
GSM RSSI-based positioning using Extended Kalman Filter for training
Artificial Neural Networks

Koteswara Rao Anne, K.Kyamakya, F.Erbas, C.Takenga, J.C.Chedjou
Institute of Communications Engineering (IANT)

University of Hannover
Appel str.9A,Hannover,Germany,D-30167

{ raoanne, kyandogh, erbas, takenga, chedjou }@ant.uni-hannover.de

Abstract

The precise position of the mobile station is critical for the
ever increasing number of applications based on location. In
this paper, we introduce a novel positioning technique for
positioning a GSM mobile phone in real-time. This technique
is based on the GSM mobile phone feature, that it can
measure the signal strengths from a number of nearby base
stations. In this approach we use the GSM signal strengths
measured in real environment to train an artificial neural
network. The neural network is trained using the second order
learning algorithm (Extended Kalman Filter) because of its
superiority in the learning speed and mapping accuracy. The
mobile position can be determined with good accuracy by
providing the current signal strength data to a previously
trained neural network. The EKF shows its superiority to the
Back Propagation (BP) in both the General Feed Forward
(GFF) and the Multi Layer Perception (MLP) neural network
architectures. The good accuracy of the calculated position
with either an EKF training in a General Feed Forward
(GFF) or a Multi Layer Perception (MLP) neural network is
shown.

Keywords

Mobile positioning; Neural network training; Extended
Kalman filetr; Multi Layer Perception.

I. INTRODUCTION

The phenomenal growth in the ubiquitous computing and
location based services fields is making the location-
awareness of the mobile device with good precision more
important. There are various means of mobile positioning,
which can widely be divided into two major categories –
network based and handset based positioning methods. In this
paper as we are dealing with the positioning of a GSM mobile
device. It is worth mentioning that the network based methods
result in high signalling load especially in case of continuous
tracking. That’s why handset based approaches which also
have better accuracy than the network based ones are the most

recommended. This paper addresses the positioning of a
mobile station using radio signal strengths from the serving
cell and its neighbouring cells, which are continuously
measured by the GSM mobile phone (they are collected in the
so-called GSM measurement reports). The block diagram
showing the signal flow is shown in Fig.1. The collected data
are transferred to a previously trained neural network. In the
training phase corresponding GPS positioning data are also
provided as target (see Fig.2). In the testing phase there is no
need of the GPS signals any more.

Configured ANN
GSM-
RSSI

position(X,Y)

LBS
server

or

Base
Station

RSSI

X,Y

Matlab Server

Configured ANN
GSM-
RSSI

position(X,Y)

LBS
server

or

Base
Station

LBS
server

or

Base
Station

RSSI

X,Y

Matlab Server

Figure 1. Schematic description of position using signal

strengths and ANN.

Even though GPS is a dominant player in outdoor positioning,
it has some well known disadvantages. On the other hand,
GSM signal strength based positioning requires no additional
hardware in the mobile devices and practically every mobile
device do measure the signal strengths, even in the idle mode.
Many methods have been proposed to calculate the position
from the signal strength measurements [1-4]. Even hidden
Markov models and pattern recognition models [1-2] have
been used. However, the accuracy reached by such approaches
is not yet good enough for a good number of interesting
location-based services. Some adaptive methods do use fuzzy
logic processing of signal strength data [3], however, with still
poor accuracy in the range of 0 to 575m. More recent
approaches involve Artificial Neural Networks (ANN) for
positioning [4, 7]. Some published works use classification
networks and adjusted weight initialisation using
backpropagation learning rule [4]. They could improve the
average accuracy that is however still in the range of 205.3m.
In [7], we used a four layered static network with two hidden
layers with feed-forward and backpropagation and Levenburg-

0-7803-8521-7/04/$20.00 (C) 2004 IEEE

41410-7803-8521-7/04/$20.00 © 2004 IEEE

Marquardt as the training algorithm and achieved a good
accuracy in the range of 50 to 200m. This shows the promise
of the ANNs. The key contribution in this paper consists of
assessing and optimising the use of the Extended Kalman
Filter (EKF) as a training technique for both the Multi Layer
Perception (MLP) and General Feed Forward (GFF) ANNs.

In section II, Model description, we describe the ANN models
for MLP and GFF. Section III contains the simulation context
used for a systematic performance evaluation. The results
presented in Section IV do underline the superiority of the
EKF.

II. MODEL DESCIPTION

In this section we present the major issues in training a

neural network and the ANN models that we used in this work.
However, the basic theory of the models in particular and
neural networks in general is omitted as extensive literature is
available dealing with that. Like in nature (see brains of
animals or human beings), the network function is largely
determined by the connections between the neurons. ANNs are
trained by adjusting the values of the connections (weights)
between elements or neurons, in order to get the specific
relation between a target outputs and a particular input as
shown in fig.1.

Figure 2. Illustration of the training process of an ANN.

The major factors while using the ANNs are the training
method employed to train the network and the network
architecture type. In this work we consider two architectures,
namely the Feed forward and the static MLP.

A. Artificial Neural network Models
In Fig.2 we see a typical feed forward neural network

topology. Data enters the neural network through the input
units on the left. The input values are assigned to the input
units as the unit activation values. The output values of the
units are modulated by the connection weights, either being
magnified if the connection weight is positive and greater than
1.0, or being diminished if the connection weight is between
0.0 and 1.0. If the connection weight is negative, the signal is
magnified or diminished in the opposite direction.

Mathematically the function of the hidden neuron is described
as

,
where the weights { , } are symbolized with the arrows
feeding into the neuron (see Fig.3).

Figure 3. Feed Forward ANN.

The network output is formed by another weighted summation
of the outputs of the neurons in the hidden layer. This
summation on the output is called the output layer. In training
the network the parameters are incrementally adjusted till the
desired mapping is performed. The GFF network differs from
the MLP by not allowing a back propagation and feeding the
information only forward. The back propagation feature is
however an important one for MLP, [4], where it is taken to
improve the performance by knowing the past knowledge.
However, it is quite different from the so-called recurrent
neural networks where one or more neurons feeds data back
into the network, so that they can alter their own input. This is
of course used when there is something wrong with the output
of the system. Recurrent networks are not considered in this
work.

Many standard optimization methods (back-propagation, line
search, quasi-Newton) are based on the calculation of
gradients. For feed-forward neural networks this is performed
in the partial derivatives of the error function with respect to
the network outputs (before thresholding); these derivatives
form the basis for the back-propagation algorithm. In this
work, we used the gradient descent method to compare the
results with the EKF. Gradient descent is an incremental hill-
climbing algorithm that approaches a minimum or maximum
of a function by taking steps proportional to the gradient (or the
approximate gradient) at the current point.

B. Extended Kalman filter
The performance of the network (in the gradient descent NNs)
is deteriorated by the coupling between the weights in back
propagation algorithm. Apart from that appropriate learning
parameters should be chosen.

A variety of second-order methods began to be developed
using weight updates based on quasi-Newton, Levenburg-
Marquardt [7] and conjugate gradient techniques. However, all
these methods use the batch-oriented update policy of the
weights, an approach that does not allow an incremental and
progressive training of the network.
In this paper, we do also use the Extended Kalman Filter
(EKF) [5] as the training algorithm to train the ANN. In

ANN with
connections between
neurons

 Input

Target

Output

Adjust
Weights

Compare

0-7803-8521-7/04/$20.00 (C) 2004 IEEE

41420-7803-8521-7/04/$20.00 © 2004 IEEE

contrast to other second order updating methods, EKF updates
the weights sequentially and it maintains the error covariance
matrix of the training problem. The first use of a global EKF
algorithm dates back to 1980 [6]. Our approach is mainly
based on the EKF though adapted to the positioning problem
of concern. The training of the weights in a neural network
can be treated as an estimation problem. The corresponding
signal flow is shown in Fig.3.
As shown in Fig.3 the EKF training is carried out in a
sequential fashion, with the input training pattern uk
propagating through the network to produce an output vector ŷk

. The error vector ξk is computed by comparing the ŷk with the
reference output yk (expected output). The Kalman gain matrix
Kk is computed using the covariance noise matrix Rk, error
covariance matrix Pk, and also the derivative matrix Hk
obtained from back propagation. The weights are updated
using the Kalman gain matrix, the error vector, and also the
current values of weight vector Ŵk. The forward propagation
and back propagation depends on the network type, here in this
paper we are using the Multi Layer Perception (MLP) network
to take the advantage of back propagation knowing the history
of network before training with the new set of parameters.

A successful application of EKF for non linear problems
requires the selective choice of the covariance noise matrix Rk,
error covariance matrix Pk at each time step. Unlike the
ordinary learning algorithms the EKF can be used as on-line
algorithm which facilitates better accuracy as shown in results.

III. SIMULATION SCENARIO

The GSM signal strengths and the position information are
measured in set of streets in Hanover, Germany by connecting
a GPS and GSM receiver to a PDA. The GPS data obtained in
polar coordinates is converted in to Gauß-krüger coordinates.
The GSM and GPS data are merged into a single file with
respective their time. The data is divided into two parts, one for
training the network and other for testing the network. The
training and testing data are separated in order to reach a
generalization for the network, as it is costly to take
measurements on all the streets of a town and train the network
for future use.

The various parameters for the neural network are assigned
depending upon the performance expected and the architecture
chosen as given below:

• Network model (GFF or MLP)

• Number of inputs 12 (6 Cell Identifiers) but can vary

• Number of outputs 2 (X,Y)

• Number of hidden layers 3 ,but can be changed

• Wait update method (batch, online)

• Training function (EKF, trainlm)

• Transfer function in hidden layers(LOGSIG)

• Transfer function at output layer (PURELIN)

• Normalization at channel and normalization at output

• Total number of iterations

The number of neurons in the hidden layer is fixed by the
random approximation.

After assigning the different parameters, the network should be
trained separately before putting it into test. After training the
network, it can be tested with the known data or it can predict
the position for a new set of data. The simulation is run for
1500 iterations while training to generalize the network.

In batch updating of weights, the true weight is used to update
the parameters of a model. The true weight is usually the sum
of the weights caused by each individual training sample.
Therefore, batch updating requires one sweep through the
training set before any parameters can be changed.

In on-line updating, the true weight is approximated by the
weight of the cost function only evaluated on a single training
sample. Therefore, the parameters of the model are updated
after each training sample. For large data sets, on-line
updating can be much faster than batch updating.

Figure 4. Signal flow diagram for EKF neural
network training

∑

Back-
propogation

Weight
update

Forward-
propagate

Kalman
Gain

Matrix

Z-1I

Z-1I

Ŵk

Ŵk+1

ŷ
yk

uk

Hk

Kk

Rk

Pk

1

2

4

3

5

Independent of network type

ξk

Depend on network type

Error Cov.
Update

Pk+1

0-7803-8521-7/04/$20.00 (C) 2004 IEEE

41430-7803-8521-7/04/$20.00 © 2004 IEEE

IV. RESULTS ANALYSIS

In this section we do analyze the results obtained for a set of
streets in Hanover, Germany. Here, the results are presented for
cases where the neural networks are tested using data different
from those used for training. For obvious reasons the test
performance of a neural network is always high if data used for
training and for testing are the same. This has been for example
the case for part of the experiments reported in [7].

In this work, the emphasis is laid on selecting both the suitable
ANN model and the training algorithm. The entire simulation
is carried for the GFF network with 1 hidden layer and MLP
network with 2 hidden layers. All other parameters are the
same for both network types. Besides, the same data are used
to test both models in either batch update or online update of
the weights. The default training algorithm used is EKF if any
other scheme is not specially mentioned.

First we present the active cost involved in the network as
shown in Fig.5.The active cost (also called training error) is
defined as the minimum error obtained for training the data set.
The initial value is set to 1E+009. It is also used to stop the
iteration process during the training. The active cost involved
in training the network is clearly high for the batch wise
updating of the weights, whether it is for GFF or MLP.
However, the difference between the MLP and GFF in online
updating is very low and it does not need to be taken into
consideration as the actual active cost changes in each iteration.
From Fig.5 we can say that, while opting for the online
updating of the weights the training can be performed quickly
irrespective of the network type.

The quadratic error computed in the testing phase is shown in
Fig.6 and Fig.7 for GFF and MLP respectively. From Fig.6 the
quadratic error is again high for batch wise updating of
weights, while compared to the online updating. The batch
wise scheme reaches a quadratic error that is almost the double
of the one reached by the online updating. For MLP, the online
updating is still better, whereby the difference in performance
is however much lower. A very interesting result is that the
quadratic error for the online updating scheme is only in the
range of 48 to 64 m.

The most critical point to be noted while analyzing any neural
network is the error or in other words the learning curve of the
network changes for each training, even with the same set of
data. If the variation in the learning curve is high, then the
reliability of the training is very low or in other words the
position information obtained can’t be trusted. This
phenomenon is however significantly reduced in cases of
online updating (see Fig.6).

