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Abstract. Workflow systems execute workflows and assign work items
to the work list of participants. As work lists usually hold multiple work
items, participants have to decide which work item to handle next. When
selecting a specific work item other work items must be postponed, which
will in succession delay their appendant workflows. This may lead to
disproportionately increased execution durations and turn around times
if fixed-date constraints are defined on succeeding tasks. We propose a
probabilistic method which assists the participant when deciding which
work item to handle next, with the intention to decrease turnaround
times and to avoid time-related escalations, by providing information
about the delay to expect when postponing tasks.

Keywords. Workflow management systems, time plans, time management, pro-
cess monitoring and tracking.

1 Introduction

Workflow systems execute workflows and assign tasks or work items to partic-
ipants according to activities defined in a workflow model, i.e. an activity is
assigned if all preceding activities are finished. Participants use a work list to
manage the work items assigned to them. Usually, they have to decide which
work item to handle next. The decision to work on a particular work item im-
plicitly holds the decision to postpone every other work item in the work list.
This may have grave effects on the execution duration of the workflows to which
these postponed work items belong. Common policies for this decision prob-
lem, like first-in first-out (FIFO) or earliest-deadline-first, may be suboptimal
because they do not take into account that a) the postponement of a task may
not immediately delay a workflow due to eventually existing buffer times, and
b) even a slight postponement may lead to a disproportionately high delay due
to fixed-date constraints on succeeding tasks (e.g. ’a task must be finished until
the 1st of a month’).

Consider the workflow JobPosting to announce open positions of a big com-
pany in the local newspaper, as visualized in Fig. 1: A department initializes
the process by generating a claim. At first the claim will be forwarded to the
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Worklist for Mr. Smith Sunday, May 8th 2005
ID Task Process Received

34848 prepare JobPosting1 May 6th 2005
34856 create JobPosting2 May 7th 2005

Prepare
Claim

Validate
Claim

Create
Job Offers

6 days 5 days 2 days
Mail

Job Offer

1 day

fdc: 14th of a month

Finish
Job Offer

3 days

Fig. 1. Scenario1: job posting workflow

personnel division where it is prepared for further processing. Then the claim is
validated by the personal manager. After this, a job offer for the open position
is created. Then the offer is mailed to the newspaper. Finally the job offer is
finished (filing, notification of departments, etc.). The expected duration in days
is displayed on top of each task. Additionally, as the newspapers special ”Job &
Career” edition appears only once a month (on each 15th) a corresponding fixed-
date constraint (fdc) has been defined on the last activity mail, demanding that
it must be finished on the 14th of a month. Currently, on Sunday May 8th 2005,
Mr. Smith, employed in the companies personnel division, has two work items
from two different JobPosting-processes in his work-list. For sake of simplicity,
we assume that every day is a working day, Saturdays and Sundays included.

Scenario 1.a) According to the FIFO-policy, suggested by the work-list
client, he starts to execute the first work item, the task prepare of process Job-
Posting1, which will presumably take 6 days. Although the execution of prepare
starts immediately, the job offer will, according to the expected task durations,
not appear in the May-issue, as the mail-task will presumably be finished on
May 21st and the process will be finished at May 24th (for easier comprehension
please refer to a calendar of 2005). Unfortunately, the decision to execute prepare
first implicitly postpones the execution of his second work item, the task create
of process JobPosting2, for 6 days, to May 14th. create can be finished on May
16th and the next step mail on May 17th. Thus the job offers of the second
process will, presumably, also not appear in this month special issue.

Scenario 1.b) If Mr. Smith had chosen to execute the second work-item
first, the mail-task of process JobPosting2 could have been finished on time,
until May 11th. Thus the FIFO-policy unnecessarily delays the second process
for 30 days. Although this decision postpones the first work-item prepare, the
JobPosting1 process will not be delayed, as it will also end at May 24th (which is
the same end date as in Scenario1). Due to the fixed-date constraint defined on
mail, enough buffer time exists to compensate the postponement! The scenarios
demonstrate that an intelligent and predictive selection of work-items can help
to decrease the turn-around times of processes.

In this paper we introduce a method which exploits knowledge about the
workflow structure and time properties, to assist workflow participants when



deciding which work item to handle next, in order to decrease turnaround times
and to avoid time-related escalations, by providing information about the delay
to expect when selecting or postponing tasks.

