
Transforming Workflow Graphs

Johann Eder, Wolfgang Gruber, and Horst Pichler

University of Klagenfurt
Department of Informatics-Systems

{eder,gruber,pichler}@isys.uni-klu.ac.at

Abstract. Workflow management systems are very useful for integrat-
ing separately developed application systems by controlling flows of exe-
cution. For various purposes (e.g. distribution of activities, workflow evo-
lution, time calculation, etc.) it is necessary to change the representation
of a workflow, the structure of a workflow graph without changing it’s
semantics. We provide an equivalence definition of workflow graphs and
introduce a set of basic transformation operations defined on workflow
graphs which keep the semantics. We show how these basic operations
can be combined to achieve complex transformations and briefly describe
a prototypical transformation tool.

1 Introduction

Workflow management systems (WFMSs) improve business processes by au-
tomating tasks, getting the right information to the right place for a specific job
function, and integrating information in the enterprise [8, 12, 10, 1]. Workflow
management systems were also considered as integration tools from the very be-
ginning, with the idea that they allow the representation of processes comprising
of activities which are executed within different application systems.

Numerous workflow models have been developed, based on different mod-
elling concepts (e.g. Petri Net variants, precedence graph models, precedence
graphs with control nodes, state charts, control structure based models) and on
different representation models (programming language style text based models,
simple graphical flow models, structured graphs, etc.). Transformations between
representations can be difficult (e.g. the graphical design tools for the control
structure oriented workflow definition language WDL of the workflow system
Panta Rhei had to be based on graph grammars to ensure expressiveness equal-
ity between text based and graphical notation [5]).

Another sort of transformation is to change the structure of a workflow within
its representation model. Such transformations are needed in several situations.
During workflow design, it allows the designer to view a workflow graph from
different perspectives and change the representation to enhance readability and
understandability. For distributing the activities of a workflow to separate infor-
mation systems, or among different stakeholders in a virtual organization, it is
useful to change the workflow graph to make this distribution explicit and easy
to understand and to support the dispatcher at runtime. For workflow evolution

derntl
Text Box
© Springer Verlag 2005Eder, J., Gruber W. & Pichler H. (2005). Transforming Workflow Graphs. First International Conference on Interoperability of Enterprise Software and Applications (INTEROP-ESA 2005), Genf, Switzerland



2 Johann Eder, Wolfgang Gruber, and Horst Pichler

[7] two workflow graphs (initial and final workflow) have to be compared and
a manifold of hybrid workflows have to be generated. This task is much easier,
if both workflow graphs are previously prepared in a way that the compari-
son is facilitated by structural equivalence to the greatest possible extent, such
that the comparison of the workflow only has to deal with the actual changes
of the workflow which lead to different executions and not with mere repre-
sentational alterations. Furthermore, such transformations are needed for time
management[4], or for organizational changes [2, 16].

The main contributions of this paper are: We present a notion for equivalence
of workflow models based on the idea that two workflows are equal, if they ad-
mit the same workflow instances at the level of atomic activities. We introduce
a series of basic transformations which preserve this semantics of the workflows.
We show how complex transformations can be constructed from the basic op-
erations and briefly describe a workflow model management tool prototypically
implementing these transformations.

2 Workflow Model

2.1 Structured Workflow Definition

A workflow is a collection of activities, agents, and dependencies between ac-
tivities. Activities correspond to individual steps in a business process, agents
(software systems or humans) are responsible for the enactment of activities,
and dependencies determine the execution sequence of activities. We assume
that workflows are well structured: A well-structured workflow consists of m se-
quential activities, T1 . . . Tm. Each activity Ti is either elementary, i.e. it cannot
be decomposed any further, or it is complex. A complex activity consists of ni

parallel (and), sequential (seq), conditional (or) or alternative (alt) sub-activities
Ti

1, . . . , Ti
ni , each of which is either elementary or complex (cf. [3]). (Complex)

activities between seq-split and seq-join are always executed in sequence. An
and-split node refers to a control element with several immediate successors, all
of which are executed in parallel. An and-join node synchronizes the workflow
as it can only be executed if all of its immediate predecessors have finished their
execution. An or-split node refers to a control element whose immediate succes-
sor is determined by evaluating some boolean expression (conditional) and the
successor node of and alt-splits is selected by (user-)choice. Note that our seman-
tics of or-splits and alt-splits demands that exactly one of many successors may
be executed. During Or-joins and alt-joins refer to control elements that join all
the branches after or-splits and alt-splits respectively. Additionally, predicates
have to be defined for each successor node of an or-split, representing a boolean
expression which must yield true as precondition for execution (due to the ex-
clusive semantics of an or-split only one of many successors may be executed,
thus the predicates must be defined accordingly). Structured Workflows are of-
ten represented by structured workflow graphs, where nodes represent activities
(rectangles) or control elements (circles) and edges correspond to dependencies



Transforming Workflow Graphs 3

between nodes (see Fig. 1). Predicates are displayed in angle brackets, attached
on top of a node.

A3

A1

S2
or-split

J2
or-join

J1
seq-join

S1
seq-split

A2

A4
S4

and-split
J4

and-join
A5

<PA1>

<PA2>

Fig. 1. Workflow graph example

According to the definition presented above a workflow graph must be well struc-
tured , as each split node is associated with exactly one join node and vice versa
and each path in the workflow graph originating in a split node leads to its
corresponding join node. For the purpose of allowing more transformations (see
section 3) and the separation of workflow instance types in the workflow model
we offer the notion of a structured workflow graph. Here a split node may be
associated with several join nodes, however, a join node corresponds to exactly
one split node. Each path originating in a split node has to lead to an associated
join node. Such graphs are results of equivalence transformations.

2.2 Workflow Instance Types

Due to conditionals not all instances of a workflow will process the same activi-
ties. We classify workflow instances into workflow instance types according to the
actual executed activities. Similar to [14], a workflow instance type refers to (a
set of) workflow instances that contain exactly the same activities, i.e., for each
or-split node in the workflow graph, the same successor node is chosen; resp. for
each conditional complex activity the same child-activity is selected. Therefore,
a workflow instance type is a submodel of a workflow where each or-split has
exactly one successor; resp. each conditional or alternative complex activity has
exactly one subactivity [3].

2.3 Equivalence of Workflows

Our goal is to support the transformation of a workflow without changing the
semantics. For this purpose we need a clear definition when workflows are equiv-
alent. Our definition is based on the consideration that workflows are equivalent
if they provide the same tasks. Therefore, the equivalence of correct workflows
bases on equivalent tasks and identical execution order. Workflows are equiva-
lent, if they execute the same activities in exactly the same order. Therefore, the
equivalence of structured workflows (WF1 ≡ WF2) is based on equivalent sets
of workflow instance types [9].



4 Johann Eder, Wolfgang Gruber, and Horst Pichler

Equivalence of workflows Two workflows are equivalent (WF1 ≡ WF2) if
their sets of instance types are equivalent. Two instance type sets are equiv-
alent if and only if for each element of one set there is an equivalent element
in the other set.

Equivalence of instance types Two workflow instance types IT1 and IT2
are equivalent (IT1 ≡ IT2) if they consist of the same (elementary) activities
with identical execution order, where the position of or-splits and or-joins
in instance types is irrelevant, since an or-split has only one successor in an
instance type.

3 Workflow Transformations

Workflow transformations are operations on a workflow SWF resulting in a dif-
ferent workflow SWF’ (e.g. moving splits or joins) [9]. It is essential that such
changes are introduced systematically and that their impact is clearly under-
stood. Workflow model transformation is a suitable approach for this purpose
[15]. The application of pre-defined transformation operations can ensure that
the modified process conforms to constraints specified in the original model. In
the following we provide a set of transformations, which do not change the se-
mantics of the workflow according to the definition of equivalence given above.
Complex transformations can be established on this basic set of transforma-
tions by repeated application. Transformations are feasible in both directions,
i.e. from SWF to SWF’ and vice versa from SWF’ to SWF. We differ between
basic and complex workflow transformations, where complex transformations are
composed of consecutively applied basic transformations. Each transformation of
a structured workflow graph must result in another structured workflow graph.

