INCREMENTAL PLACEMENT OF NODES
IN A LARGE-SCALE ADAPTIVE
DISTRIBUTED MULTIMEDIA SERVER

Tibor Szkaliczki*

Computer and Automation Research Institute of the Hungarian Academy of Sciences
sztibor@sztaki.hu

Laszlo Boszormenyi
University Klagenfurt, Department of Information Technology

laszlo@itec.uni-klu.ac.at

Abstract An incremental algorithm is proposed to dynamically place the proxies
of the Adaptive Distributed Multimedia Server (ADMS) developed at
the University Klagenfurt. In order to enhance the performance of the
server, the proposed algorithm examines the suitable network nodes for
hosting proxies. The main benefit of the algorithm is the capability to
process large problems within strict time constraints. The short running
time of the algorithm enables the distributed server to adapt quickly to
the changing network parameters and client demands.

Keywords: incremental algorithm, multimedia server, video streams, host recom-
mendation, data collector

1. Introduction

It is a usual task to select nodes for hosting dynamic server applications
in a network. The Adaptive Distributed Multimedia Server (ADMS)
of the University Klagenfurt [Tusch, 2003] is able to add and remove
its components to different nodes of the network. This novel feature
of the multimedia server enables the dynamic placement of the server
components according to the current requests and the QoS parameters
of the network. The running time of the host recommendation algorithm

*Partial support of the EC Centre of Excellence programme (No. ICA1-CT-2000-70025) and
the Hungarian Scientific Research Fund (Grant No. OTKA 42559) is gratefully acknowledged.

2

becomes crucial in this case since the delivery of the data-streams can
start only after the placement of the server nodes.

In this paper, we propose an incremental algorithm that is especially
suitable for large-scale distributed video servers delivering stream-data
to large number of clients. In this case the time-consuming algorithms
aiming at the "perfect" solution are not applicable. The proposed algo-
rithm takes the possible nodes one after the other, and it places a proxy
at the examined node if it improves the solution. The simplicity of the
proposed algorithm enables to find an initial solution as fast as possible
and than the algorithm incrementally improves it complying with the
time constraints in order to approximate the optimal placement.

2. Related Work

Finding the optimal deployment of proxies in a network is a well known
problem in the literature [Steen et al., 1999], [Qiu et al., 2001]. How-
ever, we cannot use the former results directly because of the significant
differences between the ADMS proxies and the well-studied web-proxies.
The placement of the web-proxies cannot be changed later or with high
cost only. Moreover, the multimedia server provides huge data-streams
instead of documents and images. The caching problems of the multime-
dia servers are not in the scope of the present paper, they are discussed
in [Tusch et al., 2004].

In an earlier paper we dealt with the configuration recommend,ation
algorithms for the offensive adaptation [Goldschmidt et al., 2004]. We
proposed four different algorithms (greedy, particle swarm, linear pro-
gramming rounding and first ideas on an incremental algorithm) and
compared the results gained by running their implementations on differ-
ent test networks. The particle swarm algorithm, a kind of evolution-
ary algorithms produced the best result while the incremental algorithm
found the solution in the shortest time. The current paper explores the
incremental algorithm in detail. We present the results after the defini-
tion of the problem model.

Incremental algorithms are applied to many problems in the area of the
combinatorial optimisation, see as an example [Ramalingam and Reps,
1996, Zanden, 1996]. Their main step is updating the solution of a prob-
lem after a unit change is made in the input. The incremental algorithms
result in significant decrease of computation time in case of many prob-
lems.

Incremental Placement of Nodes in a Large-Scale Adaptive Distributed Multimedia Server3

3. The problem model

The task is to find suitable locations for proxies of the distributed mul-
timedia server while maximising the clients’ satisfaction and minimising
the network load. The clients receive the same video in parallel. The
videos are stored at the server nodes. The proxies get the desired video
from the servers and forward the received packets to the clients without
storing them. According to the present model, the proxies can reduce
the bandwidth of the video and can send the same video to different
clients with different bandwidths. The proxies can be located only on
nodes prepared for hosting dynamic server components. The nodes that
are able to host proxies are called possible prozies.

Technical report [Goldschmidt et al., 2004] contains the detailed de-
scription of the problem model. The network model is basically a graph
where the nodes are called areas. An area is either a subnet (including
backbone links) or a router that connects subnets. The edges of the
graph are the connections between the routers and the subnets they are
part of. We assume that we know the Quality of Service attributes of
each area: bandwidth, delay jitter, etc.

There are three kinds of components that can be found on the nodes,
namely servers, possible proxies and clients. In the problem specification,
each area may contain several components with different types, such as
clients, possible proxies and servers. The clients define their demands as
lists that contain QoS requirements (e. g. bitrate and delay jitter) in
decreasing order of preference. In the current model we assume that all
clients want to see the same video immediately.

The solution of a problem is described as a possible configuration that
provides the following information for each client: the index of the QoS
demand that has been chosen to be satisfied, the possible target node
that hosts the proxy for the client, the server, where the video should be
collected from.

The following cost functions are defined to measure the quality of the
solutions: the network resource needs (total allocation), the number of
rejected clients, the sum of the chosen demand indices of the clients
(linear badness), and the so called ezponential badness, that is defined as
ZCEC 2% where C is the set of clients, and i. is the index of the chosen
demand parameter for client c.

Table 1 gives a short summary of the results published in [Goldschmidt
et al., 2004] in order to compare different host recommendation algo-
rithms. The incremental algorithm can find a solution in the shortest
time. The number of rejections is also very low, but the exponential

4

badness is higher by more than 30 percents than in case of the swarm
algorithm.

algorithm | exp. badness | lin. badness | rejections | time (sec)

Greedy 800 117 8.3 296.9

Particle swarm 299 90 1.9 172.7
Linprog rounding 320 95 2.1 0.11
Incremental 400 109 1.2 0.03

Table 1. The results of the measurements for different algorithms solving networks
with 50 nodes, 10 servers, 40 possible proxies and 30 clients

We enhance our model published earlier for the case when huge number
of clients exist in the network. We want to serve as many clients as
possible with the server, which can be much more than the number of
the areas of the networks. Fortunately, the variety of the client demands
is limited in practical cases regarding the case where all clients demand
the same video. This enables to handle many clients without significant
increase of the running time. Now, let the clients denote client groups
with the same demand lists in a subnet. The problem specification can be
simply modified by adding the size of the client groups to the description
of the client demands. Thus, the number of client groups can be bounded
by the constant multiple of the number of nodes where the constant is
typically smaller than ten. The client groups may be divided into smaller
groups at the output, because the clients may receive the same video in
different quality even if they belong to the same client group.

4. Incremental algorithm

According to the results presented on Table 1, the incremental algo-
rithm proved to be promising to find a solution for large-scale networks.

A special graph is applied to store and retrieve the client-proxy-server
routes that are able to satisfy the client requests. We call it FLP graph,
because the idea comes from the facility location problem, a kind of
optimisation problem in the area of operations research. One set of the
nodes denotes the clients, the other one represents the proxy-server pairs
referred to facilities. The edges between them correspond to the client-
proxy-server routes. An edge is put into the graph only if the route is
able to satisfy the request of the client. Using this graph, we can easily
retrieve each routes for a proxy or a client.

The original algorithm is modified in order to accelerate the genera-
tion of the initial solution. The algorithm generated first the FLP graph.

Incremental Placement of Nodes in a Large-Scale Adaptive Distributed Multimedia Serverd

However, this can be time-consuming for large-scale networks. For this
reason, the generation of the FLP graph is partitioned into smaller steps
processing individual proxies which are inserted into the incremental al-

gorithm.
1 for each proxy do
2 Calculate the QoS parameters of the routes from the proxy
3 for each server do
4 Add a facility node together with edges to the FLP graph
5 Decide on selecting the current facility
6 if the facility is selected then
7 for each client connected to the current facility do

8 Decide on assigning the current client to the facility
9 Unselect facilities that are not connected to any client

The parameters of the routes between the proxy and each other nodes
can be calculated in Step 2 by running the shortest path algorithm. The
QoS parameters of the client-proxy-server routes can be easily deter-
mined from the results calculated in Step 2. If the QoS parameters of
the route satisfy any requirements of the client, an edge is added to the
FLP graph between the current client and facility. The algorithm stores
the parameters of the route at the edge together with the index of the
first requirement of the client that can be satisfied by the represented
client-proxy-server route.

The algorithm selects facility f; in Step 5 if there is at least one client
c; among the nodes adjacent to the facility that it is still not assigned to
any facility or if client c; is assigned to facility fo then the parameters
of the edge between c; and f; are better than that between c¢; and fo,
and the badness of the first satisfiable demand on the edge between
c; and f; is not greater than that of the satisfied demand on the edge
between c; and fy. These criteria are complemented with one more in
Step 8: the demand of client ¢; can be satisfied through facility f; without
overloading the network.

In order to accelerate the algorithm, only a subset of the facilities is
processed instead of each possible proxy-server pair. We tested some
different kinds of subsets in order to determine how the number of pro-
cessed facilities can be substantially reduced without increasing the cost
values. According to our experiences, a facility may be omitted from
processing if there is another one where each of the QoS parameters are
better. The results published in this paper are produced applying this
acceleration method.

The algorithm is slightly modified in order to deal with the client
groups. New procedures are needed to calculate the bandwidth require-
ment of the demands and to select a client group. In order to minimise

6

the exponential badness, the algorithm tries to serve the clients belong-
ing to the same group with equal quality, that is, the difference between
the index of the satisfied demands is at most one in a client group. Each
client in a group is served by the same proxy and server in the present
version. This restriction can be eliminated later in order to improve the
quality of the solution.

