
Modelling Changes in Ontologies

Johann Eder, Christian Koncilia

University of Klagenfurt
Dep. of Informatics-Systems

{eder, koncilia}@isys.uni-klu.ac.at

Abstract. Ontologies are shared conceptualizations of certain domains.
Especially in legal and regulatory ontologies modifications like the pass-
ing of a new law, decisions by high courts, new insights by scholars, etc.
have to be considered. Otherwise, we would not be able to identify which
knowledge (which ontology) was valid at an arbitrary timepoint in the
past. And without this knowledge we would for instance not be able to
identify why a user came to a specific decision.
In this paper we will show how a simple ontology description formal-
ism, namely a directed graph, has to be extended to represent changing
knowledge. Furthermore, we will present the operations that are neces-
sary to manipulate such an ontology. Finally, we will discuss different
implementation approaches.

1 Introduction

Ontologies are generally seen as a promising approach for adding semantics to
data processing. Semantic Web, semantic web services, enterprise integration are
but a few research avenues where ontologies are researched with high expecta-
tions.

An ontology is a shared conceptualization of a certain domain [Gru03]. It
describes the concepts of a domain, their properties and their relationships.
Much work has already been done to analyse multiple heterogeneous ontologies,
their integration and their coexistence.

Surprisingly little attention was drawn to the fact that the reality an ontology
describes and/or the view of the observers sharing the conceptualization on the
reality may change. In legal and regulatory ontologies the passing of a new law,
decisions by high courts, new insights by scholars, new entities in the real world
which require a new or changing interpretation of legal concepts are changes
which have to be considered.

There are three different basic approaches of how to deal with such changing
knowledge. First of all, we could simply ignore modifications, and describe the
world in a completely static way. Obviously, this approach is of limited suitability
for real world applications. The second approach is a little bit more sophisticated:
by adopting our knowledge description we always represent and store the most
recent version of knowledge. This is the most frequent approach nowadays. It
has the disadvantage that we lose knowledge about the past. If for example we

derntl
Text Box
© Springer Verlag 2004, http://www.springer.de/comp/lncs/index.htmlEder J. & Koncilia C. (2004). Modelling Changes in Ontologies. Proceedings of the On The Move - Federated Conferences (OTM 2004), October 25-29, Agia Napa, Cyprus, LNCS 3292, pp. 662-673.

Degree Course

Schema

Databases

Data

Warehouses

Degree Course

Schema

CS1:

DB-Systems

Data

Warehouses

b)a)

Fig. 1. Our running example represented as ontology graph

study an old court decision and we do not know the state of the law at decision
time and at case time, we probably will not be able to understand the verdict.
So only working with the most recent ontology is definitively not satisfactory.
The third approach takes into account that the knowledge about modifications
is again knowledge that may be important. In this approach we would have to
describe different versions of knowledge and the relations between these versions.
The last two approaches are well known in the temporal database community.
The first one is called (Schema) Evolution, the latter one (Schema) Versioning
[JD98].

During the last years several specification languages for ontologies have been
developed. These includes DAML+OIL which is now going to become the Web
Ontology Language OWL (both languages stem from the area of description
logics), Loom, Open Knowledge Base Connectivity (OKBC), or Common Logics
(CL).

In this paper we will discuss how a simple ontology description formalism,
namely a directed graph, has to be extended to represent changing knowledge,
and which extensions to such a “specification language” would be meaningful.

In order to achieve this goal the following extensions to an ontology descrip-
tion are necessary:

• Temporal extension: ontology data (classes and relations between classes)
has to be time stamped in order to represent their valid time (the time in
which a fact is true in the real world [JD98]).

• Ontology versions: by providing time stamps for ontology data we have
to cope with different versions.

• Ontology selection: Our system has to support functions to select a specific
version of an ontology.

The remaining parts of the paper are organized as follows: In section 2 we
introduce a running example. In section 3 we discuss related work. After that,
we will introduce our model of a versioning graph in section 4. Three different

2

implementation approaches will be briefly discussed in section 5. Finally, we will
conclude in section 6.

2 Running Example

Through the rest of this paper we will use the following example to show that
ontology versioning is vital for the correctness and expressiveness of ontologies
and ontology queries: consider that we built an ontology that covers different
degree course schemes at a university.

In 1990 the first version of a degree course schema for the Computer sci-
ence study has been adopted. In this version, the database course was called
“Databases”. Furthermore, it was necessary to pass the exam of this course in
order to take the “Data Warehouses” lecture. This first version is depicted in
Fig. 1a).

Now consider that in 2000 a new version of this regulation became effective.
In this new version the “Databases” has been renamed to “CS1: DB-Systems”.
Moreover, it is no longer required to pass this lecture in order to take the “Data
Warehouses” lecture. This recent version is depicted in Fig. 1b).

If we would use a simple ontology evolution approach, i.e., if we would rep-
resent and store only the most recent version of our ontology, we could get
problems with applications or other ontologies that use our ontology. In the best
case, these ontologies / applications would recognize that the ontology changed
and report an error. In the worst case, the new version doesn’t produce syntax
errors in the application / ontology but leads to wrong results.

Moreover, there are many cases in which the knowledge that an ontology
changed and how it changed is not enough. In fact, we often need to know
during which time interval a specific ontology version was valid! Just imagine
that a student took “Databases” after he took “Data Warehouses”. In order
to answer questions like “was this correct according to the regulations valid in
1995?” we would have to timestamp each ontology version.

3 Related Work

Our approach builds on the techniques developed for temporal databases, schema
evolution and schema versioning of databases [FGM00, JD98]. However, as shown
and discussed in [NK03b] these approaches designed for database systems can-
not be directly applied to ontologies. The authors of [NK03b] argue, that the
main reasons for this are: (1) ontologies are both at the same time, schema and
instances. (2) In contrast to (relational) database systems ontologies themselves
incorporate semantics. (3) Ontologies are more often reused. (4) Ontologies lack
of centralized control mechanisms as they are de-centralized by nature. (5) The
data model of an ontology is usually richer. (6) Finally, they argue that in on-
tologies there is no clear distinction between classes and instances.

In [NK03a] the same authors present their framework for ontology evolution.
In this paper the authors focus mainly on ontology evolution and not on ontology

3

versioning. As a consequence they do not provide any information about the
valid time of a specific ontology. They discuss different change mechanisms and
present an ontology of change operations.

In [KOF02] an ontology versioning methodology is presented. The authors
present a tool (called OntoView) that helps the user to compare different versions
of an ontology. Therefore, the systems analyzes changes between two version
on a structural level. After that, the user may specify relations between the
ontology versions, i.e., he may specify whether two concepts are “identical” or
if a “conceptual change1” took place. The main focus of this paper is how to
detect what changed from one version of an ontology to another one. Again,
information about the valid time has not been considered.

4 Ontology Versioning Graph

A good definition of what an ontology is has been given in [Gru03]. In this paper,
the author defines an ontology as an explicit specification of a conceptualization
of a domain. This explicit specification may be specified by using one of the
languages mentioned above, e.g., DAML+OIL, OWL or CL. Another possibility
to specify such a conceptualization is to use a graph where nodes represent
concepts, and edges represent the relations between two concepts [MWK00].
Figures 1 a) and 1 b) are examples for ontology graphs.

Until now we described intuitively how an ontology may be represented as a
graph. We will now extend this description to define a temporal extension that
supports valid time. Therefore, we have to introduce:

• Time model: Our model uses a linear and discrete model of time. This
means that each point in time (each instant2) can be mapped to an integer,
i.e., the model is isomorphic to the natural numbers, and each time point
has a single successor. Furthermore, A chronon Q is defined as “a non-
decomposable time interval of some fixed, minimal duration” [JD98]. In our
model, a chronon is the smallest unit of time. Or, in other words, the time
axis is a series of chronons.

• Valid Time: The term Valid Time is well-known in the temporal database
community. It defines the time, in which a fact (in our model a fact may
be both, a class or the relation between two classes respectively) is true in
the real world. A fact may have more than one time points or time intervals
during which it is true in the modelled world. [JD98]

• Time Intervals: In order to introduce valid time in an ontology all classes
and all relations between these classes may exist in several versions. Each
version must have a time interval [Ts, Te[representing the valid time where

1 According to the authors a conceptual change is “a change in the way a domain is
interpreted...”

2 We use the term Instant as defined in [JD98]: “An instant is a time point on an
underlying time axis.”

4

Ts is the beginning of the valid time, Te is the end of the valid time. We
represent that a fact is valid until now by Te = ∞.
Please note that we use the syntax [A,B[to represent a half-closed interval.
In this half-closed interval the instant A is included, whereas the instant B

is excluded.

Until now we intuitively defined our model of an ontology versioning graph.
We will now give a formal definition of such an ontology versioning graph.

Definition 1 (Ontology Versioning Graph Definition): A ontology ver-
sioning graph G is defined as a tupple G = (N, E) where N is a set of classes C

and E is a set of relations R between these classes.

Definition 2 (Class Definition): A class C is defined as a triple C =
(label, V T, S) where label is the label of the class (usually a noun representing a
concept), V T is a tuple [Ts, Te[representing the valid time of the class, and S is
a set of slots (attributes and properties assigned to a class).

Definition 3 (Relation Definition): A relation R is defined as a n-tuple
R = (Cf , Ct, type, V T) with Cf ∈ N∧Ct ∈ N where Cf represents the class from
which the relation leads to the class Ct, type represents the the type of the relation
(i.e., InstanceOf , SubclassOf , ...) and V T is a tuple [Ts, Te[representing the
valid time interval of the relation.

Figure 2 a) shows an example of such a ontology versioning graph, where
nodes represent the classes Databases, Data Warehouses, Degree Course Schema
and CS1: DB-Systems and edges represent relations between these classes. As
can be seen, each node and each edge has a time stamp representing its valid
time. For sake of readability, we did not depict different types of relations and
slots in this example.

4.1 Versioning Operations

Some basic operations have to be defined in order to manipulate a ontology
versioning graph G. These operations enable us to insert, update and delete
classes, or nodes respectively and to insert, update and delete relations, or edges
respectively. They are defined as follows:

1. Insert Class: inserts a new class C ′ which is valid at a given time interval
I = [Ts, Te[into a given graph G = (N, E). This operation results in a graph
G′ = (N′, E) where N

′ = N ∪ C.
2. Update Class: updates a class C which is an element of N of a given graph

G = (N, E) to C ′ at an instant T . This operation results in a graph G′ =
(N′, E) where N

′ = N∪C ′. The valid time of C ′ is [T,∞[and the valid time
of C is [TC

s , T [where TC
s is the start of the valid time of C as it was before

the update operation.
This operation should not be confused with the UPDATE operation known
from relational database systems. In fact updating a class in a temporal
sense means to create a new version of the class concerned, e.g., because an
attribute of that class changed, or an attribute of that class was deleted, etc.

5

3. Delete Class: “deletes” a class C (whose ending valid time equals ∞, i.e., has
not been set yet) which is an element of N of a given graph G = (N, E) and
sets its ending valid time to T . This operation results in a graph G′ = (N′, E′)
where N

′ = N \ C ∪ C ′ and C ′ = C except that the end of the valid time of
C ′ is set to T . Formally C ′ = (C.label, [C.Ts, T [, C.S).
Furthermore, we have to set the end of the valid time of all relations that
lead to or from class C. Hence, if Ec is the set of all relations that lead to
or from class C (Ec = {x|x ∈ E • x.Cf = C ∨ x.Ct = C}), and E

′

c is the set
where the end of the valid time of all relations from or to C has been set to
T then E

′ = E|Ec ∪ E
′

c.
Again, this operation should not be confused with the DELETE operation
known from traditional relational database systems. In fact, this operation
does not delete anything - it sets the end time of the valid time of a class.

4. Insert Relation: inserts a new relation R which is valid at a given time
interval I = [Ts, Te[into a given graph G = (N, E). This operation results in
a graph G′ = (N, E′) where E

′ = E ∪ R.
5. Update Relation: updates a relation R which is an element of E of a given

graph G = (N, E) to R′ at an instant T . This operation results in a graph
G′ = (N, E′) where E

′ = E∪R′. The valid time of R′ is [T,∞[and the valid
time of R is [TC

s , T [where TC
s is the start of the valid time of R as it was

before the update operation.
This update operation can be used to change the type of a relation, e.g., to
change a relation of type PartOf to a SubclassOf relation.

6. Delete Relation: “deletes” a relation R which is an element of a given graph
G = (N, E) and sets its ending valid time to T . The ending valid time of R

has to be equal to ∞. This operation results in a graph G′ = (N, E′) where
E
′ = E \ R ∪ R′ and R′ = R except that the end of the valid time of R′ is

set to T . Formally R′ = (R.label, [R.Ts, T [, R.S).

4.2 Integrity Constraints for a Ontology Versioning Graph

To bring in the concept of temporality into an ontology has several consequences -
one is, that some constraints have to be fulfilled in order to guaranty the integrity
of our model. In this paper, we will not fucus on a detailed description and
definition of all integrity constraints. However, we have to define some constraints
that we will need later on in this paper.

A basic constraint is that for all time stamps [Ts, Te[in our model (Ts ≤
Te) ∨ (Te = ∞) has to be true, i.e., a class may not end before it starts.

Furthermore, the valid time of a relation r = (Cf , Ct, type, V T) of a graph
G = (N, E) between two classes Cf and Ct has to be within (to exist in) the
valid time of both classes.

∀r ∈ E : exists in(r, Cf) ∧ exists in(r, Ct) (1)

where exists in(Xi,Xj) describes that the time interval representing the
valid time of temporal component Xi is a subset of the time interval representing

6

[2000, ∞ [

[2000, ∞ [

a) b) c)

[1990, 2000[

[1990, 2000[

Degree Course
Schema

[1990, ∞ [

Databases
[1990, 2000[

Data
Warehouses
[1990, ∞ [

[2000, ∞ [

[2000, ∞ [

Degree Course
Schema

[1990, ∞ [

CS1:DB-Systems
[2000, ∞ [

Data
Warehouses
[1990, ∞ [

[1990, 2000[

[1990, 2000[

Degree Course
Schema

[1990, ∞ [

Databases
[1990, 2000[

Data
Warehouses
[1990, ∞ [

CS1:DB-Systems
[2000, ∞ [

Fig. 2. a) A ontology versioning graph and its deduced versions b) and c)

the valid time of temporal component Xj . A temporal component is a node or
an edge in a ontology versioning graph G = (N, E).

Formally, we can define exists in(Xi,Xj) as follows:

exists in(Xi,Xj) =

{

True if ∀t ∈ [TXi
s , TXi

e [•t ∈ [T
Xj

s , T
Xj

e [

False otherwise
(2)

4.3 Selecting a Specific Ontology Version

The graph defined in section 4 consists of all possible ontology versions. Or, in
other words, we do not define several ontologies where each ontology represents
a version of an ontology. In fact, we define a single ontology which is composed
of all ontology versions.

Figure 2 a) shows the ontology versioning graph for our running example. As
can be seen, this ontology versioning graph consists of two versions b) and c). In
this example, version b) is valid during the interval [1990, 2000[and version c)
with a valid time [2000,∞[. In this example the chronon (as defined in section
4) is a year. Hence, [1990, 2000[represents that this version is valid from 1990
until 1999 (2000 is not included as we use half-closed intervals).

Intuitively we can say that if we represent all timestamps [Ts, Te[of all tem-
poral components within our ontology versioning graph on a linear time axis, the
interval between two consecutive timestamps on this axis represents the valid
time of an ontology version.

Formally, we can define such an ontology version G(T) (an ontology version-
ing graph valid at instant T) over a graph G = (N, E) as follows:

G(T) = (NT, ET) (3)

where
NT = {x|x ∈ N ∧ x.Ts ≤ T ≤ x.Te} (4)

and
ET = {x|x ∈ E ∧ x.Ts ≤ T ≤ x.Te} (5)

7

VT: [1, 4] VT: [5, 6] ... VT: [9, �]

Meta-Ontology

OV1 OV2 ... OVn

Fig. 3. Using a Meta-Ontology over ontology versions OV1, ..., OVn

Intrinsically, we should define that all nodes (classes) referenced by edges
(relations) have to be valid in the selected ontology version G(T). However,
there is no need to check whether both classes Cf and Ct of all edges R =
(Cf , Ct, type, V T) are valid within the selected ontology version. In fact, this
constraint can be deduced from the constraint (1) as defined in section 4.2. We
will give a proof of this in appendix A.

This leads us to the definition of a stable interval. Intuitively, we can say
that such a stable interval is a view defined on an ontology versioning graph
that is valid for a given time interval [Ts, Te[. All classes and relations within
this ontology versioning graph are also valid for the given time interval. In other
words, within such a stable interval there cannot exist different versions of classes
or relations. In the example shown in Fig. 2 we have two stable intervals: the
first is valid during the interval [1990, 2000[, the second one during the interval
[2000,∞[.

Formally, we define a stable interval as follows: Let T be the set of all instants
of changes, i.e., T = {x.Ts|x ∈ N∨x ∈ R}∪{x.Te|x ∈ N∨x ∈ R}. For the example
shown in Fig. 2 a) T would be T = {1990, 2000,∞}. Then a stable interval is
a interval [Ts, Te[between to contiguous instants Ts and Te of the set T. Two
instants T1 and T2 (with T1 ≤ T2) are contiguous if there exists no instant T

such that T1 < T < T2.

5 Implementation Approaches

In general, our approach for ontology versioning can be implemented in three
different ways:

• Meta-Ontology: The basic idea of the first approach is depicted in Fig. 3.
In this approach a meta-ontology is used to store the valid time of different
ontology versions and to deal with inter-structure relationships between these
ontology versions. The main advantage of this approach is that any ontology
description language (for instance, OWL) can be used to define the different
ontology versions.

• Standard Extension: In this approach a temporal extension for a stan-
dard representation language for ontologies has to be developed. The main
advantage of this approach is that a uniform standard produces uniform
solutions. Hence, such a standard could be defined in a way in which for
instance temporal reasoning is supported.

8

• Using Standard: The last approach uses the techniques that a standard like
OWL, or DAML+OIL provides. In contrast to an extension of the standard
this approach will result in different solutions. Hence, it cannot be guaranteed
that for instance reasoning algorithms take into account the temporal aspects
of an ontology in a correct way.

We will now briefly discuss how OWL may be used to implement an ontology
as presented in section 4. We would like to emphasize that the implementation
discussed here is only one possible (straight forward) implementation. Other
approaches are of course feasible. Moreover, we will see that using OWL to
represent valid time has its drawbacks.

OWL is a ontology representation language defined by the W3C Web On-
tology Working Group. In contrast to other languages like for instance RDF
(Resource Description Framework) OWL provides more expressiveness [AvH04].

However, the support for ontology versioning is very limited in OWL. A tag
versionInfo may be used to describe the current version of the ontology, for
instance by using RCS/CVS keywords. Nevertheless, this tag doesn’t contribute
to the logical meaning of the ontology at all. The following example how this
versionInfo tag may be used has been taken from [Wor02]:

<Ontology rdf:about="">

<versionInfo>$Id: Overview.html,v 1.4 2002/07/31

19:44:09 henri Exp $</versionInfo>

<rdfs:comment>An example ontology</rdfs:comment>

<imports rdf:resource="http://www.w3.org/2002/07/owl"/>

</Ontology>

Furthermore, two tags may be used to indicate whether or not two ontologies
are compatible: owl:backwardCompatibleWith and owl:incompatibleWith.

The tags owl:DeprecatedClass and owl:DeprecatedProperty may be used
to indicate that a class or property is likely to change.

We will now discuss how OWL may be used to incorporate time stamps,
i.e., versioning information, into an ontology. In order to achieve this we have
to time stamp the nodes and edges of our graph model, i.e., the Class and
ObjectProperty (a binary relation between two classes) elements in OWL.

First we have to define a DatatypeProperty (a binary relation between
classes and datatypes) that represents the beginning of the valid time interval,
and one to represent the end of the valid time interval. The following statement
defines such a DatatypeProperty called vtStart whose range is a date:

<owl:DatatypeProperty rdf:ID="vtStart">

...

<rdfs:rangerdf:resource="http://www.w3.org/2001/XMLSchema#date"/>

</owl:DatatypeProperty>

Please note that “...” indicates that there is additional text. The full example
can be downloaded at http://www.ifi.uni-klu.ac.at/Publications.

9

Now, we can use this property to define the valid time interval of classes. This
can be done by using owl:hasValue to “restrict” the class to a specific value
that the property vtStart must have. For instance, we can use the following to
specify the beginning of the valid time interval (January, 1st 1999) for the class
DegreeCourseSchema:

<owl:Class rdf:ID="DegreeCourseSchema">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#vtStart"/>

<owl:hasValue rdf:datatype="&xsd;date">

1990-01-01

</owl:hasValue>

</owl:Restriction>

...

Something similar can be used to describe the valid time of a relation between
two classes, i.e., an ObjectProperty in OWL.

According to the integrity constraint defined in section 4.2 the valid time of
a relation between two classes has to be within the valid time of both classes.
Usually, the starting time of the valid time interval of the relation will be equal
to the starting time of one of the classes. Accordingly the ending time of the
relation is usually equal to the ending time of one of the classes. If so, we could
use the isDefinedBy tag to define this relation between valid times:

...

<rdfs:isDefinedBy>

<Databases rdf:ID="620.202">

<ValidTime rdf:datatype="&xsd;date"

>2000-01-01</ValidTime>

</Databases>

</rdfs:isDefinedBy>

One drawback of the example given above is that the valid time of the relation
is in fact bound to the valid time of an instance of the class and not the class
itself.

Another approach would be to use the versionInfo tag mentioned before:

<owl:ObjectProperty rdf:ID="attendanceOrder">

<rdfs:domain rdf:resource="Databases"/>

<rdfs:range rdf:resource="DataWarehouses"/>

<owl:versionInfo rdf:datatype="&xsd;date"

>vtStart: 1990-01-01</owl:versionInfo>

...

All these techniques to incorporate valid time into OWL ontologies have
their drawbacks. The first drawback is that such an ontology would not support

10

reasoning as long as the time dimension is not considered in a correct way. For
instance, such a temporal reasoning algorithm should consider that if A → B

(where A → B means “A semantically implies B”) and B → C then A → C is
only true if there exists at least one timepoint which is within the valid time of
both, A and C.

Another drawback is, that OWL would not guarantee that all integrity con-
straints are considered in a correct way. For example, the valid time of a relation
between two classes has to be within the valid time of both classes.

Taking all together we conclude that all these techniques are “extralogical”.
This means that they don’t incorporate any additional (temporal) semantics
that maybe used by a reasoning algorithm or any other application.

6 Conclusions

We have shown a novel approach to represent changes in ontologies. By introduc-
ing information about the valid time of concepts represented in ontologies, we
are able to identify which knowledge (which ontology) was valid at an arbitrary
timepoint in the past. This enables a user of an ontology to understand a verdict
if, for instance, he studies an old court decision and doesn’t know the state of
the law at decision time and at case time.

Incorporation of other time dimensions will be one of the main research
avenues that we will investigate in the near future. This includes for instance
transaction time (the time when a fact is current in the database [JD98], i.e., in
the system). For instance, this time dimension is important when we would like
to deal with regulations and laws that become effective retroactively.

References

[AvH04] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In
Handbook on Ontologies, pages 67–92. Springer-Verlag, 2004. In [SS04].

[EJS98] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research
and Practise. Springer-Verlag (LNCS 1399), 1998.

[FGM00] E. Franconi, F. Grandi, and F. Mandreoli. Schema Evolution and Versioning:
a Logical and Computational Characterisation. In Workshop on Foundations
of Models and Languages for Data and Objects, 2000.

[Gru03] T. Gruber. A Translation Approach to Portable Ontology Specification. In
Knowledge Acquisition 5(2):199-220. World Wide Web Consortium (W3C),
2003.

[JD98] C. S. Jensen and C. E. Dyreson, editors. A consensus Glossary of Temporal
Database Concepts - Feb. 1998 Version, pages 367–405. Springer-Verlag,
1998. In [EJS98].

[KOF02] M. Klein, A. Kiryakov D. Ognyanov, and D. Fensel. Ontology Versioning and
Change Detection on the Web. In Proceedings of the 13th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW02),
2002.

11

[MWK00] P. Mitra, G. Wiederhold, and M. Kersten. A Graph-Oriented Model for Ar-
ticulation of Ontology Interdependencies. In Proceedings Conference on Ex-
tending Database Technology 2000 (EDBT’2000), Konstanz, Germany, 2000,
volume LNCS: 1777, pages 86+, 2000.

[NK03a] N. Noy and M. Klein. A component-based framework for ontology evolu-
tion. In Proceedings of the Workshop on Ontologies and Distributed Systems
(IJCAI’03), 2003.

[NK03b] N. Noy and M. Klein. Ontology Evolution: Not the Same as Schema Evolu-
tion. In Knowledge and Information Systems, volume 5, 2003.

[SS04] S. Staab and R. Studer, editors. Handbook on Ontologies. Springer-Verlag
(ISBN 3-540-40834-7), 2004.

[Wor02] World Wide Web Consortium. OWL Web Ontology Language 1.0 Reference,
W3C Working Draft 29 July 2002. World Wide Web Consortium, 2002.
URL: http://www.w3.org/TR/2002/WD-owl-ref-20020729/.

A Proof of Theorem

Let G(T) = (NT, ET) be an ontology version (an ontology versioning graph valid
at time point T) over a graph G = (N, E) such that NT = {x|x ∈ N ∧ x.Ts ≤
T ≤ x.Te} and ET = {x|x ∈ E ∧ x.Ts ≤ T ≤ x.Te}. Q is the defined chronon.

If ∀r ∈ E : exists in(r, Cf)∧exists in(r, Ct) (as defined in section 4.2) is true,
than from this it follows that ∀T ∈ {r.Ts, . . . , r.Te−Q}•T ∈ {Cf .Ts, . . . , Cf .Te−
Q} ∧ T ∈ {Ct.Ts, ldots, Ct.Te − Q} ⊓⊔

12

