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Abstract 
 This paper considers a model describing the dynamics of a 
Transmitter-receiver system in communication engineering. The 
bifurcation structure is analyzed to define the nature of the 
bifurcations exhibited by the system. One does found both the 
complex dynamical behavior of the system and its extreme 
sensitivity to tiny changes in the model parameters. Crisis, 
Period-doubling and Hopf bifurcation are also found. An analog 
simulation of the Transmitter-receiver system is carried out. 
Some experimental phase portraits are obtained. Both regular 
and chaotic modulations of the incoming message are done 
experimentally. A comparison of the results obtained from 
experimental and numerical analysis shows a very good 
agreement. 
 
I. INTRODUCTION 

Recently, there has been much interest in the wish of applying 
nonlinear phenomena and chaos in physics and engineering 
science [1, 2]. The interest devoted to these phenomena is due to 
their various applications: Chaotic modulation [3, 4], 
synchronization and secure communication [5 - 8] just to 
mention few applications. In the latter application, tremendous 
interest is observed since the pioneering work of Pecora and 
Carroll [9]. This potentially rich and fertile field based on 
chaotic synchronization has recently gained much interest, 
mainly in the wish of applying it in physics and engineering 
science. Concerning synchronization and secure communication, 
the problem to deal with consists in processing the received 
signal in order to construct the message injected into the chaotic 
model at the transmitter.  

This paper considers a transmitter-receiver system 
described by the following model:    
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where y and x   are the coordinates of both oscillators, b the 
nonlinear coefficient, a and c the dissipative  parameters, 
f and d  are the coupling coefficients. E  and G  are the 

amplitudes of  the messages. Our study was stimulated by earlier 
works on the Emitter-receiver system [10, 11]. In ref. [10] we 
used the multiple time scales method to derive harmonic 
oscillatory solutions both in the resonant and nonresonant cases. 
Melnikov theorem was used to obtain basins of attraction of 
chaotic solutions. Routes to chaos were analyzed numerically. 
Ref. [11] is mainly focused on the numerical analysis of the 
system. A real physical prototype whose dynamics is described 
by Eqs. (1) is presented. The description of the prototype is 
carried out. Transitions to chaos are analyzed: period- doubling 
and crisis are observed. Our aim in this paper is:  

  To consider the dynamics of such a system (see ref. [11] 
for the description of the physical model);  

  To contribute to the general understanding of the 
behavior of this system and complete the results obtained so 
far by pointing out some of its unknown behavior.  

  To carry out the experimental study of the system.   
 
II. STABILITY AND BIFURCATION STRUCTURES  
 
Eqs. (1) can be transform into a non autonomous system of the 
first order differential equation of the form  
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By perturbing Eqs. (2) around the steady state ( )0000 ,,, wyvx   
we obtain the following 4X4 jacobian matrix  
  

( ) ( )

( ) ( ) 

















−+−+

+−−
=

abyxf

xdcyd
M J

2
00

00

3101
1000
011
1010

.          (3)  

  
The stability of the periodic motion is determined according to 
the real parts of the roots of the following characteristic equation  
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obtained by considering very small amplitudes of the steady 
states.  

 Fig. 1 shows in the complex plane ( ) ( )( )ηη Im,Re   the 
representation of the eigenvalues (roots of the characteristic 
equation). These roots are obtained (using the Newton-Raphson 

algorithm) for 75.125.0 ≤≤ a  , 11 ≤≤− f , 05.0=c   
and 5.0=d  . From Fig. 1 one can have the idea on both the 
stability of periodic solutions and on different types of 
bifurcation likely to appear in the system. JM , being a real 
matrix, complex eigenvalues occur in  complex conjugate pairs 
responsible for the observed symmetric along the real axis. Thus 
if the real parts of the eigenvalues ( )η are all negative, the rate 
is of the contraction type or otherwise of the expansion [12]. If 
the eigenvalues are all real, the contraction or expansion are 
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observed near the steady state while the complex values of the 
eigenvalues show the contraction or expansion of the spiral [12].  

 
 
Figure.1 Representaion of the eigen values solutions in the 

complex frame 
 
If there exists eigenvalues having real parts with different sign, 
the equilibrium state is called saddle; an equilibrium point 
whose eigenvalues all have a non zero real parts are called 
hyperbolic [13]. On the other hand period-doubling bifurcation 
is observed if there exists an eigenvalue 1−=η   while 
bifurcations of the Hopf type are observed if the following 
conditions are satisfied : a) there exists a pair of pure imaginary 

complex conjugate eigenvalues. b) α
α
η

αα

,0≠
= c

d
d

,   being 

the bifurcation control parameter. cα  is the critical value for the 
occurrence of Hopf bifurcation, obtained from  the equation   

( ) 0Re =η  [12]. We have derived the following critical 
relationships between the parameters of the model (describing 
the dynamics of the system) for the occurrence of period- 
doubling bifurcation  
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Considering the previous results it clearly appears (see Fig. 1) 
that our system of the given parameters a  and f  can undergo 
various types of bifurcations namely: saddle, period-doubling, 
Hopf bifurcation, and a symmetry-breaking bifurcation which is 
often a prerequisite for the first period- doubling bifurcation 
[14]. Kozlowski et al. [15] considered a coupled identical single-
well Duffing oscillators and showed by linear analysis a similar 
eigenvalues scenario. Except Hopf bifurcation, such bifurcations 
have been successfully found in one-dimensional (1-D) Double-
well Duffing oscillators subjected to a periodically driven force 
[16 - 19]. The above analysis serves both to predict the local 
instability of the steady state and to be aware of the type of 
bifurcation expected in the system.  
  

III. EXPERIMENTAL STUDY 

We propose an electronic simulator (see Fig. 2) for the 
experimental investigation of the dynamics of our system. Using 
an appropriate time scaling, the simulator’s outputs can be 
viewed directly on an oscilloscope by simply feeding the 
voltages to the X-input and Y-input of the oscilloscope.  
  
  

  
 

Figure 2. Theme of the electronic simulator 
  
 Considering the electronic simulator (Fig. 2) it can be shown 

that the voltages at point   and  (outputs of opams) are 

described by the set of coupled model (Eqs. 1).  
 In terms of the circuit components, the parameters of Eqs. (1) 
are defined as follows :  
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taking into account the following critical relationships: 
876 10RRR ==   and 1718 5RR = ; 1A  and 2A   are the 

amplitudes of the generators. 
 In order to control each parameter of Eqs. (1) by varying only 
one resistor, we set the following values of the components :  

; 10000181610976510 Ω========= RRRRRRRRR  

; 73.1021 nFCC == ; 16.1043 nFCC ==  Thus, the 

coefficients  GfEdcba  and ,.,,,  will respectively be 

controlled by 41415321311  and ,,,,,, RRRRRRR . Note that 
the analog voltages obtained from our simulator are directly 
equivalent to the dimensionless variables of Eqs. (1). 
 

41570-7803-8521-7/04/$20.00 © 2004 IEEE



 
 
 

 
Figure  3: Phase portraits: Experimental values:   

(a) srad /540.0=ω  ;  (b) srad /496.0=ω ; 

(c) srad /0302.0=ω  ; Numerical values: 

(d) ;534.0=ω  (e) 497.0=ω  ;  (f) 306.0=ω  
 

A. Bifurcation and onset of chaos  

       This sub-section is devoted to the experimental findings of 
the various bifurcations and types of motions that can occur in 
our system when one component of the analog circuit is 
monitored. Our control component is the frequency of the 
excitation ω  .  
 We consider the case where the excitation has no effect on the 
whole system ( )∞=4R  with the following values of resistors:  

Ω= 18002R  ; Ω= 37803R  ; Ω= 10008R  : 
Ω= 4600011R  ; Ω= 969012R  ; Ω= 42113R  : 
Ω= 86600014R  ; Ω= 500015R  ; Ω= 200017R  ; 

VA 3.12 =  
Thus, the corresponding parameters take the following values:  

022068.0=a  ; 23.0=b  ; 177.5=c  ; 29778.2=d
5345.2=E  ; 01118.0=f . 