The EKF scheme proved to deliver much better results in the
worst scenario cases. This is shown in Fig.8 where the worst
performance from the EKF is plotted against the best
performance of the Step Gradient Descent training algorithm.
The variation in the error for the EKF is very small where as
for the gradient descent method it is comparatively high.

V. CONCLUSION

In this paper we have shown that an ANN training using EKF
does provide a very well performing positioning system for
outdoor (refer to the US FCC requirements for cellular network
based positioning). A systematic analysis of the suitable neural
network for the positioning, based upon GSM-RSSI, has been
identified. Besides, extensive tests and fine tuning experiments
have been conducted. Apart from a suitable architecture, a
suitable training algorithm and the weight updating method
have also been identified.

The performance of the positioning system obtained is very
good in terms of accuracy and reliability. Even though the
accuracy slightly changes with the training iterations, it is still
within a reasonable stable range with variations of not more
than only 10 m.

VI. REFERENCES

[1] O. Kinsman, “Pattern Recognition by Hidden Markov
Models for Supporting Handover Decisions in the GSM
System,” in Proc. 6th Nordic Seminar Dig. Mobile Radio
Comm., Stockholm, Sweden, 1994, pp.195–202.

[2] O. Kennemann, “Continuous Location of Moving GSM
Mobile Stations by Pattern Recognition Techniques,” in
Proc. 5th Int. Symp. Personal, Indoor, Mobile, Radio
Comm., Den Haag, Holland, 1994, pp.630–634.

[3] H.L. Song, “Automatic Vehicle Location in Cellular
Communication Systems,” IEEE Transactions on
Vehicular Technology, Vol. 43, pp. 902–908, 1994.

[4] Z. Salcic, E. Chan, “Mobile Station Positioning Using GSM
Cellular Phone and Artificial Neural Networks”, wireless
personal communications 14(3):235-254;sept200

[5] Symon Haykin, Kalman Filtering and Neural networks,
New York ;John willey &sons, 2001.

[6] S. Singhal and L.Wu, “Training Multilayer Perceptions with
the extended Kalman algorithm,” in D. S. Touretzkey
(Eds.), Advances in Neural Information Processing
Systems 1, San Mateo, 2001.

[7] K. Kyamakya, I. K. Adusei, F. Erbas, M. Perez, "A

Fingerprint based positioning method using GSM Signal
Strength Data and involving a neural network," presented
at ICWN'03, Las Vegas, USA, 2003.

0-7803-8521-7/04/$20.00 (C) 2004 IEEE

41440-7803-8521-7/04/$20.00 © 2004 IEEE

0 2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of iterations

a
ct

iv
e

 c
o

st

Active cost for diffrent ANN models (expected 0.01)

MLP Batch
MLP Online
GFF online
GFF Batch

Figure 5. Active cost for training the network models (in
online and in batch).

0 50 100 150 200 250 300
40

50

60

70

80

90

100

110

120

130

Number of testing samples

qu
ad

ra
tic

 e
rr

or
(m

)

GFF Online
GFF Batch mode

0 50 100 150 200 250 300
40

50

60

70

80

90

100

110

120

130

Number of testing samples

qu
ad

ra
tic

 e
rr

or
(m

)

GFF Online
GFF Batch mode

Figure 6. Quadratic error analysis for GFF. Comparison of
the performance of Online Training Vs Batch Training.

0 50 100 150 200 250 300
48

50

52

54

56

58

60

62

64

Number of testing samples

q
u
a
d
ra

tic
 e

rr
o
r(

m
)

MLP Batch mode
MLP online

0 50 100 150 200 250 300
48

50

52

54

56

58

60

62

64

Number of testing samples

q
u

a
d

ra
tic

 e
rr

o
r(

m
)

MLP Batch mode
MLP online

Figure 7. Quadratic error analysis for MLP. Comparison of

the performance of Online Training Vs Batch Training.

0 50 100 150 200 250 300
55

60

65

70

75

80

85

90

95

100

Number of testing samples

qu
ad

ra
tic

 e
rr

or
(m

)

EKF
step gradient descent

0 50 100 150 200 250 300
55

60

65

70

75

80

85

90

95

100

Number of testing samples

qu
ad

ra
tic

 e
rr

or
(m

)

EKF
step gradient descent

Figure 8. Quadratic error analysis for MLP network while
using EKF versus Step Gradient Descent training

schemes.

0-7803-8521-7/04/$20.00 (C) 2004 IEEE

41450-7803-8521-7/04/$20.00 © 2004 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	nd: nd
	header: Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE

