
dependent parameters is constructed using field measurements 
[4] or radio wave propagation prediction tools [5, 6]. Later a 
moving MS collects measurements to be compared with the 
values in the database in order to yield position estimates. 

The received signal levels (RxLev) from surrounding BSs 
are used as a location dependent parameter for database 
correlation in [4] – [6] and [11]. In [7], the location dependent 
parameter used is the channel impulse response (CIR). 
However, the bandwidth of GSM is too small for accurate 
positioning based on database comparison of the CIR only [7]. 

B. A New Approach 
We utilize a 3D deterministic radio propagation prediction 

model described in [8] to construct the database. Robust 



location estimation depends on three main factors. The first is 
to assure that searching in the database is restricted to an area 
where the MS is really located. This could be achieved by 
utilizing TA (timing advance) and the sector information of the 
serving cell (antenna azimuth). The second factor relies on the 
pattern matching technique used to evaluate location 
candidates. The third is to decide how to yield a location 
estimate from the available hypotheses. 

In this paper we use a non-recursive discrete Bayesian filter 
(DBF) as a matching technique for the database correlation. 
The accuracy of three simple methods to yield a location 
estimate is compared and results from measurements in 
suburban areas are presented. 

The rest of the paper is organized as follows. Section II 
describes our Bayes filter based technique. Experimental setup 
and simulation results are provided in section III. Conclusion 
and directions for future work are presented in section IV. 

II. THE LOCALIZATION ALGORITHM 

A. Bayes Filter 
Bayes filter (BF) [9] and [10] is a concept that only 

provides a probabilistic framework for state estimation. There 
are two different implementations of Bayes filter that differ 
mainly in the way they represent belief distributions over the 
state space. The first implementation represents continuous 
belief distributions, where the second represents discrete 
distributions. 

In the context of mobile terminal localization, we will be 
concerned with the discrete version of the Bayes filter as the 
state space is divided into grids (pixels) with a specified 
resolution. Bayes filter estimates the posterior belief 
distribution of a MS position given a map (database) of 
predicted signal strengths and a series of signal strength 
measurements. It estimates the state of a dynamical system, i.e. 
partially observable Markov chain, using measurement data. In 
this context, the dynamical system is the mobile terminal and 
its environment, the state is the MS position relative to that 
environment, and measurements, which include TA and RxLev 
from serving and neighboring base stations. 

B. Mathematics of Bayes Filtering 
Bayes filter assumes that the environment is Markovian, i.e. 

past and future data are conditionally independent if the current 
state is known. The key idea is to estimate a posterior 
probability density over the state space conditioned on the 
measurement data. This posterior is called the belief and is 
denoted 

 ),,...,,,,|()( 0211 moaoaospsBel tttttt −−−=  (1) 

Where 

• )( tsBel  is the MS belief state at time t , 

• ts  is the state at time t , 

• 0...to  denote the measurement data delivered from 
time 0 up to time t , 

• 0...1−ta  denote the actions (movements) performed by 
the terminal user from time 0 up to time t-1, and 

• m  is the model of the environment, i.e. a map (or 
database) of predicted RxLev. 

Measurements and terminal user actions are assumed to 
occur in an alternative sequence. 

The desired posterior is estimated by applying Bayes rule1 
and the theorem of total probability2 to expression (1), and 
exploiting the Markov assumption twice. To begin with 
applying Bayes rule, expression (1) can be transformed to 
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The denominator represents the probability of getting the 
measurement to  when the terminal user reached a location due to the 

action 1−ta . This probability is constant relative to ts  and is denoted 
as η , and called the normalization constant. Therefore, expression (2) 
is written as 
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Applying Markov assumption we find that 

 ),,...,|(),|()( 01 moaspmsopsBel ttttt −=η  (4) 

Employing the theorem of total probability, the right most 
term in (4) is expanded by integrating over the state at time t-1 
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Exploiting Markov assumption for the second time and 
noting that the second term in the integration is simply 

)( 1−tsBel  we obtain the recursive equation 
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Where 

• ),|( msop tt  is the measurement model, and 

• ),,|( 11 massp ttt −−  is the MS motion model. 

As the actions performed by the terminal user (pedestrian) 
cannot be directly obtained, we have decided to implement 
equation (6) non-recursively. The prior or initial belief 

)( 1−tsBel  is therefore initialized by a uniform distribution 
over the state space for every run of the filter. 

C. Implementation of the DBF 
As already mentioned a discrete version of the Bayes filter 

has been implemented. The basic idea is to represent the belief 
)(sBel  at any time by a set of n  weighted samples (position 

hypotheses) distributed according to )(sBel  as follows 
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Where 

• )(is  are samples of the hypothesized positions of the 
MS, and 

• )(iw  are non-negative numeric values called weights 
and sum up to 1. These weights determine the 
importance of each sample. 

The continuous belief )(sBel , thus, is approximated by a 
discrete probability function defined by the set of samples. The 
weights )(iw  are calculated for every sample according to the 
measurement model mentioned above as 
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Where 

• M  is the number of the observed BSs (main and 
neighboring), 

• RxLevσ  is the standard deviation of the measured 
RxLev, 

• jRxLev  is the measured RxLev from the j-th 
observed BS, and 

• 
jDBRxLev  is the database RxLev prediction value of 

the j-th observed BS at )(is . 

The final location estimate s)  is calculated from )(sBel  
using one of three methods: 

1. Maximum likelihood estimate (MLE), i.e. taking 
the sample with the highest weight as the location 
estimate. This is the estimate at which the 
posterior is maximum. 

 )(maxarg sBels =)  (9) 

2. Weighted average estimate (WAE), i.e. taking the 
weighted average of all samples representing the 
belief distribution as the location estimate. This is 
the mean value of the posterior distribution. It will 
coincide with the MLE only in case of unimodal 
and symmetric distributions. 
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3. Trimmed average estimate (TAE), i.e. taking the 
average of the k  best weighted samples as the 
location estimate. Where nk < . 
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The calculation flow of the whole localization process is 
illustrated in Figure 1. The accuracy performances of the final 
location estimation methods are given in the following section. 

III. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
The measurements were taken in an E-Plus GSM network 

by a pedestrian walking along a route of about 2.4 km in a 
suburban area in Hannover, Germany. They were collected 
every 4 seconds with a total number of 250 measurement 
reports. The reports included TA and RxLev information from 
the serving and neighboring cells. Every report was stamped by 
a GPS position as a location reference to evaluate our 
algorithm. The considered area is about 9 km2 and contains 6 
base stations (each with 3 sectors) and 4 indoor antennas. The 
average cell radius is about 2 km and the pixel resolution of the 
provided RxLev database is 5 m. 

B. Simulation Results 
We investigated the accuracy of our localization algorithm 

by off-line simulations using the three proposed methods for 
location estimation. The cumulative distributions of the 



localization error of these methods are depicted in Figure 2 and 
summarized in TABLE I. 

 

Figure 1.   Schematic diagram of the localization algorithm showing the flow 
of calculations. 

 

Figure 2.  Cumulative distribution functions (CDF) of the localization error 
using the proposed methods for location estimation. 

 

TABLE I.  ACCURACY OF THE PROPOSED METHODS FOR LOCATION 
ESTIMATION 

Localization 
Error MLE WAE TAE 

67% 378 m 275 m 229 m 

95% 610 m 428 m 361 m 

mean 294 m 240 m 197 m 

 

The results show that taking the MLE as the location 
estimate is not recommended as this is highly affected by noisy 
RxLev measurements and database inaccuracies. The WAE 
provides better estimations as it considers all samples with 
respect to their weights, thus reducing the effects that degraded 
the previous estimation method. However, taking the average 
of a specified proportion (in our simulations %10=k  of the 
samples) of the best weighted samples still yields better 
location estimates than the WAE. This has provided less 
sensitivity to erroneous RxLev measurements and helped 
neglecting outlier samples. The simulations have also shown 
that the real MS location is almost always in the region of the 
10% best weighted samples. The localization accuracy of our 
proposed technique is better than those reported in [5], [11] and 
[6] for the suburban case using their database correlation 
methods. 

In [5] and [11], the authors did not give details about the 
propagation model utilized in establishing their database. 
Furthermore, the area of their trial zone, the number of cells, 
and the average cell radius are not mentioned. Mean 
localization error of their proposed method is 270 m in non-
urban areas. The database in [6] was constructed for the non-
urban test area using the Hata-Okumura model, which is less 
accurate than the deterministic model [8] applied in building up 
our database. Moreover, the pixel resolution of their database is 
20 m. The trial area is 50 km2 with 43 cells, and the average 
cell radius is approximately the same as ours. Their localization 
error has a standard deviation of 602 m and a mean of 532 m. 
Note that in [5], [11] and [6], the suburban and rural areas are 
not handled separately. 

IV. CONCLUSION AND OUTLOOK 
Mobile terminal localization has become an active area of 

research recently since many services for mobile networks rely 
on an accurate positioning of the user terminal. The optimal 
solution would be to achieve localization with acceptable 
accuracy utilizing the available information in the existing 
network without any hardware modifications to base and 
mobile stations. The database correlation method is a popular 
technique to provide such a cost-effective solution. The 
accuracy of these techniques depends mainly on the method 
utilized for matching location sensitive patterns and yielding 
final location estimates (MLE, WAE, and TAE), characteristics 
and type of the area covered by the cellular network (density of 
cells), the technique used to construct the database 
(deterministic or empirical), and the pixel resolution. 

In this paper we presented simulation results of mobile 
terminal localization in a GSM network deployed in a suburban 



area. The localization algorithm is based on database 
correlation and Bayes filtering as a pattern matching technique. 
The database is constructed by a 3D deterministic radio wave 
propagation tool used for network planning. 

The accuracy of three methods to yield location estimates 
has been presented and compared. Considering only the 
estimate with the highest calculated likelihood (i.e., maximum 
likelihood estimate) yielded lower accuracy than taking all 
hypotheses into account according to their weights (i.e., mean 
value of the posterior distribution). However, averaging a 
sufficient number of hypotheses has further improved the 
localization accuracy. It has been shown that using this method 
a mean localization error of 197 m and a standard deviation of 
229 m were reached in a GSM network with low BS-to-area 
ratio as is the case in suburban and rural areas. This result is 
better than those already reported in the literature using similar 
techniques in similar environments. 

Bayes filtering provides an efficient probabilistic 
framework for parameter estimation in multi-hypotheses 
situations. Furthermore, since database correlation methods do 
not need any hardware extensions at BSs or in MSs, the 
proposed localization algorithm is very effective in terms of 
cost, accuracy and system impact. 

Experiments for car and indoor cases will be conducted. 
Furthermore, experiments in urban and dense urban areas for 
pedestrian as well as for car and indoor situations will be 
carried out to validate the proposed localization technique and 
check its capability in such scenarios. It is also planned to 
utilize map-matching techniques in order to further enhance the 
accuracy of our localization algorithm. 
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