The paper is structured as follows: In Section 2 we present related work.
Section 3 introduces the probabilistic timed workflow model. In Section 4 we
examine the relationship between delay and postponement and introduce delay
tables. In Section 5 we add the notion of probabilistic delay tables in order to
deal with conditional workflow execution, including a presentation of structural
workflow transformations [9]. Section 6 explains how to interpret probabilistic
delay tables by using delay time histograms. Finally Section 7 concludes the
paper with a brief outlook on our future research topics.

2 Related Work

When dealing with time management it seems to be straightforward to apply
existing and extensively examined techniques from related areas (like project
management) on workflows. Unfortunately some complex issues originating from
workflow modelling and instantiation complicate this intention [2, 13]. For in-
stance workflow systems typically do not compute schedules due to the partial
knowledge they have about the execution of their processes and the impossibility
to know the actual flow at decision points at process instantiation time.

Several publications introduced methods which cope with these workflow
specific problems, e.g. [4, 5, 7, 11, 12]. They propose the calculation of time plans
which define execution intervals for each activity in a workflow, such that dead-
lines will not be violated. The concepts presented are inspired by PERT and
CPM charts which are commonly used in project management. But all of them
suffer from the uncertainty about time and branching information which arise
when tasks are executed conditionally. Some newer publications already uti-
lize stochastic information which are used for performance analysis [1, 10] or
scheduling issues [3]. We dealt with this problem by introducing probabilistic
time management as described in [6].

How to handle different types of time constraints is explained in [7, 11]. Al-
though most of the above mentioned publications deal with similar time related
problems, as far as we know, currently no publication exists which examines
the relation between postponement and delay. The approach presented in this
paper follows the basic motivation of [8]: to assist the workflow participant with
supportive work-list tools.

3 Probabilistic Timed Workflow Model

We define a full-blocked workflow model that we use in the rest of this paper.
Workflows are represented as directed acyclic graphs (see Figures 1, 3 and 5).
Edges determine the execution sequence of nodes, thus a successor can start
if its predecessor(s) are finished. A node is identified by a unique name and
can be of type activity (represented by boxes), which corresponds to individual



tasks of a business process, or a control node of type start, end, and-split|join
or or-split|join. Conditional branches are augmented with statistically weighted
branching probabilities (defined by estimations or empirically generated values
from the workflow log). Routes after an and-split will be processed concurrently.
They will be synchronized at the according and-join, which does not proceed un-
til all predecessor nodes are finished. After an or-split only one route, depending
on a run-time evaluated condition, will be selected. The corresponding or-join
proceeds if one predecessor node is finished (the one on the route selected at
the or-split). A workflow model is full-blocked if the graph is restricted to proper
nesting of splits and joins. Therefore and-structures and or-structures may be
nested, but must not overlap (according to the conformance-class declaration in
[14]).

N designates the node named N and N.type yields the type of the node.
M → N designates an edge between two nodes M and N , and pM→N yields the
branching probability for edges going out from or-splits. N.Pred defines the set
of adjacent predecessor nodes and N.Succ defines the set of adjacent successor
nodes.

Additionally, time properties have to be defined during the modelling process
of the workflow. Each node N is augmented with the expected duration N.d in
an arbitrary time unit like hours or days. Control nodes like start or end usually
have a duration of 0. The workflows overall execution duration is limited by a
workflow deadline δ, which is defined as a time value relative to the start of the
workflow (note that the definition of δ is compulsory!).

Additionally the execution of a node can be constrained to certain dates by
a fixed-date constraint. Although it is basically possible to assign a fixed-date
constraint to either the start or the end of a node, we restrict our explanations to
the end of a node (to avoid the need of describing analogous concepts). A fixed-
date constraint fdc(N,F ) expresses that the end of node N can only occur on
certain dates specified by the fixed-date object F , where F.valid(Date) returns
true if the arbitrary date is valid for F. F.next(Date) and F.prev(Date) return
the next and previous valid dates after Date. Assume that a fixed-date object f

may for example be defined as a list of valid dates f = (12th of March, 17th of
June, 25th of September) or as an expression like f = every 3rd sunday starting
with 6th of September.

4 Calculation of Delay

4.1 Earliest Possible End

Based on the workflow structure and time properties, it is possible to calculate
the earliest possible end (EPE) for each node, relative to the start time of the
workflow. It depicts the earliest possible point in time an activity may end,
defined by the sum of durations of preceding nodes.

The EPE of a node is basically the sum of durations of all which are to be
executed nodes before it, starting from the current node Cur and at the current



Algorithm 1 Calculation of Earliest Possible End Times

1: Cur.epe := now + Cur.d

2: for every N succeeding Cur in forward top. order do

3: N.epe := maxPredEPE(N) + N.d

4: if if fdc(N, f) ∈ FDC then

5: N.epe := f.next(N.epe)
6: end if

7: end for

time now. Additionally, as and-joins demand that every preceding node must
be finished before the execution can be continued, the EPE of an and-join is
determined by the maximum EPE of all adjacent preceding nodes. For this we
define the operation maxPredEPE(N), which yields the maximum EPE of all
predecessors of and-joins or the EPE of the single predecessor of other node-
types. The EPE of every node, which is a (transitive) successor of the current
node Cur, is calculated as described in algorithm 1. How to deal with EPEs for
or-joins is explained in section 5.

Consider the workflow from scenario 1 with Cur = prepare and now = may8
(depicting the current time 8th of May 2005) with the EPEs: prepare.epe =
may14, validate.epe = may19, create.epe = may21 and mail.epe = may22. Ac-
cording to the fixed-date constraint defined on mail, the EPE must be shifted to
the next valid date adhering to fdc(mail,14th of a month), yielding mail.epe =
jun14. Then we calculate finish.epe = jun17. Finally, as control nodes like
End have a duration of 0, the earliest possible end of the workflow is End.epe =
jun17.

There are two special cases to consider: a) As f may define a finite set of
fixed dates, it may yield no valid next date at f.next(N.epe). Then the user or
an administrator must be informed that a future deadline or fixed-date violation
will (presumably) occur, and a further delay due to a postponement of Cur

has to be avoided. b) Due to and-structures many activities may currently be
executed in parallel. Thus more than one current activity Cur may exist. In
this case all current activities must be initialized as in line (1). The algorithm
still works, as due to the full-blocked structure of the workflow graph all parallel
routes will be joined at a succeeding and-join. Additionally, some participants
may already have started to execute their current tasks. In this case the duration
of the node must be adapted by applying Cur.d = Cur.d - (now - Cur.start),
where start denotes the actual start time of the nodes execution.

4.2 Delay Tables

A postponement designates the shift of the execution of an activity, which is ready
to be executed by a participant, to a later point in time. A delay is generated
if due to a postponement the earliest possible end of the workflow (= End.epe)
would be increased.



In our running example with now = may8 and Cur = prepare we addi-
tionally define an overall workflow deadline of δ = 90, therefore the workflow
(or the node End) must be finished until now + δ = aug6. The examination of
dependencies between delay and postponement must start at the last node. One
can see, that the workflow can not end before End.epe = jun17 and must not
end after now + δ = aug6. Thus, the following can be stated (for End): if it is
not postponed it will not be delayed and end at jun17, if it is postponed by 1
day it will be delayed by 1 day and end at jun18, and so on. Finally we can
state, that if it is postponed by 50 days it will be delayed by 50 days and end at
aug6. A further postponement will lead to a violation of the workflow deadline
now + δ = aug6.

Based on this knowledge it is possible to define a relation between a delay
deadline (d) and a delay time (t), where t is the delay of the workflow to expect,
if the end of the node is postponed to d. This relation is captured in the delay
table (DT). To query delay tables we introduce the operation delay time selection,
which yields the delay time for a given delay deadline.

Definition 1 (Delay table, DT) A delay table N.dt for a node N is a set of
tuples (d, t) describing the delay time t to expect if N ends at the delay deadline
d. Furthermore a delay table is called valid if each t and each d is unique in the
set. The operation y = selectT (dt, x) applied on a valid delay table selects the
delay time y for a delay deadline x, such that:

y =

{

z if ∀(d, t) ∈ dt, where x ≥ d: z ≤ t

∞ if ∀(d, t) ∈ dt: x > d

The valid DT of End is End.dt={(jun17,0),(jun18,1),(jun19,2), +++,(aug6,50)}.
The +++ between two tuples (d1, t1),+++,(dn, tn) symbolize that the set holds
additional tuples (di, ti), such that di = di−1 +1 and ti = ti−1 +1 for 1 > i > n.
The operation selectT yields the delay time for a given delay deadline. If no
tuple with the requested delay deadline exists, the delay time of the tuple with
the next greater delay deadline is selected: e.g. selectT(End.dt, jun21) = 3 states
that the workflow will be delayed by 3 days if the node End ends at jun21. The
explicit definition of a result of ∞ is necessary as a point in time greater then
the maximum delay time in the DT may be selected. If postponed to that point
in time a workflow deadline violation would occur: e.g. selectT(End.dt, sep12)
= ∞ states that if it ends at sep21 the workflow deadline will be violated.

As the relation between d and t in End.dt is linear, we call it a linear DT. To
calculate the always linear DT of an end node we use the following operation:
End.dt = linearDT(End.epe,now + δ).

Definition 2 (Calculate linear DT) A linear DT dt, delimited by a lower
bound lb and an upper bound ub, is generated as follows: dt = linearDT (lb, ub) =
{(d, t) | ∀d : lb ≤ d ≤ ub, t = d − lb}, where |dt| = ub − lb + 1.

For nodes, which are to be executed in a sequence, the DT of a predecessor node
is calculated by subtracting the duration of the successor from the DT of the
successor:



jun14
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0
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jul14

0
30

mail.dtaggD

jun17
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aug6

0
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+
50

End.dt=
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jun13
jul13

0
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create.dt

jun11
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0
30

validate.dt
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0
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prepare.dt jun14
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***

jul14
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jul14

0
1
*

30
31
*
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mail.dtadj

calculation direction

Fig. 2. Delay tables for Scenario1

Definition 3 (Subtract scalar from DT) The scalar k is subtracted from a
DT dt1 resulting in a DT dt2 as follows: dt2 = dt1−k = {(d−k, t) | (d, t) ∈ dt1}.

Therefore finish.dt = End.dt - 0 and mail.dt = finish.dt - finish.d (see also Fig. 2).
As a fixed-date constraint fdc(mail,f) exists, the end of mail may only occur on
valid dates, defined by the fixed-date object f=14th of a month. Thus the delay
deadlines must be adjusted using the previous function of the fixed-date object.

Definition 4 (Adjust delay table to fixed-date object) A delay table dt

is adjusted to a fixed date object f , resulting in a delay table dt′, as follows:
dt′ = adjust(dt, f) = {(f.prev(d), t) | (d, t) ∈ dt}.

The operation yields the mail.dtadj = (adjust(mail.dt,f)) = {(jun14,0),(jun14,1),
*** ,(july14,30),(july14,31), *** , (july14,50)}. The *** between two tuples
(d1, t1),***,(dn, tn) symbolize that the set holds additional tuples (di, ti), such
that di = d1 and ti = ti−1 + 1 for 1 > i > n. As one can see this operation
results in an invalid DT with multiple identical delay deadlines (but different
delay times). In order to receive a valid DT we have to remove all tuples with
identical delay deadlines, but the one with smallest delay time. To achieve this
the operation delay deadline aggregation must be applied on mail.dtadj .

Definition 5 (Delay deadline aggregation) The operation aggD(dt1) yields
an aggregated delay table dt2, such that dt2 = aggD(dt1) = {(x,minT (dt1, x)) |
(x, t) ∈ dt1}; where y = minT (dt1, x) selects the minimum delay time y for a
delay deadline x of the delay table dt1, such that ∀(x, t1) ∈ dt1: y ≤ t1 must
hold.

Now we apply aggD on the intermediary DT mail.dtadj : mail.dtaggD =
aggD(mail.dtadj) = {(jun14,0),(jul14,30)}, which is interpreted as: if mail ends
at jun14 or before, the delay will be 0; if it ends after jun14 and before or
exactly at july14 the delay will be 30. And the next possible end, according to
the fixed-date constraint, is aug14. But if mail would end at aug14, the workflow
deadline would be violated. Thus the last allowed delay deadline (or end time)
is jul14. The operation which combines aggD and adjust is defined as follows:

Definition 6 (Apply fixed-date object on delay table) The fixed-date ob-
ject f is applied on a delay table dt1 yielding a delay table dt2, such that dt2 =
applyFDC(dt1, f) = aggD(adjust(dt1, f)).
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Fig. 3. Scenario2: and-structure

Afterwards we proceed by subsequently subtracting the durations create.d=2
and validate.d=5, finally yielding prepare.dt={(jun6,0),(jul6,30)}. The DT of
the current activity prepare can be used to answer participant-questions like
”What is the expected delay if the end of prepare is postponed to jun25?”. The
answer is selectT(prepare.dt, jun25) = 30: ”The delay will be presumably be 30
days!”. And for selectT(prepare.dt, aug8) = ∞ the answer would be: ”A deadline
violation will occur!”. The DT may also be used to inform the participant (Mr.
Smith) that he may postpone the end of prepare to jun6 without delaying the
workflow, which is defined by the tuple with the minimum delay deadline or the
tuple with a dely time of 0 respectively.