5. Results

The implemented incremental algorithm is tested on simulated net-
work environments. The first test network has 50 nodes, 40 possible
proxies, 30 clients and 10 servers and the numbers of the components are
increased proportionally in the further networks in order to find out the
size of the largest problem that still can be solved, see Table ??. The
test were running on a 1.2 GHz processor with 384MB memory. The
algorithm successfully solves problems not greater than 500 nodes in less
than 10 seconds.

nodes | servers | prozies | clients | time
50 10 40 30 | 0.03
100 20 80 60 | 0.16
200 40 160 120 | 0.821
300 60 240 180 | 2.333
400 80 320 240 | 5.137
500 100 400 300 | 9.663

Table 2. The dimensions of the test networks and the running times

Let us analyse how the cost of the solution is decreasing as the algo-
rithm examines newer and newer facilities or proxy-server pairs. Figures
1 show the costs (exponential badnesses, numbers of rejected clients) as
a function of the time elapsed from the start of the algorithm. In the
second case, the algorithm was stopped before finishing because it would
be running too long.

As we can see, first the cost starts falling quickly and later only slight
improvements are achieved. If the quick response is a crucial point, this
fact makes worth realising intermediate solutions while the algorithm is
running. Thus we can instantly start to deliver media to several clients
and then gradually increase both the number of the served clients and the
quality of the media stream. In this way, we can give recommendation
for problems even if the running time for the optimal solution would be
extremely long.

Incremental Placement of Nodes in a Large-Scale Adaptive Distributed Multimedia Server?

500 nodes 500 nodes
11000 ;
210000 \ 2 190 s
S 9000 = 1%8
< 8000 <
= 7000 ! he
& 6000 S 20
@ 5000 © 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (secs) time (secs)
1000 nodes 1000 nodes
35000 .
B B 128
< <
S 20000 he = 3 e
~ 10000 = - Ssoss
& 75000 &
<] 0 [}
0246 810121416 0 2 46 810121416
time (secs) time (secs)

Figure 1. The badness and the number of rejections as a function of the elapsed
time processing a network with 500 nodes, 100 servers, 400 possible proxies and 300
clients (above) and with 1000 nodes, 200 servers, 800 possible proxies and 600 clients
(below)

We tested how the program is able to manage clients groups. The
initial network consists of 50 nodes, 10 servers, 40 possible proxies and
300 clients. In this case, each client group contains only a single client.
Further networks are created with 3000 and 30000 clients by increasing
the size of the client groups to 10 and 100, respectively, while the size of
the network and the number of server components do not change. There
is no significant change in the running time as the size of the client groups
increases, see Table 3.

At last, let us examine the quality of the solution. Using linear pro-
gramming, we can find a lower bound for the cost. The algorithm accepts
each of the requests in the network with 50 nodes. We find a lower bound
of 7 for the number of rejections in the case of 100 nodes and the incre-
mental algorithm generates a solution with 9 rejections. The exponential
badnesses are 360 and 1152 in the two cases instead of the lower bound
of 215 and 902, respectively.

0.27
0.26

nodes | servers | prories | clients | exp. badn. | lin. badn. | reject. | time(sec)
50 10 40 300 5340 1141 29
50 10 40 3000 53408 11393 290
50 10 40 | 30000 1511544 160804 | 21964

0.3

Table 3. The results for client groups with increasing sizes

6. Conclusions and Further Work

We examined an incremental algorithm for the configuration recom-
mendation in a large-scale adaptive distributed multimedia server with
huge number of clients. The speed of the incremental algorithm, the con-
tinuous decrease of the solution cost and the introduction of client groups
enabled us to solve large problems. Further development is needed to im-
prove the quality of the solution in order to decrease the number of the
rejections and to improve the quality of the delivered video.

References

[Goldschmidt et al., 2004] Goldschmidt, B., Szkaliczki, T., and Bszérményi, L
(2004). Placement of Nodes in an Adaptive Distributed Multimedia Server. Tech-
nical Report TR/ITEC/04/2.06, Institute of Information Technology, Klagenfurt
University, Klagenfurt, Austria.

[Qiu et al., 2001] Qiu, L., V.N., Padmanabhan, and G.M., Voelker (2001). On the
placement of web server replicas. In INFOCOM, pages 1587-1596.

[Ramalingam and Reps, 1996] Ramalingam, G. and Reps, Thomas W. (1996). An
incremental algorithm for a generalization of the shortest-path problem. J. Algo-
rithms, 21(2):267-305.

[Steen et al., 1999] Steen, M., Homburg, P., and Tannenbaum, A. S. (1999). Globe:
A wide-area distributed system. IEEE Concurrency.

[Tusch, 2003] Tusch, R. (2003). Towards an adaptive distributed multimedia stream-
ing server architecture based on service-oriented components. In Bszérményi,
L. and Schojer, P., editors, Modular Programming Languages, JMLC 2003, LNCS
2789, pages 78-87. Springer.

[Tusch et al., 2004] Tusch, R., Bész6rményi, L., Goldschmidt, B., Hellwagner, H., and
Schojer, P. (2004). Offensive and Defensive Adaptation in Distributed Multimedia
Systems. Computer Science and Information Systems (ComSIS), 1(1):49-77.

[Zanden, 1996] Zanden, B. Vander (1996). An incremental algorithm for satisfying
hierarchies of multiway dataflow constraints. ACM Transactions on Programming
Languages and Systems, 18(1):30-72.

