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Abstract 
 

The precise position of the mobile station is critical for the 
ever increasing number of applications based on location. In 
this paper, we introduce a novel positioning technique for 
positioning a GSM mobile phone in real-time. This technique 
is based on the GSM mobile phone feature, that it can 
measure the signal strengths from a number of nearby base 
stations. In this approach we use the GSM signal strengths 
measured in real environment to train an artificial neural 
network. The neural network is trained using the second order 
learning algorithm (Extended Kalman Filter) because of its 
superiority in the learning speed and mapping accuracy. The 
mobile position can be determined with good accuracy by 
providing the current signal strength data to a previously 
trained neural network. The EKF shows its superiority to the 
Back Propagation (BP) in both the General Feed Forward 
(GFF) and the Multi Layer Perception (MLP) neural network 
architectures. The good accuracy of the calculated position 
with either an EKF training in a General Feed Forward 
(GFF) or a Multi Layer Perception (MLP) neural network is 
shown.   
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I.  INTRODUCTION  
 

The phenomenal growth in the ubiquitous computing and 
location based services fields is making the location-
awareness of the mobile device with good precision more 
important. There are various means of mobile positioning, 
which can widely be divided into two major categories – 
network based and handset based positioning methods. In this 
paper as we are dealing with the positioning of a GSM mobile 
device. It is worth mentioning that the network based methods 
result in high signalling load especially in case of continuous 
tracking. That’s why handset based approaches which also 
have better accuracy than the network based ones are the most 

recommended. This paper addresses the positioning of a 
mobile station using radio signal strengths from the serving 
cell and its neighbouring cells, which are continuously 
measured by the GSM mobile phone (they are collected in the 
so-called GSM measurement reports). The block diagram 
showing the signal flow is shown in Fig.1. The collected data 
are transferred to a previously trained neural network. In the 
training phase corresponding GPS positioning data are also 
provided as target (see Fig.2). In the testing phase there is no 
need of the GPS signals any more.  
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Figure 1. Schematic description of position using signal 

strengths and ANN. 

Even though GPS is a dominant player in outdoor positioning, 
it has some well known disadvantages. On the other hand, 
GSM signal strength based positioning requires no additional 
hardware in the mobile devices and practically every mobile 
device do measure the signal strengths, even in the idle mode. 
Many methods have been proposed to calculate the position 
from the signal strength measurements [1-4]. Even hidden 
Markov models and pattern recognition models [1-2] have 
been used. However, the accuracy reached by such approaches 
is not yet good enough for a good number of interesting 
location-based services. Some adaptive methods do use fuzzy 
logic processing of signal strength data [3], however, with still 
poor accuracy in the range of 0 to 575m. More recent 
approaches involve Artificial Neural Networks (ANN) for 
positioning [4, 7]. Some published works use classification 
networks and adjusted weight initialisation using 
backpropagation learning rule [4]. They could improve the 
average accuracy that is however still in the range of 205.3m. 
In [7], we used a four layered static network with two hidden 
layers with feed-forward and backpropagation and Levenburg-
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Marquardt as the training algorithm and achieved a good 
accuracy in the range of 50 to 200m. This shows the promise 
of the ANNs. The key contribution in this paper consists of 
assessing and optimising the use of the Extended Kalman 
Filter (EKF) as a training technique for both the Multi Layer 
Perception (MLP) and General Feed Forward (GFF) ANNs.  

In section II, Model description, we describe the ANN models 
for MLP and GFF. Section III contains the simulation context 
used for a systematic performance evaluation. The results 
presented in Section IV do underline the superiority of the 
EKF.   

II. MODEL DESCIPTION 

 
In this section we present the major issues in training a 

neural network and the ANN models that we used in this work. 
However, the basic theory of the models in particular and 
neural networks in general is omitted as extensive literature is 
available dealing with that. Like in nature (see brains of 
animals or human beings), the network function is largely 
determined by the connections between the neurons. ANNs are 
trained by adjusting the values of the connections (weights) 
between elements or neurons, in order to get the specific 
relation between a target outputs and a particular input as 
shown in fig.1. 

 

 

 

 

 

 

 

Figure 2. Illustration of the training process of an ANN. 
 

The major factors while using the ANNs are the training 
method employed to train the network and the network 
architecture type. In this work we consider two architectures, 
namely the Feed forward and the static MLP.  

A. Artificial Neural network Models 
In Fig.2 we see a typical feed forward neural network 

topology. Data enters the neural network through the input 
units on the left. The input values are assigned to the input 
units as the unit activation values. The output values of the 
units are modulated by the connection weights, either being 
magnified if the connection weight is positive and greater than 
1.0, or being diminished if the connection weight is between 
0.0 and 1.0. If the connection weight is negative, the signal is 
magnified or diminished in the opposite direction. 