4.3 Calculation of DTs for And-Splits

We adapt the example, as visualized in Fig. 3: The company decides that the
management’s staff unit must be informed about every claim. Additionally a
fixed-date constraint is attached to the new activity check (which takes 1 day),
as the staff unit team only meets every 3d monday (starting with may 9th)
to discuss and check new claims. Assume that the semantics of finish is now:
finally the job offer and the claim are finished together (filing, notification
of departments, etc.). Again Cur=prepare, now=may8 and δ=90. At first the
EPEs must be calculated according to the algorithm presented in Section 4.1:
Start.epe=may8, prepare.epe=may14, AS.epe=may14, validate.epe=may19, cre-
ate.epe=may21, mail.epe=jun14, check=may30, AJ.epe=jun14, finish.epe=jun17
and End.epe=jun17. The EPE of the new activity check has been adjusted to
the next valid date may30 (= may9 + 3weeks) according to its fixed-date con-
straint. And the EPE of the and-split AJ is equal to the maximum EPE of its
predecessors (mail and check), which is mail.epe.

The calculation of DTs starts with the initialization of the last node End.dt =
linearDT(End.epe,now + δ), followed by the subsequent calculation of finish.dt

and AJ.dt (see also Fig.4). The DTs of nodes which are predecessors of an and-
split are calculated like nodes in a sequence: mail.dt = AJ.dt – AJ.d and check.dt
= AJ.dt – AJ.d. Since AJ.d=0, their DTs are equal to AJ.dt. For the upper
parallel route we refer to the calculations of Scenario1, as the DTs are equal.
For the single node check of the second route we have to apply its fixed-date
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Fig. 4. Delay tables for Scenario2

constraint applyFDC(check.pdt,every 3d monday starting with may9)), resulting
in check.dtfdc (to save some space we did not show the intermediate results
check.dtaggD and check.dtadjust).

Before combining DTs of and-split successors, their durations must be sub-
tracted (resulting in an intermediate dt′): validate.dt’={(jun6,0),(jul6,30)} and
check.dt’ = {(may29,0),(jun19,6),(jul10,27)}. To combine two DTs the opera-
tion delay table conjunction, which is a combination of the operations merge

and aggT , has to be applied.

Definition 7 (Merging two delay tables) The operation merge(dt1,dt2) ap-
plied on two delay tables dt1 and dt2, results in a delay table dt as follows: dt
= merge(dt1, dt2) = {(d,t) | d ∈ D, selectT(dt1,d) 6= ∞, selectT(dt2,d) 6= ∞, t
= max(selectT(dt1,d),selectT(dt2,d))}, where D = {d1 | (d1,t1) ∈ dt1 } ∩ {d2 |
(d2,t2) ∈ dt2}.

The merge-operation AS.dt = merge(validate.dt’,check.dt’ selects the greatest de-
lay time (as all routes are processed in parallel) for every possible delay deadline,
which is accomplished as follows: first a set D which holds all delay deadlines of
both sets is generated, which is for our example D={may29,jun6,jun19,jul6,jul10}.
Then for every delay deadline in D the selectT -operation is applied on both DTs
and the maximum of the results is selected, which is 0 for may29, 6 for jun6,
30 for jun19 and 30 for jul6: AS.dtmerge = {(may29,0),(jun6,6),(jun19,30),
(jul6,30)}. The delay deadline jul10 has been filtered out by the condition
maxT(dt1,d) 6= ∞ as maxT(validate.dt,jul10) = ∞. The intermediate DT is
invalid as it holds two tuples with equal delay times. To receive a valid DT it
is necessary to remove the tuple with the earlier delay deadline by applying the
delay time aggregation.

Definition 8 (Delay time aggregation) The operation aggT (dt1) yields an
aggregated delay table dt2, such that dt2 = aggT (dt1) = {(maxD(dt1, x), t) |
(x, t) ∈ dt1}; where y = maxD(dt1, x) selects the maximum delay deadline y for
a delay time x of the delay table dt1, such that ∀(d1, x) ∈ dt1 : y ≥ d1.

According to this AS.dtaggT = aggT (AJ.dtmerge) = {(may29,0),(jun9,6),
(jul9,30)}. And finally, due to AS.d = 0, the DT of the current activity prepare

is prepare.dt = AS.dtaggT – 0. Based on the operations merge and aggT we
define the delay table conjunction.
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Definition 9 (Delay table conjunction) The delay table conjunction dt =
dt1 ∧ dt2 applied on two delay tables d1 and d2 yields a delay table dt, such that
dt = aggT (merge(dt1, dt2)).

Propositions: The conjunction is commutative and associative as dtA ∧ dtB =
dtB ∧dtA and (dtA∧ (dtB ∧dtC)) = ((dtA∧dtB)∧dtC). Thus it can be extended
to any number of DTs: dt1 ∧ ... ∧ dtn =

∧n
i=1

dti.

5 Calculation of Probabilistic Delay

One fundamental core problem has not been addressed so far: in workflows with
or-splits multiple different execution routes (also called instance types) are possi-
ble. Consider the workflow in Fig. 5: The company decides to assign a head hunter
for open high-management positions, instead of advertising in the newspaper.
Selection of and negotiation with a head hunter takes about 7 days. According to
past experiences about 5% of all job offers address high-management positions.
No fixed-date constraint is assigned to this task. In this graph two instance types
can be identified, as two different execution sequences of activities and nodes are
possible: the first one via activity assign and the second one via activity mail.
Note that different instance types are only produced if the graph contains or-
structures (after and-splits all nodes will be executed unconditionally).

5.1 Unfolding the Graph

When calculating the EPEs a problem arises at or-joins: OJ.epe can not be
determined unambiguously, as the EPE depends on the path executed prior to
OJ . Which one this will be, is unknown at the current node Cur. The only thing
we can tell is, that it is likely that the route via assign will be executed with
a probability of 5% and the route via mail with a probability of 95%. As the
algorithm to calculate EPEs demands exactly one EPE per node, we developed
the following solution.

At first we unfold the workflow, in order to split up different instance types.
[9] developed a backward unfolding procedure, which successively applies basic
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transformation operations on an originally block-structured graph. A transfor-
mation operation results in a new workflow graph, which is semantically equal to
the old one, based on the notion of equivalence of tasks and identical execution
order. The result of the backward unfolding procedure is a graph where every
or-join has been moved to the end.

Fig. 6 shows the unfolded version of the graph from Fig. 5. Three basic
transformation operations have been applied to move the or-join to the end of
the workflow: first the or-join has been moved over the and-join, which resulted
in a duplication of nodes and edges succeeding the or-join. The second and third
operation moved the node over the activity finish and end node towards the
end of the workflow. It is important to notice that the possible order of node-
execution is equal to the one in the original graph. A backward unfolded graph
will have as many end-nodes as possible routes through the graph exist, which
is one for each instance type. Furthermore, as synchronizing or-joins have been
moved to the end, it enables us to calculate exactly one earliest possible end
time for each node, by applying the algorithm of section 4.1. For further details
on graph transformations see [9].

5.2 Calculation of Execution Probabilities

As mentioned above, the calculation of DTs starts at the end node of a graph,
but in the unfolded graph multiple end nodes have to be considered. Therefore
the initial DTs of end-nodes must be weighted according to their execution
probability, in relation to the current activity Cur. This can be accomplished
by calculating the execution probability dependent on predecessor execution
probabilities and the type of nodes. For this we have to traverse the graph in
a forward topological order starting with the current node (see algorithm 2).
As the current node will be executed in any case, its execution probability is
initialized with Cur.x = 1. The calculation finally yields End1.x = 0.05 and
End2.x = 0.95, which means, that starting from the current node Cur, the end-
node End1 will be executed with a probability of 5% and the end-node End2
with a probability of 95%. The sum of probabilities of all end nodes must be 1.



Algorithm 2 Calculation of execution probabilities
1: Cur.x = 1
2: for every successor N of Cur in forward top. order do

3: if P ∈ N.Pred and P.t = or-split then

4: N.x = P.x ∗ pP→N

5: else if N.type = and-join then

6: N.x = minimum of all P.x, P ∈ PredN

7: else

8: N.x = P.x, P ∈ PredN

9: end if

10: end for

5.3 Probabilistic Delay Tables

With the unfolded graph and execution probabilities for end-nodes it is possible
to calculate a set of probabilistic delay tables (PDTs) for the current node, which
can be queried in several ways. Each node N of an unfolded graph can hold
multiple weighted DTs, one for each end-node that is reachable from N (or each
possible instance type starting from N), which are stored in the set N.PDT.

Definition 10 (Set of Probabilistic Delay Tables, PDT) The set of prob-
abilistic delay tables N.PDT of a node N is a set of tuples (e, p, dt), where dt is
a delay table, e is the end-node from which dt originated and p is the execution-
probability of the end-node.

For the PDT-calculation algorithm the operations defined on DTs must be
adapted to set-based PDT-operations. Details will be explained in the subse-
quent section, along with the calculation of PTDs for our running example:

Definition 11 Operations on PDTs

– Subtract scalar: PDT - k = {(e,p,dt-k) | (e,p,dt) ∈ PDT}
– Apply fixed-date constraint: applyFDC(PDT,f) = {(e,p,applyFDC(dt)) | (e,p,dt)

∈ PDT}
– Conjunction: PDT1 ∧ PDT2 = {(e,p,dt1∧dt2) | (e,p,dt1) ∈ PDT1, (e,p,dt2)

∈ PDT2}.

Propositions: The conjunction is commutative and associative as PDTA ∧ PDTB

= PDTB ∧ PDTA and (PDTA ∧ (PDTB ∧ PDTC)) = ((PDTA ∧ PDTB) ∧
PDTC). Thus it can be extended to any number of PDTs: PDT1 ∧ ... ∧ PDTn

=
∧n

i=1
PDTi.

5.4 Calculation of PDTs

Before calculating the PDTs, the graph must be unfolded and or-joins must be
deleted, followed by the forward calculation of execution probabilities and EPEs,
resulting in: End1.epe=jun2, End2.epe=jun17, End1.x=0.05 and End2.x=0.95.



Algorithm 3 PDT calculation

1: for all nodes N in a backward topological order do

2: if N.type = end then

3: N.PDT={(N, N.x, linearDT(N.epe, now + δ))}
4: else if N.type = and-split then

5: N.PDT =
∧

S.PDT ′, ∀S ∈ N.Succ

6: else

7: N.PDT =
⋃

S.PDT ′, ∀S ∈ N.Succ

8: end if

9: if ∃fdc(N, f) ∈ FDC then

10: N.PDT ′ = applyFDC(N.PDT, f) − N.d

11: else

12: N.PDT ′ = N.PDT − N.d

13: end if

14: if N = Cur then

15: return
16: end if

17: end for

The calculation of PDTs is again performed in a backward topological order,
where the PDT of each node is determined according to its node type (see
algorithm 3 and Fig. 7). Note, that we use the intermediary N.PDT ′ for each
node N , which contains the PDT after fixed-date adjustment and subtraction
of node duration .

The algorithm starts with the initialization of all end-nodes End1 and End2 as
defined in line 2 of the algorithm: Endi.PDT = { (Endi, pi, linearDT(Endi.epe,
now + δ))}. The PDT of an end-node contains exactly one tuple with a reference
to the originating end-node Endi (in this case the node itself), the execution
probability of this end-node Endi.x, and the initial linear delay table, calculated
as linearDT(Endi.epe, now + δ). Since no fixed-date constraint on Endi exists
(line 9), the intermediary PDT is calculated as Endi.PDT’ = Endi.PDT - Endi.d
(line 12). Due to Endi.d = 0, this results in Endi.PDT’ = Endi.PDT.

In the next iteration the PDT of the preceding node is determined. Since
finishi is no end-node and no and-split, the PDT is calculated as union of all
successor-PDT’ (line 7). As finishi has only one successor, the PDTs are equal:
finishi.PDT = Endi.PDT’. Then the duration of finishi.d = 3 is subtracted,
yielding finishi.PDT’ (line 12).

The calculation of PDTs for nodes between finishi and OS are calculated
analogously, as only one possible route to an end-node has to be considered and
therefore the union-operation always results in a set with one tuple. At mail the
fixed-date constraint has to be applied before subtracting the duration (line 10),
yielding the same DT as in scenario 2.

So far, each determined PDT holds exactly one tuple: e.g. assign.PDT’ =
{(e,p,dt )} states that the delay information stored in dt originates from the end-
node e=End1, which has an execution probability of p=0.05. The or-split OS has
two successors, therefore check.PDT = assign.PDT’ ∪ mail.PDT’ (line 7). This
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Fig. 7. Calculation of probabilistic delay tables for Scenario3

results in a set with two tuples holding information about two different delay
tables which originate from two different end-nodes (with different execution
probabilities). Thus we can state, that the number of tuples in the PDT of a
node is equal to the number of instance types containing this node. The same can
analogously be stated for the node check, as it also has two successors leading
to two different end-nodes. We proceed with the calculation of validate.PDT’
(subtract of duration) and check.PDT’ (apply fdc and subtract duration)

At the and-split a PDT-conjunction has to be applied on successor-PDTs:
validate.PDT’ ∧ check.PDT’. The PDT-conjunction basically applies a regu-
lar DT-conjunction on all DTs with identical end-node references (they be-
long to the same instance type)! Therefore it consists of two steps: 1) first it
merges all DTs, which originate from the same end-node, into one DTmerge (see
PDTmerge in Fig. 7). 2) Subsequently, to remove duplicate delay times, it ag-
gregates each intermediate DTmerge by applying an aggregation on each DT.
Note that PDTmerge and PDTagg are displayed for illustration issues only, as
according to its definition the PDT-conjunction does not produce intermediate
results. Finally, the PDT for the current activity prepare is calculated.

6 Interpretation and Application

PDTs are used to generate information about the delay to expect if a workflow
participant postpones the end of his current task to a given date. The answer to
the question ”What is the expected delay, if the end of prepare is postponed to
june1?” can no longer yield an ambiguous result, as the PDT of prepare holds
two DTs with different weights. Therefore we introduce (cumulated) delay time
histograms.

Definition 12 (Delay Time Histograms) The cumulated delay time histogram
N.CDTHx for a node N and a date x, based on the delay time histogram N.DTHx



= {(Σp,selectT(dt,x)) | (e,p,dt) ∈ N.PDT}, is a set of tuples (ci,ti) such that ci

=
∑

tj≤ti
pj , where (pi,ti) ∈ I.

The DTH contains one tuple with delay time and probability for each DT in
the PDT, selected for a given delay deadline x: prepare.DTHjun1 = {(0.05,21),
(0.95,6)}. The expression Σp aggregates tuples with equal delay times by adding
up their probabilities. For the CDTH the probability values of the DTH are
cumulated in increasing order of delay times: prepare.CDTHjun1 = {(0.95,6),
(1.0,21)} . It is interpreted as ”With a probability of 95% the maximum delay
will be 6 days, and with a probability of 100% the maximum delay will be 21
days!”. For huge PDTs containing hundreds of weighted DTs, answers like the
ones above will be of no use for the participant. Therefore we introduce the
selection for a defined minimum probability.

Definition 13 (Selection of probabilistic delay time) t = selectPT(N,x,c)
selects the maximum delay time t for a delay deadline x and a given minimum
probability c, such that ∀(ci,ti) ∈ N.CDTHx, where ci ≤ c: ti ≥ t.

Thus selectPT(prepare,jun1,0.9) = 6: ”The maximum delay will be 6 days (with
a 90% certainty)!”. As the workflow participant should not be confused with
probabilities, the minimum certainty should be configured as a fixed work-list
parameter. The selectPT-operation can now be used to generate a presorted work
list, which proposes an execution order of work items where the overall delay
to expect is significantly reduced, compared to for instance a FIFO-strategy.
The examination of these algorithms is subject of ongoing work. Nevertheless a
necessary prerequisite is, that the workflow system features a time management
component, which performs the above explained calculation algorithms based on
empirical data from the workflow log. Additionally the work-list must be enabled
to invoke this algorithms on demand and to represent the results accordingly.

7 Conclusions and Future Work

We proposed a method which aims at assisting workflow-participants in their de-
cisions to select work-items to be executed next. This method is based on delay
tables, containing probabilistic information about the delay to expect when the
execution of a task is postponed to a certain date. They are calculated by utiliz-
ing the structure of the workflow, augmented with empirical information about
expected execution-durations and branching-probabilities. A suggested execu-
tion sequence will decrease turnaround times, avoid time-related escalations and
subsequently save costs.

Currently, we investigate how to include duration-distributions for activities,
as scalar duration values are to imprecise in a realistic administrative workflow
scenario. Another research objective is to cope with the complexity explosion
due to unfold-operation, by adapting the algorithm in order to work with still
folded (and non-full-blocked) graphs. Furthermore we proceed with our investi-
gations on optimization algorithms for presorted work lists. The integration of



probabilistic time management into workflow environments is subject of ongoing
research.
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