
A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures

Johann Eder, Christian Koncilia, and Karl Wiggisser

University of Klagenfurt
Dep. of Informatics-Systems

{eder,koncilia,wiggisser}@isys.uni-klu.ac.at

Abstract. We present a technique for discovering and representing chan-
ges between versions of data warehouse structures. We select a tree com-
parison algorithm, adapt it for the particularities of multidimensional
data structures and extend it with a module for detection of node re-
namings. The result of these algorithms are so called edit scripts con-
sisting of transformation operations which, when executed in sequence,
transform the earlier version to the later, and thus show the relationships
between the elements of different versions of data warehouse structures.
This procedure helps data warehouse administrators to register changes.
We describe a prototypical implementation of the concept which imports
multidimensional structures from Hyperion Essbase data warehouses,
compares these versions and generates a list of differences.

1 Introduction and Motivation

Data warehouses provide sophisticated features for aggregating, analyzing, and
comparing data to support decision making in companies. The most popular
architecture for data warehouses are multidimensional data cubes, where trans-
action data (called cells, fact data or measures) are described in terms of master
data (also called dimension members). Usually, dimension members are hier-
archically organized in dimensions, e.g., university ← faculty ← department
where B ← A means that A rolls-up to B.

As most data warehouses typically comprise a time dimension, available data
warehouse systems are able to deal with changing measures, e. g. , changing mar-
gin or sales. They are however not able to deal with modifications in dimensions,
e. g. , if a new faculty or department is established, or a faculty is split into two,
or departments are joined.

In [1] we presented the COMET approach, a temporal data warehouse meta-
model, which allows to represent not only changes of transaction data, but also
of schema, and structure data. The COMET model can then be used as basis
of OLAP tools which are aware of structural changes and permit correct query
results spanning multiple periods and thus different versions of dimension data.

Temporal data warehouses, however, need a representation of changes which
took place between succeeding structure versions of the dimension data. Typi-
cally, a change log is not available, but the data warehouse administrator has

derntl
Text Box
© Springer Verlag 2005, http://www.springer.de/comp/lncs/index.html

Eder J., Koncilia C. & Wiggisser K. (2005). A Tree Comparison Approach to Detect Changes in Data Warehouse Structures. Proceedings of the 7th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2005), August 22-26, Copenhagen, Denmark, LNCS 3589, pp. 1-10

Fig. 1: Our running Example

to create and maintain a mapping between snapshots of the dimension struc-
ture. The contribution of this paper is to assist data warehouse administrators
in detecting and describing these structural changes, i.e. insertion, deletion and
rearrangement of dimension members. Besides these structural changes in tree
structured dimensions there are also semantical changes (e.g. merging or split-
ting of dimension members) which cannot be discovered by looking at dimension
data alone. For these semantical changes we have developed a change detection
procedure based on data mining techniques [2]. Since this method analyzes out-
liers in the cell values, the computational costs are rather high. Therefore, it is
desirable to find structural changes first by mere structural comparisons with
more efficient algorithms.

For detecting structural changes, we present a novel comparison algorithm for
multidimensional data by adopting and extending an existing tree comparison
algorithm to the particularities of data warehouses. One of the main advantages
of our approach is that beside detecting changes like insert, delete and update an
element on the instance level, it also supports the detection of key modifications
(e.g. renamings of departments).

Such an approach can only be heuristic in nature and can never be complete,
as we will explain below. Therefore, this method is intended to support the
administrator but not to fully automate the task. Since dimension members can
be numerous (e.g. product catalog), the productivity gain will be significant.

Throughout the rest of this paper, we will use the following running example.
Consider a car dealer who wants to keep track of his sales. For this, he implements
a data warehouse with several dimensions. For sake of simplicity, we take a closer
look at only one of these dimensions, namely the Cars dimension.

The left tree in Fig. 1 depicts the original version of this dimension. As can be
seen, this dealer sells two different brands: BMW and Rolls-Royce. Each brand
consists of several different car types. For instance, Corniche, Phantom V and
Silver Dawn are different Rolls-Royce cars. The right tree in Fig. 1 shows the

subsequent version of this dimension. As can be seen, different modifications
have been made: first of all, both brands united and are now known as BMW &
Rolls-Royce. A new car was introduced, namely BMW 1. Another car, Phantom
V, is no longer part of the product portfolio. Silver Spirit has been renamed and
is now known as Silver Spirit II. Moreover, for all Rolls-Royce cars power is no
longer given in kW but in horsepower.

The rest of this paper is organized as follows: in section 2 we will briefly
discuss different approaches in temporal data warehousing and tree comparison.
In section 3 we will introduce the necessary data structure and operations. In
the subsequent section, we will discuss our algorithm in detail, including some
remarks on the complexity. In section 5 we will present the implementation of
our approach. We will conclude in the last section of this paper.

2 Related Work

Our approach builds on the techniques developed in two different research areas,
namely temporal data warehousing and tree comparison algorithms. As we will
discuss later, all these tree comparison approaches are not designed for the special
needs and requirements of data warehouses, i.e., the comparison of different
versions of multidimensional databases. Therefore, extensions and adoptions for
these particularities are necessary.

During the last years different temporal data warehouse approaches have
been published. [3–8] are just a few of them. They differ in different aspects. For
instance some of them support only changes on the schema level (e.g. [7]) or on
the instance level (e.g. [3] and [4]), some support changes on both, the schema
and the instance level (e.g. [8]).

There are several tree comparison algorithms. For instance, Zhang and Shasha
[9] worked on ordered trees. The Stanford DB Group proposed algorithms for
ordered [10] and unordered [11] trees. Nowadays as XML is very popular many
algorithms for comparing XML documents, which are also trees, have been de-
fined, for instance the approach of Cobena, Abiteboul and Marian [12] or the
approach of Wang, DeWitt and Cai [13].

3 Comparison of Data Warehouse Structures

3.1 The Data Structure

From our running example it is easy to see, that a DWH structure can be rep-
resented by a tree. To define our data structure formally, we introduce a tree
T = (V, E), where V = {m1, . . . ,mm} is a set of nodes and E = {e1, . . . en} is a
set of edges. A node is representing a dimension member of a DWH cube, there-
fore node mi is defined as triple mi = 〈id, label, value〉, where id is a unique
identifier for each node, label is the dimension member’s name and value is
an object containing all other characteristics – i.e. formula, alias, description,
consolidation, . . . – of the dimension member. The id may stem from the data

source or may be generated during the process of building the tree. An edge ei

is a hierarchical relation between two members and therefore defined as tuple
ei = 〈mj ,mk〉, meaning that mj is the parent of mk. E+ is the transitive closure
of E and therefore holding all ancestor relations.

Depending on the underlying DHW system, a tree can either be seen as
ordered tree or unordered tree. In an ordered tree, members have a designated
order within their parents, whereas in an unordered tree they don’t. To be able to
identify the nodes in the tree and to map them to the underlying DWH-system,
we define labels to be unique in an unordered tree. As we always can identify a
node through its parent and position within the parent in ordered trees, labels
don’t have to be unique in such a tree.

3.2 Transformations and Operations

We compare two versions of a DWH structure. Therefore we represent each
version by a tree. Between this two versions a sequence of tree transformations
occurred. Our goal is to find this transformations.

We identified five possible operations on the member level, which will be
discussed in this section. Hereafter t1 : T = (V, E) references the old version of
a tree and t2 : T = (V′, E′) references the new version. Hence V,E and V′,E′ are
the sets of nodes and edges before and after the transformation respectively.

1. DELETE (DEL(mi)): The dimension member mi is deleted from the DWH
structure. A node can only be deleted if it does not have children.
(a) Precondition: mi ∈ V, ∃ej = 〈 ,mi〉 ∈ E, @ek = 〈mi, 〉 ∈ E
(b) Operation: V′ = V\{mi}, E′ = E\{ej}
(c) Postcondition: mi /∈ V′, @e = 〈 ,mi〉 ∈ E′

2. INSERT (INS((mi, l, v),mj ,mk)): The dimension member mi with label l
and value v is inserted as child of node mj directly after node mk. If mk

is NULL, mi is inserted as first child of mj . For unordered trees mk may
always be NULL.
(a) Precondition: mi /∈ V, mj ∈ V, mk = NULL∨ (mk ∈ V∧ (mj ,mk) ∈ E)
(b) Operation: V′ = V ∪ {mi}, E′ = E ∪ {〈mj ,mi〉}
(c) Postcondition mi ∈ V′, 〈mj ,mi〉 ∈ E′

3. MOVE (MOV(mi,mj ,mk)): The dimension member mi is moved to the parent
mj or is moved within its parent mj to be directly after mk. If mk is NULL,
mi becomes the first child of mj . For unordered trees mk may be NULL.
(a) Precondition: mi ∈ V, mj ∈ V, mk = NULL∨(mk ∈ V∧(mj ,mk) ∈ E),
〈mi,mj〉 /∈ E+

(b) Operation: V′ = V, E′ = (E\ 〈 ,mi〉) ∪ {〈mj ,mi〉}
(c) Postcondition 〈mj ,mi〉 ∈ E′

4. UPDATE (UPD(mi, v)): The characteristics of a dimension member mi – i.e.
the node’s value – is changed to v.
(a) Precondition: mi = 〈id, label, 〉 ∈ V
(b) Operation: E′ = E,m′

i = 〈id, label, v〉, V′ = (V\mi) ∪ {m′
i}

(c) Postcondition: m′
i ∈ V′ = 〈id, label, v〉

5. RENAME (REN(mi, l)): The name of a dimension member mi – i.e. the node’s
label – is changed to l.
(a) Precondition: mi = 〈id, , value〉 ∈ V
(b) Operation: E′ = E,m′

i = 〈id, l, value〉, V′ = (V\mi) ∪ {m′
i}

(c) Postcondition: m′
i ∈ V′ = 〈id, label, v〉

One may argue that MOVE is not a basic operation, as it may be composed
using DELETE and INSERT. This is true for most cases, but in our context we
want to identify relations between the old and the new version of a member.
This enables us to define what we called transformation functions to transform
data between different versions [1].

We distinguish between UPDATE and RENAME because in many commercial
systems, e.g. Hyperion Essbase, the member’s name is a key and we want to
distinguish between value changes and key changes of a member.

3.3 Comparison of Dimension Members

To compare different versions of dimension members, we define a compare(x, y)
function that takes into account the various characteristics of a dimension mem-
ber. The compare(x, y) function takes two value-objects as defined above as
parameters and returns a value in the range of [0, 1] as degree of similarity.
Characteristics to be compared may for instance include formulae, user defined
attributes (UDAs), aliases, comments, shared member relations, consolidation
function and other DWH system specific attributes.

Some of these attributes are more distinguishing than others. So if for ex-
ample two nodes have exactly the same formula and three out of four UDAs in
common but a different consolidation function, it’s rather likely that they rep-
resent the same element, so compare(x, y) gives a value near to 1. On the other
hand, if the consolidation function is the same, but one is a shared member and
the other is not, it may be quite unlikely that these nodes represent the same
element, hence compare(x, y) results in a value near to 0.

We define these weighting factors to be parametrizeable. Hence the user may
decide what “similar” exactly means in his situation.

4 Treecomparison and Extensions

As tree comparison is a well explored area, there was no need to develop a new
comparison algorithm for trees. Instead we evaluated different existing methods
in order to find the ideal base for our approach.

In [10] Chawathe et al. present an algorithm for comparing two versions of a
tree. The result of the algorithm is an editscript consisting of tree transformations
which transforms t1 into t2. The time complexity of this method is O(nd + d2),
where n is the number of leaves in the tree and d is a measure for the difference
of the two versions. As we assume that there are only a few changes between
two versions, we can say that d � n. We chose Chawathe et al.’s algorithm as
base for our work because of a couple of reasons:

1. Its support of the essential MOVE operation.
2. Its low time complexity.
3. Its ready-to-use edit script as representation for changes.
4. It can be used for ordered and unordered trees.
5. It’s easy to adapt this approach for our own needs.

In this section we will introduce Chawathe et al.’s treecomparison algorithm
and our extensions to make it applicabe for our domain. We will also give a few
complexity considerations on our extension.

4.1 Treecomparison in Detail

Chawathe et al.’s algorithm is defined on ordered trees but is applicable on
unordered trees as well. Each node has a label and a value which are obtained
from the data source. Furthermore, each node has a unique identifier which can
either stem from data source or be generated during data extraction. The id
may not identify nodes over different versions, so nodes representing the same
elements in different versions may have different ids and vice versa.

The result of this procedure is a so called edit script which transforms t1 into
t2. This edit script is a sequence consisting of four atomic operations: INSERT,
UPDATE, MOVE and DELETE. As the matching of nodes between versions relies on
node labels, change of node labels (RENAME) is not supported.

Chawathe et al. define their INSERT and MOVE operations index based, mean-
ing that determining the position where to insert a node they use the index
within the children of a node. To adapt their approach to our predecessor based
data structure we modified the FindPos(x) function to return the predecessor
for the node or NULL if there is no predecessor instead of the index.

The algorithm compares two tree versions: t1 : T and t2 : T. For simplicity
reasons we write x ∈ t meaning that node x is an element of the node set V of
tree t. The comparison algorithm needs the two tree versions and a matching
set as input. The matching set M is a set of pairs (a, b) with a ∈ t1 and b ∈ t2,
where a and b represent the same member in the two versions.

As the node ids may not identify elements over versions other matching cri-
terions for nodes have been defined. Before we can give a definition of these
criterions, we have to introduce some terms: l(x) and v(x) give the label and
value of node x respectively. The function common(x, y) gives {(v, w) ∈ M|v
is leaf descendant of x and w is leaf descendant of y} the so called Common
Leaves of x and y. Finally |x| is the number of leaf descendants of node x. We
also slightly modified the original matching criterions for leaf nodes for sake of
simplicity. So two nodes x and y are seen as representing the same element iff
one of the following conditions holds:

1. x and y are leaves, l(x) = l(y), and compare(v(x), v(y)) ≥ f , where f is a
user defined threshold in the range [0, 1]. f is called Minimum Similarity.

2. x and y are inner nodes and l(x) = l(y) and |common(x,y)|
max(|x|,|y|) ≥ t for 1

2 < t ≤ 1.
We call t the Minimum Common Leaves. t is defined by the user.

It can easily be seen that in addition to their label leaf nodes are compared
using their values, but inner nodes are only compared using their descendants.
For sure changes in the values of inner nodes will be detected later on in the
update phase. Zhang [14] proposes a similar matching constraint for inner nodes.

As labels have to be equal for allowing matches, renamings of nodes – i.e.
changes of labels – can not be detected in the approach of Chawathe et al.

After the matching set M is calculated the edit script can be generated. This
happens in five phases. The phases will only be described very briefly. Please
have a look at [10] for details.

1. Update Phase: For all pairs of nodes (x, y) ∈M where v(x) 6= v(y) an update
operation is generated.

2. Align Phase: For all misaligned nodes, i.e. if the order is different in the
two versions, appropriate move operations are generated. This step may be
omitted with unordered trees.

3. Insert Phase: For all unmatched nodes x ∈ t2 an insert is generated.
4. Move Phase: For all pairs of nodes (x, y) ∈ M such that (p(x), p(y)) /∈ M

(p(x) is the parent of x) a move to the correct parent is generated.
5. Delete Phase: For all unmatched nodes x ∈ t1 a delete operation is generated.

4.2 Detecting Renaming of Nodes

With the plain algorithm described above changes of labels – which are re-
namings of dimension members in our case – cannot be detected . Hence, our
approach extends Chawathe et al.’s approach in order to detect label changes.

In the original algorithm a renaming will always result in two operations,
one DELETE and one INSERT. But this does not represent the real semantics. We
want the different versions of members to be connected over structure versions.
Therefore, we introduce the new operation RENAME, denoted as REN(x, l) where
x is the node to be renamed and l is its new label.

The renaming detection takes place after the matching set calculation but
before generating the edit script. All nodes x ∈ t1 and y ∈ t2 which are not
part of a matching are possible candidates for beeing renamed nodes. They are
added to the set OldNames O and NewNames N. We define O = {x ∈ t1|@(a, b) ∈
M • a = x} and N = {y ∈ t2|@(a, b) ∈M • b = y}

The number of renamings is limited by min(|O|, |N|). So if one of the sets
is empty, no renaming is possible. For reduction of complexity we only consider
renamings within the same parent to be detected. So parents of possibly renamed
nodes have to match. But as the parents may also be renamed and therefore
no match is possible yet, this rule may foreclose detecting many renamings.
Hence we also consider possibly renamed parents as matched parents. For this
purpose we define a set PossibeRenamings P as follows: P = {(a, b)|a ∈ O ∧ b ∈
N • (p(a), p(b)) ∈M∨ (p(a), p(b)) ∈ P}. So P is the set of all pairs of nodes from
O and N where either the parents are matched or possibly renamed. One can
create P during a Top-Down traversal of the tree or by a repeated application
of the build rule until the set remains stable.

We also define an order on P which is important for the appropriate traversal
of P in the next step. To define this order formally, we have to introduce the
level of a member x as the height of the subtree rooted at x. So leaf nodes are at
level 0, all inner nodes have levels greater than 0. We define the two operators
“<” and “>” on pairs (a, b) ∈ P as follows:

1. ∀(a, b), (x, y) ∈ P : (a, b) < (x, y)⇔ min(lev(a), lev(b)) < min(lev(x), lev(y))
2. ∀(a, b), (x, y) ∈ P : (a, b) > (x, y)⇔ min(lev(a), lev(b)) > min(lev(x), lev(y))

The order within leaf node pairs and inner node pairs respectively is irrele-
vant. So if P is traversed following this order, all pairs containing at least one
leaf node will be examined before any pair containing only inner nodes.

The similarity check for renamed nodes has in principle the same constraints
as mentioned before, but of course, labels are not checked for equality. Inner
nodes are seen as similar, if they have enough common leaves, leaf nodes are
seen as similar, if their values don’t differ too much. So we define a function
likelyRenamed(a, b) which checks if (a, b) ∈ P is a likely renaming, with f and
t as defined above, to return true iff one of the following conditions holds:

1. a and b are leaf nodes and compare(v(a), v(b)) ≥ f

2. a and b are inner nodes and |commonRename(a,b)|
max(|a|,|b|) ≥ t

The function commonRename(x, y) gives {(v, w)|v is leaf descendant of x
and w is leaf descendant of y, and (v, w) ∈ M or (v, w) ∈ L}, so all common
leaves plus all common likely renamed leaf nodes.

In an ordered tree within the calculation of likelyRenamed(a, b) one may also
take into account the siblings of the nodes. So if the predecessors and the suc-
cessors of a and b respectively, match, one may increase the degree of similarity
a bit, although it must not reach 1, as this would mean identical.

With the help of likelyRenamed(a, b) we split P into two disjoint sets Like-
lyRenamings L and UnlikelyRenamings U. L contains all pairs of nodes which
are sufficiently similar to be seen as representing the same element. All other
elements of P are moved to U. As for one node only one real renaming can have
happened, the following restriction has to hold for L: ∀(a, b), (x, y) ∈ L • a =
x ⇔ b = y. So a node can only appear in at most one pair in L. If more than
one likely renaming for one node is detected, we define the one with the highest
similarity of the involved nodes to go to L, all others are moved to U.

Because of P’s order all leaf nodes will be handled first. Likely matchings of
leaf nodes are considered in the similarity check of inner nodes, i.e. leaf nodes
contained in a likely matching will be treated as common leaf nodes. Therefore,
it is important to follow P’s order during this step, as otherwise renamed inner
nodes may not be detected correctly.

The renaming detection component cannot replace human interaction. It
relies on heuristics which may return a wrong result. Therefore, a human user
has to acknowledge all detected renamings by checking L and U. All renamings
confirmed by the user are moved into the set Renamings R. For all pairs (a, b) ∈ R
a rename operation REN(a,l(b)) is generated and (a, b) is added to M.

After this verbal description, we now formally describe the steps which are
necessary to detect renamings of nodes. This phase takes place after the matching
phase, so the matching set M already exists.

1. O = {x ∈ t1|@(a, b) ∈M • a = x}
2. N = {y ∈ t2|@(a, b) ∈M • b = y}
3. P = {(a, b)|a ∈ O, b ∈ N • (p(a), p(b)) ∈M ∨ (p(a), p(b)) ∈ P}
4. ∀(a, b) ∈ P in traversal order•

(a) if likelyRenamed(a, b) = true
i. P = P\{(a, b)}, L = L ∪ {(a, b)}
ii. ∀x ∈ t1|(x, b) ∈ P • P = P\{(x, b)}, U = U ∪ {(x, b)}
iii. ∀y ∈ t2|(a, y) ∈ P • P = P\{(a, y)}, U = U ∪ {(a, y)}

(b) if likelyRenamed(a, b) = false
i. P = P\{(a, b)}, U = U ∪ {(a, b)}

5. Let the user acknowledge all real renamings and insert them to R
6. ∀(a, b) ∈ R •

(a) Generate operation REN(a,l(b))
(b) M = M ∪ {(a, b)}

The algorithm may not detect all renamings. For instance, if a node is re-
named, its value changed very much and it is moved to another parent, then
the renaming will not be detected. For complexity purposes only renamed node
within the same parent will be considered. One may omit this restriction but
this will increase runtime complexity considerably.

4.3 Complexity Considerations

As one of the main targets during the definition of the renaming component
was not to worsen the overall runtime complexity too much, i.e. stay linear
with the number of nodes in the tree, we adhere to the restriction mentioned
before. Hereafter we will briefly calculate the space and runtime complexity of
our renaming detection to show that it does not change the overall runtime
complexity class of O(nd + d2).

Let r be the number of renamings occurred and let d be the number of edit
operations returned by the original algorithm. (In fact d is called “weighted edit
distance” which correlates with the number of edit operations.) As this algorithm
does not handle changes in labels, every renaming will result in two operations
– one DELETE and one INSERT – so r ≤ d

2 .
The size of the sets O and N is limited by the d. As P is a subset of (O×N),

the size of P is limited by d2. Since |O|+ |N| ≤ d we can drop the upper bound
for |P| to d2

4 . The sets L and U are subsets of P. As every node can only be part
of one likely renaming |L| ≤ r ≤ d

2 , R’s size has to be r ≤ d
2 .

The sets O and N may be created during the matching phase so no additional
operations are needed. In step 3 one has to check for all possible pairs, if their
parents (possibly) match. This gives at most d2

4 operations. In step 4 for every
pair (a, b) ∈ P a comparison is done. This gives again at most d2

4 operations. The

generation of RENAME operations in step 6 results in at most r ≤ d
2 operations.

So the whole renaming detection component results in at most d2+d
2 operations

which lies in O(d2). Compared to the basic algorithm’s complexity of O(nd+d2)
this doesn’t change the algorithm’s time complexity class.

5 Implementation

We implemented our approach prototypically in Java. In this prototype the
user is able to import and compare two different cubes from the commercial
multidimensional database Hyperion Essbase.

After importing both cubes from Hyperion Essbase, the prototype presents
both versions as trees (see Fig. 1). The left tree represents the old version and
right tree the new version of the data warehouse. The user triggers the matching
procedure from the interface. Two elements match, if their names are equal and
their contents are similar. The user may define what similar exactly means, i.e.
she/he can define different weighing factors for different attributes of elements.
For instance, the user could define that it is very likely that two elements are
equal, if the UDAs (User Defined Attributes) of both elements are equal.

After the matchings are calculated the systems tries to find renamed nodes.
Nodes which were not matched in the first step may be renamed nodes. Figure
2a shows how the user can acknowledge the renamings found by the system. The
resulting trees are presented to the user so she/he can evaluate, if his weight-
ing factors are adequate. After the user confirmed the matchings found by the
system, the system starts to generate the “edit script”. This edit script is a list
of operations (Insert, Update, Delete, Move and Rename) that, if applied to the
old structure versions, leads to the new structure version.

The resulting EditScript of our running example is shown in Fig.2b. Figure 2c
shows the two trees after the edit script is calculated. Different symbols are used
to depict different types of modifications that where detected. “=” means that a
corresponding, unchanged dimension member has been found, “->” means that a
member has been moved to another position, “%” means that the corresponding
member has been changed, e.g., that a user defined attribute has been modified,
“+” means that no corresponding member in the other tree could be found.
Finally, “*” means that a member has been renamed.

We also applied our prototype on a larger cube with about 16.400 members
and 8 differences – 2 inserts, 1 delete , 2 moves, 1 update, and 2 renames –
between the versions. The matching and the editscript generation took in average
0.6 and 1.15 seconds respectively. Hence see that this approach may also be
applied on large cubes in reasonable time. All changes were recognized correctly.

6 Conclusions

For the validity of OLAP queries spanning several periods of data collection
it is essential to be aware of the changes in the dimension structure of the

(a) Confirm renamings (b) Resulting EditScript

(c) After applying the comparison algorithm

Fig. 2: Outcomings of the Algorithm

warehouse. This means in particular, to have a representation of the changes (and
implicit unchanged elements) between different versions of the multidimensional
structure.

We adopted and extended a tree comparison algorithm to serve for this pur-
pose. The output of this extended algorithm is an edit script consisting of elemen-
tary change operations. We contributed in particular a module for discovering
renamings of nodes. Such an edit script facilitates the work of a data warehouse
administrator who is in charge for representing structural changes. In a proto-
type implementation based on Hyperion Essbase we were able to demonstrate
the validity of the approach, both the adequacy and validity of the algorithms
and their scalability for real data warehouses.

References

1. Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses.
In: Proc. of 3rd Intl. Conf. on Data Warehousing and Knowledge Discovery 2001.
(2001)

2. Eder, J., Koncilia, C., Mitsche, D.: Automatic Detection of Structural Changes
in Data Warehouses. In: Proc. of the 5th Intl. Conf. on Data Warehousing and
Knowledge Discovery 2003. (2003)

3. Kimball, R.: Slowly Changing Dimensions, Data Warehouse Architect. DBMS
Magazine 9 (1996) URL: http://www.dbmsmag.com/.

4. Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. In: Proc. of
the 1st Intl Conf. on Data Warehousing and Knowledge Discovery 1999. (1999)

5. Yang, J.: Temporal Data Warehousing. PhD thesis, Stanford University (2001)
6. Vaisman, A.: Updates, View Maintenance and Time Management in Multidimen-

sional Databases. PhD thesis, Universidad de Buenos Aires (2001)
7. Blaschka, M.: FIESTA: A Framework for Schema Evolution in Multidimensional

Information Systems. PhD thesis, Technische Universität München (2000)
8. Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data

Warehouses. In: Proc. of the 14th Intl. Conf. on Advanced Information Systems
Engineering 2002. (2002)

9. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM journal on computing 18 (1989) 1245–1262

10. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in
hierarchically structured information. In: Proc. of the 1996 ACM SIGMOD. (1996)

11. Chawathe, S., Garcia-Molina, H.: Meaningful change detection in structured data.
In: Proc. of the 1997 ACM SIGMOD. (1997)

12. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proc. of the 18th Intl. Conf. on Data Engineering. (2002)

13. Wang, Y., DeWitt, D., Cai, J.Y.: X-diff: An effective change detection algorithm
for XML documents. In: Proc. of the 19th Intl. Conf. on Data Engineering. (2003)

14. Zhang, L.: On matching nodes between trees. Technical Report 2003–67, HP Labs
(2003)

