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Abstract— This paper studies synchronization transitions in a system of 
coupled non-identical self-sustained chaotic oscillators of the Rössler type. 
The interest devoted to the Rössler oscillators is motivated by their capability 
to behave chaotically at very high frequencies. Both phase synchronization 
and lag synchronization are analyzed in terms of a coupling parameter. It is 
shown that the both types of synchronization can be achieved when 
monitoring a coupling parameter. The advantage of using one parameter to 
insure both types of synchronization is found in practical realizations. Indeed 
one should monitor only one resistor to predict the boundaries of the control 
resistor for the occurrence of each type of synchronization. Another advantage 
of monitoring only one resistor is found in the accuracy of results. An 
experimental study of the synchronization is carried out. Experimental 
waveforms in the drive and response systems are obtained. The waveforms are 
compared to confirm the achievement of synchronization experimentally. One 
of the advantages of using analog simulation in this work is the possibility to 
analyze the behaviour of the coupled system at very high frequencies by 
performing an appropriate time scaling. This offers the possibility of using our 
coupled system for Ultra Wide Band (UWB) applications.  
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1. Introduction 
The last years have witnessed intensive studies of UWB communication systems. The 

interest devoted to such systems is motivated by the various potential advantages the UWB 
technology can bring to the wireless industry. Indeed, the UWB technology can solve the RF 
spectrum availability problem, improve the security, can provide less expensive, less power 
consuming equipment for a variety of wireless applications [1]. 

 The basic idea of synchronization was to adjust the frequencies of weakly interacting 
periodic oscillators [2-5]. Nowadays several types of synchronization representing different 
degrees of correlation between the coupled systems have been identified: a) complete (or 
full) synchronization, b) generalized synchronization and, c) phase synchronization. 

 Full synchronization is achieved when the states of coupled systems coincide, while the 
dynamics in time remains chaotic. Generalized synchronization, as introduced for drive-
response systems, is defined as the presence of some functional relationship between the 
states of the response and the drive. Phase synchronization is achieved when the phases of 
coupled systems lock to each other, while their amplitudes remain uncorrelated and sustain 
an irregular motion of their own [6]. To date, synchronization of chaos [7-9] has aroused 
much interest in light of its potential applications. In particular, the use of chaotic 
synchronization in communication systems has been investigated intensively [10-16]. The 
principle consists of the transmission of an information signal containing a message, using 
chaotic signal as a broadband carrier. The synchronization process is achieved to recover the 
information at the receiver. Due to the broadband feature of the chaotic signal, it can be used 
in UWB and communications systems in chaotic pulse position modulation [17].  

We present in this report some effects of synchronization of coupled self-sustained non-
identical chaotic Rössler oscillators. To characterize these phenomena, we use both 
numerical and analog simulation techniques. The experimental observation of chaotic 
oscillations in coupled nonlinear circuits is used to discuss some unknown forms of 
cooperative behaviour that are related to the regimes of synchronized chaos. One of the most 
important contributions of this work is to list some important and new problems encountered 
when synchronizing non-identical chaotic Rössler oscillators. Such a synchronization process 
can be achieved through the use of an auxiliary system (a third oscillator of the Rössler type), 
which is considered as the ideal predictor that is able to indicate the current state of the 
response system by processing the driving signal. A similar approach was carried out by 
Rulkov [18]. He considered simplified cases of non-identical synchronized chaotic 
oscillations that were observed in directionally coupled circuits with different parameter 
values and generalized the definition of chaos synchronization as the ability to predict the 
current state of the response system from the chaotic data measured from the driving system. 

 The general goal of this work is to adapt the study carried out by Rulkov [18] to the case 
of UWB Rössler  generators: we use a class of synchronizing systems, which is 
unidirectional coupled non-identical Rössler systems (master-slave or drive-response 
configurations). The interest devoted to the Rössler system is motivated by their capability to 
behave chaotically at very high frequencies. Chaotically modulated oscillations and chaotic 
pulses are obtained and are shown as characteristic features of the oscillators. These 
oscillators are of great interest in UWB applications and communications [10, 19]. A 
technique of synchronization in case of chaotic modulation is presented. Numerical solutions 
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are compared with the experimental results and a very good agreement is obtained between 
the both methods. One of the interests of this work is to prove that analog computation is 
suitable than its numerical counterpart for understanding the real physical behaviour of 
chaotic systems. The complete system (drive ( )111 ,y, zx  + response ( )222 ,y, zx  + auxiliary 
( 333 ,y, zx ) ) is modelled by the following set of equations: 

                                     ( )3,2,12,3,311,2,32,1,32,1,3,2,13,2,1 3,2,1      xxxzyx −++−−=
•

εω            (1.a) 

                                                                                        (1.b) 3,2,13,2,13,2,13,2,13,2,1 yaxy += ω
•

                                     ( )3,2,13,2,13,2,13,2,13,2,1 Uxzfz −+=
•

                                            (1.c) 

Where iω  are the natural frequencies of the oscillators, iε  are the coupling coefficients and 
,  and  are the system parameters. The dots stand for time derivatives. ia if iU

The paper is organized as follows. Section II presents the numerical study of the 
complete system. We present some results showing both phase synchronization (PS) and lag 
synchronization (LS). Section III is devoted to the analog simulation of the complete system. 
We present the electronic circuit of our simulator with the associated definitions of the 
parameters of the system model as functions of the circuit components. The section ends by 
comparing the results from the simulator with those of the direct numerical integration of the 
system model. In Section IV we deal with conclusions and proposals for further works. 

2. Numerical  Study 
We use the fourth-order Runge–Kutta algorithm for the numerical analysis. For the sets 

of parameters used in this work, the appropriate step size is fixed to and the 0005.0=∆t
calculations are performed using real variables and constants in extended mode. The 
integration time is always greater than . Let us note that by changing the values of the 610=T
system parameters, one should always control the step size used in order to prevent abrupt 
discontinuities that can automatically induce errors in computation.  

2.1. Lag Synchronization 

This subsection shows the achievement of lag synchronization when monitoring the 
coupling parameter 2ε . For the following set of system parameters, ,02.11 =ω  ,1125.01 =a  

,38.01 =f   ,49.111 =U ,44.01 =ε  ,98.02 =ω  ,1230.02 =a  ,20.02 =f   ,9.102 =U ,23 ωω =  
,23 aa =   and  the regime of LS is clearly demonstrated in Fig. 1 by ,23 ff = ,23 UU =

plotting ( 02 )τ+tx  versus . t  is the time variable and ( )tx1 0τ  is the time shift or time lag. Fig. 
1 shows the projection of the attractors of the drive and response systems onto the plane 

( ) ( )( txtx 21 , )  and delayed coordinates plots ( )02 τ+tx  versus ( )tx1 . It is clearly shown that the 
transition for a non-synchronized state ( )10.02 =ε  to a synchronized state ( )36.02 =ε  is 
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achieved by increasing the coupling coefficient 2ε  . Mention that lag synchronization is 
achieved for the lag time 098.00 =τ  . Let us also mention that the achievement of lag 
synchronization in our model corresponds to the following equalities: a)- 

( ) ( ) ( )txtxtx 3102 =≈+τ ; b)- ( ) ( ) ( )tytyty 3102 =≈+τ ;  c)- ( ) ( ) (tztztz 3102 =≈ )+τ . Let us 
finally mention that the synchronization of pulse waves (coordinates ) was obtained with an iz
almost constant small divergence (about 6%). Furthermore we found that the divergence 
observed were an increasing function of the integration step size. This help to underline the 
fact that the numerical study of Rössler systems needs the choice of very small integration 
step size. 

                                                                 
                                                   x1(t)                             x1(t) 

Figure 1. Projection of the attractors onto the planes ( ) ( )( )txtx 21 ,  and ( ) ( )( )021 , τ+txtx  with .098.00 =τ  

2.2. Phase Synchronization 

The idea of phase synchronization of chaotic systems is close to synchronization of 
periodic oscillations. Here, only the phases are considered with no restriction on the 
amplitudes. Phase synchronization is achieved in our model when the phase difference 
between neighbouring oscillators does not grow with time but remains bounded. This 
condition can be materialized by the inequality Constp12 φφ − . 1φ  and 2φ  represent 
respectively the phases of  both drive and response systems. 

In the polar coordinates, Eqs. (1) can be written in the form 

( )[ ] 3,2,13,2,13,2,13,2,12,3,32,3,31,1,21,1,22,2,1

3,2,1
2

2,2,13,2,1
3,2,1

coscoscoscos              

sin

φφφφε

φ

zrrr

ar
dt

dr

−−++

=
 (2.a) 

( )[ ]3,2,12,2,13,2,13,2,11,3,31,3,32,1,22,1,2
3,2,1

3,2,1

3,2,13,2,12,2,12,2,1
3,2,1

coscoscos
sin

               

sincos

zrrr
r

a
dt

−−+−

+=

εφφφ
φ

φφω
dφ

 (2.b) 
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            ( 2,2,13,2,13,2,13,2,12,2,1
3,2,1 cos Urzf

dt
−+= φ )dz

,                                                       (2.c) 

taking into account the following definitions: 3,2,13,2,13,2,1 cosφrx =  , and 3,2,13,2,13,2,1 sinφry = . 

Eqs. (2) are solved numerically using the Runge-Kutta algorithm. Considering the same sets 
of the system parameters in Fig. 1, we have analyzed the effect of the coupling 2ε  on the 
phase synchronization. Fig. 2 shows the variation of the phase difference between 1φ   and 

2φ   in the time domain. We have found that for 257.02 =ε  the phase synchronization is not 
achieved and that by decreasing 2ε  leads to the phase synchronization ( ).24.0.. 2 =εge   

                      
                         Figure 2. Phase difference of three coupled Rössler oscillators versus time  
                         with 257.02 =ε  (non- synchronized) and 24.02 =ε  (synchronized). 

3. Experimental Study 
The experimental study of the chaotic synchronization carried out in this work aims to 

verify the results obtained numerically. This study also aims to show that the analog 
simulator is a very powerful tool for the investigation of complex nonlinear models.  

Fig. 3 is a scheme of the complete electronic simulator for the investigation of the   
dynamics of the drive-response-auxiliary system. In terms of the circuit components, the 

parameters of the system model are defined as follows: ;10
1112

4

1 CR

−
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121813
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1 CRR
Ra

−

=  
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1315
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−
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;10
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3 CR
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−
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Figure 3. Scheme of the complete electronic simulator 

In order to control each parameter of the system model by varying only one resistor, 
we set the following values of the circuit components: ;15.1 VVcc =   

  
;73.911 nFC =

;83.912 nFC =  ;67.1013 nFC = ;73.1021 nFC =   ;25.1022 nFC =   
  

;
16.1033 nFC

13.1023 nFC =
 ;73.1031 nFC = ;36.10 32 nFC = ;=   ;1080011 Ω=R ;93203121 Ω== RR   

  ;99503323 Ω== RR  ;996013 Ω=R  ;98724 Ω=R  ;98434 Ω=R  ;920015 Ω=R;93714 Ω=R  
  ;102003525 Ω== RR ;173517 Ω=R  ;14723727 Ω== RR  ;204010 Ω=R ;227020 Ω=R  

 Thus, the coefficients .179030 Ω=R 1ε , 2ε , 1ω , 2ω , , , , ,  and  will be 
controlled respectively by , , , , , , , ,  and . Note that 
the analog voltages obtained from our simulator are directly equivalent to the dimensionless 
variables of the system model. We now analyze the chaotic synchronization of non-identical 
oscillators (drive-response) experimentally. The set of system parameters used in the 
numerical study cannot be considered for the experiment, the dynamics of the simulator 
being limited by the power supply

1U 2U 1a 2a 1f 2f

19R 29R 12R 22R 16R 26R 18R 28R 15R 25R

( )VV 150 ±= . This justifies the choice of the following 
values of resistors: ;8560R12 Ω=  ;7900RR 3222 Ω==   R ;589018 Ω=  ;6470R28 Ω=  

   ;5050R38 Ω= ;2170R16 Ω= ;23003626 Ω== RR  ;82000R19 Ω=  .991003929 Ω== RR  
These values correspond to a state where the chaotic waveforms from the drive and response 
systems are synchronized. Figs. 4a and 4b show respectively the experimental chaotic phase 
portrait of the auxiliary system and its corresponding numerical phase portrait in the 
decoupled state of the system. In Figs. 5a and 5b are shown respectively the experimental 
projection of the attractors of the systems (drive and response) onto the plane ( ) ( )( )txtx 21 ,  
and its corresponding numerical one when the LS is achieved. The numerical values used to 
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achieve the synchronization are: ; ; ; ; 
; ; ; ; ; ; ; 

; ; ; . Fig. 6 shows the corresponding chaotic experimental 
synchronized waveforms respectively in the drive (upper picture) and the response (lower 
picture) systems. The results obtained from our electronic simulator were generally very 
close to those obtained numerically. This helps to validate the results obtained in this work. 
One should note that LS is achieved numerically (case of Fig. 5) for a given detuning 

2.11 =ω 354.01 =a 1659.11 =f 3117.41 =U
125.01 =ε 18.12 =ω 344.02 =a 1123.12 =f 2796.42 =U 094.02 =ε 922.03 =ω

23 aa = 23 ff = 23 UU = 23 εε =

258.0=σ  between the natural frequencies of both the auxiliary and response systems. 

                                      
Figure 4. Chaotic phase portraits of the auxiliary system with the following values of the resistors:                   

;960032 Ω=R   ;230036 Ω=R ;834033 Ω=R Ω= 1010035R . This corresponds to the following 

numerical values:  ;223.13 =f ;2796.43 =U ;97.03 =ω 41.03 =a (the other values used in the 
 case of chaotic synchronization remain unchanged). 

                                            
 Figure 5. Projection of the attractors onto the plane                    Figure 6. Pictures of the experimental                       

( ) ( )( txtx 21 , )  in the case of chaotic synchronization                  synchronized chaotic waveforms in the  
                                                                                                       drive (upper picture) and response (lower     
                                                                                                       picture) systems 

4. Conclusion 
This paper has dealt with the study of a generalized case of synchronized chaos in drive-

response systems. A predicting device (the auxiliary system) has been used as a replica of the 
response system. This auxiliary system was chosen to be driven in the same way as the 
response system (that is the parameters of the models describing both response and auxiliary 
systems are identical). We have shown the achievement of both LS and PS of chaotic 
oscillations in the drive-response systems when monitoring the coupling coefficient 2ε  . The 
experimental study of chaos synchronization was carried out using analog computer 
implementation techniques. The results from our electronic circuit were compared with the 
numerical results and we found a very good agreement between the two methods. This 
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perfect agreement has confirmed the fact that analog simulation is suitable than its numerical 
counterpart for the analysis of complex nonlinear systems. A very important problem under 
investigation is the experimental control of the lag time ( )0τ  to achieve the experimental 
LS of chaotic oscillations. 
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