 

Mathematically the function of the hidden neuron is described 
as  

 

, 
where the weights { , } are symbolized with the arrows 
feeding into the neuron (see Fig.3). 
 
 
 
 
 
 
 
 
 

Figure 3. Feed Forward ANN. 
 
The network output is formed by another weighted summation 
of the outputs of the neurons in the hidden layer. This 
summation on the output is called the output layer. In training 
the network the parameters are incrementally adjusted till the 
desired mapping is performed. The GFF network differs from 
the MLP by not allowing a back propagation and feeding the 
information only forward. The back propagation feature is 
however an important one for MLP, [4], where it is taken  to 
improve the performance by knowing the past knowledge. 
However, it is quite different from the so-called recurrent 
neural networks where one or more neurons feeds data back 
into the network, so that they can alter their own input. This is 
of course used when there is something wrong with the output 
of the system. Recurrent networks are not considered in this 
work.  
 
Many standard optimization methods (back-propagation, line 
search, quasi-Newton) are based on the calculation of 
gradients. For feed-forward neural networks this is performed 
in the partial derivatives of the error function with respect to 
the network outputs (before thresholding); these derivatives 
form the basis for the back-propagation algorithm. In this 
work, we used the gradient descent method to compare the 
results with the EKF. Gradient descent is an incremental hill-
climbing algorithm that approaches a minimum or maximum 
of a function by taking steps proportional to the gradient (or the 
approximate gradient) at the current point. 

B. Extended Kalman filter 
The performance of the network (in the gradient descent NNs) 
is deteriorated by the coupling between the weights in back 
propagation algorithm. Apart from that appropriate learning 
parameters should be chosen. 

A variety of second-order methods began to be developed 
using weight updates based on quasi-Newton, Levenburg-
Marquardt [7] and conjugate gradient techniques. However, all 
these methods use the batch-oriented update policy of the 
weights, an approach that does not allow an incremental and 
progressive training of the network.  
In this paper, we do also use the Extended Kalman Filter 
(EKF) [5] as the training algorithm to train the ANN. In 
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contrast to other second order updating methods, EKF updates 
the weights sequentially and it maintains the error covariance 
matrix of the training problem. The first use of a global EKF 
algorithm dates back to 1980 [6]. Our approach is mainly 
based on the EKF though adapted to the positioning problem 
of concern. The training of the weights in a neural network 
can be treated as an estimation problem. The corresponding 
signal flow is shown in Fig.3.  
As shown in Fig.3 the EKF training is carried out in a 
sequential fashion, with the input training pattern uk 
propagating through the network to produce an output vector ŷk 

. The error vector ξk is computed by comparing the ŷk with the 
reference output yk (expected output). The Kalman gain matrix 
Kk is computed using the covariance noise matrix Rk, error 
covariance matrix Pk, and also the derivative matrix Hk 
obtained from back propagation. The weights are updated 
using the Kalman gain matrix, the error vector, and also the 
current values of weight vector Ŵk. The forward propagation 
and back propagation depends on the network type, here in this 
paper we are using the Multi Layer Perception (MLP) network 
to take the advantage of back propagation knowing the history 
of network before training with the new set of parameters. 

A successful application of EKF for non linear problems 
requires the selective choice of the covariance noise matrix Rk, 
error covariance matrix Pk at each time step. Unlike the 
ordinary learning algorithms the EKF can be used as on-line 
algorithm which facilitates better accuracy as shown in results.  

III. SIMULATION SCENARIO 
 

The GSM signal strengths and the position information are 
measured in set of streets in Hanover, Germany by connecting 
a GPS and GSM receiver to a PDA. The GPS data obtained in 
polar coordinates is converted in to Gauß-krüger coordinates. 
The GSM and GPS data are merged into a single file with 
respective their time. The data is divided into two parts, one for 
training the network and other for testing the network. The 
training and testing data are separated in order to reach a 
generalization for the network, as it is costly to take 
measurements on all the streets of a town and train the network 
for future use.  

The various parameters for the neural network are assigned 
depending upon the performance expected and the architecture 
chosen as given below: 

• Network model (GFF or MLP) 

• Number of inputs 12 (6 Cell Identifiers) but can vary 

• Number of outputs 2 (X,Y) 

• Number of hidden layers 3 ,but can be changed 

• Wait update method (batch, online) 

• Training function (EKF, trainlm) 

• Transfer function in hidden layers(LOGSIG) 

• Transfer function at output layer (PURELIN) 

• Normalization at channel and normalization at output 

• Total number of iterations 

The number of neurons in the hidden layer is fixed by the 
random approximation. 

After assigning the different parameters, the network should be 
trained separately before putting it into test. After training the 
network, it can be tested with the known data or it can predict 
the position for a new set of data. The simulation is run for 
1500 iterations while training to generalize the network. 

In batch updating of weights, the true weight is used to update 
the parameters of a model. The true weight is usually the sum 
of the weights caused by each individual training sample. 
Therefore, batch updating requires one sweep through the 
training set before any parameters can be changed.  

In on-line updating, the true weight is approximated by the 
weight of the cost function only evaluated on a single training 
sample. Therefore, the parameters of the model are updated 
after each training sample. For large data sets, on-line 
updating can be much faster than batch updating. 

 

Figure 4. Signal flow diagram for EKF neural
network training 
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IV. RESULTS ANALYSIS 
 

In this section we do analyze the results obtained for a set of 
streets in Hanover, Germany. Here, the results are presented for 
cases where the neural networks are tested using data different 
from those used for training. For obvious reasons the test 
performance of a neural network is always high if data used for 
training and for testing are the same. This has been for example 
the case for part of the experiments reported in [7]. 

In this work, the emphasis is laid on selecting both the suitable 
ANN model and the training algorithm. The entire simulation 
is carried for the GFF network with 1 hidden layer and MLP 
network with 2 hidden layers. All other parameters are the 
same for both network types. Besides, the same data are used 
to test both models in either batch update or online update of 
the weights. The default training algorithm used is EKF if any 
other scheme is not specially mentioned. 

First we present the active cost involved in the network as 
shown in Fig.5.The active cost (also called training error) is 
defined as the minimum error obtained for training the data set. 
The initial value is set to 1E+009. It is also used to stop the 
iteration process during the training. The active cost involved 
in training the network is clearly high for the batch wise 
updating of the weights, whether it is for GFF or MLP. 
However, the difference between the MLP and GFF in online 
updating is very low and it does not need to be taken into 
consideration as the actual active cost changes in each iteration. 
From Fig.5 we can say that, while opting for the online 
updating of the weights the training can be performed quickly 
irrespective of the network type. 

The quadratic error computed in the testing phase is shown in 
Fig.6 and Fig.7 for GFF and MLP respectively. From Fig.6 the 
quadratic error is again high for batch wise updating of 
weights, while compared to the online updating. The batch 
wise scheme reaches a quadratic error that is almost the double 
of the one reached by the online updating. For MLP, the online 
updating is still better, whereby the difference in performance 
is however much lower. A very interesting result is that the 
quadratic error for the online updating scheme is only in the 
range of 48 to 64 m. 

The most critical point to be noted while analyzing any neural 
network is the error or in other words the learning curve of the 
network changes for each training, even with the same set of 
data. If the variation in the learning curve is high, then the 
reliability of the training is very low or in other words the 
position information obtained can’t be trusted. This 
phenomenon is however significantly reduced in cases of 
online updating (see Fig.6). 

The EKF scheme proved to deliver much better results in the 
worst scenario cases. This is shown in Fig.8 where the worst 
performance from the EKF is plotted against the best 
performance of the Step Gradient Descent training algorithm. 
The variation in the error for the EKF is very small where as 
for the gradient descent method it is comparatively high.  

 

 

V. CONCLUSION 
 

In this paper we have shown that an ANN training using EKF 
does provide a very well performing positioning system for 
outdoor (refer to the US FCC requirements for cellular network 
based positioning). A systematic analysis of the suitable neural 
network for the positioning, based upon GSM-RSSI, has been 
identified. Besides, extensive tests and fine tuning experiments 
have been conducted. Apart from a suitable architecture, a 
suitable training algorithm and the weight updating method 
have also been identified.  

The performance of the positioning system obtained is very 
good in terms of accuracy and reliability. Even though the 
accuracy slightly changes with the training iterations, it is still 
within a reasonable stable range with variations of not more 
than only 10 m. 
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Figure 5. Active cost for training the network models (in 
online and in batch). 
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Figure 6. Quadratic error analysis for GFF. Comparison of 
the performance of Online Training Vs Batch Training.  
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Figure 7. Quadratic error analysis for MLP. Comparison of 

the performance of Online Training Vs Batch Training. 
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Figure 8. Quadratic error analysis for MLP network while 
using EKF versus Step Gradient Descent training 

schemes.    
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