
Comparison of Gradient descent method, Kalman Filtering and
decoupled Kalman in training Neural Networks used for fingerprint-based

positioning
Claude Mbusa Takenga, Koteswara Rao Anne, K. Kyamakya, Jean Chamberlain Chedjou

Institute of Communications Engineering, University of Hannover
Appelstr. 9A D-30167, Hannover – Germany

{takenga, raoanne, kyandogh, chedjou}@ant.uni-hannover.de

Abstract
The success of neural network architectures depends heavily
on the availability of effective learning algorithms. Radial
basis function (RBF) neural networks provide attractive
possibilities for solving signal processing and pattern
classification problems. Gradient descent training (GD) of
RBF networks has proven to be much more effective than
more conventional methods. However, gradient descent
training can be computationally expensive and its learning
speed is very slow. This paper compares (GD) to the method
based on either Kalman filtering (KF) or decoupled Kalman
filter (DEKF). These new methods prove to be quicker than
gradient descent training while still providing good
performance at the same level of effectiveness as they are used
in fingerprint-based positioning.

Keywords
Neural Network training, Kalman Filter, Gradient Descent,
Decoupled Kalman Filter, Positioning

I. INTRODUCTION

The problem of providing a reliable and accurate
position of a mobile station (MS) in wireless
communication systems has attracted a lot of attention in
recent years. Positioning systems can be roughly
classified into three major categories: systems using
signal strength measurements, systems using either time
of arrival and angle of arrival of a radio signal, and
systems using dead reckoning techniques. The first two
categories can be called radio-location methods as they
rely on the propagation properties of radio signals. This
paper addresses a novel approach while applying signal
strength measurements for the positioning of a GSM-
based mobile station. It uses radio signal strengths from
the serving and neighboring base stations, which are
continuously measured in the mobile station. These are
applied to a previously trained artificial neural network
for positioning. Fingerprint based Positioning using
neural networks can be made using either classification
or function approximation. When using classification,
the area of interest is divided into small sections and the
identification of the section in which the mobile station
can be found is the task performed by the classification.
For the second case, a function approximates the
relationship between the received signal strengths and
the distance between the mobile station and the antenna.
Trilateration can subsequently be made when at least
three distances to known base station locations are

known. This is an indirect positioning. Furthermore, the
received signal strength input can also be used to
directly model the two-dimensional coordinates of the
mobile station. This method is referred to as direct
positioning. [1]

Park and Sanberg [2] have proven that Radial Basis
Function (RBF) neural networks with one layer of RBF
functions are capable of universal approximation. For
this reason this paper uses a RBF architecture with one
hidden layer of neurons in order to compare three key
training approaches: Gradient Descent (GD), Extented
Kalman Filter (EKF), and Decoupled Extended Kalman
Filter.
For fingerprint based positioning, a method that is used
in this paper, the position of the mobile system is
automatically found knowing the set of signal strength
for that point. GPS positions are used as references
during the training phase [3]. For this purpose, one need
an element or a system capable to relate the received
GSM power levels of the surrounding cells in a point
and the position of this point given by GPS. This
element has to acquire enough intelligence and
abstraction of such a not obvious relation, and use it to
make future position predictions related to given signal
strenghs measurements. A neural network (NN) is used
for that purpose.

ΙΙ. DESCRIPTION OF THE THREE TRAINING

 METHODS USED: DG, EKF, DKF

There are several algorithms available for training the
weights of a neural network [4] [5] [6] . Most of them
are based on computation of the gradient of an output
error measured with respect to network weights.
Recently, several authors [7][8][9][10] have noted that
the Kalman Filters (e.g. EKF) can also be used for
training networks to perform the desired input-output
mappings.

In this paper we use the RBF neural network architecture
as it provides attractive possibilities for solving signal
processing and pattern classification problems [11]. An
architecture of one hidden-layer of RBFs is used to
compare the three methods (GD,EKF and DEKF).

41460-7803-8521-7/04/$20.00 © 2004 IEEE

The RBF NN can be described as follows. The input
data is (are) represented by x in Fig.1, being passed
directly to hidden layer. Suppose there are c neurons in
the hidden layer. Each of the c neurons in the hidden
layer applies an activation function, which is a function
of the Euclidean distance (i.e. the square of the
Euclidean norm of the two vectors) between the input
and the prototype vectors v, as shown in Fig.1. There are
many choices for g(.), function in the hidden layer of
RBF NN. The most common choice is a Gaussian
function of the form

)/(2
)(βν veg −= (1)

where)(νg is the Gaussian function, β is a real
constant, [11] Another choice is the inverse
multiquadratic function

 2/122)()(−+= βvvg (2)

where β is a real constant [2].
A further choice of the (.)g function is

[])1/(1
0)()(pvgvg −= (3)

where bavvg +=)(0 (4)

0g is called generator function, p is a real number
greater than 1, a>0 and b ≥ 0 , [6]. If a=1 and p=3, the
hidden layer function is reduced to the inverse
multiquadratic function.

One output of the RBF in Fig.1 can be written as
follows:





















−

−





















=
∧

)||(||
.....

)||(||
1

..
......

..
...

2

.........

2
1

10

....
22120

11110

cncnn

c

c

vxg

vxg

www

www
www

y (5)

For all the outputs





















−−

−−
=



 ∧∧

)||(||.....)||(||
...

)||(||....)||(||
1...1

...

22
1

...

2
1

2
11

1

cMc

M
M

vxgvxg

vxgvxg
Wyy (6)

Thus, let’s write : WHY =
∧

 [11] . (7)

In the following the three different training policies are
described in detail.

A. Gradient Descent Training Method

To use the gradient descent to minimize the training
error, one does define an error function,

2
2
1 |||| FYYE

∧
−= (8)

where Y is the matrix of desired values for the RBF
output, and 2||.|| F is the square of the Froebinius norm of
a matrix, which is equal to the sum of the squares of the
elements of the matrix. It has been shown; see Ref. [2],
which is given in this case by:

 ∑
=

∧

∂
∂ −=

M

k
kikikw

E hyyi
1

)(),...1(ni = (9)

∑ ∑
=

∧

=
∂
∂ −−−=

M

k
ijikik

n

i
jkjkv

E wyyvxvxg
j

1 1

')()||)((||2

)...1(cj = (10)

where iky
∧

 is the element in the thi row and thk column

of the
∧
Y matrix of Eq.7. and iky is the corresponding

element in the Y matrix.
The RBF can be optimized by performing the following

updates of weights (w) and prototypes (v):

iw
E

ii ww ∂
∂−= η),...1(ni = (11)

jv
E

jj vv ∂
∂−= η)...1(cj = (12)

where η is the step size of the gradient descent method.
This optimization stops when iw and jv reach local
minima [11].

B. Extended Kalman Filter (EKF) Training Method

The Kalman Filter is also used to train a general multi-
input, muti-output RBF networks. For linear dynamic
systems with white noise process and white
measurement noise, the Kalman filter is known to be an
optimal estimator [12]. For nonlinear systems with
colored noise, the Kalman filter can be extended by
linearizing the system around the current parameter
estimates [6, 12]. There are several algorithms available
for training the weights of the NN. Most of them are
based on computation of the gradient of an output error
measured with respect to the network weights. Recently,
several authors [4, 9] have noted that the extended
Kalman filter can also be used for the purpose of training
networks to perform desired input-output mappings.

Assume the state space model below, [12]:

kkk wxkfx +=+),(1 (13)

kkk vxkhy +=),((14)

41470-7803-8521-7/04/$20.00 © 2004 IEEE

where x is the state of the system, y is the
measurement model, kw and kv are independent, zero-
mean, Gaussian noise processes of the covariance
matrices kQ and kR respectively.
The first step of EKF is computing the linearized state
matrices :

kxxx
xkf

kF =∂
∂

+ = |),(
1 (15)

−=∂
∂=

kxxx
xkh

kH |),((16)

Once matrices kkF ,1+ and kH are evaluated, they are then
used in first order Taylor approximation of nonlinear
functions.

),,(),(),(,1 kkkkk xxFxxFxkF
∧

+

∧
+≈ (17)

),,(),(),(,1

∧
−

+

∧
− +≈ kkkkk xxFxxHxkH (18)

The training problem using Kalman filter theory can
now be described as finding the minimum mean-squared
error estimate of the state x using all observed data.
When assuming that kkk ww ω+=+1 is the state of the
neural network, and kjkkkk vvuwhy +=),,(the
observation or measurement equation which represents
the network’s desired response vector ky as a nonlinear
function of input vector ku , the weight parameter vector

kw , and for the RBF the prototype vector parameter jv .
The solution to the training problem is given by the
following recursion [12] :

[] ,1−+= Kk
T
kkk HPHRA (19)

,kkkk AHPK = (20)

,1 kkkk Kww ξ+=
∧

+

∧
 (21)

.1 kk
T
kKkk QPHKPP ++=+ (22)

This Kalman recursion process can be explained with
following words. An input training pattern ku is
propagated through the network to produce an output

vector ky
∧

. The derivative matrix kH is obtained, then
tke Kalman gain matrix is computed according to Eq.20,
This step include the computation of the global scaling
matrix kA . The network weights vector is updated using
the Kalman gain matrix, the error vector kξ , and the

current value of the weight vector kw
∧

 as in Eq.21. At
the end, the approximate error covariance matrix is
updated as in Eq.22.

In order to apply the optimization problem in a form
suitable for Kalman Filtering in the case of a RBF NN,
we let the elements of the weight matrix (w) and the
elements of the prototypes (v) constitute the state of the
nonlinear system. And the output of the RBF network
constitutes the output of the nonlinear system. The state
of the nonlinear system model is represented by

[]cn vvwwX 11= , [11].
The computational effort of Kalman is in the order of

()][2ABO , where A is the dimension of the output
dynamic system and B is the number of parameters. In
the case of concern in this paper, there are nM outputs
and []mccn ++)1(, i.e., [])1(+cn weights and mc-
prototypes, where n is the dimension of the RBF output,
M is the number of training samples, c is the number of
prototypes (v) --see Fig.1, and m is the dimension of the
RBF input. Therefore, the computational expense of
Kalman filter is in the order of []()2)1(mccnnMO ++ .
[11].

C. Decoupled Extended Kalman filter (DEKF)Training
 Method

The classical disadvantage of Extended Kalman Filter is
its computational expense, which is the obstacle for its
use for larger networks. Thus, simplified variants must
be found, that preserve the most useful property of the
EKF while requiring less computation per time step [13].
The parameter-based DEKF algorithm is derived from
EKF by assuming that the iterations between certain
weight estimates can be ignored. This simplification
introduces many zeros into the matrix kP . If the weights
are decoupled in a way such that the weight groups
become mutually exclusive of one another, then kP can
be arranged into a block-diagonal form. Let’s g refers
to the number of such weight groups. Then, for group i ,

the vector
∧

i
kw refers to the estimated weight parameters,

i
kH is the sub-matrix of derivatives of network outputs

with respect to the thi group’s weights, i
kp is the weight

group’s approximate error covariance matrix, and i
kK is

its Kalman gain matrix.
The DEKF for the thi weight group is given, see [12]
The computational training expense of Kalman filter is
reduced in the order of []()22)()1(mccnMO ++ , [11].
The ratio between the computational training expense of the
EKF and that of the DEKF is in the order of:

[]()22

2

)()1(
)1(

mcc
mccno

++
++

.

41480-7803-8521-7/04/$20.00 © 2004 IEEE

Figure 1. Radial Basis Function (RBF).

ΙΙΙ. SYSTEM DESCRIPTION AND EXPERIMENTAL
 SETTING

Signal strength measurements in a GSM mobile terminal
are the input data used to train a RBF neural network
using one of three algorithms (GD, EKF, DEKF),
whereby a target position (or sector) is given for every
point. During the training phase, the neural network does
realize a mapping between the signal strengths and target
positions (sector) for all sample data provided.

In the testing phase, providing a set received signal
strengths at the input of the NN, the position (Sector) of
the current mobile station is predicted at the output.
For the experiments conducted in this paper for
illustration, we do use measurement data collected on
one street of the town Hanover (Schneiderberg Str.) in
Germany. The street has a total length of 450 meters.
While moving with a constant speed, RSSI values were
being collected every 5 seconds. Thus, 150 data points
could be recorded. Each data point contains the RSSI
values from the 4 strongest neighboring cells.
The classification method is used for the NN training.
The street is divided into 15 equal parts (segments).
Thus, every segment has a length of 30 meters and does
contain 10 successive of the collected data points.
The NN used in the experiments, consisted of four input
vectors (corresponding to the RSSI measurement for the
4 strongest cells) and 15 outputs, each output
corresponding to one of the 15 sectors. The number of
RBF functions has been varied from 1 to 50. The
learning rate in GD is taken equal to 0,002 in the first
experiment where by a number of iteration is counted for
every fixed number of neurons in the hidden layer, as
this has guarantied a monotonic reduction of the error
during the training process. The RBF network were
trained using the hidden layer function of Eq.3. with the
linear generator function of Eq.4. The Kalman filter
parameters of Eqs.19-22 have been initialized with

,40,40,40 IRandIQIPo === where I is the
identity matrix of appropriate dimensions. the

parameters for DEKF (iii
o RQP ,,) were initialized in a

similar way [11].

IV. SIMULATION RESULTS

Fig.2 does present a comparison of the positioning
performance of NN trained using the three different
schemes. The three training algorithms (GD, EKF and
DEKF) were terminated when the error function of Eq.8
decreased by less than the given training error. The
number of neurons in the hidden layer was varied. It
appeared that the methods based on Kalman Filtering
(EKF, DKF) are providing less errors. For example, with
the positioning quadratic average error with Kalman
method is less than 40 meters with a probability of 67%.
For GD, however, the positioning quadratic average
error is up to 65 meters with a probability of 67%.
The difference in accuracy between EKF and GD
becomes less, as the number of neurons in the hidden
layer is increased.
The EKF and DEKF are providing the same accuracy as
they are both based on Kalman Filtering, see Figs.2-3.
Since the DEKF algorithm is in principle derived from
EKF in that it is assumed that the connections between
certain weight estimates can be ignored, it consequently
requires fewer operations in one iteration (if compared to
EKF). If one does record the time needed for the training
process, the difference in terms of training effort
between EKF and DEKF will become clearer, especially
if the NN is large (a large number of parameters: inputs,
output, weights, prototypes. The DKF method is
generally preferred because of its saving of training
time. For Fig.3, for example, the training time could be
recorded and is used here for comparison. Following
parameter setting has been used: a RBF NN of 30
neurons, with 4 inputs vectors, each having 150 samples;
and 15 ouputs (classification ones). The computer
platform used is a Pentium IV (2 GHZ and 512 MB
RAM). The EKF training required 12 minutes, whereas
the DEKF ones needed only 8 minutes, both for 11
iterations.

Fig.4 compares the number of iterations to converge the
training error up to a fixed threshold. It is seen that
methods based on Kalman filtering do converge in fewer
iterations compared to the GD, provided a given training
error and for a fixed number of neurons in the hidden
layer.

V. CONCLUSION

This paper has compared a well-known Gradient descent
method training of a NN to the ones based on Kalman
filtering (EKF and DEKF). The application scenario in
this work is a fingerprint positioning using GSM RSSI

41490-7803-8521-7/04/$20.00 © 2004 IEEE

data. The experiments conducted in this work have
shown that the Kalman filtering based training of the
NNs does lead to a better positioning performance while
requiring the lowest training effort. The computational
savings achieved by the DEKF method compared to
EKF will be more significant for cases where large NN
are needed.

REFERENCES

[1] Z. Salcic and E. Chan, "Mobile station positioning
using GSM cellular phone and artificial neural
networks," Wireless Personal Communications, vol.
14, pp. 235-254, 2000.

[2] J. Park and I. W. Sanberg, "Universal approximation
using radial-basis function networks," Neural
Computation, vol. 3, pp. 246-257, 1991.

[3] K. Kyamakya, DOM-Der orientierte Mensch:
SHAKER VERLAG, 2003.

[4] S. Sin and R. D. Figueiredo, "Efficient learning
procedures for optimal interpolative nets," Neural
Networks, vol. 6, pp. 99-113, 1993.

[5] R. Duro and J. Reyes, "Discrete-time
backpropagation for training synaptic delay-based
artificial neural networks," IEEE Trans on Neural
Networks, vol. 10, pp. 779-789, 1999.

[6] M. Vidyasagar, Learning and generalization with
applications to Neural networks, second edition ed:
Springer, 1997.

[7] G. V. Puskorius and L. A. Feldkamp, "Neurocontrol
of nonlinear dynamical systems with Kalman filter
trained recurrent networks," IEEE Trans. Neural
Networks, vol. 05, pp. 279-297, 1994.

[8] M. Birgmeier, "A fully Kalman-trained radial basis
function network for nonlinear speech modeling,"
presented at IEEE International Conference on
Neural Networks, 1995.

[9] R. J. Williams, "Training recurrent Networks using
the extended Kalman Filter," presented at
International Joint Conference on Neural Networks,
1992.

[10] J. Sum, C. Leung, G. Young, and W. Kan, "On the
Kalman filtering method in neural network training
and pruning," IEEE Transactions on Neural
Networks, vol. 10, pp. 161-166, 1999.

[11] D. Simon, "Training Radial Basis Neural Networks
with the Extended Kalman Filter," Neurocomputing,
vol. 48, pp. 455-475, 2002.

[12] S. Haykin, Kalman filtering and neural networks:
John Wiley & Sons, inc., 2001.

[13] S. Haykin, Neural networks, a comprehensive
foundation, 2nd edition ed: Prentice Hall, 1999.

Cumulative Probability Function (Train Error=0,1 and
Number of neurons in hidden layer=5)

20
30
40
50
60
70
80
90

100

0 100 200 300

Error(m)

C
PF

(%
)-

Te
st

GD-CPF
EKF-CPF
DKF-CPF

Figure 2. Cumulative Probability Functions (CPF) of the
positioning error for NNs trained with the three schemes.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300

Error (m)

C
PF

(%
) -

Te
st GD-CPF

EKF-CPF

DKF-CPF

Figure 3. CPF comparison for more neurons in the hidden

layer (Training error = 0.1; 30 neurons).

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

 Trainig error= 0,01

Lo
g

N
um

be
r

of
 I

te
ra

tio
ns

Number of Neurons in RBF

GD
EKF
DKF

Figure 4. Comparison of the number of iterations in
training (GD,EKF,DKF) the neural networks while varying

the number of neurons in the hidden layer.

41500-7803-8521-7/04/$20.00 © 2004 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	nd: nd
	header: Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE

