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Abstract  
The success of neural network architectures depends heavily 
on the availability of effective learning algorithms. Radial 
basis function (RBF) neural networks provide attractive 
possibilities for solving signal processing and pattern 
classification problems. Gradient descent training (GD) of 
RBF networks has proven to be much more effective than 
more conventional methods. However, gradient descent 
training can be computationally expensive and its learning 
speed is very slow. This paper compares (GD) to the method 
based on either Kalman filtering (KF) or decoupled Kalman 
filter (DEKF). These new methods prove to be quicker than 
gradient descent training while still providing good 
performance at the same level of effectiveness as they are used 
in fingerprint-based positioning.  
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I. INTRODUCTION 

The problem of providing a reliable and accurate 
position of a mobile station (MS) in wireless 
communication systems has attracted a lot of attention in 
recent years. Positioning systems can be roughly 
classified into three major categories: systems using 
signal strength measurements, systems using either time 
of arrival and angle of arrival of a radio signal, and 
systems using dead reckoning techniques. The first two 
categories can be called radio-location methods as they 
rely on the propagation properties of radio signals. This 
paper addresses a novel approach while applying signal 
strength measurements for the positioning of a GSM-
based mobile station. It uses radio signal strengths from 
the serving and neighboring base stations, which are 
continuously measured in the mobile station. These are 
applied to a previously trained artificial neural network 
for positioning. Fingerprint based Positioning using 
neural networks can be made using either classification 
or function approximation. When using classification, 
the area of interest is divided into small sections and the 
identification of the section in which the mobile station 
can be found is the task performed by the classification. 
For the second case, a function approximates the 
relationship between the received signal strengths and 
the distance between the mobile station and the antenna. 
Trilateration can subsequently be made when at least 
three distances to known base station locations are 

known. This is an indirect positioning. Furthermore, the 
received signal strength input can also be used to 
directly model the two-dimensional coordinates of the 
mobile station. This method is referred to as direct 
positioning. [1] 
 
Park and Sanberg [2] have proven that Radial Basis 
Function (RBF) neural networks with one layer of RBF 
functions are capable of universal approximation. For 
this reason this paper uses a RBF architecture with one 
hidden layer of neurons in order to compare three key 
training approaches: Gradient Descent (GD), Extented 
Kalman Filter (EKF), and Decoupled Extended Kalman 
Filter.  
For fingerprint based positioning, a method that is used 
in this paper, the position of the mobile system is 
automatically found knowing the set of signal strength 
for that point. GPS positions are used as references 
during the training phase [3]. For this purpose, one need 
an element or a system capable to relate the received 
GSM power levels of the surrounding cells in a point 
and the position of this point given by GPS. This 
element has to acquire enough intelligence and 
abstraction of such a not obvious relation, and use it to 
make future position predictions related to given signal 
strenghs measurements. A neural network (NN) is used 
for that purpose.     

 
ΙΙ. DESCRIPTION OF THE THREE TRAINING  

  METHODS USED: DG, EKF, DKF 

 
There are several algorithms available for training the 
weights of a neural network [4] [5] [6] . Most of them 
are based on computation of the gradient of an output 
error measured with respect to network weights. 
Recently, several authors [7][8][9][10] have noted that 
the Kalman Filters (e.g. EKF) can also be used for 
training networks to perform the desired input-output 
mappings. 
 
In this paper we use the RBF neural network architecture 
as it provides attractive possibilities for solving signal 
processing and pattern classification problems [11]. An 
architecture of one hidden-layer of  RBFs is used to 
compare the three methods (GD,EKF and DEKF). 
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The RBF NN can be described as follows. The input 
data is (are) represented by x in Fig.1, being passed 
directly to hidden layer. Suppose there are c neurons in 
the hidden layer. Each of the c neurons in the hidden 
layer applies an activation function, which is a function 
of the Euclidean distance  (i.e. the square of the 
Euclidean norm of the two vectors) between the input 
and the prototype vectors v, as shown in Fig.1. There are 
many choices for g(.), function in the hidden layer of 
RBF NN. The most common choice is a Gaussian 
function of the form 

)/( 2
)( βν veg −=                       (1)  

      
where )(νg  is the Gaussian function, β  is a real 
constant, [11] Another choice is the inverse 
multiquadratic function  

           2/122 )()( −+= βvvg                                     (2) 
                                                                                                              
where β  is a real constant [2].  
A further  choice of the (.)g function is 

[ ] )1/(1
0 )()( pvgvg −=                                                          (3)                                                                                                                                   

where     bavvg +=)(0                                           (4) 
                                                                                                                          

0g is called generator function, p is a real number 
greater than 1, a>0 and b ≥ 0 , [6]. If a=1 and p=3, the 
hidden layer function is reduced to the inverse 
multiquadratic function. 
 
One output of the RBF in Fig.1 can be written as 
follows: 
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For all the outputs 
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Thus, let’s write :  WHY =
∧

    [11]  .                           (7)                             
 
In the following the three different training policies are 
described in detail. 
 
A. Gradient Descent Training Method 
 
To use the gradient descent to minimize the training 
error, one does define an error function, 

2
2
1 |||| FYYE

∧
−=                                       (8)              

where Y  is the matrix of desired values for the RBF 
output, and 2||.|| F  is the square of the Froebinius norm of 
a matrix, which is equal to the sum of the squares of the 
elements of the matrix. It has been shown; see Ref. [2], 
which is given in this case by: 
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where iky
∧

  is the element in the thi  row and thk  column 

of the 
∧
Y  matrix of Eq.7. and iky  is the corresponding 

element in the Y  matrix.  
The RBF can be optimized by performing the following 

updates of weights ( w ) and prototypes ( v ):  

iw
E

ii ww ∂
∂−= η    ),...1( ni =                                  (11)              

jv
E

jj vv ∂
∂−= η    )...1( cj =                                  (12)              

                                                                                                        
where η  is the step size of the gradient descent method. 
This optimization stops when iw  and jv  reach local 
minima [11]. 
 
B. Extended Kalman Filter (EKF) Training Method 
 
The Kalman Filter is also used to train a general multi-
input, muti-output RBF networks. For linear dynamic 
systems with white noise process and white 
measurement noise, the Kalman filter is known to be an 
optimal estimator [12]. For nonlinear systems with 
colored noise, the Kalman filter can be extended by 
linearizing the system around the current parameter 
estimates [6, 12]. There are several algorithms available 
for training the weights of the NN. Most of them are 
based on computation of the gradient of an output error 
measured with respect to the network weights. Recently, 
several authors [4, 9] have noted that the extended 
Kalman filter can also be used for the purpose of training 
networks to perform desired input-output mappings. 
 
Assume the state space model below, [12]: 
 

kkk wxkfx +=+ ),(1                                              (13) 
             

kkk vxkhy += ),(                                                  (14) 
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where x  is the state of the system, y  is the  
measurement model, kw and kv  are independent, zero-
mean, Gaussian noise processes of the covariance 
matrices kQ  and kR respectively. 
The first step of EKF is computing the linearized state 
matrices : 

kxxx
xkf

kF =∂
∂

+ = |),(
1                                                   (15)                                                                                                                

−=∂
∂=

kxxx
xkh

kH |),(                                                 (16)                                                                                                                

Once matrices kkF ,1+ and kH are evaluated, they are then 
used in first order Taylor approximation of nonlinear 
functions. 

),,(),(),( ,1 kkkkk xxFxxFxkF
∧

+

∧
+≈                         (17)                                                                                                

),,(),(),( ,1

∧
−

+

∧
− +≈ kkkkk xxFxxHxkH                         (18)                                                                                                  

The training problem using Kalman filter theory can 
now be described as finding the minimum mean-squared 
error estimate of the state x using all observed data. 
When assuming that kkk ww ω+=+1   is the state of the 
neural network, and kjkkkk vvuwhy += ),,( the 
observation or measurement equation which represents 
the network’s desired response vector ky as a nonlinear 
function of input vector ku , the weight parameter vector 

kw , and for the RBF the prototype vector parameter jv . 
The solution to the training problem is given by the 
following recursion [12] : 

[ ] ,1−+= Kk
T
kkk HPHRA                                       (19)                                                                                                                

,kkkk AHPK =                                                           (20)                                                                                                               

,1 kkkk Kww ξ+=
∧

+

∧
                                                    (21)                                                                                                               

.1 kk
T
kKkk QPHKPP ++=+                                     (22)                                                                                                                

This Kalman recursion process can be explained with 
following words. An input training pattern ku is 
propagated through the network to produce an output 

vector ky
∧

. The derivative matrix kH  is obtained, then 
tke Kalman gain matrix is computed according to Eq.20, 
This step include the computation of the global scaling 
matrix kA . The network weights vector is updated using 
the Kalman gain matrix, the error vector kξ , and the 

current value of the weight vector kw
∧

 as in Eq.21. At 
the end, the approximate error covariance matrix is 
updated as in Eq.22. 

In order to apply the optimization problem in a form 
suitable for Kalman Filtering in the case of a RBF NN, 
we let the elements of the weight matrix (w) and the 
elements of the prototypes (v) constitute the state of the 
nonlinear system. And the output of the RBF network 
constitutes the output of the nonlinear system. The state 
of the nonlinear system model is represented by   

[ ]cn vvwwX ....... 11= , [11]. 
The computational effort of Kalman is in the order of 

( ) ][ 2ABO , where A is the dimension of the output 
dynamic system and B is the number of parameters. In 
the case of concern in this paper, there are nM  outputs 
and [ ]mccn ++ )1( , i.e., [ ])1( +cn  weights and mc-
prototypes, where n  is the dimension of the RBF output, 
M is the number of training samples, c  is the number of 
prototypes (v) --see Fig.1, and m  is the dimension of the 
RBF input. Therefore, the computational expense of 
Kalman filter is in the order of [ ]( )2)1( mccnnMO ++ . 
[11]. 
 
 
C. Decoupled Extended Kalman filter (DEKF)Training 
   Method 
 
The classical disadvantage of Extended Kalman Filter is 
its computational expense, which is the obstacle for its 
use for larger networks. Thus, simplified variants must 
be found, that preserve the most useful property of the 
EKF while requiring less computation per time step [13]. 
The parameter-based DEKF algorithm is derived from 
EKF by assuming that the iterations between certain 
weight estimates can be ignored. This simplification 
introduces many zeros into the matrix kP . If the weights 
are decoupled in a way such that the weight groups 
become mutually exclusive of one another, then kP  can 
be arranged into a block-diagonal form. Let’s g  refers 
to the number of such weight groups. Then, for group i , 

the vector  
∧

i
kw refers to the estimated weight parameters, 

i
kH is the sub-matrix of derivatives of network outputs 

with respect to the thi group’s weights, i
kp is the weight 

group’s approximate error covariance matrix, and i
kK is 

its Kalman gain matrix.  
The DEKF for the thi weight group is given, see [12] 
The computational training expense of Kalman filter is 
reduced in the order of [ ]( )22 )()1( mccnMO ++ , [11]. 
The ratio between the computational training expense of the 
EKF and that of the DEKF is in the order of: 

[ ]( )22

2

)()1(
)1(

mcc
mccno

++
++

. 
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Figure 1. Radial Basis Function ( RBF). 

 

ΙΙΙ. SYSTEM DESCRIPTION AND EXPERIMENTAL 
   SETTING 

 
Signal strength measurements in a GSM mobile terminal 
are the input data used to train a RBF neural network 
using one of three algorithms (GD, EKF, DEKF), 
whereby a target position (or sector) is given for every 
point. During the training phase, the neural network does 
realize a mapping between the signal strengths and target 
positions (sector) for all sample data provided.  
 
In the testing phase, providing a set received signal 
strengths at the input of the NN, the position (Sector) of 
the current mobile station is predicted at the output.  
For the experiments conducted in this paper for 
illustration, we do use measurement data collected on 
one street of the town Hanover (Schneiderberg Str.) in 
Germany. The street has a total length of 450 meters. 
While moving with a constant speed, RSSI values were 
being collected every 5 seconds. Thus, 150 data points 
could be recorded. Each data point contains the RSSI 
values from the 4 strongest neighboring cells. 
The classification method is used for the NN training. 
The street is divided into 15 equal parts (segments). 
Thus, every segment has a length of 30 meters and does 
contain 10 successive of the collected data points.  
The NN used in the experiments, consisted of four input 
vectors (corresponding to the RSSI measurement for the 
4 strongest cells) and 15 outputs, each output 
corresponding to one of the 15 sectors. The number of 
RBF functions has been varied from 1 to 50. The 
learning rate in GD is taken equal to 0,002 in the first 
experiment where by a number of iteration is counted for 
every fixed number of neurons in the hidden layer, as 
this has guarantied a monotonic reduction of the error 
during the training process. The RBF network were 
trained using the hidden layer function of Eq.3. with the 
linear generator function of Eq.4. The Kalman filter 
parameters of Eqs.19-22 have been initialized with 

,40,40,40 IRandIQIPo ===  where I is the 
identity matrix of appropriate dimensions. the 

parameters for DEKF ( iii
o RQP ,, ) were initialized in a 

similar way [11]. 
 

IV. SIMULATION RESULTS 

 
Fig.2 does present a comparison of the positioning 
performance of NN trained using the three different 
schemes. The three training algorithms (GD, EKF and 
DEKF) were terminated when the error function of Eq.8 
decreased by less than the given training error. The 
number of neurons in the hidden layer was varied. It 
appeared that the methods based on Kalman Filtering 
(EKF, DKF) are providing less errors. For example, with 
the positioning quadratic average error with Kalman 
method is less than 40 meters with a probability of 67%. 
For GD, however, the positioning quadratic average 
error is up to 65 meters with a probability of 67%.  
The difference in accuracy between EKF and GD 
becomes less, as the number of neurons in the hidden 
layer is increased.  
The EKF and DEKF are providing the same accuracy as 
they are both based on Kalman Filtering, see Figs.2-3. 
Since the DEKF algorithm is in principle derived from 
EKF in that it is assumed that the connections between 
certain weight estimates can be ignored, it consequently 
requires fewer operations in one iteration (if compared to 
EKF). If one does record the time needed for the training 
process, the difference in terms of training effort 
between EKF and DEKF will become clearer, especially 
if the NN is large (a large number of parameters: inputs, 
output, weights, prototypes. The DKF method is 
generally preferred because of its saving of training 
time. For Fig.3, for example, the training time could be 
recorded and is used here for comparison. Following 
parameter setting has been used: a RBF NN of 30 
neurons, with 4 inputs vectors, each having 150 samples; 
and 15 ouputs (classification ones). The computer 
platform used is a Pentium IV (2 GHZ and 512 MB 
RAM). The EKF training required 12 minutes, whereas 
the DEKF ones needed only 8 minutes, both for 11 
iterations.  
 
Fig.4 compares the number of iterations to converge the 
training error up to a fixed threshold. It is seen that 
methods based on Kalman filtering do converge in fewer 
iterations compared to the GD, provided a given training 
error and for a fixed number of neurons in the hidden 
layer.  
 

V. CONCLUSION 

 
This paper has compared a well-known Gradient descent 
method training of a NN to the ones based on Kalman 
filtering (EKF and DEKF). The application scenario in 
this work is a fingerprint positioning using GSM RSSI 
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data. The experiments conducted in this work have 
shown that the Kalman filtering based training of the 
NNs does lead to a better positioning performance while 
requiring the lowest training effort. The computational 
savings achieved by the DEKF method compared to 
EKF will be more significant for cases where large NN 
are needed.  
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Figure 2. Cumulative Probability Functions (CPF) of the 
positioning error for NNs trained with the three schemes. 
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Figure 3. CPF comparison  for more neurons in the hidden 

layer (Training error = 0.1; 30 neurons). 
 

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

 Trainig error= 0,01 

Lo
g 

N
um

be
r 

of
 I

te
ra

tio
ns

Number of Neurons in RBF

GD
EKF
DKF

Figure 4. Comparison of the number of iterations in 
training (GD,EKF,DKF) the neural networks while varying 

the number of neurons in the hidden layer. 

41500-7803-8521-7/04/$20.00 © 2004 IEEE


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       
	nd: nd
	header: Proceedings of the 2   International IEEE EMBS Conference on Neural Engineering                      Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE


