
Andreas Bollin

Specification Comprehension

Reducing the Complexity of Specifications

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

Universität Klagenfurt

Fakultät für Wirtschaftswissenschaften und Informatik

1. Begutachter: Univ.Prof. Dipl.-Ing. Mag. Dr. Roland T. Mittermeir
Institut : Institut für Informatik-Systeme
2. Begutachter: Univ.Prof. Dipl.-Ing. Dr. Martin Hitz
Institut : Institut für Informatik-Systeme

April/2004

EHRENWÖRTLICHE ERKLÄRUNG

Ich erkläre ehrenwörtlich, dass ich die vorliegende Schrift
verfasst und die mit ihr unmittelbar verbundenen Arbeiten
selbst durchgeführt zu haben. Die in der Schrift verwen-
dete Literatur sowie das Ausmaß der mir im gesamten Ar-
beitsvorgang gewährten Unterstützung sind ausnahmslos an-
gegeben. Die Schrift ist noch keiner anderen Prüfungsbehör-
de vorgelegt worden.

(Unterschrift)

(Ort, Datum)

Dedication

Many thanks to my wife, who supported me on the long way
of research with all her love. Without her and her knowledge
about education (one strong motivation was the improve-
ment of courses teaching formal methods) this work would
not be as complete as it is.
The next person I want to express my deepest thanks to is
my mentor, Roland T. Mittermeir.
This would indeed be an incomplete dedication if I did not
thank my whole family, too. I did not always have as much
time as I wanted to spend with them, and without their pa-
tience and understanding this work would never have been
completed.

This work is dedicated to my beloved father who departed
life too early.

ABSTRACT

Formal methods and the application of formal specification languages play a cru-
cial role in software engineering. Several studies indicate their benefits, and the
use of formal specifications raises the overall quality of the development process.
Especially when specifications are kept up to date (during evolutionary steps), they
play a vital role in the maintenance phase. Whether it is a myth or a fact, due
to their semantical compactness specifications are often criticized to be hard to un-
derstand. To diminish this problem, it seems to be useful to apply comprehension
approaches to specifications, to weaken their semantical compactness, to visualize
implicit information and to support focusing on a specific point of interest.

Formal specifications remain compact structures, but in respect to maintenance
and comprehension tasks the complexity of specifications can be reduced effectively.
The objective of this work is to sustain the process of specification comprehension.
This is achieved by reducing the complexity of specifications by focusing on those
parts which are necessary to solve a specific problem at hand. Several factors con-
tribute to the overall complexity. The vast majority of comprehension problems goes
back to the complexity of size; thus this work presents an approach to reduce the
size of specifications. It is suggested to generate well-defined partial specifications
such as specification slices and specification chunks.

Typically as it is, the comprehension process is sustained by making implicit
information explicit. Therefore, this work suggests to visualize dependencies that
are hidden in the specification. It introduces a specification representation in the
form of an augmented specification relationship net (ASRN for short).

The identification of dependencies is important not only for visualization aspects.
Similar to program comprehension approaches the calculation of specification slices
and chunks also depends on the identification of control-, data- and syntactic de-
pendencies. However, programming-language-like notions of dependencies are not
applicable for specification languages. Thus this work introduces the notions of
control-, data- and syntactic dependencies in specifications. These dependencies are
efficiently calculated by using the ASRN and they form the basis for the generation
of specification slices and chunks.

Together with the visualization of dependencies several comprehension tasks are
supported. Partial specifications help to focus on a specific point of interest, and

ii Abstract

feedback concerning the structure of the specification speeds up the overall compre-
hension process. Generally speaking, the approach aims at reducing the perceived
complexity of the specification during comprehension and maintenance tasks.

Complexity is measured by a wide range of attributes. Well-known complexity
measures are adopted to specifications, and based on these measures the approach is
evaluated in respect to its usefulness. It can be shown that the generation of partial
specifications is very efficient and effective. This work demonstrates that, with an
increasing size of the specification at hand, the reduction of complexity (achieved
by the generation of partial specifications) increases to a greater extent, too.

The evaluation has been realized by a small prototype which is able to generate
partial specifications out of Z. The studies demonstrate that the approach can be
used to achieve the goal of making specifications more comprehensible. With all
these findings at hand formal specifications are no longer hard to understand.

ZUSAMMENFASSUNG

Formale Methoden spielen eine wichtige Rolle in der Welt des Software Engineer-
ings. Anfänglich eingesetzt um die Qualität des Endproduktes zu steigern, bzw. um
Testdaten teils automatisch zu generieren, zeigt sich bald, dass formale Spezifika-
tionen eine wertvolle Rolle während Wartungsprozessen spielen. Dieser Vorteil wird
teilweise wettgemacht durch den Ruf, der formalen Spezifikationen vorauseilt: Spez-
ifikationen sind zu komplex und daher schwer zu verstehen.

Diese Arbeit beteiligt sich nicht an der scheinbar endlosen Diskussion über Vor-
und Nachteile von Spezifikationen, sondern präsentiert einen Ansatz um die wahrge-
nommene Komplexität einer Spezifikation zu reduzieren. Durch das Unterstützen
des Verständnisprozesses und durch das Verringern der Komplexität sollte den vielen
Mythen um die Nachteile formaler Methoden entgegengewirkt werden.

Spezifikationen sind komplexe Gebilde und mit wachsendem Umfang der Spezi-
fikationen sind diese tatsächlich schwerer zu verstehen. Neben dem Umfang sind es
vor allem auch versteckte Abhängigkeiten im Spezifikationstext, welche den Verständ-
nisprozess erschweren. Es ist also angebracht, einerseits den Umfang zu reduzieren,
und andererseits diese Abhängigkeiten explizit darzustellen.

Im Fachgebiet des Programm-Verstehens gibt es bekannte Konzepte um den Um-
fang zu reduzieren, aber auch um sicherzustellen, dass relevante Informationen nicht
verloren gehen: es sind dies unter anderem die Konzepte der Erzeugung von Slices
und Chunks. Diese Arbeit greift diese Konzepte der Partialität auf und definiert
Slices und Chunks für Spezifikationen.

Auf der anderen Seite gibt es in Spezifikationen versteckte Abhängigkeiten, und
hier wird, analog zu herkömmlichen Ansätzen des Programm-Verstehens, vorgeschla-
gen, die Struktur und explizit bzw. implizit vorhandene Abhängigkeiten in einem
annotierten Netz darzustellen. Dieses Net wird ASRN (Englisch für “Augmented
Specification Relationship Net”) genannt.

Die Identifizierung dieser Abhängigkeiten, es handelt sich hierbei um Kontroll-,
Daten- und Syntaxabhängigkeiten, ist nicht nur für die Darstellung der Struktur
von Bedeutung. Diese Abhängigkeiten sind auch für die Erzeugung von Slices und
Chunks essentiell. Erschwert wird die Analyse der Abhängigkeiten jedoch durch
die deklarative Natur von vielen Spezifikationssprachen. Kontroll-, und Daten-
abhängigkeiten sind nicht so einfach wie in der herkömmlichen, imperativen Welt

iv Zusammenfassung

der Programmiersprachen zu identifizieren. Diese Arbeit definiert daher Kontroll-
und Datenabhängigkeiten in einer für die Analyse brauchbaren Weise. Weiters wird
eine Methode vorgestellt, um diese Abhängigkeiten effizient anhand des ASRNs zu
identifizieren.

Im Rahmen dieser Arbeit wurde ein einfacher Prototyp implementiert welcher
in der Lage ist, aus Z-Spezifikationen partielle Spezifikationen zu erzeugen. Der
vorgestellte Ansatz ist in der Lage die Komplexität einer Spezifikation unter dem
Blickpunkt einer bestimmten Aufgabe deutlich zu reduzieren. Die im Rahmen dieser
Arbeit durchgeführte Evaluation des Ansatzes zeigt, dass mit zunehmender Größe
der Ausgangs-Spezifikation das Konzept der partiellen Spezifikation sehr effektiv
ist. Gängige Komplexitätsmaße werden hierzu auf Spezifikationen angewandt und
herangezogen, um diese Aussage in Bezug auf die Verwendbarkeit des Konzeptes zu
untermauern.

Der Umfang von Spezifikationen kann für bestimmte Aufgaben deutlich (mess-
bar) verringert werden. Der Verständnisprozess wird erleichtert und dem Mythos
der unverständlichen Spezifikation somit entgegengewirkt.

CONTENTS

1. Thoughts on Specification Comprehension 1
1.1 The World of Specifications . 1
1.2 Comprehending Complex Systems . 3
1.3 Organization of this Work . 5

2. Complexity of Specifications . 7
2.1 More than 20 Years of Formal Methods 7
2.2 Controversy . 8
2.3 Dealing with Myths . 10
2.4 Metrics . 11
2.5 Quality . 12
2.6 Specifications’ Metrics and Quality 13
2.7 Inherent Complexity of Specifications 14
2.8 Questions Revisited . 17

3. Introduction to Specification Comprehension 19
3.1 Comprehending Complex Systems . 19

3.1.1 Comprehension Clues . 20
3.1.2 Specifications . 22

3.2 Program Comprehension . 22
3.2.1 Motivation and Terminology 23
3.2.2 Comprehension Theory . 24
3.2.3 Comprehension Strategies . 26
3.2.4 Data Gathering . 26
3.2.5 Knowledge Organisation . 27
3.2.6 Exploration and Visualization of Programs 28
3.2.7 Program Comprehension Tools 30

3.3 Program Comprehension versus Specification Comprehension 31
3.3.1 Terminology . 31
3.3.2 Comprehension Models . 32
3.3.3 Common Features and Differences 33
3.3.4 Strategies . 34

vi Contents

3.4 Summary . 36

4. Specification Abstractions . 37

4.1 State-of-the-Art . 37

4.1.1 Specification Visualization . 38

4.1.2 Looking for Partiality . 40

4.2 Components of Specifications . 43

4.2.1 Syntactic Specification Elements 44

4.2.2 Semantic Specification Concepts 45

4.2.3 Specification Chunks . 46

4.2.4 Specification Slices . 48

4.2.5 Specification Clichés . 50

4.2.6 The Point of Interest . 51

4.2.7 Sub-Specifications and Partitions 52

4.3 Deriving Dependencies . 53

4.3.1 Dependency Types . 54

4.3.2 Specification Dependencies . 56

4.4 Dependencies in Z . 57

4.4.1 Syntactical Approximation to Semantic Analysis 60

4.4.2 Arrangement of Primes . 63

4.5 The Need for an Alternative Representation 79

4.6 Summary . 80

5. Augmented Specification Relationship Net 83

5.1 Motivation for Specification Transformation 84

5.2 The Specification Relationship Net 87

5.2.1 Basic Definitions . 87

5.2.2 Nesting and Scoping . 91

5.3 Transformation of Z Specifications . 95

5.3.1 A Word on LATEX . 95

5.3.2 Detecting Primes in Z . 99

5.3.3 Transformation Rules for Z 104

5.3.4 Properties of the SRN and the Transformation 113

5.4 Augmenting the eSRN . 120

5.4.1 Definitions of an ASRN . 120

5.4.2 Transformation . 122

5.5 Dependencies in Z Specifications . 126

5.6 Identification of Z Abstractions . 132

5.7 Direct Use of the ASRN . 139

5.8 Summary . 141

Contents vii

6. Specifications’ Complexity . 145
6.1 Measuring Complexity . 146

6.1.1 Classes of Complexity Metrics 147
6.1.2 Popular Complexity Measures 149

6.2 Complexity of Specifications . 156
6.2.1 Quantity/Size-based Specification Metrics 156
6.2.2 Structure-based Specification Measures 159
6.2.3 Semantic-based Specification Measures 161

6.3 Complexity Measures based on the ASRN 163
6.3.1 Conceptual Complexity of Specifications 163
6.3.2 Cyclomatic Complexity of Specifications 165
6.3.3 Definition/Use Count Metric of Specifications 166
6.3.4 Calculating Complexity Measures 168

6.4 Summary . 169

7. Comprehension Toolkit Prototype . 171
7.1 Generation of Abstractions for Z . 171
7.2 Prototype Description . 172
7.3 Limitations and Improvements . 175
7.4 Summary . 177

8. Evaluation . 179
8.1 Studies Description . 179

8.1.1 General Setting . 180
8.1.2 Experiments . 181
8.1.3 Hypotheses . 185

8.2 Extent of Reduction of Complexity 185
8.3 Influence of the Specification’s Size 190
8.4 Efficiency of the Approach . 194
8.5 Summary . 199

9. Conclusion . 201

Appendix 205

A. Evaluation Measures . 207
A.1 Comparison of Complexity and Influence of Size 207
A.2 Reduction of Complexity Attributes 213

A.2.1 The Birthday Book Specification 213
A.2.2 The Petrol Station Specification 217

viii Contents

A.2.3 The ITC Window Manager Specification 220
A.2.4 The Elevator Specification . 224

A.3 Efficiency of Partial Specifications . 228
A.4 Influence of Size . 231
A.5 Points of Interest and Response Variables 236

B. Further Readings . 259
B.1 Complexity of Specifications . 259
B.2 Specification Abstractions . 260
B.3 Specification’s Complexity . 261

C. Specifications in Use . 263
C.1 Birthday Book . 263

C.1.1 Birthday Book Specification 263
C.1.2 Birthday Book eSRN Transformation 264

C.2 Petrol Station . 267
C.3 Elevator Specification . 270
C.4 ITC Window Manager . 276

D. Glossary . 289

Bibliography 293

Index 309

SELECTED LIST OF DEFINITIONS

Definition . Page

3.1 Program slice . 27
3.2 Program chunk . 28
3.4 Program cliché . 28
3.5 Specification comprehension . 31

4.1 Prime object . 44
4.2 Specification scope . 46
4.3 Specification chunk . 47
4.4 Specification slicing criterion . 49
4.5 Specification slice . 49
4.6 Specification cliché . 50
4.7 Syntactic dependencies in programs 55
4.8 Control dependencies in programs . 55
4.9 Data dependencies in programs . 56
4.13 Z pre-condition prime . 62
4.14 Z post-condition prime . 62
4.15 Syntactical dependency between Z primes 64
4.16 Control dependency between Z primes 64
4.18 Control dependency within Z schemata 65
4.19 Data dependency between Z primes 79

5.4 Specification Relationship Net (SRN) 88
5.7 SRN block . 91
5.9 SRN scope . 94
5.10 Extended Specification Relationship Net (eSRN) 98
5.14 Scope of a Z prime . 119
5.15 Augmented Specification Relationship Net (ASRN) 121
5.16 ASRN scope . 123
5.17 ASRN scope of an identifier . 125
5.18 Declarational dependencies in ASRNs 127

x Contents

Definition . Page

5.19 Control dependencies in ASRNs . 129
5.20 Data dependencies in ASRNs . 130
5.21 ASRN abstraction criterion . 132
5.22 ASRN chunking criterion . 132
5.23 Static Burnstein chunk . 133
5.24 Full static specification chunk . 135
5.25 Static specification slice . 137
5.26 Full static specification slice . 138

6.1 Conceptual complexity CC (Ψ) . 162
6.2 Cyclomatic complexity v(Ψ) . 166
6.3 Extended cyclomatic complexity v ′(Ψ) 166
6.4 DU count metric DU (Ψ) . 166

SELECTED LIST OF RULES

Rule . Page

4.1 Control dependencies in Z schemata 66
4.2 Control dependencies in negated Z schemata 68
4.3 Control dependencies in Z schema disjunctions 69
4.4 Control dependencies in Z schema conjunctions 71
4.5 Control dependencies in Z schema (bi)-implications and projection . . 73
4.6 Control dependencies in Z schema composition and piping 77

5.1 Simple scope rules . 92
5.2 Identification of primes in Z specifications 101
5.3 Transformation of a Z specification to an eSRN 106
5.4 Augmenting an eSRN to create an ASRN 123

xii Contents

1. THOUGHTS ON SPECIFICATION COMPREHENSION

Natura semina nobis scientiae
dedit, scientiam non dedit.

Seneca op. 120,4

1.1 The World of Specifications

Probably all of us remember the sentence: ”Computers do not make mistakes”. But
before we allow ourselves to be lulled into a false sense of security, we also have to
take into consideration that computer software is written (like hardware systems are
designed) by humans – humans, who certainly do make mistakes1.

The fact that human beings are prone to make mistakes is not the only problem.
Software is also growing in size and complexity at a good pace. Thus, it is no
wonder that software developers started to look for techniques to describe software
requirements as clearly as possible, trying to reduce natural languages’ ambiguity.

One attempt to do so resulted in the use of so called Formal Methods , a term
which initially comes from formal logic. It now describes the notion of using lan-
guages and tools with a formal, mathematical basis in order to formally write down
(and prove properties of) a system’s specification. A specification is information
about properties required by a (piece of) software. According to IEEE ([IEE91], as
cited in [Tuc96, p.2303]), the term Formal Specification is defined by the following
two alternative definitions: a formal specification is

1. a specification written and approved in accordance with established standards.

2. a specification written in a formal notation, often for use in proof of correctness.

In fact, the latter definition stresses one of the major advantages of formal spec-
ifications: the formal notation. In most cases this notation is based on mathemat-
ical algebra. The notation has a well defined semantics which allows the expres-
sion of specifications in an unambiguous way and supports abstracting away from
implementation-related details. Jonathan Bowen and Michael Hinchey [BH97] name

1 For more information see the Human Errors Website, http://Panko.cba.Hawaii.edu/HumanErr
maintained by Ray Panko. Last visited: Nov. 2003.

2 1. Thoughts on Specification Comprehension

four very good reasons for the use of mathematics as a basis for a formal notation:
precision, conciseness, abstraction, and reasoning.

Whereas precision and conciseness can be naturally expected when using math-
ematics, it is abstraction which allows concentrating on the essential features of the
system. Mathematics enables reasoning about systems’ properties, but it is again
abstraction which is the key idea to make formal methods a success. For handling
different levels of abstractions, several specification languages and various ”dialects”
have evolved. According to [AP98] and [Mye97, p.2305], formal specification lan-
guages can be divided into four major classes:

• Property-oriented approaches. Algebraic specification languages, first-order
logic and functional languages belong to this class. They can also be divided
into approaches which use axiomatic semantics (e.g. Larch [GH83] or Anna
[LvH85]) or algebraic semantics (e.g. OBJ [GWM+93]). The first makes use
of first-order predicate logic to express pre- and post conditions of opera-
tions which are defined over abstract data types. The second one is based on
multisorted algebras and describes properties of the system via mathematical
equations.

• Model-oriented approaches. These approaches are based on a specific model
of the desired system’s behavior. Both, model and behavior are described
by abstract mathematical objects. Hoare-logic and first-order logic (in com-
bination with pre- and post-conditions) are used to express features of the
system. Z [Spi89b] or VDM [Jon90] are examples of languages following the
model-oriented approach. VDM provides the explicit notion of pre- and post-
conditions, the syntax of Z on the other side does not differ between pre-
and post-conditions. (However, they can at least be calculated using special
operations.)

• Process algebras. They expound the behavior of a system by describing the
algebras of their communicating processes. CSP [Hoa85] and CCS [Mil89] are
examples of languages belonging to this class.

• State-machine-oriented approaches. Petri nets [Pet62, Rei85] and state charts
[Har87] are examples of notations belonging to this class. However, the exact
semantics and the reasoning aspects are not as well defined – facilitating, in
some cases, further misunderstanding.

Abstraction, in combination with structuring facilities, provide mechanisms that
allow a writer to surmount even large specifications. But it also turns out that even
well-structured specifications are difficult to comprehend. Brooks (already in his
1975s edition of the Mythical Man Month) sums up this weak point [FPB95, p.63]
with his typical ease:

1.2. Comprehending Complex Systems 3

The formal definitions [...] have inspired wonder at their elegance
and confidence in their precision. But they have demanded prose expla-
nations to make their content easy to learn and teach.

Are formal specifications still too complex? It the content not easy to under-
stand? Do they need further reinforcement in order to be comprehendible?

The point is that abstraction techniques are used to acquire a grasp of the com-
plexity of software systems. Even abstract descriptions tend to get complex. And
with increasing size they get more difficult to understand.

1.2 Comprehending Complex Systems

The use of formal methods is not uncontested (as will be explained in Chap. 2), but
it is at least recommended as a means to produce high-quality software or it is even
compulsory for the construction of high-level security or life-critical systems. It is
beyond controversy that specifications can be (and are) used for test data generation
and provide the basis for the verification of (at least parts of) their implementation.

As is elaborated in more detail in [BM03], formal methods only make sense if
specifications are kept up to date during various evolutionary steps already taking
place during system development, less to say later, during operation and mainte-
nance. Keeping formal specifications up to date requires effort, and this effort is only
justified if additional benefits can be gained from it, be it by speeding up software
comprehension or by assuring higher quality software.

One of the key ideas of formal specifications is abstracting away from details
of the implementation and writing down the nitty-gritty of the system in a very
compact way. However, this density of expressing thoughts becomes detrimental for
comprehending specifications in later phases [MB03]. Specifications are also getting
large. The specification of the air traffic control system CDIS (Central Control
Function Display Information System [Hal96]) which was developed by Praxis in the
early 1990s, consists of about 1000 pages. Even abstract descriptions get complex if
the size exceeds some limit. It is no wonder that managers claim that formal methods
do not scale up and software developers look down on specification languages by
referring to them as ”write-only” languages. The solution is to reduce the size of
the abstract description and thus to reduce the overall comprehension complexity.

We started with a well-known sentence which gave us some sense of (false) se-
curity, discovered that formal techniques have to be used in order to handle the
complexity of software systems, and came to the conclusion that even formal speci-
fications can get so complex that their deployment is impeded.

4 1. Thoughts on Specification Comprehension

As will be discusses in more detail in Chap. 2, it is not possible to change the
inherent density of specification languages. Though, one has to consider that com-
prehension problems are compounded if problem-inherent complexity is combined
with complexity of size – latter can be reduced. To address this problem of com-
plexity and to support the deployment of formal methods, this work elaborates on
the following key question:

Is it possible to reduce the complexity of specifications?

In fact, as we will see later, this question is a bit too general. It is not satisfying
to answer it per se with yes or no. At least three further questions will have to be
dealt with in order to provide a more useful answer:

Q1 What kind of abridgements are practicable for what problem? This is an im-
portant question, as, by reducing complexity (and size), one is likely to change
(parts or all of) the original formal specification. The crux of the matter is:
by changing the specification, the semantics of the system is about to change,
too – whereas the results still have to stay useful. There are different prob-
lems which have to be dealt with when fulfilling some reverse-engineering or
maintenance tasks. Abridgements not only have to be meaningful – they also
have to fit the problem.

Q2 How can abridgements be achieved? Quite often specification languages have
rather compact notations and rich semantics. Even the operation on small
parts of a specification can be a rather challenging task. In order to keep the
remainder understandable, it is important to use well-defined operations for
dissecting specifications.

Q3 Can a reduction of complexity be expounded? When talking about reducing
complexity we are, in fact, still talking about abridging (disassembling) speci-
fications. It is important to know about the opportunities different reduction
techniques are providing. The only way to compare them (and the only way
to notice effects) is the definition of suitable metrics.

As explained in Chap. 3, suitable mechanisms can be identified to reduce (disas-
semble) specifications. Thus, it is possible to limit the part of a specification a user
(the author and/or a maintainer) needs to understand when trying to resolve some
specific questions emerging during system development and/or maintenance. This
work presents two approaches satisfying exactly these requirements. The objective
of this work is not only to provide the basis for higher professionalism with respect to
high quality specifications, but also to better assessment of the effort involved with
an incoming change request, as well as higher quality of the maintenance process
itself.

1.3. Organization of this Work 5

Fig. 1.1: Mapping of the basic structure of the work. Chap. 2 and Chap. 3 provide the
theoretical background, Chap. 4 defines specification abstractions. Chap. 5 intro-
duces an aid for visualizing and analyzing specifications. With that background,
several complexity issues are discussed in Chap. 6. Chap. 7 introduces a small
prototype and Chap. 8 presents several case studies. Finally an outlook and a
conclusion are provided.

1.3 Organization of this Work

The structure of this thesis (see also Fig. 1.1) is as follows:

• Chap. 2 presents formal specifications in more detail and considers popular
facts and fallacies. With this and the introduction of different complexity
models, the basis for the understanding of specifications’ complexity will be
developed. The chapter concludes with a refinement of the questions raised in
Chap. 1.

• Chap. 3 introduces the field of specification comprehension. This is done by
first introducing and then comparing it to the field of program comprehen-
sion. The notion of dependencies, slicing and chunking is introduced and an

6 1. Thoughts on Specification Comprehension

approach for the transformation of program comprehension techniques to the
world of specifications is presented.

• Chap. 4 deals with different types of specification abstractions. Common ab-
straction techniques are presented and, depending on the desired or necessary
context, these techniques are mapped to the world of specifications.

• Chap. 5 provides definitions of the so-called Augmented Specification Relation-
ship Net, a graphical representation which serves as the basis for the analysis
of specifications. As an example transformation rules for Z are given.

• Chap. 6 goes into the complexity of specifications, again. It develops differ-
ent notions of specification metrics in order to provide appropriate tools for
evaluating the above approaches.

• Chap. 7 describes a small Java-based prototype for slicing and chunking Z-
specifications. This prototype provides the basis for the generation of slices
and chunks of larger specifications and is thus fundamental for the evaluation
of the approach.

• Chap. 8 evaluates the approach and introduces several case studies. It dis-
cusses benefits as well as drawbacks and limitations.

• Finally, Chap. 9 concludes the work and summarizes the findings.

The appendix provides background information: sample specifications are pre-
sented; a related bibliography section supplies links to further readings and a glossary
summarizes and explains relevant terms.

2. COMPLEXITY OF SPECIFICATIONS

All difficulties
are but easy

when they are known.

W. Shakespeare [1564–1616]

There are many books and articles (see App. B) dealing with the question
whether or under which circumstances the benefits of formal methods exceed the
costs of converting to it. In fact a lot of aspects contribute directly or indirectly to
the support or rejection of formal methods. The first section focuses on advantages,
fallacies and impacts of applying formal methods during the software life-cycle. As
it turns out, the inherent complexity of formal specifications and missing metrics
hinder a broader deployment – so these two aspects are examined in more detail in
the remainder of this chapter.

2.1 More than 20 Years of Formal Methods

The main objective of software engineering is to produce software that successfully
works in the environment where it is intended to be used [Jac96, p.6]. What sounds
rather trivial necessitates a rigorously planned software development process. Be it
by following the rather systematic (Waterfall) model [Dav97] or be it by using some
lightweight methodologies [WC03], developers have to ensure a uniform interpreta-
tion of requirements; they must be able to communicate effectively and precisely.
Thus, the (requirement) specification has to be documented in a way that is un-
equivocally understood. Here, natural languages are expressive and necessary. But
they are also imprecise. Informal descriptions (e.g. charts or diagrams) often do not
even have an inherent and commonly understood semantics1. On the other hand
formal approaches contribute a great deal to the quality of specifications and design
documents. Their notations have a well defined semantics. Formula manipulations
can be applied to further implementation, to check correctness and/or to derive test
cases [Bei95].

1 However, that does not mean that a semantic cannot be defined.

8 2. Complexity of Specifications

Formal methods have been applied in various fields of application (this includes
security-critical software systems as well as embedded systems or hardware systems).
There are countries where laws are mandating formal methods (e.g. the UK defense
standard for such systems, DefStd. 00-55). Institutions like the US Department of
Defense or NASA enforce the use of formal methods in their projects in order to
ensure high quality of the resulting software product. The already in Chap. 1.2
mentioned CDIS project, carried out in the early 1990s by Praxis, is one of the most
widely known and discussed. At Praxis, formal methods also proved their benefits
during the code and test stages in the C130J project in the mid 1990s (a project
analyzing avionics software for Lockheed [Hal96]).

What remains is the important question about the ”real” benefits when using
formal methods.

• According to Pfleeger and Hatton [PH97], the CDIS project demonstrates that
formal design (in combination with other techniques) yields a highly reliable
code. Furthermore, it shows that formal methods are very effective in acting
as a catalyst for testing. The CDIS project is not the only source for that
observation. In 1996 Clarke and Wing [CW96] presented a survey of the use of
formal specifications, verification and existing tools. More than 120 references
are provided, giving the reader a sense of acceptability of formal methods.

• A recently published empirical study from Sobel and Clarkson [SC02] shows
that the application of formal analysis provides great benefit to the implemen-
tation with respect to completeness. The most important result of the study
is that the group using formal methods nearly passed 100% of the standard
set of test cases in comparison to 45.5% passed by the control teams.

• Another study, conducted by Samson, Nevill and Dugard in 1987 [SND87],
shows that there is a strong and direct influence of specification metrics onto
metrics of the implementation. Cost estimates can be refined by attributes
based on specification metrics. If, for example, a function point analysis leads
to a first estimation, a further estimation can be given according to specifi-
cation attributes. By using specification metrics, an estimate is possible at a
much earlier stage in the development process.

2.2 Controversy

It looks like a silver-bullet, but a debate about formal methods began already at
the beginning of the 1990s. On the one side there have been people saying that
formal methods are essential in order to guarantee quality. On the other side people

2.2. Controversy 9

have been arguing that formal methods are too expensive. These were arguments
starting from two different premises: the first one focused on gaining assurance and
the second one focused on cost. Nevertheless, with the application of formal methods
up to the mid 1990s, both arguments began to vanish. In a collection of articles
concerning formal methods Anthony Hall [HDR+96, p.22] writes that

it is possible to produce software, even critical software, without for-
mal methods; we also know that it is horrible expensive. What is only
recently becoming clear is that it is practical to produce software, even
noncritical software, using formal methods; it is also, as far as we can
tell, cheaper to do it that way.

It seems to be untypical that the above statement is not more detailed when
talking about cost. In the same article Anthony Hall also admits that it is difficult
to be more precise. When analyzing specifications’ impediments, five statements of
criticism (abbreviated by C1 to C5) can be quoted. The impreciseness quoted above
becomes the first statement of criticism.

C1 Up to now there is no measurement system available for formal methods.

With this observation it becomes clear why positive effects of formal methods
are always shown via anecdotal evidence only. Fenton and Kaposi [FK89, p.7] put
it another way:

In the absence of a suitable measurement system, there is no chance of
validating the claims of the formal methods community that their models
and theories enhance the quality of software products and improve the
cost-effectiveness of software processes.

However, it is not only the absence of suitable metrics. Software engineers still
shy at formal methods. Whether it is a myth and/or a fact, formal specifications
are still criticized to be hard to understand. The well known criticism out of Hall’s
seven myths of formal methods [Hal90] and Bowen’s seven more myths [BH95] can
be summarized as follows (thus, adding further arguments to the criticism quoted
above):

C2 Mathematical constructs and operators are requiring expertise in mathematics
and formal notations.

C3 There is a lacking connection to other representational forms, regardless of
upstream or downstream in the software development process. Specification
expertise and expertise in requirements analysis is needed.

10 2. Complexity of Specifications

C4 When specifications are getting large, they are again containing too much in-
formation. Hence the reader is overwhelmed due to the semantic compactness
of the specification.

It is uncontested (criticism C2 and C3) that some kind of expertise is needed
for applying formal methods successfully; however, criticism C4 points out that
specifications are often too complex to be understandable. The situation is even
worse, as there are almost no tools (of production-quality) available. Fact is that
quite a lot of tools have been built by the academic community [CW96], but most
of them are for research, rather than for software development. They still have to
be improved with regard to robustness and performance (as quoted by Holoway and
Butler in [HDR+96, p.25]). This becomes the fifth statement of criticism:

C5 Only inadequate tools are available for formal methods. It takes great effort
to learn how to use them effectively, be it that they use specialized notations
from mathematical logic, or be it that they are still not robust enough for
being used during software development.

The good news is that this criticism will vanish in the near future as re-write
systems are getting more powerful and companies (like IFAD) are providing tool-sets
(e.g. the VDM toolkit2) for integrating formal methods in the software development
process.

2.3 Dealing with Myths

Up to now examples of the successful use of formal methods have been elaborated;
five statements of criticism (missing metrics, paradigm and specification expertise,
complexity and missing tools) have been identified. However, they have been left
hanging in the air, so far. Despite criticisms C2 to C5 it seems uncontested (following
the arguments and sources given in [CW96]) that formal methods can pay off if
they are combined with other techniques and formal specifications can significantly
improve the quality of the overall system. The question is how to ensure that they
really do?

Before we devote ourselves back to this question, another important fact about
complexity has to be taken into account: complexity exerts an immense influence
on the quality of the system.

An empirical study conducted by Vinter, Loomes and Kornbrot in 1998 showed
that even specifications contain errors [VLK98] (be it requirement errors or be it
mathematical constructs that are used in a wrong or in an incomprehensible way).

2 See http://www.ifad.dk/Products/products.htm. Last visited: Sep. 2003.

2.4. Metrics 11

As is known from software development, errors propagate in the software develop-
ment process stages, whereas the cost of finding and repairing them raises expo-
nentially [Hum89, p.364]. To make use of all the merits of formal specifications,
it is essential to avoid or at least identify errors or misinterpretations as early as
possible – in other words, the specification has to fulfill the requirements of high
quality specifications.

This revives the criticisms raised above. Paradigm and specification expertise
will, of course, still be required and there is good hope that these arguments of
criticism (C2 and C3) will vanish in the future as more and more curricula are
offering courses dealing with formal methods. Remain the other arguments.

Complexity has to be reduced, or at least methods have to be provided in order
to support readers of formal specifications. Furthermore, expressive metrics have
to be defined in order to support different types of estimations during the software
developing process.

2.4 Metrics

In the above section the terms “metrics” and “quality” have only been mentioned
but not explained in further detail.

A metric is a size for the measurement of a certain characteristic of an artifact,
be it a program, a module or a specification. Generally speaking, a software (or
specification) metric describes a measurement that has a distinct relationship to a
software system, to the software development process or to the documentation. This
measurement characterizes numerically determined characteristics of the software
which presupposes that a clear definition of the software characteristics is available.
In other words, it must be clearly recognizable that such a system or artifact fulfills
a characteristic to a greater extent than another object.

A pragmatic organization for the classification of metrics is the separation into
linguistic metrics and structural metrics [Bei95], whereby combinations are quite
possible. Linguistic metrics only regard the program (literals) without a deeper
interpretation of the text itself. A typical metrics of this type is the number of
lines of code (LOC) going back to Boehm [Boe81]. Another metric of this class is
that of Halstead [Hal77, p.9], who suggests to take the number of different operands
and operators into account. Based on these basic types of metrics, a metric for the
difficulty/complexity of the program is calculated (see Chap. 6.1.2 for details).

Structural metrics usually refer to the relations between the individual sections
of a program. A well-known metric is that of cyclomatic complexity v(G) going back
to McCabe [McC76]. This metric is based on the number of edges, nodes and the
number of connected components in the flow-graph. Generally speaking, structural
metrics are typically based on control and/or data flow relationships.

12 2. Complexity of Specifications

It is conceivable to apply linguistic metrics to specifications (the work of Sam-
son, Nevill and Dugard [SND87] already relies on these metrics) - the number of
predicates in Z schemata or VDM modules, for example, can easily be determined.
However, applying structural metrics is more difficult, as, due to the declarative na-
ture of formal specification languages, the basis for the calculation (explicit control-
and data-flow) is, in most cases, missing.

2.5 Quality

Quality turned out to be one of the key factors for the success or failure of a product.
In fact, the meaning of the term “quality” depends on the perspective from which
individual users look upon it. System testers with the emphasis on requirements, for
example, have different viewpoints on quality than end users with the emphasis on
the usefulness of the product. Overall, quality also means the absence of defects that
would cause a system to behave unpredictable or stop successful execution [Jon78].
When speaking about quality in general, we usually focus on software quality, but
quality considerations are also relevant for specifications3.

The ISO norm 8402-1994 defines “quality” as follows:

Quality is the totality of features and characteristics of a product that
bear on its ability to satisfy stated or implied needs.

In many cases the pure use of individual quality criteria is not sufficient and
therefore quality models have been developed. There are several so called FCM
(Factor-Criteria-Metrics) models available [BKP98a, p.258ff], but in all cases quality
is described by means of quality factors (like usability) and their related sub-factors
(like comprehensibility and learn-ability). Furthermore, there are process models
which lead to an enterprise- and/or development- specific quality model. An example
is the GQM (Goal-Question-Metric) model from Basili and Rombach [RB87]. They
suggest six steps in order to identify product and/or process specific quality factors.

A large number of existing quality factors goes back to attributes introduced
by McCall et.al in 1977 [MRW77]. McCall differentiates between two levels of at-
tributes: on the one hand there are quality factors that are not directly measurable,
and on the other hand there are quality criteria which are either subjectively or
objectively measurable. In McCall’s system it is possible to combine quality criteria
in order to reason about quality factors. An example for a quality factor is the relia-
bility of a system. Reliability is not measurable but one can reason about reliability
if the number of errors so far found in the system is known.

3 According to Boehm [Boe80] more than 60% of all defects in a software system are introduced
before the beginning of the coding phase.

2.6. Specifications’ Metrics and Quality 13

A further, common distinction is the one between internal and external at-
tributes. Internal attributes (like size and error) can be measured directly on the
basis of the product; external attributes (like usefulness and maintenance) depend
on the application of the system. External attributes can only indirectly be mea-
sured and correspond to McCall’s quality factors. Frequently mentioned external
attributes are correctness, reliability, usefulness, comprehensibility, maintenance and
reusability.

When dealing with the quality of specifications (from the perspective of forward
engineering), the absence of defects is relevant. But seen from the perspective of
reverse engineering or maintenance, external attributes count. If at all and how
these metrics, coming from “traditional” software development, fit in the area of
specifications will be explored in the following section.

2.6 Specifications’ Metrics and Quality

In the field of software development it is common to use quality indicators and
metrics. It is also common to speak about the quality of software, the quality of a
document and the quality of processes, but rather rarely one speaks (or even thinks)
about the quality of specifications. In fact, measures are hard to find but if one uses
measures, only linguistic metrics are used. They are described in more detail in
Chap. 6.

A typical linguistic metric has been proposed by Vinter, Loomes and Kornbrot
[VLK98]: they are using the number of lines of specification code and the number of
operators. Another metric it that of Kokol [KPHR99], where the idea of the so-called
α-metrics (which is based on the measurement of information content and entropy)
is extended to formal specifications. As mentioned earlier, it is sometimes easier
to compare. Jilani, Desharnais and Mili [JDM01] present an approach of applying
measures of distance between specifications (functional distance is calculated by
using similarity properties of underlying graphs) – however, with that measure they
address a different complex of problems: that of software retrieval and reuse – they
do not address formal specification quality.

When using formal specifications all quality factors mentioned above (like “cor-
rectness” and “reliability”) seem to be fulfilled automatically. When taking a closer
look onto the problem it becomes obvious that like with conventional programs,
errors can be introduced. The study of Vinter, Loomes and Kornbrot [VLK98]
demonstrates that the number of defects to be found in formal specifications strongly
correlates with the number of implications used in predicates of a Z-specification.
It also correlates with the perceived complexity of the specification itself. This is
a strong evidence that specifications’ quality factors are related to specifications’
quality attributes.

14 2. Complexity of Specifications

Talking about the quality of specifications requires knowledge about several spec-
ifications’ characteristics. For that reason it is useful to search for attributes that
permit the identification of quality factors. To be more explicit, we are interested
in

• making predictions about the correctness and reliability of a specification,

• making predictions about the expenditure (the costs) of a possible implemen-
tation and

• making predictions about the complexity of the specification.

For the first and second statement quantification can be conducted by calculating
internal attributes. For the first one it is feasible to use attributes like the number
of specific (logical) operators in the specification and some variant of Halstead’s
metrics. The second prediction can be based on the same attributes, eventually
extended by the total number of lines of specification code, the number of predicates
or the number of specification objects (if the formal notation, as in Z, supports this
type of abstraction). For the description of complexity, however, external attributes
are necessary which will be inspected in more detail hereafter.

All factors defined in the field of the traditional software development process
seem to be meaningful and useful in the field of specifications. The calculation of
these factors, however, is different to calculating programming factors. As we will
see in Chap. 3, explicit control- and data flow cannot be assumed when dealing with
formal specifications. All too often these clues for partial comprehension are only
implicitly available which further increases the complexity of specifications.

2.7 Inherent Complexity of Specifications

Large specifications may contain several thousand lines of specification text (the
deducted software system might consist of millions of lines of code). Thus, the set
of overwhelming details of a specification often cannot be understood by a single
person anymore. We are used to say: things are getting complex!

Up to the middle of the 20th century the word ”complexity” appeared to be
merely an antonym of ”simplicity” [Edm99, p.17], but in fact, complexity is often
not so much measured as it is compared. We are talking about relative complexity,
without an appropriate framework, however, any judgment of complexity would be
meaningless. But what could that framework look like?

In 1979 Curtis et. al. [CSM+79] defined the notion of psychological complexity
to be based on the number of statements. Another way of defining complexity is
the roundabout via resources. Basili [Bas80] defines (software) complexity as

2.7. Inherent Complexity of Specifications 15

... a measure of the resources expended by another system while
interacting with the piece of software.

In both articles (Curtis’ et.al and Basili’s) the importance of structured pro-
gramming techniques is pointed out. But it is not only structure that guarantees
a predictable, less complex system. Alagar and Periyasami [AP98] quote following
types of complexity:

I1 Environmental Complexity. The usage of a system is defined by many con-
straints (e.g. time-dependency). As the system also effects the environment,
the environmental context has to be well understood.

I2 Application Domain Complexity. The software depends on models of real
world objects, models that in most cases can only approximate domain objects.
The uncertainty about the real nature of those objects finds expression in the
application domain complexity.

I3 Communication Complexity. As software systems are growing in size, only a
group of people can be given the task of development. Communication (also
communication of tacit knowledge) becomes a key factor which influences the
expenditure for managing the project.

I4 Structural Complexity, consisting of Management- and Technical Complexity.
The hierarchy of the development team and interwoven development activities
contribute to the overall management complexity. In addition, the coupling
among system’s modules and their interrelationship determine the level of
technical complexity, too.

I5 Size Complexity. Size can be (and is) experienced at first hand. According
to Alagar and Periyasamy it is probably the most critical type of complexity.
They cite a study of Leveson [Lev91] arguing that almost all accidents with
software involved are due to this kind of complexity.

Once again, size seems to be the most influencing (and limiting) criteria when
trying to comprehend a system. But is it only the size? As is argued by Mittermeir
and Bollin in [MB03], it is apparent that people like to write code, but they do not
like to read somebody else’s code. This statement is not based on an empirical study
but rests on experiences gained by talking to people and by observing students’ as
well as professionals’ behavior during software maintenance. Generally speaking,
it is easier to express ones own concepts and ideas using the tight formality of a
programming or specification language than to reconstruct the concepts the original
developer had in mind.

16 2. Complexity of Specifications

Syntactical Dependency

Data Dependency

Control Dependency

Fig. 2.1: Direct and indirect dependencies in the Z-specification of the Birthday-Book
[Spi89b]. The figure demonstrates the huge number of dependencies between
parts of the specification. The boxes and the meaning of the dependencies will
be explained in detail in Chap. 4.3.2.

Bruce Edmonds introduces the term analytical complexity [Edm99, p.86] for this
type of difficulty when trying to comprehend expressions. There are several reasons
why the reconstruction of the original concepts behind a formal specification is that
hard. Reasons for analytical complexity are:

I6 Missing Redundancy. The density of expressions has an important impact on
comprehension activities. Whilst humans are used to listen and talk with equal
ease in their natural language, the situation is totally different when written
communication is used. During a conversation a dialog emerges, consisting of
questions, counter-questions and answers. With written communication we do
not have this chance of constant probing. When using formal specifications,
this kind of reassurance is missing.

I7 Too few clues for reconstructing the original structure. Putting too much
structure into a specification is usually understood to be a hint towards im-
plementation. While this is true (and can be partially avoided) on the detail
level of the specification, larger specifications have no built-in methodologies
for structuring. Of course, some notations provide abstraction techniques on
the granularity level of objects, but they are of no use when specifications are
getting really big.

To demonstrate the argument on a trivial example, one might consider the
number of interrelationships (see Fig. 2.1) between concepts used in the toy-
specification of a Birthday-Book (BB for short) [Spi89b]. The BB specification
is a meaningful but small specification and will be used as an experimental
object more than once in this work. The full specification text of the BB-

2.8. Questions Revisited 17

specification can be found in App. C.1. The interesting fact about it is that
the specification itself only consists of 8 objects/concepts and 24 lines of spec-
ification code – but the number of relations between them is overwhelming.
The number of dependencies between the objects (see Fig. 2.1) indicates that
even small specifications are rather complex and (definitely) not easy to com-
prehend.

I8 Too few clues for reconstructing the behavior. At least with small programs
the well defined execution sequence among statements allows for partial com-
prehension. We are capable of obtaining some understanding by performing a
desk-check in the form of a program ”run” with some assumed values. Trying
to comprehend the program without assuming specific values bound to the
program’s variables is much harder. Due to the declarative nature of specifi-
cations, the writer does not need to worry about the order of execution. One
no longer has that built-in clue for partial comprehension.

Most of the complexity factors mentioned above (I1 to I4, partly I5) are indeed
inherent in the nature of the task and cannot be influenced, reduced or even elimi-
nated. At least suitable process models, communication techniques and motivated as
well as skilled team-members help to overcome environmental, application domain,
communication, technical and management complexity.

Missing redundancy (I6) is a property of the formal specification language and
would imply the use of rewrite-systems when elaborating on the density of expres-
sions. Rewrite-systems can be very useful when dealing with specifications, but they
are time-consuming and require special skills. So the complexity of size (I5) and an-
alytical complexity (I6 to I8) still remains. A lot of solutions have been provided
in the field of program comprehension which deal with the problem of size or ana-
lytical complexity. When adopting these approaches to specifications successfully it
will also be possible to handle that types of specification complexity.

2.8 Questions Revisited

Over the last 20 years several arguments have been raised rejecting or supporting
formal methods and formal specifications. By and large there are at least two as-
pects impeding the further success of formal methods during software development:
missing (suitable) metrics and complexity. In the section above complexity has
been considered from a more analytical point of view and has been divided into
the complexity of size, analytical complexity and some kind of application inherent
complexity.

Looking back to Chap. 1, the overall objective was to find out whether it is
possible to reduce the complexity of specifications. This chapter analyzed the term

18 2. Complexity of Specifications

complexity in the context of specifications and suggested to reduce complexity by
dealing with size complexity and analytical complexity. Seen from this angle, the
questions to be answered in this work (and raised in Chap. 1.2) can be deepened as
follows:

Q1 What kind of abridgements are practicable? Imagine that we already reduced
the complexity of a specification. This could have happened (i) by reducing
the size, (ii) by adding redundant information or (iii) by providing aids for
reconstructing structure or behavior. When reducing the size or adding re-
dundancy, one is going to change the specification. It is obvious that it is not
practicable to just delete or add lines of specification code. Providing clues for
structure or behavior also means to remove either irrelevant portions of speci-
fication code or to add necessary information (by making hidden information
explicit). In both cases, the type of reduction counts.

Q2 How can abridgements be achieved? The answer depends on the type of
abridgement that has been chosen. The first possibility is to just reduce
the size and thus omit (for a specific problem at hand) irrelevant parts of
a specification. Not all reductions are useful (see question Q1) – but basi-
cally the problem at hand is supported by scaling-down the original formal
specification. The second possibility aims at supporting the reconstruction of
structure and/or behavior of the original specification. So here implicit infor-
mation is made explicit, thus adding clues to the specification. Of course both
approaches can be combined.

Q3 Can a reduction of complexity be expounded? If complexity was simply defined
by size complexity, the answer would be trivial. When dealing with analytical
complexity, however, the answer is not that simple. Redundancy could be
measured by some sense of the underlying entropy of the specification text - but
that would indeed be detrimental to the characteristics of formal specification
notations’ – the style of expressing thoughts should not be dictated. On the
other hand the clues for structure and behavior are (at least partially) available
– hidden in the syntax and semantics of the specification language. The point
is that these hidden dependencies between parts of the specification describe
(or better: constitute) the analytical complexity – so measures expressing this
implicit information can be referred to as metrics for analytical complexity.

Answers to the above questions belong to the field of specification comprehension.
The above section already mentioned that there are similar problems to be dealt
with in the field of programming languages (e.g. size complexity or too complex
structures). The following chapter fills the gap between the vastly unexplored field
of specification comprehension and program comprehension.

3. INTRODUCTION TO SPECIFICATION COMPREHENSION

To describe is to understand
To program is to describe

Therefore
To program is to understand

Kristen Nygaard [1926 – 2002]

Chap. 2 presented formal specifications in more detail and illustrated popular
facts and fallacies. Formal specifications were identified as very complex constructs,
and reasons were given for using formal specifications. The chapter closed with
the objective of reducing the complexity of specifications and three questions to be
answered in this work were raised.

Formal specifications are not the only documents that are difficult to under-
stand. Due to increasing requirements, both, program code and design documents
are growing drastically in size. Program comprehension is a field of research where
various techniques, languages and tools have been developed to account for this
problem.

The objective of this chapter is to demonstrate that the application of program
comprehension approaches to specifications is possible. It introduces the field of
specification comprehension. This is done in two stages: firstly, by introducing
program comprehension approaches and secondly, by mapping them to the field of
specification comprehension. In this chapter quite a lot of time is spent on program
comprehension, as for most of its approaches and ideas this transformation is pos-
sible and useful. The crux of the matter is to understand the limits. Thus, this
chapter also describes the differences between specifications and programs. Based
on a detailed discussion of program comprehension and specification comprehension
approaches, these limits are worked out, providing the basis for the objectives of the
subsequent chapter: the identification of specification abstractions.

3.1 Comprehending Complex Systems

Pondering the famous statement of Kristen Nygaard (quoted above) it is clear that if
a person describes something (by using some kind of formal or semiformal notation),

20 3. Introduction to Specification Comprehension

this person is likely to be fully aware of its meaning. In other words, comprehen-
sion presupposes complete understanding of something. To comprehend means to
connect something which is already on an observers mind to a conception model of
that something [Mit00]. Comprehending is an important aspect in humans’ life and
every day life presents several opportunities to train comprehension activities. It
should actually not be a problem. But why is the act of comprehending (software)
systems still that difficult?

Chap. 2 provided the answer already: besides missing expertise and knowledge
it is complexity making things that difficult. According to Brooks [FPB95, p.182]

software entities are more complex for their size than perhaps any
other human construct, because no two parts are alike (at least above
the statement level). [...] In this respect software systems differ pro-
foundly from computers, buildings, or automobiles, where repeated ele-
ments abound.

Brooks argues that the complexity of software is an essential property and not
just an accidental one. This essential complexity and its nonlinear increase with size
are the reasons for many problems when developing and/or maintaining software.

Following the arguments of Banker, Davis and Slaughter [BDS98], to understand
during forward engineering is not without effort, but the situation gets worse if one is
changing from the construction phase to maintenance, reverse engineering or design
recovery. A cognitive human information-processing task has to be initiated and
input information clues have to be interpreted and manipulated. Again, appropriate
concepts have to be rediscovered and comprehending implies re-establishing links
between the clues one can observe and concepts already in mind.

3.1.1 Comprehension Clues

Comprehending really complex systems is not necessarily a lost case. During back-
ward engineering (and partly also during forward engineering) there are several
expressive inputs available sustaining the comprehension task. Two of them are the
software code and the related documentation. Figure 3.1 describes a (Waterfall-
like) model of a development process. It points out the basic clues one can rely
on when trying to reconstruct the original mental model behind the system under
investigation.

During forward engineering several documents are created. All of them describe
the requirements (and their implementation) at different levels of abstraction – and
from different points of view. Requirements are typically written down in formal
notations which themselves form the basis for creating design documents, user doc-
umentations and test documents. All these documents then form the basis for the

3.1. Comprehending Complex Systems 21

Fig. 3.1: Several sources can be referred to in order to understand a complex system:
source code, design documents at different levels of granularity and the formal
specification. Whereas there are many comprehension tools and approaches that
are based on the program code, support for formal specifications is almost van-
ishing. This situation is indicated by the question mark between the specification
and the comprehension process.

implementation (and test) of the software system. The same holds for other phase-
driven development models – as long as documents are used as input sources for
subsequent phases.

When trying to understand complex systems there are generally two strategies:
firstly, the software system can be executed (a very time-consuming task), and, sec-
ondly, the source code and all related documents can be directly used as input for
the comprehension process. As shown later in this chapter, focusing, abstraction,
and exploration are techniques used to gain knowledge about a system. This cogni-
tive task is often impeded due to missing documents or documents of poor quality.
According to Glass [Gla03, p.122] this is one important reason1 for problems during
software comprehension. The better the quality of all documents, the simpler it is
to re-establish links between concepts and systems’ clues.

This encourages the argument raised in Chap. 2, stating that the quality of
all related documents (which includes the formal specification) becomes an impor-
tant factor that influences the performance of the comprehension process. In fact,

1 According to Glass it is second only. The main cause for software comprehension problems is
staff turnover.

22 3. Introduction to Specification Comprehension

documentation, if existent and of good quality, speeds up comprehending complex
systems quite a lot. Banker, Davis and Slaughter point out the fact that the time
needed to comprehend a system on the basis of software code alone is about 3.5 times
longer than comprehending the system by additionally studying its documentation
[BDS98, p.435].

3.1.2 Specifications

When looking at Fig. 3.1 again, one can see that there are many possibilities to
gain understanding of the underlying system. So, why are formal specifications still
valuable for comprehending complex systems? The program code exactly describes
the behavior of the implemented system. Thus, one argument could be that taking
the underlying software code as the input for the comprehension process is sufficient.
In fact, there are three aspects that are easily forgotten:

• Reconstructing all concepts from program code is a time-consuming task. It
requires a lot of tool support which ultimately means the reconstruction of the
missing documentation at different levels of abstraction.

• Specifications provide a trustful source for the description of the original re-
quirements, especially when they are kept up to date during the various evo-
lutionary steps taking place in the course of system development.

• Even if specifications are getting large, they are smaller than the program that
is implementing the described requirements.

It pays off to use formal specifications as a basis for maintenance and reverse-
engineering operations (as long as specifications are kept up to date). As Fig. 3.1
points out, up to now there are several approaches supporting program comprehen-
sion, but hardly any approaches supporting specification comprehension. One of
the objectives of this thesis is to eliminate the question mark in the center of the
Fig. 3.1.

3.2 Program Comprehension

This chapter explains terminology, argues why program comprehension is that hard
and describes approaches and tools sustaining the engineers in comprehending soft-
ware systems.

3.2. Program Comprehension 23

3.2.1 Motivation and Terminology

The lion’s share of all the effort that is put into software development is spent on
maintaining existing systems. Thus, it is worth improving the situation. There are
many estimates on the proportions of resources, but the common opinion is that
it ranges between 40% and 80% [Gla03, p.115] – which is quite a lot. As cited in
[Rug95], Fjeldstad and Hamlen report

that 47% and 62% of time spent on actual enhancement and cor-
rection tasks are devoted to comprehension activities involving reading
the documentation, scanning the source code, and understanding the
changes to be made.

Rajlich and Wilde [RW02] bring it to the point: software that is not compre-
hended cannot be changed. Maintenance is not the only activity that is mainly based
on the understanding of the underlying system. Understanding is always essential
and the term program comprehension describes this activity as

the process of acquiring knowledge about a software system.

Program comprehension is a rather general term. There are several more specific
terms describing activities related to program comprehension [Rug95, p.2]:

• Reverse Engineering. It is a process analyzing the software system in order to
identify the system’s components and their interrelationships. Documents at
different levels of abstraction are created.

• Design Recovery. It is closely related to reverse engineering. Due to design re-
covery, already existing documents (e.g. design documents and specifications)
are taken into account – in order to gain knowledge about the system.

• Reengineering. Reverse engineering moves from the code level to higher levels
of abstraction. Reengineering works both ways round – it uses the accumulated
knowledge about the system and re-implements the system in a different form.

• Restructuring. This process can be seen as reengineering on a smaller scale.
The objective of this activity is to re-implement parts of the system (changing
local structures) without raising the level of abstraction.

All of the above activities are based on comprehending the whole or at least parts
of the underlying system. Storey et.al [SFM99] collected various factors influencing
the comprehension process and suggested to classify them by the following three
characteristics:

24 3. Introduction to Specification Comprehension

1. Programmer characteristics. They include the application domain knowledge,
the programming domain knowledge, expertise, creativity, program familiarity
and the tool expertise.

2. Program characteristics. They consist of the application domain, the program-
ming domain, program size, complexity and the documentation.

3. Task characteristics. The differences are expressed by the task type, size and
complexity, timing constraints and other environmental factors.

It is remarkable that, once again, the factors size and complexity are not to be
neglected. The remainder of this section presents strategies and techniques sustain-
ing the comprehension process. It focuses on abstractions dealing with the issues of
size and complexity.

3.2.2 Comprehension Theory

Several models have been built in order to understand how programmers compre-
hend programs. The so called mental model describes the programmers’ mental
representation of a program or a system to be understood. The cognitive model
describes the information structures and processes used to form that mental model.

For many years studies observed how programmers understand programs. As a
convergence cognitive models for program comprehension have been proposed. The
point is that all models have one thing in common: they use existing knowledge to
acquire new knowledge and to create a mental representation of the code. According
to Mayrhauser [vMV94]) there are so-called lower-level comprehension models (or
basic models) and higher-level comprehension models (or composite models). Lower-
level models (in the sequel called M1) and higher-level models (in the sequel called
class M2) can be divided into several subclasses.

M1 Lower-level comprehension models:

• Top-down comprehension models. Here, comprehension begins with a high-
level goal. The process of understanding starts with a hypothesis concerning
the whole piece of code. These goals are then refined in hierarchical fash-
ion forming sub-goals. Examples of top-down models are the Brooks model
[Bro78] and the model of Soloway and Ehrlich [SBE83]. Top-down program
understanding models are usually applied when the type of code is familiar to
the reader.

• Bottom-up comprehension models. With these models of comprehension the
understanding is being built bottom up by reading the source code and then

3.2. Program Comprehension 25

grouping parts2 of the program to higher level abstractions. Typical bottom-
up models are Shneiderman and Mayer’s cognitive model [vMV94, p.10] and
the Pennington model [vMV94, p.16].

M2 Higher-level comprehension models:

• Knowledge-based understanding model (also known as the Letovsky Model
[vMV94, p.9]). This model is a high level cognitive model of program com-
prehension, based on a knowledge base, a mental model and an assimilation
process. The knowledge base itself consists of the programmers’ application
and expertise, the problem domain knowledge, the rules of discourse, the plans
and the goals. The mental model represents the programmer’s understanding
of the program. The assimilation process describes how the mental model
changes by combining the knowledge base and the program information using
either bottom-up or top-down strategies.

• Systematic and “as-needed” comprehension models. Programmers either read
the code in detail, tracing the control- and data flow abstractions or they take
an as-needed approach, focusing only on the code related to the specific task.
The model of Soloway [SBE83] combines systematic strategies, “as-needed”
strategies and the model of Letovsky into a single model consisting of micro
strategies (using read, question, and conjecture and search cycles) and macro
strategies (systematic strategies for tracing the flow of the program including
simulations and as-needed strategies).

