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Abstract

This paper investigates the problem of learning
from labeled and unlabeled data. A neural ap-
proach that relies on radial basis function neu-
ral networks (RBFNs) is proposed. This latter is
based on a supervised learning rule and to adapt
it for learning unlabeled data, first, labeled data
is applied to generate some labeled clusters by
means of a fully supervised clustering algorithm.
Then, these clusters are used to (partly) assign la-
bels to the unlabeled data. For this purpose, three
methods are explored. The first applies Fuzzy
C-means (FCM) to estimate the class of the un-
labeled data, the second uses a general distance
measure, and the third is a combination of the
two methods. The prototypes resulting from the
supervised and eventually refined by FCM are
used as centers of the radial basis functions of
the network. The training data consists of known
labeled data and the unlabeled data whose labels
have been estimated. The numerical evaluation,
conducted on two data sets, has shown how unla-
beled data can help enhancing the accuracy of the
neural classifier and that this latter outperforms
other semi-supervised classifiers.

1. Introduction

The combination of labeled and unlabeled data to train a
classifier has recently gained much attention from the re-
search community. The review of the literature shows that
there are several methods to approach this problem. Some
of them are:

• Seeding and constrained K-Means (Basu et al.,
2002), (Bensaid & Bezdek, 1996)

• Pre-labeling (Amini & Gallinari, 2003), (Nigam et al.,
2000)
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• Co-training and Ensemble learning (Blum & Mitchell,
1998), (Ghani, 2002), (Nigam & Ghani, 2000)

• Active learning (Abe & Mamitsuka, 1998), (Klein
et al., 2002), (Warmuth et al., 2003),

• Objective function optimization (Bouchachia &
Pedrycz, 2003),, (Demiriz et al., 2002), (Pedrycz &
Waletzky, 1997)

Of course some hybrid methods fall in more than one class.
This set of methods involves various computational models
but it seems that a large body of the work in this domain
of learning with partial supervision relies on probabilis-
tic model, especially the expectation-maximization tech-
nique and its variants, compared with other machine learn-
ing paradigms like genetic algorithms, support vector ma-
chines, and neural networks.

In this work, we investigate the application of a neural ap-
proach to deal with situation where data is only partially
labeled. Basically, we will use radial basis function neu-
ral networks. This type of neural networks is fully su-
pervised and therefore, the unlabeled data is not directly
used. We follow the second class of methods which is
pre-labeling. However, we do not exclusively rely on pre-
labeling but we also use the seeding approach as will be
explained in Section 3. From a general view, the scheme
applied here is to use the labeled samples to guide the clas-
sification process and to boost its accuracy using the unla-
beled data. We will show, via three pre-labeling methods
based on supervised clustering, how using unlabeled data
helps enhancing the accuracy of the classification of real
world data using radial basis function networks. Further-
more, a comparative study is conducted using two other
methods, namely the Seeding-based (Basu et al., 2002) and
Expectation-maximization (Nigam et al., 2000) methods.

The rest of this paper is organized as follows. Section 2
explains briefly radial basis functions networks. Section 3
discusses the way RBF networks are fitted to the problem
of learning with partial supervision. In particular, this sec-
tion introduces the fully supervised algorithm used to gen-
erate the labeled clusters and the three methods used to es-
timate the labels of the unlabeled data. The evaluation of
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Figure 1. Architecture of an RBF neural network

the approach on two data sets is presented in section 4. A
comparative study is developed in section. 4.1. Finally, sec-
tion 5 concludes the paper.

2. Radial Basis Function Neural Networks

Inspired by research in regions of the cerebral cortex and
the visual cortex, RBF networks have been proposed by
Moody and Darken (1989) as supervised learning neu-
ral networks. A RBF network is a two-layer architecture
where each unit in the hidden layer represents a radial ba-
sis function (see Fig. 1). These units measure the degree
of overlap (or matching) between input vectors and a set of
prototypes drawn from the training set.

A RBFN is a mapping M : Rn → Rm such that each input
vector xi ∈ Rn is of dimension n and vectors Cj ∈ Rn

(j = 1..H) representing the prototypes of the input vectors.
The output space of the mapping is of m-dimensions (i.e.,
size of the output vectors). The output of each RBF unit
(called also receptive field) is given as:

φj(xi) = φj(||xi − Cj ||) (1)

where ||.|| is the Euclidean norm on the input space to com-
pute the distance between the n-dimensional input i and a
hidden unit j. The function φ has various forms. Here,
the Gaussian function is considered. Therefore, φ has the
following form:

φj(xi) = exp(−
||xi − Cj ||

2

σ2
j

) (2)

where σj is the width of the jth RBF unit. Note that if
xi = Cj , φj(xi) = 1 yielding maximum overlap.

The kth output, yj(xi), of a RBF network according to the
weighted sum option is:

yk(xi) =

H
∑

j=0

φj(xi) · w(k, j) (3)

where φ0() = 1, w(k, j) is the weight of the jth receptive
field to the kth output and w(k, 0) is the bias of the kth
output.

The key problem in RBF networks is the design of the pa-
rameters of the receptive fields: the prototypes Cj and the
widths σj . Generally, prototypes representing the subre-
gions (or classes) of the input space are found using clus-
tering algorithms. It is important, however, to notice that
these algorithms determine clusters independently of any
semantical information about the real classes of the input.
In this work, the prototypes are determined via a fully su-
pervised clustering algorithm. These are directly used or
refined using the FCM algorithm depending on the method
used as will be explained in Section 3. Here, a class can
be represented by more than one cluster. Using the cen-
ters found, the widths, which are the radii of the Gaussian
basis functions, are searched. Radii should be set so that
the Gaussian from one center overlaps with near centers
to a certain extent to ensure smoothness across the input
space. The other possibility is to apply isotropic Gaussian
functions whose width is fixed according the spread of the
centers. In this work, the width is computed by consider-
ing the maximal spread of data points within the desired
region.

During the training stage, for each data point xi, yk(xi) is
computed. This can be expressed in a matrix form as:

Y = ΦW (4)

The goal of the training stage is to find the weight W . This
can be done in two ways; either through a repetitive ad-
justment of the weight using the delta learning rule or by
computing W directly, i.e.

W = Φ−1Y (5)

provided that Φ is nonsingular. To avoid the singularity
problem, a small value λ is added to the diagonal terms,
i.e., if we let ϕ = Φ + λI , then:

W = ϕ−1Y (6)

I is the identity matrix.

The direct computation is easier and provides instantaneous
training of the network.

3. RBF for Learning with Partial Supervision

As mentioned earlier, the approach that we are interested
in, is the pre-labeling approach based on seeding. In gen-
eral, according to the pre-labeling approach, the set of la-
beled data points are used to design a first version of the
classifier. This latter is then used to estimate the label of the
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unlabeled data. The final classifier is then constructed us-
ing both data, the originally labeled and the newly labeled
via the previous version of the classifier. This approach
is applied in several research works (Amini & Gallinari,
2003), (Blum & Mitchell, 1998), (Nigam et al., 2000).

In this paper, a different method is applied. We still use the
labeled data to estimate the classes of the unlabeled data,
but we refrain from performing the estimation of labels us-
ing a classifier built via the given labeled data. We rather
estimate the labels relying on clustering techniques before
training the classifier which is in this case a RBF network
using both sets of data points.

The investigated method, as graphically portrayed in Fig. 2,
consists of three steps:

• Clustering with full supervision

• Label estimation for the unlabeled data

• Training and testing the neural network

To perform the first step, we designed a supervised cluster-
ing algorithm that performs a partitioning of labeled data.
In the second step, the labels of the unlabeled data are es-
timated. To achieve this goal, we will apply three methods
as will be explained later. The last step is concerned with
training and testing the network. Here, the given labeled,
pre-labeled data (whose labels are estimated), and the clus-
ters’ prototypes resulting either from the second step (or
eventually from the first step) are used as input to the net-
work. The first two types of input are used to train the net
and the last is used as the center of the radial basis func-
tions corresponding to the neurones of the hidden layer of
the RBF network.

In the following, the details of the first two steps are given.

3.1. Clustering with full Supervision

Let X = [x]kp k = 1..N, p = 1..n be a set of data points
to be classified, where N is the size of X and n is the di-
mensionality of data. This data consists of two sets: X l of
size N l and Xu of size Nu where the former designates
the labeled data and the latter the unlabeled data such that
X = X l ∪ Xu.

The labeled data X l is used to get some initial data repre-
sentatives which are actually the prototypes of some clus-
ters. Naturally, a class can consist of many clusters. There-
fore, the class distribution will be completely covered. If
the data points of some class are separated by some data
points of another class, clusters will be generated systemat-
ically without any topographic constraint. We aim, through
this algorithm, at generating pure clusters independently
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Figure 2. Process of training the RBF net

of the distribution of classes in the space. The algorithm,
which is one-pass algorithm, is described as follows:

1. First data point x1 is assigned to the first cluster whose
prototype, M1, is that data point.

2. Initialize a value σ that indicates the maximal distance
between a data point xi and the prototype Mj of its
cluster Cj (it indicates the spread of the cluster). The
larger σ, the larger will be the clusters. Therefore, the
value of σ has to be reasonable so that the size and
the number of clusters get also reasonable. Note that
the number of clusters corresponding to the number of
radial basis functions is usually chosen as 50%-60%
of the size of the training data. Therefore, σ is chosen
to get such a number of clusters.

3. For each next data point xi do:

(a) Compute the distance d(xi, Mj) between the
data point at hand and each cluster of the same
class, hence the supervision aspect of this algo-
rithm.

(b) Retain the computed distance d and the index q

of the cluster that allows for the smallest distance
to that data point.

(c) If d ≤ σ, xi is assigned to cluster q

(d) If d > σ, a new cluster is created.
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(e) Recompute the prototype of the cluster to which
the new point xi is assigned as follows:

Mq =
1

N q

∑

xi∈Cq

xi (7)

where N q is the current number of data points
belonging to cluster q. (Note that Mq is an n-
dimensional vector).

It is important to stress again that the number of centers is
not equal to the number of classes and each cluster has a
known label. For the neural representation of data, a class
is represented by more than one radial basis function. The
number of centers Mj resulting from this step will be used
in the next step to (partly) label the unlabeled data.

3.2. Labeling the Unlabeled Data

To assign a label to the unlabeled data points, three methods
are applied:

3.2.1. PROTOTYPICALITY-BASED METHOD

According to this method, the centers Mj are used as seeds
to cluster the whole data, labeled and unlabeled, using the
Fuzzy C-Means algorithm (FCM). The idea here is that the
prototypes to be generated are guided by the labeled data
in their move towards an optimal position within the whole
data. The FCM algorithm (Bezdek, 1981) is performed
through the alternating calculation of the membership val-
ues of data points µji, i = 1..N and the cluster centroids
vj , i = 1..C. The cluster centroids are calculated by

vj =

∑N
i=1 µm

jixi
∑N

i=1 µm
ji

(8)

while the partition matrix that represents the membership
values is computed by:

µji =
1

∑C
k=1

(

dji

dki

)2/(m−1)
(9)

where the superscript m indicates the fuzziness degree.
The higher m, the fuzzier the clusters’ borders. dij is the
Euclidean distance between the data point xi and the pro-
totype of the cluster j.

After running FCM of the whole data, the initial centers Mj

are refined and transformed into vj . Now, clusters contain
labeled and unlabeled data. Therefore, the labels of the
most prototypical unlabeled data can be estimated. This is
done by assigning the label of the cluster to which the data
point strongly belongs. This is computed by determining
the winning cluster:

L(xi) = arg max
j

(µji), j = 1, ..., C (10)

where xi is a data point, L indicates the class label, and
µ is the membership function that expresses the degree of
belongingness of data points to clusters standing for a fuzzy
set. Note that if a data point belongs with the same strength
to two or more clusters having different labels, this data
point will not be labeled. The resulting estimated labeled
data is Xe.

Therefore, the data set used to train the RBF net will consist
of the labeled data and the unlabeled data for which a label
has been estimated, hence, X training = X l ∪ Xe. The
centers vj computed by Eq. 8 will be used as prototypes
for the hidden RBF units (see Eq. 2).

3.2.2. DISTANCE BASED METHOD

According to this method, the labels of the unlabeled data
are estimated directly by using a distance measure. In
this paper, we use a more general distance investigated by
Gustafson and Kessel (1979) and which is defined as fol-
lows:

d2(xi, vj) = (xi − vj)
T Σj(xi − vj) (11)

where Σj is the norm-inducing matrix of the cluster j. By
setting Σj to the inverse of the covariance matrix associated
with the cluster j, the distance becomes the Mahalanobis
distance.

Once, the distance of the unlabeled data to the clusters gen-
erated by the supervised clustering algorithm is computed,
those points for which the distance is lower than a given
threshold are selected and labeled accordingly. The goal is
to consider only the unlabeled data that falls in the nearest
neighborhood of the known prototypes representing the la-
beled data. Here also, only a subset of the unlabeled data
is assigned a label Xe ⊂ Xu. Therefore, the training data
will consist only of the given and the pre-labeled Xe. The
centers Mj computed by means of Eq. 7 are used as proto-
types for the hidden RBF units.

3.2.3. COMBINED METHOD

This method is actually a combination of the distance-
based method and the prototypicality-based method. Ini-
tially, the fully supervised clustering algorithm is per-
formed producing some prototypes. These prototypes are
used as seed to the FCM algorithm to cluster both labeled
and unlabeled data. A preliminary label for the entire un-
labeled data is assigned by computing the the maximum
membership value of each data point to all clusters. Af-
terwards, the distance-based method is applied. Of course,
some points which have been considered to be candidates
for labeling will be discarded. The second step can be seen
as a filter that allows to label a subset of the unlabeled data
points. Once selected, these data points and the given la-
beled data points are used to train the neural network.

13



4. Numerical Evaluation

To evaluate the approach presented here, two data sets are
used: the cancer and the wine data set (Hettich et al., 1998).
The cancer data consists of 683 instances with 9 features,
while the wine data set consists of 178 instances with 13
features. Both data sets are splitted into three parts: train-
ing set, testing set, and the unlabeled set used. First, an
amount of data is randomly selected to be considered as
the labeled set. In our experimental setup, this set varies
from 2%, 4%, 6%, 8%, 10%, 25%, 40%, 55%, and 70%.
Once the amount of labeled data is determined, the remain-
ing part of the data is dynamically and randomly divided
into two parts: used and temporarily not used. Because
a 10-cross validation split is applied to test the classifier,
the first part will be used for training and testing the clas-
sifier. This part is variable depending on the amount of la-
beled and unlabeled data that we are interested in. In fact,
to examine the effect of increasing the unlabeled data, we
will vary the amount of unlabeled (to be effectively used)
from 0%, 10%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, to
100%.

We are primarily interested in evaluating four aspects:

• The effect of the unlabeled data on the accuracy of
the classifier. This is done by varying the amount of
unlabeled data.

• The effect of the labeled data on the classification ac-
curacy by increasing the amount of labeled data.

• The effectiveness of each of the pre-labeling methods

• Comparing the proposed algorithm against other ap-
proaches (see Sec. 4.1).

It is worth mentioning that in our data split strategy, we pre-
serve the uniformity, so that no class is omitted during the
training phase. All classes are represented by some sam-
ples.

The results obtained on the wine data set are plotted in
Figs. 3, 5, 6, 9, and 10. Those related to the cancer data
set are plotted in Figs. 4, 7, 8, 11, 12, and 13. Each of
the figures shows the percentage of labeled and unlabeled
data used, and the evolution of the accuracy when increas-
ing the amount of each of these. The dashed lines illustrate
the performance ratio when the RBF network is trained on
only the given number of labeled data. In addition, the ef-
fectiveness of the three proposed methods is illustrated.

Figure 3 and Fig. 4, related to the wine and the cancer data
set respectively, show a typical evolution of the classifica-
tion performance as the number of unlabeled data increases
although the size of labeled data is very small lying in the
range of [2%, 10%] of the whole data. The difference that
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Figure 3. Prototypicality-based, wine data, labeled in [2%,10%],
unlabeled in [0%,100%]
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Figure 4. prototypicality-based method, cancer data, labeled in
[2%,10%], unlabeled in [0%,100%]

can be noticed is that the level of accuracy is high when
using the cancer data compared with the wine data. The
highest performance value obtained on this latter is 73.04%
obtained when the classifier is ”boosted” with an amount
of unlabeled data that is 70% of the available data which
is equivalent to 102 data points and when 10% (equivalent
to only 16 data points) of the labeled data is involved. The
highest performance ratio for the cancer data set is 96.86%
obtained when an amount of unlabeled data that is 50% of
the available data which is equivalent to 277 data points and
when 10% (equivalent to only 61 data points) of the labeled
data is involved.

Furthermore, it is worth stressing that for the wine data
set, the first pre-labeling method, that is the prototypicality-
based method, has allowed to obtain the best results com-
pared with the distance-based and the combined method
when evaluated on the same range of labeled data (i.e.,
[2%, 10%]) as shown in Figs. 5, and 6. However, the com-
bined method with a performance ratio of 69% outperforms
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Figure 5. Distance-based method, wine data, labeled in
[2%,10%], unlabeled in [0%,100%]

the distance-based method that achieves in the best case
65%. But, the successive application of the distance crite-
rion after fulfilling the prototypicality condition has worsen
the good results obtained using the prototypicality-based
method only, given the difference between them in terms
of accuracy level. More importantly, the highest improve-
ment of accuracy is achieved when only 2% of the data
is labeled. In fact, an improvement of 27% is obtained us-
ing the prototypicality-based method on only 2% of labeled
data, while for the combined method, we obtained an im-
provement of 14% when using 4% of labeled data. The
smallest improvement, 11%, has been achieved through the
distance-based method on 2% of labeled data as shown in
Fig. 5. These results show the over-performance of the
prototypicality-based method.

Very similar results have been obtained on the cancer data
set although the level of accuracy is higher approaching
97.31%. This value is achieved by the combined method.
This latter has allowed to get the highest improvement of
accuracy, namely 11.76%. However, close performance
and performance improvement values are also obtained
by the prototypicality-based and distance-based methods,
96.86%, 97.31% with a maximum improvement of 11.31%
and 11.61% respectively (see Figs. 4, 7, 8). Again all these
values result after using only 2% of the labeled data. In
summary, the combined method, applied on the cancer data
with an amount of labeled data lying in the range of [2%,
10%], produced the best results.

Now, let us examine the evolution of the classifier when
the labeled data is in the interval [10%,70%] of the whole
data. As illustrated in Figs. 9, 10, 11, 12, 13, the rhythm of
the performance progress decreases slightly. For the wine
data set, a ratio of 9.43% accuracy improvement is obtained
when using the prototypicality-based method with 10% la-
beled data only. The highest classification performance,
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Figure 6. Combined method, wine data, labeled in [2%,10%], un-
labeled in [0%,100%]
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Figure 7. Distance-based method, cancer data, labeled in
[2%,10%], unlabeled in [0%,100%]
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Figure 8. Combined method, cancer data, labeled in [2%,10%],
unlabeled in [0%,100%]
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Figure 9. prototypicality-based method , wine data, labeled in
[10%,70%], unlabeled in [0%,100%]
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Figure 10. prototypicality-based method, wine data, labeled in
[10%,70%], unlabeled in [0%,100%]

82%, is achieved when the amount of labeled data is set to
70% of the whole data using this method. The two remain-
ing methods achieve 8.13% improvement with 10% labeled
data and a maximum accuracy of 64.27% and 65% respec-
tively. With the cancer data set, the maximum classifica-
tion accuracy, which is 99.01%, is obtained by all methods
when the amount of labeled data amounts to 70% of the
whole data. The maximum accuracy improvement, which
is 3.18%, is achieved by the combined method.

The set of experiments conducted have shown that the ac-
curacy level of the RBF classifier can be boosted using un-
labeled data. This is true until certain level. If the amount
of labeled data that is available is big, then learning with
unlabeled data does not contribute too much. The classi-
fier, proposed in this paper, works quite well when only
few labeled data is available. Furthermore, two of the pre-
labeling methods, prototypicality and combined methods,
have shown better results compared with the distance-based
method.
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Figure 11. prototypicality-based method , cancer data, labeled in
[10%,70%], unlabeled in [0%,100%]
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Figure 12. Distance-based, cancer data, labeled in [10%,70%],
unlabeled in [0%,100%]

4.1. Comparative Study

In this section, we will compare the approach suggested
here against two further methods: Seeded-Kmeans pro-
posed in (Basu et al., 2002) and the basic expectation max-
imization method as proposed in (Nigam et al., 2000) us-
ing both data sets. The first algorithm uses the labeled
data to generate some seed for each class. The unlabeled
data is then assigned to clusters based on their similarity to
the clusters’ prototypes which are consequently updated.
The second algorithm consists of two steps. First, an EM-
classifier is built using only the labeled data. The basic
assumption is that the data can be represented as a mixture
of Gaussians. The characteristics - mean and variance- are
then computed. During the second step of the algorithm,
the unlabeled data is used to retrain the classifier as fol-
lows. In the E-step, the labels of the unlabeled data are
estimated. Then, in the M-step, both the originally labeled
data and the unlabeled data are used to re-adjust the char-
acteristics of the Gaussians accordingly. This process is
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Figure 13. Combined method , cancer data, labeled in
[10%,70%], unlabeled in [0%,100%]

repeated until convergence.

Figures 13, 14, and 15 portray the results of the three algo-
rithms, the neural-based algorithm of this paper, Seeded-
Kmeans algorithm, and the EM algorithm. The plots show
that the algorithm proposed in this paper has performed
much better than the EM and Seeded-Kmeans algorithms.
It is also noticeable that although the Seeded-Kmeans out-
performs the EM in terms of general accuracy, this latter
looks more stable. In fact, as the amount of unlabeled data
increases, the performance of the EM algorithm improves.
On the contrast, the Seeded-Kmeans algorithm provides
higher accuracy as the amount of labeled data increases.
For instance, for 5% labeled data, the accuracy is always
higher than 95.03% while with the EM, the accuracy is al-
ways less than 94.52%. This observation can be general-
ized to other amounts of labeled data (see Fig. 14, and 15).
Note that very similar results are obtained with the wine
data set.

As to the proposed neural-based algorithm, an accuracy of
99.11% is achieved when 70% of the labeled data and 80%
of the available unlabeled data are used. This accuracy has
not been achieved by any of the other algorithms. In gen-
eral, as labeled or unlabeled data increases, the accuracy
level of the neural-based algorithm increases. In summary,
the proposed method has shown to be better than the EM
and seeding-based methods.

5. Conclusion

This paper is concerned with the problem of using both
labeled and unlabeled data to train a radial basis function
network. The usefulness and the contribution of unlabeled
data is shown. Three methods are proposed and evaluated.
Two of them have shown a better performance in the con-
text of learning from hybrid data. Furthermore, the paper
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Figure 14. EM on cancer data
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Figure 15. Seeded-Kmeans on cancer data

shows that neural networks, and in particular, radial ba-
sis function can work very well in this context. In fact,
compared with seed-based and expectation-maximization
methods, our approach has shown better performance.

As a future work, we are interested in comparing the
approach discussed here with further methods like those
based on support vector machines and genetic algorithms.
So far, there is a large body of methods dealing with learn-
ing from labeled and unlabeled data but there is no com-
parative study. It is also interesting to check other types of
neural networks in terms of adaptation and accuracy com-
pared with the RBF networks.
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