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Abstract. Clustering with partial supervision finds its application in situations
where data is neither entirely nor accurately labeled. This paper discusses a semi-
supervised clustering algorithm based on a modified version of the fuzzy C-Means
(FCM) algorithm. The objective function of the proposed algorithm consists of two
components. The first concerns traditional unsupervised clustering while the second
tracks the relationship between classes (available labels) and the clusters gener-
ated by the first component. The balance between the two components is tuned
by a scaling factor. Comprehensive experimental studies are presented. First, the
discrimination of the proposed algorithm is discussed before its reformulation as
a classifier is addressed. The induced classifier is evaluated on completely labeled
data and validated by comparison against some fully supervised classifiers, namely
support vector machines and neural networks. This classifier is then evaluated and
compared against three semi-supervised algorithms in the context of learning from
partly labeled data. In addition, the behavior of the algorithm is discussed and the
relation between classes and clusters is investigated using a linear regression model.
Finally, the complexity of the algorithm is briefly discussed.

Keywords: Clustering, partial supervision, classification, class discrimination, lin-
ear regression.

1. Introduction

One of the most interesting techniques in pattern recognition, data
mining and knowledge discovery is clustering. The aim of clustering is
to find the hidden structure underlying a given collection of data points.
The task consists of partitioning the data set into clusters such that
similar data points (feature vectors) are grouped into the same cluster.
As in other machine learning paradigms, clustering can be applied using
two different modes:

− Supervised: the process of assigning data points to groups is known
as classification. This process relies on the availability of knowledge
about the data being analyzed. Knowledge here represents the set
of labels associated with data. If data is continuous (i.e. signal),
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Figure 1. Clustering spectrum with respect to knowledge

the process is known as regression. In supervised mode, the class
label and the number of classes are predefined.

− Unsupervised: the process of assigning unlabeled data points to
clusters using some similarity measure (i.e. distance-based, density-
based, etc.) is known as clustering. This process is self-supervised.
Ideally, two criteria have to be satisfied, namely intra-cluster sim-
ilarity (homogeneity) and inter-cluster dissimilarity.

These modes appear to be extreme in the sense that the former
requires complete knowledge of the data while the later uses no knowl-
edge at all. Acquiring knowledge (labeling) of the data points is always
an expensive and error-prone task that takes time and human effort. In
many situations, the data is neither perfectly nor completely labeled.
Thus, we may attempt to benefit from the available knowledge (labeled
data) to cluster unlabeled data. This form of combining labeled and
unlabeled data to generate the structure of the whole data set is known
as semi-(or partially) supervised clustering (see Fig. 1).

Labeled data points, considered as a small subset of the data, are
used to guide the process of grouping and, at the same time, to boost
the accuracy of unsupervised clustering. The goal is then to relate
clusters belonging to the same class. Unlabeled data, on the other hand,
which is generally large in size, helps to boost the performance of su-
pervised classification and to discover the hidden structure of the data.
Such a structure might not always be accessible to the data analyst.
The problem can be envisioned as shown in Fig. 2. Two classes are
considered. The first consists of four clusters (represented by circles)
and the second consists of two clusters (represented by asterisks). The
goal is to relate clusters that are in the same class.

Typical applications for clustering with partial supervision are med-
ical diagnosis where the doctor needs assistance from the machine to
identify some suspiciously labeled data points or when it is hard to
acquire labels of the whole medical data, image processing where only
some objects or regions of the image are labeled, web retrieval where
labeling all documents is a very costly activity, and information filtering
where knowledge about the user’s profile is limited. These applications
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Figure 2. Typical clustering situation

share one common aspect, that is how to take advantage of the presence
of some knowledge about the data. The proposed approach is applied
in a medical context as will be discussed in Sec. 4.

The paper is organized as follows. Section 2 surveys the state of the
art in the framework of semi-supervised clustering. Section 3 introduces
the details of our semi-supervised clustering algorithm. Section 4 dis-
cusses the analysis of the algorithm according to various aspects. Its
discrimination power is presented in Sec. 4.1. Section 4.2 shows how the
algorithm is formulated as a classifier and discusses its performance. In
Sec. 4.3, a comparison of the algorithm performance against that of
some fully supervised classification algorithms is presented. Section 4.4
describes the evaluation of the algorithm on partly labeled data. Then,
in Sec. 4.5, the algorithm is compared against three semi-supervised
learning algorithms on partly labeled data. Furthermore, the behavior
of the algorithm is outlined in Sec. 4.6. Two further aspects namely,
the relationship between clusters and classes via a linear regression
model and the complexity of the algorithm are discussed in Sec. 4.7
and Sec. 4.8 respectively. Finally, Sec. 5 highlights some future work
and concludes the paper.

2. Related Work

Several semi-supervised algorithms have been proposed. They can be
categorized based on the computational model used. The most known
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models are: the seeding model, the probabilistic model, the objective
function optimization model, genetic algorithms, support vector ma-
chines, and graph-based model. Some illustrative examples based on
these models are presented below.

Basu et al. (2002) proposed two semi-supervised algorithms based on
a seeding mechanism. These algorithms rely on the k-means algorithm.
In the first algorithm, the seeds are used to initialize the partition
centers and then updated during the clustering process. In the second
algorithm, once initialized with the seeds, the centers are not updated.
The idea here is that when seeds are noise-free, centers may be kept
unchanged.

Nigam et al. (2000) investigated a probabilistic approach for text
classification. The approach combines the Expectation-Maximization
(EM) algorithm and a naive Bayes classifier. The algorithm trains the
classifier using the labeled data only. Then, the labels of the unlabeled
samples are iteratively estimated and the classifier is re-trained using
all labeled data until convergence. Blum and Mitchell (1998) applied
the co-training technique for document clustering. In co-training, the
feature set is split into two independent subsets. Each of these is used
to train a particular algorithm. Similar work is presented by Amini and
Gallinari (2003), where a variant form of the EM algorithm is applied
to train discriminant classifiers on data that are not completely labeled.

Jeon and Landgrebe (1999) suggested a partially-supervised clas-
sification algorithm to discriminate a particular class of interest. The
goal was to design a classification algorithm given only the labeled
data points. The proposed algorithm relies on three steps. In the first
step, each data point is assigned a weight representing the likelihood
of not being in the class of interest. In the second step, the clusters
are initialized using a probabilistic unsupervised algorithm. In the last
step, clusters are refined and adjusted.

Support vector machines (SVM) have also been used to perform
clustering with partial supervision. Klinkenberg (2001) discussed the
problem of information filtering as a task that requires the use of
unlabeled documents to reduce the need for labeled documents known
to be of interest to users. A SVM algorithm is first trained on a window
of labeled data and then on a window of unlabeled data, taking care
to choose the appropriate size of the window. This approach can be
generalized to that called semi-supervised classification based on kernel
clustering (Bennett and Demiriz, 1999; Chapelle et al., 2002).

Demiriz et al. (1999) applied genetic algorithms to combine super-
vised classification and unsupervised clustering. The basic idea in this
work is to minimize an objective function that is a linear combination
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of the cluster dispersion and the cluster impurity of the form:

a ∗ cluster dispersion + b ∗ cluster impurity (1)

The first component of this formula is concerned with unsupervised
clustering while the second component controls the purity of the gen-
erated clusters and is therefore concerned with supervised classification.

Graph-based methods depart from the idea that the data (labeled
and unlabeled) is represented as a graph. The samples are represented
as nodes which are interconnected by weighted edges. The weights
indicate the similarity between samples. Basically, these approaches
use a loss function and a regularization factor (Blum et al., 2004; Zhu
et al., 2005) to propagate labels of the labeled samples to the unlabeled
samples lying in the vicinity.

More relevant to our work is the approach investigated by Pedrycz
and Waletzky (1997) which is a typical example of the objective func-
tion optimization model for clustering with partial supervision. In this
work, a modified version of the FCM algorithm was proposed to deal
with the problem of partial supervision. The objective function was
extended to include a second term that expresses the relationship be-
tween classes and clusters. In this objective function, labeled and un-
labeled data are identified by means of a boolean vector: b = [bk],
k = 1, 2, ..., N , where N is the size of the data set. bk = 1 if sample xk is
labeled, otherwise 0. Likewise, the membership values of the labeled
samples are arranged in a matrix F = [fik] such that i = 1, 2, ..., C (the
number of clusters) and k = 1, 2, ..., N . The objective function is:

J(U, V ) =

C
∑

i=1

N
∑

k=1

um

ik ‖xk − vi‖2
+ α

C
∑

i=1

N
∑

k=1

(uik − fikbk)m ‖xk − vi‖2
(2)

where N is the size of the data set, C is the number of clusters, and
U designates the partition matrix such that each uik indicates the
membership degree of the data point k to cluster i. uik = 1 means
full membership of the data point xk to cluster i, uik = 0 means that
xk does not belong to cluster i, and 0 < uik < 1 means that xk partly
belongs to cluster i. V represents the set of prototypes vi associated
with clusters. The superscript m is the degree of fuzziness associated
with the partition matrix (m > 1) (the higher m is, the fuzzier the
membership of data points to clusters). The parameter α is a scaling
factor to maintain the balance between the supervised and unsuper-
vised components of the objective function. If α = 0, the objective
function reduces to that of FCM. This modified version of the FCM
algorithm assumes that the number of classes is predetermined and
is reflected in the matrix F , hence the number of clusters equals the
number of classes.
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The approach suggested in this paper overcomes the limitation ob-
served in the approach investigated by Pedrycz and Waletzky (1997).
The point of departure is to avoid the assumption that the number
of clusters determined by the clustering algorithm should be the same
as the number of classes reflected by data labels. In many real-world
situations the available labels do not reflect the whole structure of the
data. Our proposal deals with such situations.

3. Semi-Supervised Clustering Model

The algorithm suggested here relies on FCM (Bezdek, 1981). Basically,
it extends the objective function of FCM to capture the hidden and the
visible data structures. The hidden data structure is discovered using
the FCM objective function as the first term of the proposed objective
function. The second term takes into account the visible data structure
reflected by the available labels. Thus, the objective function becomes:

J(U, V ) =
C
∑

i=1

N
∑

k=1

um
ikd

2
ik + α

C
∑

i=1

N
∑

k=1

(uik − ũik)
md2

ik (3)

such that: C
∑

i=1

uik = 1 ∀ k, 0 <
N
∑

k=1

uik < N, ∀ i (4)

and

d2
ik = ‖xk − vi‖2

2 = (xk − vi)
T (xk − vi) (5)

It is natural to assume that a class can be partitioned into several
clusters. If H designates the number of classes (labels), then C ≥ H.
Each class h contains a number of clusters Ch, hence:

H
∑

h=1

Ch = C (6)

The terms ũik of the matrix Ũ are iteratively computed as follows:

ũ
(r)
ik = ũ

(r−1)
ik − β

∂Q(F, Ũ)

∂ũik

(7)

where r is the iteration counter and

Q(F, Ũ) =
H
∑

h=1

N
∑

k=1

δk



fhk −
∑

i∈πh

ũik





2

(8)
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such that
ũik ∈ [0, 1]

In Eq. 8, F = [fhk] is an H × N binary matrix such that fhk = 1
if data point xk belongs to class h, otherwise 0. This matrix serves to
represent the labeling information of the data. δk is a binary vector
that specifies whether the data point is labeled or not (δk = 1 if the
sample k is labeled, 0 otherwise). πh is the set of clusters belonging
to class h. The way the set πh is specified will be discussed later. In
Eq. 7, β is a strictly positive parameter representing a learning rate.
The minimization of Q (Eq. 8) involving:

γhk = fhk −
∑

i∈πh

ũik (9)

aims at minimizing the difference between the assigned membership
and the sum of all membership degrees for the labeled point with
respect to all clusters involved within the same class. Unlabeled data is
handled by only the unsupervised component of the objective function
since δk = 0. Therefore, the clustering process is guided more by the
labeled data. Eq. 7 optimizes the amounts ũik, exploiting the computed
difference and the learning rate β, with the overall goal of reducing the
difference between the actual membership grade uik of a labeled data
point k to a cluster i and the evolving membership ũik expressed in the
second term of Eq. 3. The resulting matrix Ũ is used to compute the
second term in Eq. 3, that is the difference between U and Ũ . The algo-
rithm consists of two optimizations Min{J(U, V )} and Min{Q(F, Ũ)}.
Let us outline the way the two performance indices interact:

1. Initialization: at the beginning of the clustering process, the matrix
Ũ (containing the terms ũik) is initialized with the actual partition
matrix U .

2. Optimization: iterate the following two steps:

a) Optimize Eq. 7 using Eq. 8 (Optimization of Ũ).

b) Optimize Eq. 3 using the output of step 2a.

For the sake of simplicity, we set the fuzziness degree m in Eq. 3 to
2. Note also that we will use the Euclidean distance throughout this
paper. Therefore, it is advisable to normalize the values in the data
set before calculating the distance. In a real-world data set, attributes
(features) can be measured against different scales. For example, one
attribute can measure the “age” of a person and another attribute can
measure the “height”. Discrepancies resulting from the difference in
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the scale (or domain) of the attributes can distort the distance calcu-
lations. One can use decimal scaling (by dividing each feature value
by the same power of 10), Min-Max normalization (by mapping the
feature value val to val′ in the range [new minF, new maxF ], where
new minF and new maxF are computed using the actual min and
max of the data), Z-scores (by replacing the feature value with the
standardized difference from the mean of the feature), and logarithmic
normalization (by replacing the feature value with a base b logarithm).
The goal of normalization is to convert all the values in the data set
to the same proportional scale. Note also that the Euclidean distance
(L2 metric) assumes that only the overall distance is important, while
the Manhattan metric (L1) assumes that every difference is equally
important, and the L∞ metric assumes that only the largest difference
is important. Thus, the normalization process aims at rendering all
dimensions (features) equally important. Further details on various
distance metrics can be found in Hathaway et al. (2000).

To optimize Eq. 3 such that the condition in Eq. 4 is satisfied, we
partially differentiate J(U, V ) with respect to the partition matrix U
and the prototypes vi. Applying the Lagrangian multiplier for each
k = 1, 2, ..., N , we have:

J(U, V, λ) =
C
∑

i=1

N
∑

k=1

u2
ikd

2
ik + α

C
∑

i=1

N
∑

k=1

(uik − ũik)
2d2

ik − λ(
C
∑

i=1

uik − 1)

By setting ∂J(U,V,λ)
∂ ust

= 0 for a given point t and a cluster s, we get:

2ustd
2
st + 2α(ust − ũst)d

2
st − λ = 0

leading to:

ust =
2αũstd

2
st + λ

2(1 + α)d2
st

=
αũst

(1 + α)
+

λ

2(1 + α)d2
st

(10)

By setting ∂J(U,V,λ)
∂ λt

= 0, we have
∑C

i=1 uit = 1, leading to:

λ
C
∑

i=1

1

2(1 + α)d2
it

+
α

1 + α

C
∑

i=1

ũit = 1

λ =
1 − α

1+α

∑C
i=1 ũit

∑C
i=1

1
2(1+α)d2

it

Substituting the expression of λ in Eq. 10, we get:

ust =
αũst

(1 + α)
+

1− α
(1+α)

∑C

i=1
ũit

∑C

i=1
1

2(1+α)d2
it

2(1 + α)d2
st
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and ust becomes:

ust =
αũst

(1 + α)
+

1 − α
(1+α)

∑C
i=1 ũit

∑C
i=1

d2
st

d2
it

(11)

Then, by setting ∂J(U,V,λ)
∂vs

= 0 (here 0 is the null vector) and taking

the expression of d2
ik in Eq. 5 into account, we have:

−2
N
∑

k=1

u2
sk(xk − vs) − 2α

N
∑

k=1

(usk − ũsk)
2(xk − vs) = 0

Thus, vs is expressed as follows:

vs =

∑N
k=1 (u2

sk + α(usk − ũsk)
2)xk

∑N
k=1 (u2

sk + α(usk − ũsk)2)
(12)

Clearly Eqs. 11 and 12 depend on the optimal value of ũst, which is
obtained by differentiating Q in Eq. 8:

∂Q(F, Ũ)

∂ũst
= −2

H
∑

h=1

δt



fht −
∑

i∈πh

ũit



 ∗
{

1 if s ∈ πh

0 otherwise

Finally, the learning rule in Eq. 7 is transformed into:

ũ
(r)
st = ũ

(r−1)
st + 2βδt

H
∑

h=1



fht −
∑

i∈πh

ũ
(r−1)
it



 ∗
{

1 if s ∈ πh

0 otherwise
(13)

The expression γik in Eq. 9 aims at minimizing the difference be-
tween the hard membership degree {0, 1} of a data point k to a class
h and the sum of membership degrees of k to all clusters belonging
to class h. By fixing the number of clusters for each class, we can test
the desired combination of clusters and then find the optimal one. The
desired combination is specified by means of πh (see Eq. 13). It is part of
the initialization process. Now we need to know πh or, more specifically,
the amount:

ψh =
∑

i∈πh

ũik (14)

To compute ψh, a mapping matrix MH×C and a corresponding ma-
trix PH×C are used. The former specifies the relationship between the
classes and clusters while the latter specifies the number of data points
from each class in each cluster. A row in P corresponds to a class index
and a column corresponds to a cluster index. A cell P (h, i) represents
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the number of data points of class h appearing in cluster i. A data point
k from class h belongs to cluster i if the membership degree of k to i
is the highest. The membership degrees are provided in the partition
matrix U . Thus, to each class a list of clusters and the number of data
points from this class in each cluster of this list will be associated.
To force the algorithm to generate a given combination of clusters,
say (C1, ..., Ch, ..., CH), the mapping matrix M and its corresponding
matrix P are used. After sorting P in an ascending order, each row of
M contains the list of clusters ordered by dominance. The number of
clusters per class specified in the requested combination is taken into
account. The set πh of ψh contains those dominant clusters in class h.

After having formulated all required expressions, the clustering pro-
cess can then be formulated. It consists of the steps shown in Alg. 1.

Algorithm 1 : The semi-supervised clustering algorithm

1. Apply the standard FCM on the whole data set (both labeled and
unlabeled data points) to get the partition matrix U (0).
2. Determine the set πh of each class using the notion of dominance
explained below.
3. Compute the mapping matrix M(H×C) that relates classes to
clusters: M(h, i) = 1 if cluster i is in class h, otherwise 0.
4. Initialize Ũ (0) with U (0) and set the iteration counter r = 1.
repeat

repeat

a. Compute Ũ (r) using Eq. 13 (i.e. Optimize Q(F, Ũ))
until ||Ũ (r) − Ũ (r−1)|| < τ where τ is a small threshold
repeat

b. Compute V (r) using Eq. 12
c. Compute U (r) using Eq. 11 (steps b. and c. correspond to
optimizing J(U, V ))

until ||U (r) − U (r−1)|| < ǫ where ǫ is a small threshold
d. Compute the mapping matrix M (r)

until M (r) = M (r−1) or r = MaxIter

4. Analysis of the Algorithm

To analyze this algorithm, two data sets are used: a synthetic data
set and a real medical data set. The synthetic data set is generated
according to some statistical characteristics, namely a mean and a
covariance (µ,Σ). Two classes, as shown in Tab. I and plotted in Fig. 3,
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Table I. Characteristics of the synthetic data set

Characteristics µ (dim1) µ (dim2) Σ (dim1) Σ (dim2)

Classes

H1 3.0 1.0 7.0 0.5

H2

4.0 4.5 1.0 1.0

2.0 -2.5 1.0 1.0

−15 −10 −5 0 5 10 15 20
−6

−4

−2

0

2

4

6

8

Figure 3. The synthetic data set (o: class 1, *: class 2)

are used in the experiments: the first class, H1, consists of one cluster
and the second class, H2, consists of two clusters. Each cluster consists
of 100 data points. The real medical data set consists of 206 magnetic
resonance (MR) spectra (360 MHz, 37o) of human brain neoplasms
distributed into three classes as follows: 95 meningiomas (M), 37 control
samples of non-tumorous brain tissue from patients with epilepsy (E),
and 74 astrocytomas (A). The dimensionality is 550 (obtained in the
region of 0.3-4.0 ppm). A sample of this data set is illustrated in Fig 4.

We use the synthetic data in order to evaluate data sets having
spatial distributions that are difficult to handle using simple clustering
algorithms (as will be shown in Sec. 4 ), and to control their size. The
medical data set is used in order to check the algorithm for real-world
applications where data are possibly highly dimensional. A motivation
for using this data set is that fully supervised machine learning algo-
rithms applied to automatically classify this data set have not shown
high classification performance as will be discussed in Sec. 4.3. A further
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Figure 4. Magnetic resonance (MR) spectra of human brain neoplasms (3 data
points, each belongs to a class)

motivation for using it is that the MR spectra are known to be an
effective medical diagnostic tool. However, this efficiency depends on
the interpretation (labeling) of the spectra themselves. It may happen
that spectra are hard to label or are simply mislabeled due to the
difficulty in distinguishing the spectra accurately, hence their relevancy
as a typical application for the proposed algorithm.

As explained in Section 3, the algorithm consists of a two-step op-
timization process. The process of optimizing J , which requires the
optimization of Q, is repeated iteratively for a number of iterations
(MaxIter). In our experimental setting, β = 0.06 (for smooth opti-
mization) and MaxIter = 20 (the clustering process converges at most
after 20 iterations).

4.1. Discrimination Power of the Algorithm

It is interesting to see how good the algorithm is at discriminating
classes from each other. This section shows how the scaling parameter
α affects the linkage between clusters and classes in such a way that
each of the generated clusters is homogeneous (pure), containing points
from the same class only. To discuss the discrimination capability of
the algorithm, let us consider the case where data are completely la-
beled and see how the algorithm behaves. First, to identify misclassified
points in clusters, we rely on the label of the majority in each shared
cluster (containing points with different labels). Points having a label

Data Mining and Knowledge Discovery, Vol. 12, No. 1, 2006
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Figure 5. Effect of the scaling factor on the number of noisy points
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Figure 6. Effect of the scaling factor on performance index J

different of that of the majority are considered misclassified (or noisy).
Now, if we cluster the synthetic data into 6 clusters (4 for H1, and 2
for H2) and the medical data set into 6 clusters (2 clusters for each
class), set the scaling factor α to various values: 0 (that is equivalent
to the standard FCM), then 0.3, 0.5, 0.7, 0.9, and 1, and set β = 0.06
and MaxIter = 20, we obtain the results shown in Fig. 5.

When α is set to 0 (corresponding to FCM), the number of misclas-
sified data points is 13 for the synthetic data and 61 for the medical
data. As the scaling factor α increases, the number of misclassified
points decreases until each of them is assigned to one of the clusters
that fully belongs to the class having the same label. This means that
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Figure 7. Effect of the scaling factor on performance index Q

the number of misclassified points can be seen as a monotonically de-
creasing function of α (see Fig. 5). In other words, by assigning higher
values to α, we are placing more confidence in the accuracy of the data
labels. Furthermore, the first performance index J is a monotonically
increasing function of α (see Fig. 6). Due to the existence of an external
force (component 2 of Eq. 3), which aims at attracting data points to
clusters whose prototypes become more central to the data with the
same label, the distance increases between natural centers (i.e. those
generated by the standard FCM) and those generated by combining
both supervised and unsupervised components of Eq. 3. This force
relates a data point with a given label to a cluster that is not nec-
essarily close to it. The algorithm tends to put data points with the
same label in the same container. Furthermore, the algorithm aims at
discovering the real structure of the data. Non-adjacent clusters of the
same class become labeled uniformly (with the same label). In contrast,
the performance index Q decreases as the scaling factor α increases
(see Fig. 7). As explained earlier, Q achieves its minimum when for all
points k, the terms γik (see Eq. 9) reach their minima. The membership
degree of each point of a given class should be maximally spread among
the clusters part of the same class. In other words, each point joins a
pure cluster inside a class. Hence, reducing the number of misclassified
points implies a decrease in Q.

On the other hand, the expression ψh (Eq. 14) can be used to illus-
trate the evolution of clusters in terms of label discrimination. In fact,
this expression sums up the membership degree of a point k spread over
all clusters i belonging to class h. A heterogeneous cluster is involved as
many times in the computation of ψh as the number of distinct labels
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Figure 8. Effect of the scaling factor on the evolution of Ũ

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Samples

M
e
n

in
g

io
m

a

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

E
p

il
e
p

s
y

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Samples

A
s
tr

o
c
y
to

m
a

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

M
e
n

in
g

io
m

a

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

E
p

il
e
p

s
y

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

Samples

A
s
tr

o
c
y
to

m
a

a. α = 0.3 b. α = 0.9

Figure 9. Effect of the scaling factor on the evolution of U

contained in that cluster, i.e., if a cluster contains two different labels,
it is considered twice: to compute the ψh values of points in H1 and
those of points in H2. The matrix U in Eq. 14 can also be used instead
of Ũ , hence: ζh =

∑

i∈πh
uik. Figure 8 illustrates the evolution of the

overlap between classes during clustering for the medical data set. Note
how the configuration of the histograms changes as α increases. Figs. 8b
and 9b (α = 0.9) show that ψh and ζh values of points from H1 are
much higher than those of the same points with respect to H2. Consider
points from class H2 of the medical data. They have higher ψh and ζh
values with respect to H2 than with respect to H1 and H3 (see Figs. 8b
and 9b). Likewise, the same observation applies for points from the
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other classes. Hence, points can easily be distinguished when α = 0.9,
i.e. when clusters become pure. As α increases, the ψh and ζh values of
the points of a given class strengthen and those of points in the other
classes weaken.

4.2. From Clustering to Classification

In this section, the proposed semi-supervised clustering algorithm is
formulated as a classifier and its classification performance is discussed.
To the best of our knowledge, the idea of using FCM-like clustering
algorithms to build classifiers has never been studied. Here, we will
use only labeled data since the primary goal is to validate the induced
classifier which will be used later in the context of semi-supervised
learning to observe the effect of both labeled and unlabeled data on its
accuracy (see Sec. 4.4). The key issue in evaluating the performance
accuracy in assigning data points coming from the testing pool to the
correct cluster, that is, how often the classifier decision meets the actual
assignment given a testing data set. The performance rate R is:

R =
Number of correctly assigned data points

Size of the testing data set
(15)

An assignment is correct if the sample from the testing data is assigned
to one of the clusters of the correct class (i.e. the target). To do that, the
membership degree of the testing sample to clusters of the same class
are summed up. The class to which the current sample has the higher
membership degree is retained as a winning class (to be compared
against the actual class of the sample). The testing process is portrayed
in Fig. 10 and described by Alg. 2.

To evaluate the algorithm, for each of the data sets, n-fold cross
validation testing is applied to measure the classification accuracy of the
algorithm. That is, the data points are partitioned into n approximately
equal-sized groups. The points in n−1 groups are used for training the
classifier. The induced classifier is tested on the points in the hold-
out group. This is then repeated for every other combination of n− 1
groups. The overall accuracy is the average of the n computed accuracy
values. Here, a 5-cross validation is used.

To validate the obtained classification results, we use the paired t-
test of statistical significance which checks if the average of the change
between two observations differs statistically and significantly from
zero. To perform this test, the differences di between the paired ob-
servations, i (i = 1, ..,m), are evaluated in order to compute their
mean d. These paired differences should be normally distributed. Here,
we use relatively large samples (m = 30) drawn from the same interval
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Algorithm 2 : Using the clustering algorithm as a fuzzy classifier

for all data points coming from the testing pool do

a. Given a data point k whose actual class is actk, compute its
membership degree uik to each cluster i of each class h.
b. For each class h, compute the amount:

ζhk =
∑

i∈πh

uik

that is the sum of the membership degrees of k to class h.
c. To determine the winning class wink, compute:

wink = Argmax(ζhk) h = 1, ..., H

d. If the winning class wink is the actual class of the testing data
point k, i.e. actk = wink, then S = S + 1

end for

Compute the performance rate:

R =
S

|testing data set|
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scale [0,1] and are randomly drawn (from a sampling point of view),
hence it is reasonable to admit the normality condition for the means.
In our context, the t-test aims at showing whether a given classification
algorithm A performs better than another algorithm B. Therefore, the
alternative hypothesis is:

HA : µd > 0

to be compared against the null hypothesis that is H0 : µd ≤ 0. Clearly,
we are interested in one direction test that is the right-tailed test. To
perform it, we need to compute the statistic T as follows:

T =
d

Sd/
√
m

where Sd is the standard deviation of the differences. This statistic
serves to make a decision about the hypothesis acceptance. If T exceeds
a certain critical value defined by tθ, m−1, the null hypothesis is rejected
and the alternative hypothesis,HA, is satisfied. The amount tθ, m−1 is a
t-test tabled value parameterized by the number of degrees of freedom
(the number of pairs -1) and a given significance level θ = 0.051. In
our case, tθ, m−1 = t0.05, 29 = 1.699. Rejecting H0 means that the
performance of A being higher than that of B is not due to chance only,
but rather it reflects the efficiency of A (Mason et al., 1983; Snedecor
and Cochran, 1989).

We run the algorithm using various values of the scaling factor α (i.e.
0.3, 0.5, 0.7, 0.9, and 1) on different combinations of clusters. Table II
shows the results obtained. Each cell of Tab. II indicates the success rate
based on data points assignment coming from the testing pool to the
correct cluster. The results illustrate that the algorithm achieves a very
reasonable performance. Lower classification performance occurs when
α is set to small values. For such cases, the number of misclassified sam-
ples during the training phase is significantly high. In contrast, when
the number of misclassified points is small, the performance remains
high and depends on the closeness of the testing points to prototypes.

As explained in Sec. 3, πh is the set of clusters belonging to class
h (see Eq. 8). Based on the labels of data points in each cluster, πh is
determined. Impure clusters will be part of more than one class. This
will influence the computation of ζh, part of step (b) of Alg. 2. If, for
instance, a cluster i is shared by two classes h and h′, then both ζh
and ζh′ of a given data point k will involve the membership of k to the
cluster i. Numerically speaking, for instance in the case of synthetic

1 Due to name conflict, θ is used instead of α that is referred to as the significance
level in the related literature.
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Table II. Classification performance of the algorithm on the synthetic data

α 0.3 0.5 0.7 0.9 1

Combinations

(1, 2) 0.66 0.66 0.66 0.66 0.66

(2, 2) 0.33 0.33 0.91 0.92 0.93

(2, 4) 0.86 0.94 0.84 0.85 0.96

(3, 2) 0.87 0.87 0.87 0.87 0.95

(3, 3) 0.86 0.87 0.87 0.87 0.87

(3, 4) 0.85 0.86 0.86 0.86 0.86

(4, 2) 0.91 0.91 0.91 0.96 0.96

Table III. Classification performance of the algorithm on the medical data

α 0.3 0.5 0.7 0.9 1

Combinations

(2, 1, 2) 0.66 0.41 0.69 0.69 0.69

(1, 1, 3) 0.37 0.37 0.37 0.50 0.51

(2, 1, 1) 0.50 0.61 0.61 0.61 0.61

(2, 2, 2) 0.38 0.51 0.68 0.69 0.69

(2, 2, 3) 0.38 0.51 0.53 0.68 0.69

(3, 2, 2) 0.61 0.61 0.61 0.61 0.63

(4, 2, 2) 0.61 0.61 0.61 0.61 0.61

(4, 2, 3) 0.50 0.61 0.63 0.68 0.68

data with the combination (1, 2) and α = 0.3, we have π1 = {1} and
π2 = {1, 2, 3}. Clusters 2 and 3 are pure clusters of class 2, but cluster
1, while dominated by points from class 1, contains 7 data points from
class 2. Now, for a given data point k from class 1, ζ1k is the membership
of k to cluster 1 (since class 1 consists of only cluster 1), while for the
same point k, ζ2k will be the sum of the membership degrees of k to
clusters 1, 2, and 3. Therefore, executing step (c) of Alg. 2 will lead to
a misclassification. Consider the case of data point 3 which has a label
‘1’, its membership to the clusters can be represented as a fuzzy set
as follows: {0.63/C1, 0.25/C2, 0.12/C3}. This results in ζ13 = 0.63 and
ζ23 = 0.63 + 0.25 + 0.12 = 1. Therefore, the data point 3 from class
1 is assigned to class 2 although its highest membership degree (0.63)
is to cluster 1 which is dominated by class 1. As a conclusion, lower
classification performance results from impure clusters which contain
data points from more than one class.

To tackle this problem, we suggest to find the dominant class for
each cluster first. Then, given a data point k, we consider the winning

Data Mining and Knowledge Discovery, Vol. 12, No. 1, 2006



20 A. Bouchachia, W. Pedrycz

Max
1i
 (u

ik
)

Testing

sample

k

C
1

C
2

C
l

C
n

C
r

Max
h
(v

h
)

v
1

v
2

Winning

Class

C
s

C
C

v
H

..

..

..

..

u
lk

u
2k

u
1k

u
Ck

u
nk

u
sk

u
rk

Max
2i
 (u

ik
)

Max
Hi

 (u
ik
)

Winning cluster

for class 1

Winning cluster

for class H

Figure 11. Second version of the classifier

cluster, i.e. the one for which k has the highest membership degree
for each class. By comparing the resulting degrees, the winning class
will be the one corresponding to the highest degree (see Fig. 11). For
instance, in the case of k = 3 for α = 0.3 and a combination (1, 2), we
will have in the first (dominance) stage π1 = {1} and π2 = {2, 3}. The
winning cluster from class 1 is cluster 1 (u13 =0.63) and the winning
cluster from class 2 is 2 (u23 =0.25). Comparing these membership
values, class 1 is the winner and therefore, the data point 3 will be
correctly assigned.

The solution suggested here is a two-stage competition process:
intra-class competition and inter-class competition. The first level of
competition allows us to determine the winning cluster for each class,
while the second competition level allows us to find the winning class.

After running the new version of the fuzzy classifier on the same
synthetic and medical data with the same combinations, we obtained
the results displayed in Tabs. IV and V. By comparing these results
with those obtained with the first version of the classifier (see Tabs. II
and III), it is worth noticing that the latter version improves the results
and in the worst case, performs as well as the first version. This can be
checked using the t-test. To perform that, we will consider two values for
the tuning parameter α: 0.3 and 1. These are the extreme values in both

Data Mining and Knowledge Discovery, Vol. 12, No. 1, 2006



Data Clustering With Partial Supervision 21

Table IV. Classification performance of the algorithm on the synthetic data

α 0.3 0.5 0.7 0.9 1

Combinations

(1, 2) 0.88 0.88 0.88 0.88 0.88

(2, 2) 0.92 0.93 0.93 0.94 0.94

(2, 4) 0.88 0.97 0.97 0.97 0.97

(3, 2) 0.98 0.98 0.98 0.98 0.98

(3, 3) 0.91 0.94 0.94 0.96 0.96

(3, 4) 0.85 0.86 0.86 0.86 0.86

(4, 2) 0.97 0.97 0.97 0.97 0.98

Table V. Classification performance of the algorithm on the medical data

α 0.3 0.5 0.7 0.9 1

Combinations

(2, 1, 2) 0.66 0.46 0.75 0.75 0.75

(1, 1, 3) 0.49 0.49 0.49 0.60 0.61

(2, 1, 1) 0.50 0.61 0.61 0.61 0.61

(2, 2, 2) 0.48 0.57 0.68 0.72 0.73

(2, 2, 3) 0.42 0.53 0.58 0.70 0.70

(3, 2, 2) 0.63 0.66 0.66 0.66 0.66

(4, 2, 2) 0.61 0.61 0.61 0.63 0.63

(4, 2, 3) 0.58 0.61 0.66 0.70 0.70

tables. Recall that lower values of α assign more weight to the clustering
component (see eq. 3), while higher values of α allow to set a balance
between the clustering and the supervised components of the objective
function. With these two values, we will have to consider 7 × 2 = 14
classification values (all cluster combinations) for the synthetic data set
and 8 × 2 = 16 classification values for the medical data set.

To apply the t-test in order to measure the statistical significance of
those classification results, cross-validation using 30 runs is performed.
In each run, the data is randomly shuffled and the cross-validation is
performed using the two versions of the algorithm, v1 and v2, on a
specific parameter combination, that is (number of clusters per class,
α) as shown, for instance, in Tab V. In other words, for each of the
14 + 16 = 30 classification values, a vector of 30 new realizations is
computed (# realizations per classification value = # runs, i.e., 900
realizations for each version of the algorithm). In all, we will compare
14 pairs of realization vectors of length 30 for the synthetic data and
16 pairs of vectors for the medical data set.
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Table VI. Statistical evidence: version 2 vs. version 1

α 0.3 1

Data set Combination T0.3 T1

Synthetic

(1, 2) 10.6358 10.6921

(2, 2) 13.5941 4.9399

(2, 4) 3.7863 1.9153

(3, 2) 6.8311 3.2596

(3, 3) 5.7505 7.9706

(3, 4) 0.4947 0.4012

(4, 2) 5.1220 4.7883

Medical

(2, 1, 2) 4.7883 3.7503

(1, 1, 3) 10.9495 10.8384

(2, 1, 1) 0.1261 1.9326

(2, 2, 2) 8.1982 4.9203

(2, 2, 3) 5.1737 1.7034

(3, 2, 2) 3.8373 4.3746

(4, 2, 2) 0.5023 2.9555

(4, 2, 3) 8.6732 3.6740

The results of the t-test are displayed in Tab VI. They show a
strong evidence that the performance of version 2 of the algorithm
is higher than that of version 1. The statistic T compared with the
t0.05, 29 = 1.699 indicates clearly that the null hypothesis is rejected
in favor of the alternative hypothesis that is “version 2 is better than
version 1”. However, there are few cases where the null hypothesis is
not rejected, e.g. the combination (3, 4) with the synthetic data and
the combinations (2, 1, 1), (4, 2, 2) with the medical data as α is
set to 0.3. With these cases changing the way of inducing a classifier
did not help. In other words, the evidence about the membership of the
unseen (testing) samples gathered from such cluster combinations using
both algorithm coincides (winner using sum of membership degrees ∼=
winner using maximum of the membership degrees). Except these three
cases, the test shows statistical evidence that version 2 of the algorithm
outperforms version 1.

It is also worthwhile to mention that for some combinations, the
scaling factor α does not have any effect on the classification perfor-
mance (e.g. in the case of (1, 2), Tab. II). This is reflected not only in
the fact that the number of misclassified data points is the same for all
values of α, but also in the fact that the misclassified data points are
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the same. This means that the algorithm was not able to classify those
points correctly. However, if we look at other cases, we notice that as
the purity of clusters increases, the classification rate increases or at
least remains the same.

4.3. Comparative Analysis of the Classification

Performance

This section is concerned with comparing the proposed fuzzy semi-
supervised classifier against two fully supervised algorithms: multi-layer
perceptron (MLP) and support vector machines (SVM). The goal of
this comparison is to validate the clustering-based classifier proposed
in the previous section in order to give solid ground to this classifier
before using it in the context of semi-supervised learning as will be
presented in the next section.

The fully supervised models used in the comparison are powerful for
solving nonlinear classification problems. MLPs (Bishop, 1995) are the
most popular neural networks model used to approximate any function.
They use soft hyperplanes for discrimination. An MLP consists of a
number of layers, each layer consisting of a number of nodes. Each node
computes its activation level using various activation functions. In this
experiment, we apply the sigmoid function (sigm) and the hyperbolic
tangent sigmoid function (Tanh). The number of layers, the number of
nodes per layer and the learning rate are parameters.

On the other hand, we will apply least square SVMs which are a
reformulation of the standard linear SVMs (Suykens and Vandewalle,
1999). The non-linearity is introduced through the use of kernels allow-
ing non-linear mapping. In addition, the cost function is a regularized
least squares function with equality constraints that is optimized by
iterative methods. In this work, three kernel functions are used: linear
(K(x, y) = xt ·y), polynomial with degree d: K(x, y) = (x ·y+1)d, and

radial basis function: K(x, y) = exp
(

− ||x−y||2

2σ

)

.

To compare the classification performance of the semi-supervised
algorithm against the fully supervised algorithms in an objective way,
we use the medical data set. Table VII illustrates results obtained using
some neural architectures. Each cell indicates the performance rate with
respect to an architecture (with a given number of layers and a given
combination of activation functions). The number of layers, which does
not include the input layer, and the number of neurons of the hidden
layers are shown in the table. In the second column, the first activation
function is used in the hidden layers while the second is used in the
output layer. The classification performance of SVMs on the medical
data set is illustrated in Tab. VIII.
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Table VII. Classification performance using MLP nets

Hidden & Output Layers 2 3 4 5

Number of Nodes 100-3 275-100-3 275-100-50-3 275-200-100-50-3

Activation

tanh+sigm 0.59 0.65 0.75 0.68

tanh+tanh 0.45 0.47 0.55 0.49

sigm+tanh 0.47 0.81 0.77 0.68

sigm+sigm 0.85 0.81 0.78 0.78

Table VIII. Classification performance using SVMs

Kernel function Classification rate

Linear 0.45

Nonlinear: Polynomial 0.63

Nonlinear: Radial basis function 0.59

Considering the best results from Tabs. III, V, VII, VIII, we find that
the highest classification performance, which is 85%, is obtained using
a 3-layer architecture MLP (including the input layer). With SVMs,
the classification rate is low and the best value is 63%, obtained with
a polynomial kernel function. With the fuzzy classifier stemming from
the suggested algorithm, the highest value for the first version of the
classifier is 69%, while with the second version it is 75%.

These experiments show that the fuzzy semi-supervised algorithm
is competitive with fully supervised classification algorithms. In fact,
it outperforms SVMs and provides a lower classification performance
than that of the MLP. To measure the statistical significance of the
obtained results, the t-test is applied on the cross-validation using
30 runs. In each run, the data is randomly shuffled and the cross-
validation is performed using the three algorithms. As portrayed in
Tab. IX, the test shows that there is statistical evidence that the
performance of the proposed algorithm is higher than that of SVM
(T=6.9577> t0.05, 29=1.699) and therefore, the null hypothesis is re-
jected in favor of HA. The test also shows that the performance of
MLP is better than that of the proposed algorithm (with left-tailed
test, T=3.1356).

As a concluding remark, the advantage of using the proposed al-
gorithm is that there are not many tuning factors. Except the scaling
factor, the other parameters like the training rate and the number of
iterations are not that much crucial. In contrast, with fully supervised
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Table IX. Statistical evidence: SSC vs. MLP and non-linear SVM

Algorithms Statistic (T)

SSC vs. SVM 6.9577

SSC vs. MLP -3.1356

algorithms, especially MLPs, various parameters have to be adjusted
as discussed earlier and shown in Tab. VII.

4.4. Semi-supervised Clustering

After finding the optimal structure of the classifier derived from the pro-
posed clustering algorithm and discussing its classification performance
when the whole data is labeled, this section will focus on cluster-
ing/classification of partly labeled data.

Each of the data sets is split into two parts: a labeled set and a
virtually unlabeled set. In our experimental setup, the labeled set is
randomly chosen and varies from 10%, 30%, 50% to 70% of the whole
data. The remaining part of the data is dynamically and randomly
divided into two sets: “used” and “temporarily not used”. Because a
5-cross validation split is applied, the labeled and the unlabeled data
to be used serve to train and test the classifier. We will also vary the
amount of virtually unlabeled (to be effectively used) from 0%, 10%,
... to 100%. It is worth mentioning that in our data split strategy, we
have preserved the uniformity, so that no class is omitted during the
training phase. As to the parameter setting, each class for both data
sets will be represented by 2 clusters, the scaling parameter α is set to
1, the learning rate β is set to = 0.06, and MaxIter = 20. Because we
aim at combining labeled and unlabeled data to train the algorithm, in
this experiment (but also in all experiments in the rest of this paper)
α is set to 1, which means that the provided labels of the labeled data
are completely trustful and accurate (see Sec. 4.1).

Varying the ratio of labeled and unlabeled data, we can observe the
effect of increasing both labeled and unlabeled data on the accuracy
of the classifier. The results obtained for different ratios of the labeled
and the virtually unlabeled samples from the synthetic and the medical
data sets are shown in Figs. 12 and 13. Each of the figures shows the
evolution of the classification accuracy as the ratio of both labeled
and unlabeled data increases. Clearly, the classification performance
increases as the size of unlabeled data increases. However, the improve-
ment of the accuracy depends on the size of the involved labeled data.
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Figure 13. Learning with partially labeled data - Medical data

In fact, for the synthetic data set, the classification accuracy of the
proposed algorithm is 53.27% when 10% of the data is labeled and no
unlabeled samples are used. This performance increases as more labeled
data is involved achieving a level of 62.89% (with 70% labeled data).
Similar effect is observed with the medical data where the accuracy goes
up from 40% to 62.66% as more labeled data is used. Thus, increasing
the size of labeled data does improve the accuracy of the classifier.

On the other hand, using unlabeled data to train the classifier im-
proves the accuracy too. For instance, for the medical data set an
improvement of 5% is achieved (going up from 40.76% to 45.75) when
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only 10% labeled data is used and the rest is unlabeled. More improve-
ment (11.3%) can be achieved when 70% of the data is labeled. One can
easily conclude that not only the labeled data improves the accuracy
but also the unlabeled one does. Similar conclusion can be drawn from
the application of the algorithm on the synthetic data, where a clear
contribution of the unlabeled data is observed (32,67% improvement
when 70% of labeled data is used and 19,17% improvement when only
10% of the data is labeled). It is then worth stressing that the classifi-
cation performance of the proposed algorithm can be boosted by both
labeled and unlabeled data.

4.5. Comparative Study of Some Semi-supervised Learning

Algorithms

In this section, we will compare the classification performance of the
suggested algorithm against three methods (Bouchachia, 2005b): Ra-
dial basis function network (RBF) based on active learning proposed
by Bouchachia (2005a), seed-based fuzzy clustering which is a variation
of the method proposed by Basu et al. (2002), and the Gaussian mixture
models based (GMMs) on expectation maximization (EM) which is an
extension of the method proposed by Nigam et al. (2000).

The method RBF neural network based on active learning relies
on active selection of unlabeled samples to be used together with the
originally labeled ones to induce a neural classifier. Because, RBF nets
are trained using a supervised learning rule, it is necessary to devise
a mechanism to allow using unlabeled data to train these networks.
In a preprocessing step (which corresponds to sample selection), the
label of some unlabeled samples is estimated. To do that, a supervised
clustering method has been proposed to generate labeled clusters. The
centers of these clusters are used as seeds to initialize the FCM algo-
rithm. The unlabeled samples are then clustered around these seeds.
Once, the new clusters are generated, only prototypical samples are
selected and are assigned the label of the cluster to which they belong.
They are then used together with the originally labeled samples to train
the RBF classifier, while the centers of the clusters are used as radial
basis functions of the RBF classifier (Bouchachia, 2005a).

Similar to the preprocessing step of the previous method, the seed-
based clustering method uses the labeled data to generate a seed for
each class (Bouchachia, 2005b). The unlabeled samples are then as-
signed to clusters based on their similarity to the clusters’ prototypes.
These prototypes are then updated accordingly. In other words, these
seeds are used as initial prototypes to guide the process of clustering
unlabeled samples. To test this algorithm, the distance of the test-
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Figure 14. Comparative study: partially labeled synthetic data

ing samples to the generated prototypes is computed and the winning
cluster (class) is then determined (i.e., that with the min distance).

The third algorithm is an Expectation Maximization (EM)-based
classifier. The basic assumption is that the data can be represented
as a mixture of Gaussians, where each Gaussian represents a class.
Initially, the labeled data is used to estimate the characteristics - mean
and variance - of the Gaussians. In a second stage, the unlabeled data
is used to retrain the classifier using the EM method which consists of
two steps as follows. In the E-step, the labels of the unlabeled data are
probabilistically estimated. Then, in the M-step, both the originally
labeled data and the pre-labeled data are used to re-adjust the class
characteristics. This process is repeated until convergence. During test-
ing, the membership probability of the testing samples to each of the
Gaussians is computed and the winner one is found.

Figures 14 and 15 portray the results of the algorithms: the proposed
semi-supervised clustering algorithm (SSC), RBF networks based on
active learning, seed-based clustering, and GMMs based on EM. It is
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Figure 15. Comparative study: partially labeled medical data

worthwhile to mention once again that the motivation of using the syn-
thetic data is to show complicated situations where the structure and
the distribution of samples from the same class do not lie contiguously
in the same region of the space (see Fig. 3), hence the difficulty of ob-
taining good results on this data. This difficulty is first experienced with
the seed clustering algorithm whose performance accuracy deteriorates
when unlabeled data is added to the training pool (see Figs. 14a, 14b,
14c, 14d). With 10% to 70% labeled data, negative improvement has
been achieved (-4%, -8%, -12%, and -8%). Similar results but no that
much worse have been obtained using the EM-based GMMs approach.
Indeed, the improvement is -4%, -2.66%, -2.67%, and -1.34%. These
results are worse because with both approaches, the assumption is
that each class is represented by one component (cluster). Here class
two, H2, is split into two clusters separated by samples of the first
class, H1 (see Fig. 3). The initial center (i.e., called seed in the seed-
based approach and mean in the GMM approach) of H2 falls in the
region occupied by H1. Because unlabeled samples may emanate from
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both clusters of H2 (i.e. sides of class H1), the seed remains in that
“unacceptable” region. Hence, the accuracy of both classifiers cannot
increase. In summary, representing a class with one center does not help
when the samples of the same class are spread over different regions.

However, the active learning-based RBFNs approach is able to cope
with the synthetic data. Indeed, the accuracy increases as more un-
labeled data is involved. An improvement of 14.67%, 8%, 2.67%, and
5.34% has been achieved for different ratios of labeled data (i.e. 10% to
70%). The active learning-based RBFNs algorithm is capable of dealing
with partially labeled data because each class can be represented by
more than one center. These centers are actually radial basis functions
of the network (Note that radial basis functions are Gaussian functions
defined by a center and a spread). By tuning the spread of each Gaus-
sian, we can cover the whole space. Hence, active selection of samples
around these centers can be very useful for the accuracy of the classifier.

Better results are obtained using the proposed semi-supervised algo-
rithm. Indeed, the improvement of the accuracy when unlabeled data
is added to the training set is 19.17%, 29.93%, 34.44%, and 32,67%
respectively. However when only the labeled data is used, the level of
accuracy is lower than that of the active learning-based RBFNs algo-
rithm. The best results on the synthetic data set has been achieved by
the semi-supervised clustering algorithm with 95.56%. As a conclusion,
the performance of the first two approaches, seed-based and EM-based,
depend more on the structure of the data and the unlabeled data can
worsen the accuracy. The last two approaches, active learning-based
RBFNs and semi-supervised clustering, have shown their ability to
improve the accuracy independently of the structure of the data.

To check the statistical significance of these results, the t-test is ap-
plied on the cross-validation means using 30 runs. In each run, the data
is randomly shuffled and the cross-validation is performed using the
four algorithms. But, given the large number of combinations we used
(different ratios of labeled and unlabeled data), we will consider three
representative cases: (1) the amount of labeled data is smaller than that
of unlabeled (30% labeled and 70% unlabeled), (2) the amount of la-
beled and unlabeled data is the same (50% labeled and 50% unlabeled),
and (3) the amount of labeled data is larger than that of unlabeled
data (70% labeled and 30% unlabeled). As portrayed in Tab. X related
to the synthetic data, the test shows that there is a strong evidence
that seed-based, EM-based GMMs, and active learning-based RBFNs
methods perform worse than the proposed algorithm (SSC). The T
statistics clearly justify that there is only one situation (30% of the
data is labeled) where there is no evidence that SSC performs better
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Table X. Statistical evidence (synthetic data): SSC vs. other methods

Lab-Unlab 30%-70% 50%-50% 70%-30%

SSC vs. RBFNs -1.8284 1.7319 1.7485

SSC vs. GMMs 7.3074 14.9539 18.3172

SSC vs. Seed 18.2784 19.4877 18.5365

than RBFNs (T= −1.8284 < t0.05, 29=1.699). Therefore, the obtained
classification results are statistically significant.

On the other hand, the evaluation of these approaches on the medical
MR data has shown that by increasing the amount of labeled data, the
accuracy of these approaches increases (see Fig. 15a, 15b, 15c, and 15d).
Furthermore, unlabeled data does also improve the accuracy. Of course,
the amount of improvement depends on the method used. Indeed, the
highest improvement is achieved by the SSC algorithm when 10% and
30% of the data is labeled. Close improvement levels are achieved by
the same algorithm and by the active learning-based RBFNs algorithm
when 50% and 70% of the data is labeled. However, seed-based and
GMMs approaches have performed better on the MR data compared
with the synthetic data though the accuracy of GMMs in presence of
unlabeled data has not been improved when 70% of the data is labeled.

As to the statistical significance of the obtained results on the medi-
cal data, the t-test is again applied using 30 runs with randomly shuffled
data on three combinations of labeled and unlabeled ratios of data
(30%-70%, 30%-70%, 30%-70%). Table XI illustrates that in the case of
30% labeled, the t-test does not provide evidence that SSC outperforms
GMMs and RBFN since the statistic T < t0.05, 29=1.699. But, SSC does
outperform the seed-based clustering algorithm (T > t0.05, 29). With
50% labeled, SSC is better than the other algorithms (higher values
of T in favor of the alternative hypothesis HA). With 70% labeled,
the test shows that SSC still outperforms GMMs (T=2.7798), seed-
based clustering (T=2.7649) but not RBFNs (T=0.7469). Therefore,
the obtained classification results shown in Figs. 15b, 15c, and 15d are
statistically verified. In addition, in some cases (e.g., 50% labeled data),
the test has shown the superiority of the SSC algorithm which was not
clear from Fig. 15c.

In summary, the proposed semi-supervised clustering algorithm is
able to cope with the problem of learning from labeled and unlabeled
data even when the structure of data is difficult to handle. Furthermore,
the experiments have shown that both labeled and unlabeled data have
an impact on the accuracy of the proposed classifier.
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Table XI. Statistical evidence (medical data): SSC vs. other methods

Lab-Unlab 30%-70% 50%-50% 70%-30%

SSC vs. RBFNs -0.6621 4.7926 0.7469

SSC vs. GMMs -1.0158 4.6599 2.7798

SSC vs. Seed 4.0153 5.7778 2.7649

4.6. Behavior of the algorithm

It is usually of interest to find the optimal structure of the data (i.e.
the optimal number of clusters). This is generally done using some
validity measures like entropy, partition coefficient, separability index
and many other indices. In our context, we seek to cluster each class
into a certain number of clusters in such a way that the content of
each cluster becomes pure. This is done by finding the combination of
clusters that yields the smallest value of the objective Q. It is also worth
stressing that the current approach is preferable to one where classes
are clustered separately because it addresses the problem of noisy data.
If we cluster each class separately, we have no opportunity to deal with
the aspect of detecting noisy points (mislabeled and misclassified) es-
pecially when the data has a hidden cluster structure and some clusters
possibly contain data points with different labels (this aspect of noisy
points detection is not discussed here).

Moreover, the algorithm is able to follow a pre-specified cluster com-
bination. To show that, we rely on the synthetic data because it helps
visualize the behavior of the algorithm. For example, Fig. 16b shows
the contour plot for the combination (2, 4) (i.e. 2 clusters for H1 and 4
for H2). Such a combination cannot be addressed using FCM due to the
structure of this data. There are a few exceptions where the algorithm
does not follow the pre-specified cluster combination, i.e., when too
many misclassified points result from the clustering process. By giving
the data analyst the possibility to specify the number of clusters per
class, we aim not only at involving more control in the behavior of the
algorithm but also at making the algorithm more adaptive.

4.7. Relationship between classes and clusters

We can also use a linear regression model to estimate the strength of the
relationship between classes and clusters. The linear regression model
can be expressed as:

F = AŨ (16)
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Figure 16. The evolution of clusters

where F = [fhk] is defined as explained earlier. Equation 16 is a
formulation of Eq. 9, part of the Q expression in Eq. 8. The aim is
then to determine the matrix A(H,C) that represents the regression
parameters, where H is the number of classes (rows) and C is the
number of clusters (columns). The form of the residuals is given as:

ek = Fk −Aũk (17)

The goal is to find A having ek minimized; the residual sum of squares
can be written as:

Q =
N
∑

k=1

etkek =
N
∑

k=1

(Fk −Aũk)
t(Fk −Aũk) (18)
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Table XII. Regression parameters for the combination (2, 3)

C1 C2 C3 C4 C5

α = 0.3 H1 1.0015 1.0014 -0.0021 -0.0010 -0.0041

H2 -0.0128 -0.0153 1.0005 1.0006 0.9962

α = 0.5 H1 1.0012 1.0012 -0.0021 -0.0009 -0.0042

H2 -0.0109 -0.0127 1.0003 1.0004 0.9973

α = 0.9 H1 1.0009 1.0009 -0.0019 -0.0007 -0.0036

H2 -0.0081 -0.0093 1.0002 1.0002 0.9987

A can be found by setting ∂Q
∂A

= 0, hence:

∂Q

∂A
= −

N
∑

k=1

ũk(Fk −Aũk)
t = 0

⇒ −
N
∑

k=1

ũkF
t
k +

N
∑

k=1

ũk(Aũk)
t = 0

⇒ At =

(

N
∑

k=1

ũkũ
t
k

)−1( N
∑

k=1

ũkF
t
k

)

hence:

A =

(

N
∑

k=1

Fkũ
t
k

)(

N
∑

k=1

ũkũ
t
k

)−1

(19)

As an illustration, let us use the the combination (2, 3) for clustering
the synthetic data and (2, 2, 1) for clustering the medical data. Three
values of the scaling factor α are applied: 0.3, 0.5, and 0.9. The results
obtained are displayed in Tabs. XII and XIII. For the synthetic data,
the first class has a strong relationship with the first two clusters for
all values of α. This relationship is reflected by positive regression
parameters and at the same time it is negatively related to the last two
clusters. To understand which cluster strongly relates to which class for
a given α, the regression tables are to be read column-wise. For a given
cluster, the largest coefficient in the corresponding column indicates
the class (row) to which the cluster belongs. This reasoning can also
be applied on the medical data. Clearly, the coefficients of the first two
clusters are the largest in the first row corresponding to class 1. The
next two are strongly related to class 2 while the last one is strongly
related to class 3. To conclude this section, it is worth pointing out that
the regression parameters explain the relationship between clusters and
classes according to the requested combination of clusters.
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Table XIII. Regression parameters for the combination (2, 2, 1)

C1 C2 C3 C4 C5

α = 0.3 H1 1.0836 0.9203 -0.0004 -0.0008 -0.0015

H2 -0.6378 0.6244 0.9960 1.0131 -0.0072

H3 0.2406 -0.2625 -0.0020 -0.0101 1.0514

α = 0.5 H1 1.1735 0.8298 -0.0003 -0.0004 -0.0010

H2 -1.5019 1.4921 0.9954 1.0121 -0.0054

H3 0.8811 -0.8999 -0.0044 -0.0041 1.0445

α = 0.9 H1 1.1120 0.8906 -0.0010 0.0016 -0.0008

H2 1.0260 -1.0387 0.9755 1.0793 -0.0472

H3 0.7932 -0.8076 -0.0121 0.0184 1.0342

4.8. A Note on the Complexity of the Algorithm

Algorithm 1 consists of a two-level loop: (i) an outer loop of length
L = MaxIt and (ii) two nested loops: the first of length L1 for op-
timizing Q (i.e., for computing Ũ) and the second of length L2 for
optimizing J (i.e., for computing U and V ). The computation of Ũ is
of time complexity Max(O(L1CN), O(L1HN)) where C is the num-
ber of clusters, N is the number of samples, and H is the number
of classes (Eq. 13). Knowing that H < C, the time complexity will
be O(L1CN). On the other hand, the computation of each of U and
V is of complexity O(L2CN). Since these are computed sequentially,
the complexity is Max(O(L2CN), O(L2CN)) which yields O(L2CN).
Note that the formulas are split into sub-formulas and then imple-
mented sequentially. Taking the outer loop into account, the whole time
complexity is: Max(O(LL1CN), O(LL2CN)). Let L′ be Max(L1, L2),
then the overall complexity will be O(LL′CN). This means that the
size of the data, the number of iterations, and the number of clusters
have an impact on the complexity of the algorithm. For each of these
parameters, the algorithm has linear time complexity.

For the sake of illustration, let us consider a synthetic data set
consisting of 10 features, 1000 samples distributed over 10 clusters,
each cluster represents a class. Fig. 17(a) shows that the number of
iterations in the outer loop (L = MaxIter) affects the computational
time (the other parameters are frozen). The amount of time varies at
different rates over increases of the number of iterations. It is clear from
the plot that the algorithm has linear time complexity in the number
of iterations. Similar results are obtained when varying the number of
iterations in the nested loops of the algorithm (Fig. 17(b)), varying
the number of clusters (Fig. 17(c), where a class consists of several
clusters), and increasing the number of samples (Fig. 17(d)).

Data Mining and Knowledge Discovery, Vol. 12, No. 1, 2006



36 A. Bouchachia, W. Pedrycz

10 12 14 16 18 20
8

10

12

14

16

Number of iterations (MaxIter)

C
P

U
 T

im
e 

(s
)

10 12 14 16 18 20

10

11

12

13

14

15

16

Number of iterations (T)

C
P

U
 T

im
e 

(s
)

10 12 14 16 18

15

16

17

18

19

20

21

Number of clusters

C
P

U
 T

im
e 

(s
)

200 400 600 800

5

10

15

20

25

30

35

40

Number of samples

C
P

U
 T

im
e 

(s
)

(a) (b) 

(c) (d) 

Number of iterations (L’) 

Figure 17. The execution time of the algorithm after varying the key parameters

5. Conclusion and Future Work

The paper discusses a new approach to performing fuzzy clustering with
partial supervision. This approach exploits available knowledge about
data to supervise the clustering process. The experimental evaluation
has shown that the approach performs very well on different aspects
like the discrimination of classes, the ability to control the structure of
clusters, and the classification performance.

In some cases, e.g., when the data supplier is unable to classify
samples into clear partitions or when labels come from another clus-
tering source, the matrix F will have values from the interval [0,1].
Furthermore, so far the Euclidean distance is applied allowing us to
generate clusters with only a spherical shape. A further development is
to devise a mechanism so that hyperspherical clusters can be generated.
To achieve that, the algorithm should be equipped with a more adaptive
distance. Therefore, it would be interesting to investigate the algorithm
with respect to these aspects.
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