We have found, using this set of parameters that as ω   is 
monitored, the oscillations  follows a period-adding routes to 
chaos: we have observed (Petriod-1 → Period-3  Peiod-5 → 
Period 7 → Quasiperiodic Chaos) scenario routes to chaos. The 
pictures (a), (b) and (c) in Fig. 3 show some experimental phase 
portraits obtained within the period- adding sequence. Period- 
1(a), period- 2 (b), chaos (c) attractors are shown.  
 
In order to confirm the results from our electronic simulator, we 
have carried out a direct numerical simulation of Eqs. (1). The 
phase portraits (d),  (e) and (f) of Fig. 3 are respectively the 
corresponding numerical phase portraits of  (a), (b) and (c) 
obtained using the same sets of system parameters. The 
numerical results confirm the sequence obtained experimentally. 
Let us mention that the sequence of bifurcations obtained when 
monitoring the frequency of the excitation are identical to those 
obtained by controlling the amplitude of the excitation. We have 
found that the experimental phase portraits are very similar to 
the numerical ones. We have considered the following set of 
system system parameters:  

022068.0=a  ; 23.0=b  ; 177.5=c  ; 29778.2=d  ; 
5345.2=E  ; 01118.0=f  

To analyze the nature of transitions to chaos numerically Figs. 4 
show a bifurcation diagram of the attractor x   associated to the 
graph of the largest one dimensional (1-D) Lyapunov exponent 
when the control parameter E  is monitored. It shows the 
complex dynamical behavior exhibited by the system. As E    
increases the system follows the following complex bifurcation: 
torus destruction route to chaos, period- 8 crisis route  to chaos 
and period-doubling route to chaos. Windows of regular motion 
alternate with windows of chaotic motion. The very weak 
‘’chaoticity’’ of the system is shown.  
 

 
Figure  4: Bifurcation diagram of the attractor x   associated 

to the largest 1-D Lyapunov exponent.  
 

B. Modulation  

 Our aim in this sub-section is to show that for a given set of 
system parameters, the incoming message can be modulated. We 
set the following values of the circuit components:  
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; 26800100 Ω== RR ; 26002 Ω=R ; 68403 Ω=R
; 21109 Ω=R ; 82000011 Ω=R ; 2390012 Ω=R
; 910013 Ω=R ; 30600014 Ω=R ; 830015 Ω=R
; 220016 Ω=R ; 200017 Ω=R ;174.12 VA =

srad /2560.1=ω . 
 
The pictures of Fig. 5 show the regular modulation of the 
received signal x   (Fig. 5a) and its chaotic modulation (Fig. 5b) 
when the frequency ω   of the excitation is varied. We have 
observed during our experiment that the modulation 
phenomenon is very sensitive to tiny changes in ω .  The regular 
modulation shows the ‘Zener effect’ of the carrier while the 
chaotic state shows its complete destruction.  
 

 
Figure. 5: Regular modulation (5. a) and chaotic modulation 

(5. b) of the received signal.  
  
IV. CONCLUSION  

This paper has presented the study of the dynamical behavior of 
an Emitter-receiver system. The bifurcations structure was 
analyzed and its complexity was proved through the plot of 
bifurcation diagrams. Analytic conditions for the appearance of 
period- doubling and Hopf bifurcation were derived. The 
Emitter-receiver system was studied experimentally. An 
appropriate electronic circuit was proposed for the experimental 
study of the system. Using both Kirchhoff current law and 
Newton dynamical law, the coefficients of the system model 
were derived in terms of the circuit components. Various 
experimental phase portraits were obtained showing the nature 
of transitions to chaos. Period-adding sequence was observed 
experimentally. We found period 8 sudden transition route to 
chaos, period- doubling route to chaos, and Hopf bifurcation. 
The regular and chaotic modulation of the received signal were 
also found.  
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