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Abstract. A source for errors in results of OLAP queries lies in ne-
glecting changes in dimension data of Data Warehouses over time. In
addition to the correct representation of such changes in temporal data
warehouses it is necessary to discover such changes when they appear in
the sources of a data warehouse. We propose to use data mining tech-
niques in form of multidimensional outlier detection to discover unex-
pected deviations in the fact data suggesting changes in dimension data.

1 Introduction

A data warehouse is an integrated, usually materialized view over several data
sources, e.g., data that comes from On-Line Transaction Processing systems,
from spreadsheets, from the world wide web or from other sources. Data Ware-
houses are building blocks for many information systems, in particular systems
supporting decision making, controlling, revision, customer relationship man-
agement (CRM), etc.[WB97, HLV00]. The most popular architectures are mul-
tidimensional data warehouses (data cubes) where facts (transaction data) are
“indexed” by several dimensions representing a hierarchical organization of mas-
ter data.

In this paper, we will address the problem of how to detect changes in these
dimensions. To the best of our knowledge only [EKM03] addresses this problem.
Whereas the approach presented in [EKM03] was very much trimmed to cope
with the important question of performance in data warehouses and focuses
on identifying only simple types of structural changes, we will present another
approach in this paper that analyses the data in more detail to increase the
accuracy of the detected structural changes.

Although data warehouses are typically deployed to analyse data from a
longer time period than transactional databases, they are not well prepared for
changes in the structure of the dimension data. When analysts query data ware-
houses with OLAP tools they have to know which dimension data changed. If
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the analyst wants to analyse population trends of European countries along the
last 20 years, he or she has to be aware of the reunification of Germany, the sep-
aration of Slovenia, Croatia, etc to come to meaningful conclusions. Although in
this example the structural changes are obvious there are also hidden changes.
For instance, when data that stems from the web is being analysed the sources
might change in a way that effects the structures in the data warehouse without
any notification about the changes. Other situations include the passing of trans-
action data where master data changes are only implicit and probably not easily
visible, or changes of the way economic figures are computed (e.g. unemployment
rate, price-earnings ratio [Mad03], etc.).

The effects of structural changes in data warehouses and approaches to over-
come the problems they cause were already subject of several projects [Yan01,
BSH99, Vai01, CS99] including our own efforts [EK01, EKM02] to build a tem-
poral data warehouse structure with means to transform data between structural
versions such that OLAP tools work on data cleaned of the effects of structural
changes. These proposals allow a correct representation of structural changes
once they are known. For practical reasons however, we want to complement
these approaches with systems which help to detect such changes.

In this paper we address the following important issue: how can such struc-
tural changes be recognized, even if the sources do not notify the data warehouse
about the changes. This defensive strategy, of course, can only be an aid to
avoid some problems, it is not a replacement for adequate means for managing
knowledge about changes. Nevertheless, in several practical situations we trace
erroneous results of OLAP queries back to structural changes not known by
the analysts and the data warehouse operators. Erroneous in the sense that the
resulting data did not correctly represent the state of affairs in the real world.

As means for detecting such changes we propose the use of data mining
techniques. In a nutshell, the problem can be described as a multidimensional
outlier detection problem. We will discuss two different approaches to solve this
problem.

The remainder of this paper is organized as follows: in section 2 we will
discuss the different types of structural changes in data warehouse dimensions.
In section 3 we will briefly overview different data mining techniques applicable
for automatic detection of structural changes. In section 4 we will discuss two
different approaches in depth. In section 5 we will present the results of different
experiments we conducted. Finally, we conclude in section 6.

2 Types of structural changes

A multidimensional view on data consists of a set of measures arranged by
different dimensions [OLA97]. Hence, a cube can also be seen as an n-dimensional
array. Measures are numerical values that are referenced by a vector ν = (DM1,
DM2, ..., DMn) where DMi is a member belonging to dimension Di [Kur99].

Typical examples of dimensions frequently found in multidimensional data-
bases are Time, Facts or Products. The structure of each dimension is defined



mapping function for Facts F1, ..., Fn
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by a set of categories. For instance, the dimension Time could consist of the
categories Year, Quarter and Month that are in the hierarchical relation Y ear →
Quarter → Month (A → B means that B rolls-up to A).

Each category consists of a set of dimension members. Dimension members
define the instances of a data warehouse schema. For instance, January, February
and March are dimension members assigned to the category Month.

We will now briefly discuss different types of structural changes. Furthermore,
we will argue why some of these structural changes do not need to be detected
automatically.

In [EK01] we showed how the basic operations INSERT, UPDATE and DELETE
have to be adopted for a temporal data warehouse. With respect to dimension
members these basic operations may be combined to represent the following
complex operations:

i.) SPLIT: One dimension member M splits into n dimension members, M1, ...,
Mn.
For instance, Figure 1 shows a split operation between the structure versions
SV2 and SV3 where a division “Div.A” splits up into two divisions “Div.A1”
and “Div.A2”.

ii.) MERGE: n dimension members M1, ...,Mn are merged together into one
dimension member M .
A merge is the opposite to a split, i. e. a split in one direction of time is always
a merge in the opposite direction of time. Consider, for the example given
above, that these modifications occur at the timepoint T . For each analysis
that requires measures from a timepoint before T for the structure version
which is valid at timepoint T we would call these modifications “a split”. For
each analysis that requires measures from timepoint T for a structure version
valid before timepoint T these modifications would be called “a merge”.

iii.) CHANGE: An attribute of a dimension member changes, for example, if the
product number or the name of a department changes. Such a modification
can be carried out by using the update operation defined above.
With respect to dimension members representing facts, CHANGE could
mean that the way how to compute measures changes (for example, the



way how to compute the unemployment rate changed in Austria because
they joined the European Union in 1995) or that the unit of facts changes
(for instance, from Austrian Schillings to EURO).

iv.) MOVE: A dimension member moves from one parent to another, i.e., we
modify the hierarchical position of a dimension member.

v.) NEW-MEMBER: A new dimension member is inserted.
vi.) DELETE-MEMBER: A dimension member is deleted.

For two operations, namely NEW-MEMBER and DELETE-MEMBER, there
is no need to use data mining techniques to automatically detect these modifi-
cations. When loading data from data sources for a dimension member which
is new in the data source but does not exist in the warehouse yet, the NEW-
MEMBER operation is detected automatically by the ETL-Tool (extraction,
transformation and loading tool). On the other hand, the ETL-Tool automat-
ically detects when no fact values are available in the data source for deleted
dimension members.

3 Data mining techniques

In this section a short overview of different data mining techniques for automatic
detection of structural changes is issued.

The simplest method for detecting structural changes is the calculation of
deviation matrices. Absolute and relative differences between consecutive values,
and differences in the shares of each dimension member between two chronons
can be easily computed - the runtime of this approach is clearly linear in the
number of analysed values. Since this method is very fast, it should be used as
a first sieve.

A second approach whose runtime complexity is in the same order as the
calculation of traditional deviation matrices is the attempt to model a given
data set with a stepwise constant differential equation (perhaps with a simple
functional equation). This model, however, only makes sense if there exists some
rudimentary, basic knowledge about factors that could have caused the develop-
ment of certain members (but not exact knowledge, since in this case no data
mining would have to be done anymore). After having solved the equation (for
solution techniques of stepwise differential equations refer to [Dia00]), the rela-
tive and absolute differences between the predicted value and the actual value
can be considered to detect structural changes.

Other techniques that can be used for detecting structural changes are mostly
techniques that are also used for time-series analysis:

– autoregression - a significantly high absolute and relative difference between
a dimension member’s actual value and its predicted value is an indicator
for a structural change of that dimension member. Several models to predict
data may be used (for instance, the AutoRegression Moving Average (p,q)-
model or the AutoRegression Integrated Moving Average(p,d,q)-model).



– autocorrelation - the usage of this method is similar to the method of au-
toregression. The results of this method, however, can be easily visualized
with the help of correlograms.

– crosscorrelation and regression - these methods can be used to detect sig-
nificant dependencies between two different members. Especially a very low
correlation coefficient (a very inaccurate prediction with a simple regression
model, respectively) could lead to the roots of a structural change.

– discrete fourier transform (DFT), discrete cosine transform (DCT), different
types of discrete wavelet transforms - the maximum difference (scaled by
mean of the vector) as well as the overall difference (scaled by mean and
length of the vector) of the coefficients of the transforms of two dimension
members can be used to detect structural changes.

– singular value decomposition (SVD) - unusually high differences in singular
values can be used for detecting changes in the measure dimension when
analysing the whole data matrix. If single dimension members are compared,
the differences of the eigenvalues of the covariance matrices of the dimension
members (= principal component analysis) can be used in the same way.

In this paper, due to lack of space no detailed explanation of these methods
is given, for details refer to [Atk89] (fourier transform), [Vid99] (wavelet trans-
forms), [BD02] (autoregression and -correlation), [Hol02] (SVD and principal
component analysis), [Wei85] (linear regression and crosscorrelation).

4 Different data mining approaches

In this section different ways of treating the fact that the data are referenced
over a set of n dimensions are presented. Since in data warehouses there is usu-
ally a multidimensional view on the data, the techniques shown in the previous
section have to be applied carefully. If all structure dimensions are considered
simultaneously and a structural change occurred in one structure dimension, it
is impossible to detect the dimension that was responsible for this change. Two
approaches to solve this problem are presented: the first one analyses matrices
that result from grouping all values along one dimension whereas the second one
analyses matrices where in all but one structure dimensions a special dimen-
sion member is fixed. Finally, a short comparison of the efficiency and runtime
complexity of the two approaches is given.

Before the start of one of the two approaches, the whole data matrix should
be checked for changes in the measure dimension: differences of the sums of all
absolute values of two consecutive chronons are calculated. Under the assump-
tion, that the number of chronons C is very small compared to the number of
dimension members in structure dimensions, this step can be neglected for the
analysis of overall runtime complexity (only O(C) values have to be analysed). If
the differences between two consecutive chronons are substantially bigger than
those between other chronons, then this is an indicator for a change in the mea-
sure dimension. Changes at this level that are detected must be either corrected
or eliminated - otherwise the results in both of the following approaches will



be biased by these errors; if one change (e.g. a change in the calculation of the
formula) is detected and the data are corrected (e.g. then all values are noted
in the same currency), it is recommended to repeat this difference calculation
- maybe further changes in the measure dimension can be detected. If no fur-
ther change in the measure dimension can be recognized, then one of the two
following approaches may proceed.

4.1 Approach 1: Grouping along one dimension

This approach consists of different steps of analysing the data and is therefore
best explained by the following enumeration:

1.) In the first step of this approach the data are grouped by one structure
dimension. The deviation matrices that were described in section 3 can be
applied here to detect dimension members that were affected by structural
changes.

2.) If the data grouped by one structure dimension can be adequately mod-
elled with a stepwise constant differential equation (or a simple functional
equation) then also the deviation matrices that calculate the absolute and
relative difference between the model-estimated value and the actual value
should be used.

3.) In each structure dimension where one dimension member is known that
definitely remained unchanged throughout all chronons (fairly stable so that
it can be considered as a dimension member with an average development,
mostly a dimension member with rather big absolute values), other data
mining techniques such as autocorrelation, autoregression, discrete fourier
transform, discrete wavelet transform, principal component analysis, cross-
correlation and linear regression can be used to compare this ’average’ di-
mension member with any other dimension member detected in steps 1 and
2. If one of the methods shows big differences between the average dimen-
sion member and the previously detected dimension member, then this is an
indicator for a structural change of the latter one. Hence, these methods on
the one hand are used to make the selection of detected dimension members
smaller, on the other hand they are also used to ’prove’ the results of the pre-
vious steps. However, all these methods should not be applied to a dimension
member that is lacking values, whose data are too volatile or whose values
are often zero. If no ’average’ dimension member is known, the dimension
members that were detected in previous steps can also be compared with
the sum of the absolute values of all dimension members. In any case, it is
for performance reasons recommended to use the method of autocorrelation
at first; among all wavelet transforms the Haar method is the fastest.

4.) If in steps 1, 2 and 3 no (or not all) structural changes are detected and one
still assumes structural changes, then the values are grouped by i+1 structure
dimensions, where i (i = 1 . . .n − 1, n = number of structure dimensions)
is the number of structure dimensions that were used for grouping values in
the current step. Again, steps 1, 2 and 3 can be applied.



To make the idea of this approach clear, one small example is given. If you
consider the data given in table 1, the whole data set seems to be very volatile
at first sight (especially between year3 and year4). Since no changes in the mea-
sure dimension can be detected, the approach may proceed by grouping all values
along one structure dimension. On the resulting view the differences of shares of
dimension members are calculated (this deviation matrix was chosen because it
shows the outliers most clearly in this case) - the results are presented in table 2;
it is clearly pointed out that there are strong indicators for a structural change
in structure dimension SD2 between year1 and year2, for a structural change in
structure dimension SD3 between year2 and year3 and for a structural change
in structure dimension SD4 between year3 and year4 (in this example with just
two dimension members per structure dimension the changes in the one member
have to be counted up in the other - it is therefore not known whether between
year1 and year2 dimension member SD21 or SD22 changed. In real-world data
warehouses with many more dimension members, however, it usually is clear
which dimension member changed). Here, due to lack of space steps 2 and 3

SD1 SD2 SD3 SD4 year1 year2 year3 year4

SD11 SD21 SD31 SD41 100 20 60 18

SD11 SD21 SD31 SD42 200 40 80 122

SD11 SD21 SD32 SD41 300 60 20 6

SD11 SD21 SD32 SD42 400 80 40 54

SD11 SD22 SD31 SD41 500 500 700 210

SD11 SD22 SD31 SD42 600 600 800 1290

SD11 SD22 SD32 SD41 700 700 500 150

SD11 SD22 SD32 SD42 800 800 600 950

SD12 SD21 SD31 SD41 900 180 220 66

SD12 SD21 SD31 SD42 1000 200 240 394

SD12 SD21 SD32 SD41 1100 220 180 54

SD12 SD21 SD32 SD42 1200 240 200 326

SD12 SD22 SD31 SD41 1300 1300 1500 450

SD12 SD22 SD31 SD42 1400 1400 1600 2650

SD12 SD22 SD32 SD41 1500 1500 1300 390

SD12 SD22 SD32 SD42 1600 1600 1400 2310

SD=structure dimension, SDij=j-th dimension member in structure dimension i
Table 1. Structural changes in a data warehouse with four structure dimensions

are omitted; if one assumes further structural changes, the detected structural
changes have to be corrected, and the above deviation matrix can be calculated
once again. In this case, however, all differences of all dimension members be-
tween all years are zero - all dimension members stay unchanged throughout the
four years. Hence, a further analysis of combined structural changes is useless.



∆(%) year12 year23 year34

SD11 3.19% 0% 0%

SD12 -3.19% 0% 0%

SD21 -27.22% 0% 0%

SD22 27.22% 0% 0%

SD31 0.8% 10.17% 0%

SD32 -0.8% -10.17% 0%

SD41 0.4% 0% -33.22%

SD42 -0.4% 0% 33.22%
SD=structure dimension, SDij=j-th dimension member in structure dimension i,

∆(%)=change in share of a dimension member between two consecutive years,
yearmn=comparison of shares of different dimension members between year m and year n

Table 2. Detection of changes in the structure dimension

4.2 Approach 2: Fixing n − 1 dimension members

The previous approach might detect many examples in his first step, but not all
of them. This approach therefore does not group values along one dimension,
but it fixes n− 1 dimension members and analyses the remaining n-th structure
dimension on the matrices addressed by those fixed dimension members.

Consider the following example with two dimensions SD1 with four dimen-
sion members SD11, . . . , SD14 and SD2 with four dimension members SD21, . . .,
SD24. Their values for four consecutive years for a certain measure are shown
in table 3. As boldly pointed out, there has been a structural change in four of
the sixteen combinations of dimension members in year3 (marked in bold).

When grouping the values along one structure dimension (as suggested in the
previous section), the change cannot be recognized anymore, as table 4 shows.
Any data mining technique attempting to find the real change in this matrix
will not work.

The solution of this approach to cope with this problem is different from the
previous one: in all but one structure dimensions one dimension member is fixed;
this combination of fixed dimension members leads to a simple 2-dimensional
matrix with the time dimension on the x-axis and the only dimension that was
excluded on the y-axis. In other words, instead of aggregating all values along one
dimension (as shown in the previous section), the data matrix is cut into different
slices that are analysed separately. On this data matrix a simple deviation matrix
with relative differences is computed (more sophisticated techniques should not
be applied since this might cause a very poor performance): let data(i, j) denote
the value of the original 2-dimensional matrix, and let d(i, j) denote the value
of the resulting deviation matrix in row i and column j (the value of the i-th
dimension member of the excluded dimension between chronons j and j + 1),
then d(i, j) is computed as follows:

d(i, j) =
{

∆(i, j)/max(i, j), if ∆(i, j)/max(i, j) ≤ 0,
1, else,



SD1 SD2 year1 year2 year3 year4

SD11 SD21 200 190 200 205

SD11 SD22 150 155 165 160

SD11 SD23 30 29 49 48

SD11 SD24 200 220 215 205

SD12 SD21 200 190 200 205

SD12 SD22 150 155 165 160

SD12 SD23 30 29 49 48

SD12 SD24 200 220 215 205

SD13 SD21 200 190 200 205

SD13 SD22 150 155 165 160

SD13 SD23 30 29 9 9

SD13 SD24 200 220 215 205

SD14 SD21 200 190 200 205

SD14 SD22 150 155 165 160

SD14 SD23 30 29 9 9

SD14 SD24 200 220 215 205

SDij=j-th dimension member in structure dimension i
Table 3. A small data warehouse with a structural change

SD year1 year2 year3 year4

SD11 580 594 629 618

SD12 580 594 629 618

SD13 580 594 589 579

SD14 580 594 589 579

SD21 800 760 800 820

SD22 600 620 660 640

SD23 120 116 116 118

SD24 800 880 860 820

SDij=j-th dimension member in structure dimension i
Table 4. Values of the small data warehouse grouped along one dimension

where ∆(i, j) := abs(data(i, j)− data(i, j − 1)), and
max(i, j) := max(abs(data(i, j)), abs(data(i, j−1))), ∀i = 1, . . . , n, ∀j = 2, . . . , m.
Using this normalization d(i, j) can be interpreted as the probability that a struc-
tural change of the i-th dimension member of the dimension on the y-axis has
occurred between chronon j and j + 1. All these ’probabilities’ over all possible
matrices with the same dimension on the y-axis are summed and divided through
the number of possible matrices (since not necessarily all possible combinations
of dimension members of different dimensions have to have values in the data
warehouse it is recommended to use a counter of occurrences when implementing
this approach) - in this way a robust estimate for the probability is computed.
Hence, the final result of this approach is a probability matrix P for each struc-
ture dimension, where Pk(i, j) indicates the probability of a structural change



of the i-th dimension member in structure dimension k between chronon j and
j + 1.

The effectiveness of this approach is illustrated at the data given in table
3. In tables 5 and 6 all possible slices for dimension SD2 are presented, and in
tables 7 and 8 the corresponding deviation matrices are presented. Similarly, all
four matrices for dimension SD1 are computed (matrices not shown here). The
final probability matrices for structure dimension SD1 and SD2 are presented in
tables 9 and 10, respectively. If the probability threshold for a structural change
is 10%, then the detected structural changes are all values in tables 9 and 10
that are marked in bold typeface.

SD1 = SD11 year1 year2 year3 year4

SD21 200 190 200 205

SD22 150 155 165 160

SD23 30 29 49 48

SD24 200 220 215 205

SDij=j-th dimension member in structure dimension i
Table 5. Values of structure dimension SD2 on slice SD1 = SD11 (same result on
slice SD1 = SD12)

SD1 = SD13 year1 year2 year3 year4

SD21 200 190 200 205

SD22 150 155 165 160

SD23 30 29 9 9

SD24 200 220 215 205

SDij=j-th dimension member in structure dimension i
Table 6. Values of structure dimension SD2 on slice SD1 = SD11 (same result on
slice SD1 = SD12)

SD1 = SD11 year12 year23 year34

SD21 0.05 0.05 0.024

SD22 0.032 0.06 0.03

SD23 0.033 0.408 0.02

SD24 0.09 0.022 0.047

SDij=j-th dimension member in structure dimension i, yearij=difference between yeari

and yearj

Table 7. Probabilities of a structural change in structure dimension SD2 on slice
SD1 = SD11 (same result on slice SD1 = SD12)



SD1 = SD13 year12 year23 year34

SD21 0.05 0.05 0.024

SD22 0.032 0.06 0.03

SD23 0.033 0.69 0

SD24 0.09 0.022 0.047

SDij=j-th dimension member in structure dimension i, yearij=difference between yeari

and yearj

Table 8. Probabilities of a structural change in structure dimension SD2 on slice
SD1 = SD13 (same result on slice SD1 = SD14)

P year12 year23 year34

SD11 0.052 0.135 0.03

SD12 0.052 0.135 0.03

SD13 0.052 0.206 0.025

SD14 0.052 0.206 0.025

SDij=j-th dimension member in structure dimension i, yearij=difference between yeari

and yearj

Table 9. Probability matrix P for structure dimension SD1

P year12 year23 year34

SD21 0.05 0.05 0.024

SD22 0.032 0.06 0.03

SD23 0.033 0.549 0.01

SD24 0.09 0.022 0.047

SDij=j-th dimension member in structure dimension i, yearij=difference between yeari

and yearj

Table 10. Probability matrix P for structure dimension SD2

As can be seen from the probability matrices, there is a relatively high prob-
ability (0.549, see table 10) of a structural change of dimension member SD23

between year2 and year3; this change even affected the values of all dimension
members in structure dimension SD1 (see table 9): the values of all dimension
members between year2 and year3 are higher than the threshold of 10%. In
such a case it is useful to increase the threshold to detect the real source of the
structural change. However, in real data warehouses, there are usually more than
four dimension members in a structure dimension - if in the previous example
there were 100 dimension members in structure dimension, then the change of
dimension member SD23 would only have an insignificant effect on the proba-



bility matrix of structure dimension SD1; in any case, it is important to find the
right threshold for the method.

4.3 Comparison of the two approaches

When comparing the two different approaches shown in section 4.1 and 4.2 the
differences become clear: whereas the first approach is very much trimmed to
cope with the important question of performance in data warehouses and focuses
on identifying only simple types of structural changes, the second approach anal-
yses the data in more detail to get a better quality of the detected structural
changes. More formally, if Di denotes the number of dimension members in di-
mension i, i = 1, . . . , n (ordered in such a way that D1 ≥ D2 ≥ . . .≥ Dn), then
in the first step (which is often the only step when choosing this approach) of
the first approach only O(D1) values have to be analysed, in the i-th step O(Di

1)
(it is again assumed that the number of chronons C is small compared to D1,
therefore it is neglected in the complexity order). In the second approach for each
structure dimension O(D1 ∗D2 ∗ . . .∗Dn−1) matrices have to be computed, since
all possible combinations of dimension members in n − 1 structure dimensions
can address a matrix. This is valid for all n structure dimensions, but since only
one structure dimension is analysed at once, the overall runtime complexity is
also O(D1 ∗D2 ∗ . . . ∗Dn−1) (again under the assumption that C is very small
compared to Di, i=1,. . . ,n). The second approach tries to use the fact that the
results of the analysis are not immediately necessary for daily business but are
part of long-term strategic planning - therefore it should not cause troubles if
the analysis might last for a couple of days.

5 Experiments

Both approaches were tested on different data sets. The running times of the
different approaches as well as precision and recall of both approaches are listed
in table 11 below.

All running times were measured on a Pentium III 866 MhZ processor with
128 MB SDRAM. In all examples three structure dimensions and one time di-
mension with the same number of dimension members in each dimension were
used, and 4-5 structural changes in certain dimension members were hidden.

As can be seen from table 11, two things are most remarkable: on the one
hand the running time of the ’grouping’ approach is far lower than the running
time of the ’fixing’ approach, on the other hand the ’grouping’ approach does
not detect structural changes when they appear in dimension members with
small absolute values - their contribution to the overall sum of all dimension
members is vanishingly small; hence these changes remain undetected (in the
third data set all changes were designed to happen in such dimension members
- and precision and recall are very bad - 0 %! ).



#d. mem file size time(G) time(F ) Precision(G) Recall(G) Precision(F ) Recall(F )

20 1.44 MB 0.11 12.85 100% 100% 100% 100%

35 8.52 MB 0.11 68.66 100% 80% 100% 80%

35 11.1 MB 0.11 67.77 0% 0% 100% 100%

60 136 MB 0.99 1’521.3 100% 100% 100% 100%

G=’Grouping’ data along one structure dimension, F=’Fixing’ n− 1 structure
dimensions; running times for both approaches are measured in seconds; differences in file
sizes between second and third data set are due to different data types (integer vs. real) -

megabytes represent file sizes of simple textfiles; # d. mem = number of dimension
members in each of the three structure dimensions and in the time dimension

Table 11. Running times, precision and recall for both approaches on test data sets

6 Conclusion

We proposed two different approaches for detecting changes in data warehouses.
Whereas the ’grouping’ approach is faster, the ’fixing’ approach may yield better
results. In our opinion the ’grouping’ approach should be chosen if and only if
the results are so urgent that the fixing approach is infeasible due to its high
runtime complexity.

As a conclusion it can be said that in principle, the methods work well, but
further work is required in the following areas:

– The thresholds for detecting structural changes in the different methods were
so far just found by experience and ’trial and error’. Here more sophisticated
methods (probably based on sub-sampling the data) for automatic, data-
adapted fine-tuning of the thresholds still need to be investigated.

– The performance of the ’fixing’ approach may become too bad in huge real-
world data warehouses - sophisticated sub-sampling methods might hold the
key for dealing with this important issue.

Data mining techniques for discovering changes in the structure or semantics
of dimension data of data warehouses should become a standard tool within the
data cleaning typically done before data is entered into data warehouses. Either
the data production process is designed and operated in way that ensures that
the modifications in master data are explicitly reported to the data warehouse
or means for detection of such changes are necessary for achieving quality in
results of OLAP queries.
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