3.1 Basic Workflow Transformations

a) Sequence Encapsulation, Coalescing Nodes and Path Separation

• Encapsulation in a Sequence (WFT-S) An activity can always be encap-
sulated between two sequence control elements (seq-split and seq-join).

• Or-Join Coalescing (WFT-JC1) In a workflow SWF with a nested or-
structure two succeeding or-joins and their according or-splits can be coalesced
into a single or-structure. It is necessary to adjust the predicates according to
the changed sequence of split-nodes S1 and S2 by applying the conjunction
(*, logical and). An example for this transformation is given in Fig. 2. This
transformation is similar to the structurally equivalent transformation presented
in [15] as far as the differences in the workflow models are concerned.

• Alt-Join Coalescing (WFT-JC2) This transformation is performed analo-
gously to WFT-JC1, by replacing each or -split with an alt-split and each or -join
with an alt-join and vice versa. Note that there are no preconditions to consider
in such a scenario.



Transforming Workflow Graphs 5

• Separating a Conditional or Alternative Path (WFT-PS) In a workflow
SWF with an or-structure or alt-structure each path can be separated by means
of duplicating join-node J1, if (and only if) J1 has no successor (see Fig. 2).

A1

S1
or-s S2

or-s
A2

A3

J2
or-j

J1
or-j

A3

S1
or-s

A1

A2
J1
or-j

WFT-JC1

<PA1>

<PA3>

<PA2><PS2>

<PA1>

A3

S1
or-s

A1

A2
J1
or-j

<PA1>

<PS2 * PA2>

<PS2 * PA3>

<PA2>

<PA3>
A3

S1
or-s

A1

A2

J1-1
or-j

<PA1>

<PA2>

<PA3>
J1-2
or-j

WFT-PS

Fig. 2. Coalescing nodes and path separation

b) Moving Joins
Moving Joins means changing the topological position of a join control element
(and-join, or-join, alt-join, or seq-join). This transformation separates the in-
trinsic instance types contained in a workflow model. Some of the following
transformations require node duplication. In some cases moving a join element
makes it necessary to move the corresponding split element as well.

• Moving Join over Activity (WFT-J1) A workflow SWF with an or-join or
an alt-join J1 followed by an activity A3 can be transformed to a workflow SWF’
applying node duplication, so that the join J1 is shifted behind the duplicates
A3-1 and A3-2 of activity A3 as shown in Fig. 3. This transformation, and all
of the following ones, can be applied to structures with any number of paths.
• Moving Join over Seq-Join (WFT-J2) A workflow SWF with an or-join
or an alt-join J1 followed by a sequence join J2 can be transformed to workflow
SWF’ applying node duplication, so that the join J1 is delayed after J2 as shown
in Fig. 3. Here, J2 will be replaced by its duplicates J2-1 and J2-2, such that
J1 is the successor of J2-1 and J2-2, and A1 is the predecessor of J2-1 and A2
is the predecessor of J2-2.
• Moving Or-Join over Or-Join (WFT-J3) In a workflow SWF with a
nested or-structure (i.e. within an or-structure with the split S1 and the cor-
responding join J1 there is another or-structure with the split S2 and the cor-
responding join J2 ), the inner join J2 can be moved behind the outer join J1,
which makes it necessary to move the corresponding split element S2 and to
adjust the predicates according to the changed sequence of S1 and S2 by con-
junction (*, logical and) or disjunction (+, logical or). This change causes the
inner or-structure to be put over the outer (see Fig. 3).



6 Johann Eder, Wolfgang Gruber, and Horst Pichler

A1
S1
or-s

J1
or-j

A2

A1
S1
or-s

J1
or-j

A2
A3

A3-1

A3-2

WFT-J1

A1
S1
or-s

J1
or-j

A2

J2
seq-j

WFT-J2 A1
S1
or-s

J2-1
seq-j

A2

J1
or-jJ2-2

seq-j

A1

A2S1
or-s

S2
or-s

A3

A4

J2
or-j

J1
or-j

A3

A4S2
or-s

S1
or-s

A1

A2

J1
or-j

J2
or.j

WFT-J3

A1
S1

alt-s

S2
or-s

A2

A3

J2
or-j

J1
alt-j

S2
or-s

S1-2
alt-j

A1-2

A3

J1-2
alt-j

J2
or-j

WFT-J5

S1-1
alt-j

A1-1

A2

J1-1
alt-j

<PA1><PA1>

<PA2>

<PA1>

<PA2>

<PA1>

<PA2>

<PA2>

<PA2>

<PA2>

<PA1>

<PA4>

<PA3>

<PS2 * PA3>

<PA1>

<PA2>

<PS2>

<PS2 * PA4>

<PA1 + PA2>

<PA3>

<PA2>

<PA3>

Fig. 3. Moving Joins (1)

• Moving Alt-Join over Alt-Join (WFT-J4) This transformation is per-
formed analogously to WFT-J3, by replacing each or -split with an alt-split and
each or -join with an alt-join. Note that there are no preconditions to consider
in such a scenario.

• Moving Or-Join over Alt-Join (WFT-J5) In a workflow SWF with a
nested alt/or-structure, i.e. within an alt-structure with the split S1 and the
join J1 there is an or-structure with the split S2 and the join J2, the inner join
J2 can be moved behind the outer join J1. This makes it necessary to move the
corresponding split element S2 and to duplicate control elements and activities
and adjust the predicates. In fact, the inner or-structure is put over the outer
structure (see Fig. 3).

• Moving Alt-Join over Or-Join (WFT-J6) This transformation is per-
formed analogously to WFT-J5, by replacing each or -split with an alt-split and
each or -join with an alt-join and vice versa.

• Unfold: Moving Join over And-Join (WFT-J8) The unfold transforma-
tion produces a structured graph-based structure with multiple sequential suc-
cessors, which means that a node, with the exception of splits, can have more
than one sequential successor. However, in each instance type of such a graph
every node except for and-splits has again exactly one successor. An or-join or
alt-join J2 can be moved behind its immediately succeeding and-join J1, requir-
ing duplication of control elements. An example for this transformation is shown
in Fig. 4. To move J2 behind J1 we place a copy of J1 behind every predecessor
of J2, so that each of these copies of J1 has additionally the same predecessor



Transforming Workflow Graphs 7

as J1 except for J2. A copy of J2 is inserted, such that it has the copies of J1
as predecessor and the successor of J1 as successor. Then J1 is deleted with all
its successor and predecessor dependencies. If J2 has no longer a successor, it
will also be deleted. Partial unfold, as it is described in [9], is a combination of
already described transformations.

A1

S1
and-s

S2
or-s

A2

A3

J2
or-j

J1
and-j

<PA1>

<PA3>

<PA2>

S3
or-s

A4

A5

J3
or-j<PA5>

<PA4>

WFT-J8

A1

S1
and-s

S2
or-s

A2

A3 J2
or-j

J1-1
and-j

<PA1>

<PA3>

<PA2>

S3
or-s

A4

A5

J3
or-j<PA5>

<PA4> J1-2
and-j

S1
or-s

S2
and-s

A1

A2

J2
and-j

J1
or-j<PS3>

<PS2>

S3
and-s

A3

A4

J3
and-j

WFT-J9
S1
or-s

S2
and-s

A2

A3 J2
and-j

J1-1
or-j

S3
and-s

A4

A5

J1-2
or-j

<PS3>

<PS2>
A5-1

A6-1

A5-2

A6-2

A5

A6

Fig. 4. Moving Joins (2)

• Moving And-Join over Or-Join or Alt-Join (WFT-J9) This transfor-
mation is introduced in [11]. Starting with a workflow SWF with an or-join J1,
which has only and-joins J21 . . . J2m as predecessors, each of these and-joins
J2i ∈ {J21 . . . J2m} has the identical set of predecessors M1 . . . Mn. Let the
sets of the predecessors of M1 . . . Mn for every and-join be S1 . . . Sm. The or-join
J1 can be moved before the predecessors of the and-joins, which necessitates the
duplicating and coalescing of control elements. The transformation is shown in
Figure 4. In order to move J1 we place a copy of J1 for every predecessor of an
and-joins J2i ∈ {J21 . . . J2m}, so that each copy of J1 has the same number of
predecessors as J1 and every copy of J1 has as predecessor one element from
every set S1 . . . Sm, so that every element from Si ∈ {S1 . . . Sm} has only one
successor. Furthermore, we place a copy of an and-join J2i with its predecessors,
so that every copied predecessor of the copied and-join J2i has exactly one copy
of J1 as its predecessor. The copy of the and-join J2 has as successor the suc-
cessor of J1, if existent. Now, the and-joins J21 . . . J2m with their predecessors
and with all their successor and predecessor dependencies are deleted.

c) Moving Splits
Moving Splits changes the position of a split control element. This transformation
separates (moving splits towards start) or merges (moving splits towards end)
the intrinsic instance types contained in a workflow model, in analogy to join
moving. Not every split can be moved: Moving alt-splits is always possible and



8 Johann Eder, Wolfgang Gruber, and Horst Pichler

for or-splits the predicates have to be considered. Another aspect of or-split
moving to be considered is that the decision which path of an or-split is selected
will be transferred towards the workflows start, so that decision uncertainties
due to or-splits will be reduced.

• Moving Split before Activity (WFT-S1) A workflow SWF with an or-
split or alt-split S1 with activity A1 as predecessor can be transformed in the
workflow SWF’ through node duplication, so that S1 is located before A1 (see
Fig. 5). Here, A1 will be replaced by its duplicates A-1 and A-2, so that S1 is
the predecessor of A-1 and A-2, and A2 is the successor of A1-1 and A3 is the
successor of M1-2. Predicates are adjusted.

• Split Moving Over Seq-Join (WFT-S2) A workflow SWF with an or-
split or alt-split S2 proceeded by a sequence split S1 can be transformed to a
workflow SWF’ through node duplication, so that the split S1 is delayed after
S2 as shown in Fig. 5. Here, S1 will be replaced by its duplicates S1-1 and
S1-2, so that S2 is the predecessor of S1-1 and S1-2, and A1 is the successor of
S1-1 and A2 is the successor of S1-2. This transformation results in a structured
workflow (see Fig. 5 for an example).

A2
S1
or-s

J1
or-j

A3

A1-1
S1
or-s

J1
or-j

A1-2
A1

A2

A3

WFT-S1

<PA2>

<PA3> <PA3>

A1
S2
or-s

J2
or-j

A2

S2
or-s

J2
or-j

A1

A2

WFT-S2

<PA2>

<PA3> <PA2>
S1

seq-s

<PA2>

<PA1>

S1-2
seq-s

S1-1
seq-s

Fig. 5. Split Moving Over Seq-Split

3.2 Complex Transformations

The basic workflow transformations described above are used to define more
complex transformations as compositions with facultatively repeated applica-
tion of these basic transformations within their composition. These complex
transformations do not change the semantics of the workflow either. Complex
transformations are established to e.g. address the time constraint incorpora-
tion problems as stated in [4]. In that paper, three complex transformations are
constructed: (1) the backward unfolding procedure, (2) the partial backward un-
folding procedure, and (3) the forward unfolding procedure. Unfolding means that
or-joins or alt-joins are moved topologically to the rear and or-splits or alt-splits
are moved as near to the start as possible, for a simple separation of different
instance types.



Transforming Workflow Graphs 9

a) Backward Unfolding
A procedure for generating an equivalent backward unfolded workflow UW for
a workflow W is described in [9]. The transformation specifies how a workflow
has to be modified to become fully unfolded. An alternative approach to unfold
a workflow is to apply the above listed basic transformations in a way that
no or-join or alt-join element has an activity as successor. Every structured
workflow can be fully unfolded, because for every constellation there is a basic
transformation that can be applied in order to move the corresponding join
topologically backwards. The following constellations have been identified:

– or-/alt-join before activity → use WFT-J1
– or-/alt-join before and-join → use WFT-J8
– or-/alt-join before seq-join → use WFT-J2
– or-/alt-join before or/alt-join → use WFT-J3, WFT-J4, WFT-J5, or WFT-J6
– separate path → use WFT-PS

The above procedure suffers from the potential explosion of the number of “du-
plicate” nodes in the unfolded workflow, since it considers each instance type
separately. This is not always desirable when discriminating between instance
types. To avoid this problem, we developed the partial unfolding technique.

b) Partial Backward Unfolding
We can unfold the workflow only where it is desired. The procedure of partially
unfolding a workflow W to a partially unfolded workflow PUW begins by se-
lecting a hot-node, with the side effect that all instance types going through the
hot-node are factored out, or intuitively, the workflow graph reachable from the
hot-node is duplicated. In principle, every node can be a hot-node. For practical
reasons, we assume that a hot-node is an immediate predecessor of an or-join.
Once a hot-node is identified, partial unfolding takes place as follows:

1. Mark all (transitive) successors of the hot-node;
2. Apply the transformations WFT-J1, WFT-J2, WFT-J3, WFT-J4, WFT-

J5, WFT-J6, WFT-J8, WFT-PS on the marked workflow elements so that
no or-join or alt-join element has an activity element as successor in the
context of the marked workflow elements;

Note that the transformation step order is of great importance to avoid unnec-
essary cancellation of operations (for details see [9]).

c) Forward Unfold Procedure
A procedure for generating an equivalent forward unfolded workflow UW for a
workflow W is described below. In order to unfold a workflow forward, the trans-
formations listed above must be applied, such that no or-split and no alt-split
element has an activity element as predecessor. Because of data dependencies
not every structured workflow can be fully forward unfolded. For the following
constellations there is a basic transformation that can be applied in order to
move the corresponding split topologically forward. The following constellations
have been identified:



10 Johann Eder, Wolfgang Gruber, and Horst Pichler

– or-/alt-split after activity without data dependencies → use WFT-S1
– or-/alt-split after seq-split → use WFT-S2
– or-/alt-split after or/alt-join → use WFT-J3, WFT-J4, WFT-J5, or WFT-J6

For the constellations or-/alt-split after and-join no transformation exists.

4 Graphical Workflow Designer

Our Graphical Workflow Designer (GWfD) has been developed as proof-of-
concept prototype, which currently supports workflow modeling, workflow trans-
formations, modeling of time and verification of time constraints. The require-
ments for the GWfD architecture were primarily platform independency, per-
sistent data management, modularity, extensibility and simplicity. To assure
platform independency the GWfD has been implemented in Java.

To achieve a modular and extensible structure we designed a three layered
architecture, where each layer provides services used by the layer below. The
Data Source Connectivity Layer represents the API to the GWfD data
source. Either relational databases (accssed via JDBC) or XML files (accessed
via JAXP) serve as data source, where workflows are durably stored, using the
relational model from our workflow metamodel [3]. The Application Layer
implements the application logic and functionalities, which are: create, modify,
and delete workflow specifications, deduce workflow models from the specifica-
tion, and perform transformations and time calculations on the workflow model.
The Presentation Layer is responsible for the intuitive graphical visualiza-
tion of workflow specifications and models. For the implementation we applied
the recommended architectural design pattern Model-View-Controller (MVC),
using the freely available Swing Component JGraph for the representation and
modification of graph-based workflow models.

Figure 6 shows the three main views of the editor: In the Edit View (on the
right hand side) a workflow can be created or modified. Here the basic build-
ing blocks of a workflow are specified, which are elementary activities (marked
with the key word ’elem’) and complex activities (marked as ’seq’, ’cond’, ’par’
and ’alt’). The workflow structure is defined using a bottom-up approach by
assigning (complex) activities to superior complex activities. If the workflow def-
inition is complete a correctness-verification of the workflow specifications can
be launched, which detects and displays modelling errors (in order to achieve
a well structured workflow graph). The graphical visualization of the specifica-
tion is presented in the Specification View, where the hierarchy of elements,
as defined in the Edit View can be examined. Finally, the Model View re-
flects an initially generated graph-based master workflow model, which allows
no transformations.

From the master model any number of Child-Models can be derived, each
displayed in its own Child-Model View, where workflow transformations can be
applied. Figure 7 and figure 8 show an example workflow graph before and after
the unfold operation, which is applied on the conditional-join M4.



Transforming Workflow Graphs 11

Fig. 6. Specification Editor, Specification View and Master Model View

In order to separate the intrinsic instance types in a workflow model, we
apply the partial unfold transformation operation. Therefore, we have to specify
the instance type to be separated. As illustrated in Figure 7, we select an ad-
jacent predecessor of an or-join and invoke the context menu by right-clicking
the mouse. When selecting the item transform in the context menu, a list of
all possible transformation operations in this context appears, which is in this
case only (partial) unfold. When selecting this operation the workflow model is
accordingly modified and the graphical representation is updated, as we can see
in Figure 8. The other transformation-operations are implemented in a similar
manner, where depending on which workflow elements are selected, the GWfD
proposes all possible transformation operations.

5 Conclusions

It is generally a good engineering principle to consider manipulations of design
artifacts, study their properties and make applications of such manipulations in-
strumental in design processes. We introduce an equivalence definition on work-
flow models based on the notion of instance types and thus capture the semantics



12 Johann Eder, Wolfgang Gruber, and Horst Pichler

Fig. 7. Before Unfold

Fig. 8. After Unfold

of workflow models as the set of admitted partial orders of their basic activities.
The main contribution of this work is the development of a set of basic schema
transformation that maintain this semantics.

There are several applications for the presented methodology. It serves as
sound basis for design tools. It enables analysts and designers to start from an
initial model and improve the quality of the model step by step. We can provide
automatic support to achieve certain presentation characteristics of a workflow
model. A model can be transformed to inspect it from different points of view. In
particular a model suitable for conceptual comprehension can be transformed to
a model better suited for implementation. For workflow evolution it is possible
to isolate those parts of a workflow which is actually changed. For cooperating
workflows it is possible to arrange a workflow model in a way, that those parts
of a workflow which are visible from outside are raised to the highest level while



Transforming Workflow Graphs 13

only internal parts of a workflow are hidden in complex activities. Workflow
definitions can also be prepared to applied in different organizational settings,
where activities are distributed among other application systems.

References

1. Work Group 1. Interface 1: Process definition interchange. Workflow Management

Coalition, V 1.1 Final(WfMC-TC-1016-P), October 1999.
2. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows.

Lecture Notes in Computer Science 1021. Springer, 1995.
3. J. Eder and W. Gruber. A Meta Model for Structured Workflows Supporting

Workflow Transformations. Lecture Notes in Computer Science 2435. Springer,
2002.

4. J. Eder, W. Gruber, and E. Panagos. Temporal modeling of workflows with condi-
tional execution paths. Lecture Notes in Computer Science 1873. Springer, 2000.

5. J. Eder, H. Groiss, and W. Liebhart. The workflow management system panta
rhei. In A. Dogac, et. al. (eds.), Advances in Workflow Management Systems and

Interoperability, Springer, 1997.
6. J. Eder and W. Liebhart. The workflow activity model WAMO. In S. Laufmann,

et.al, editors, Cooperative Information Systems, 3rd Int. Conf., CoopIS, 1995.
7. J. Eder and M. Saringer. Workflow Evolution: Generation of Hybrid Flows. in:

OOIS,Lecture Notes in Computer Science 2817. Springer, 2000.
8. D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of workflow

management: From process modeling to workflow automation infrastructure. Dis-

tributed and Parallel Databases, 3(2):119–153, 1995.
9. W. Gruber. Modeling and Transformation of Workflows with Temporal Con-

straints. Akademische Verlagsgesellschaft, Berlin, 2004.
10. D. Hollingsworth. The workflow reference model. Workflow Management Coalition,

Issue 1.1(TC00-1003), January 1995.
11. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow

modelling. Lecture Notes in Computer Science 1789. Springer, 1999.
12. P. Lawrence. Workflow Handbook. John Wiley and Sons, New York, 1997.
13. W. Liebhart. Fehler- und Ausnahmebehandlung im Workflow Management. PhD

thesis, Universität Klagenfurt, 1998.
14. O. Marjanovic and M. E. Orlowska. On modeling and verification of temporal

constraints in production workflows. Knowledge and Information Systems, KAIS,
vol 1. Springer, 1999.

15. W. Sadiq and M. E. Orlowska. On business process model transformations.
Lecture Notes in Computer Science 1920. Springer, 2000.

16. W. M. P. van der Aalst, et.al. Advanced workflow patterns. Lecture Notes in

Computer Science 1901. Springer, 2000.