• Integrated approaches. Von Mayrhauser and Vans combined the top-down,
bottom up and knowledge based approaches into a single meta-model [vMV94,
p.18]. Here, comprehension is obtained by concurrently using different com-
prehension strategies, even at different levels of abstraction.

Each model represents slightly different strategies for program comprehension.
Nevertheless, they are not totally different from each other. All models use matching
processes between the (already known) knowledge structures and the program under
study. Programs are nothing else than documents written in some formal notation,
describing the behavior of the software system.

The strategies mentioned above are not strictly bound to program comprehen-
sion. As formal specifications are also documents exactly describing the behavior of
the underlying system, the same strategies hold for specification comprehension.

2 In literature this parts are also sometimes called “chunks”.

26 3. Introduction to Specification Comprehension

3.2.3 Comprehension Strategies

In order to gain understanding of a system one will have to analyze the underlying
program and/or documentation. This can be done by hand or partly supported
by tools. According to Tilley [Til95], three basic activities are typical for the com-
prehension processes (which, in consequence, also set the requirements for related
tools):

A1 Data gathering using static analysis of code or using dynamic analysis based
on the execution of the program.

A2 Knowledge organization by focusing and creating abstractions for efficient stor-
age and retrieval.

A3 Information exploration and visualization using navigation aids, analysis tools
and different types of presentation.

All of the above activities are supported by tools, but only activities in class A3
have a real focus on visualization techniques. Activities in class A1 are primarily
based on source-code level comprehension approaches and serve, in most cases, as
a basis for activities in classes A2 and A3. Activities in class A2 involve heavy
static and dynamic analysis, but help in the formation of digestive bits/parts of the
underlying system.

3.2.4 Data Gathering

The simplest activity at the level of source-code comprehension (activity class A1 in
Chap. 3.2.3) is textual, lexical and syntactic analysis [ASU86]. The grouping and the
meaning of characters is important, the syntax and structure of the program guide
the reader. Comments are essential and help with forming a first idea of the piece
of code. Based on these low-level activities, higher level activities can be started. It
is possible to detach specific information and to abstract from too many details.

This is done by looking at the program’s control flow and data flow. The abstract
syntax tree resulting from static analysis then forms the basis for constructing a
control-flow and data-flow graph, or immediately leads to a program dependence
graph [FOW87].

Up to now, all approaches are based on static analysis of the program code.
Dynamic analysis can be used to gain insight in the program under investigation.
It includes partial or full execution. Abstract interpretation [CC77, CC99] is located
somewhere in between static and dynamic analysis. Here denotational semantics is
used in order to express semantic domains, enabling an abstract re-interpretation of
statements.

3.2. Program Comprehension 27

3.2.5 Knowledge Organisation

A typical strategy is that of looking for programming abstractions (activity class
A2 in Chap. 3.2.3). In many cases it is important to restrict analysis to parts
of the program by neglecting some (for that moment irrelevant) aspects of it. Two
popular techniques called slicing [Wei79] and chunking [BRS+97] serve as a basis for
this activity. A third activity is that of looking for programming patterns [RW90]
or clichés [BF99]. Slicing, chunking and the identification of patterns or clichés
provide quite a lot of abstraction power. Thus, these techniques will be described
in the sequel of this section.

Programming abstractions help to focus on well-defined portions of code. De-
pending on the problem at hand, a peruser can be assured that if s/he analyzes the
respective portion of code, all that needs to be studied for the problem at hand has
been considered. Such portions of code are often identified as slices, chunks and
clichés or patterns.

The original idea of slicing goes back to the PhD-thesis of Weiser [Wei79]. He
defined a slice s as follows:

Definition 3.1: A slice s is a reduced, executable program obtained from a program
p by removing statements, such that s replicates part of the behavior of p.

A program slice, as defined by Weiser, is based on static data-flow analysis
and allows finding the slice in linear time as the transitive closure of a dependency
graph. Following the definitions of Weiser, a slice is defined by a program’s subset of
statements and control predicates that are dependent on a slicing criterion (the point
of interest). The slicing criterion, in general, is a pair consisting of a line-number
and a set of variables. The calculated slice must preserve the effect of the original
program on these variables at the given line number. Ottenstein and Ottenstein
[OO84] restated the problem in terms of a reachability problem in a PDG (program
dependence graph) in 1984.

However, there are several definitions and extensions to be found in the literature.
A common distinction is that of static and dynamic slices. A static slice makes no
assumptions regarding a program’s input, whereas a dynamic slice relies on a specific
test case – only dependencies that occur in a specific execution path of the program
are regarded and taken into the slice.

A slice, as defined by Weiser, is sometimes also called a “backward slice” as it is
calculated by starting at the slicing criterion and performing a backward traversal
of the program. Bergeretti and Carrè [BC85] introduced the notion of a forward
slice: a forward slice consists of all statements dependent on the slicing criterion.
An overview of different approaches can be found in the survey paper of Tip [Tip94].

28 3. Introduction to Specification Comprehension

Another type of abstraction is that of a programming chunk. Burnstein [BRS+97]
defines a chunk in two ways. The first and very general definition states:

Definition 3.2: A chunk is a sequence of software instructions that achieve a co-
herent purpose and can be understood outside of the context in which it is used.

According to Burnstein, chunks are syntactic and/or semantic abstractions of
text structures within source code. Chunks can be further collected and abstracted
(in order to build higher level chunks). A more specific definition is given in
[BRS+97] as follows:

Definition 3.3: A chunk is either a prime, including all primes contained within
it, or a sequence of primes that exist within the same programming scope, where for
each pair of primes either one prime is data dependent on the other, or both primes
are data dependent on a third prime within the sequence.

This second, alternative, definition provides hints for automatically detecting
chunks in a program by detecting and following data dependencies. However, the
only important and challenging property of a chunk is that it always has to be un-
derstandable – the definition itself does not guarantee that the chunk is executable.

Rich and Wills [RW90] took into account that programmers tend to use the same
structures over and over. These repeated structures are called programming patterns
or clichés. The same concept has been taken up again by Broad and Filer [BF99]
who defined a program cliché as follows:

Definition 3.4: A program cliché is a basic knowledge unit used by programmers
to build and recognize code.

Clichés are commonly-used computational structures. Prevalently used are data-
structure clichés such as stacks, queues, hash tables and algorithmic clichés such as
sorting or binary search. Clichés include fragments of code and, as with chunks,
can include further clichés. This indicates that a cliché does not necessarily have
to be executable, but the claim for being a rather self-contained unit indicates that
syntactic dependencies still play a crucial role.

3.2.6 Exploration and Visualization of Programs

Research shows that cognition models and visualization techniques should not be
neglected [Won98]. The third class of activities (activity class A3 in Chap. 3.2.3)
relies on program understanding (visualization) tools.

The terms software visualization (SV) and program visualization (PV) are often
misunderstood in the literature as they contain the word ”visual” (which is derived

3.2. Program Comprehension 29

Code
Animation

Algorithm
Animation

Static Alg.
Visualization

Static Code
Visualization

Static Data
Visualization

Data
Animation

Algorithm
Visualization

Program
Visualization

Software Visualization

PbD

VP

Fig. 3.2: Venn diagram showing the wealth of terms used in the software visualization
literature. Please note, that the terms Visual Programming and Programming
by Demonstration are not subsets of Program Visualization. Nevertheless, they
are related and have a partial overlap. (Out of [SDB+98])

from Latin meaning ”sight”). Visualization is not necessarily related only to the
displaying and graphical fields [Kad02]. According to the Webster’s Encyclopedic
Unabridged Dictionary visualization suggests the formation of a mental image. Ac-
cording to [SDB+98], software visualization is the use of the crafts of typography,
graphic design, animation and cinematography with modern human-computer inter-
action and computer graphics technology to facilitate both the human understanding
and the effective use of computer software.

The vast majority of visualization approaches makes use of graphics to support
the formation of a mental image of a systems behavior, structure or function. With
ongoing improvements in Human Computer Interfaces, visualization through virtual
reality systems [SW93] or sound [BH98] becomes possible3, too.

Specific clues of information are often reconstructed through visualization. Fig-
ure 3.2 shows the terms used in the software visualization literature. Up to the late
1980’s the term program visualization was used for software visualization. Program
visualization, however, refers to the program itself (at a lower level) and not to the
underlying algorithm (which is a design at a higher level). Program visualization
shows the actual program code or data structures either statically or dynamically,

3 Visualization through sound is also called “program auralization”.

30 3. Introduction to Specification Comprehension

whereas algorithm visualization is a kind of high level description of software (which
can be static or animated).

As an example, static code visualization includes some kind of program map
or pretty printing of the program code, whereas static data visualization might
represent the code as a boxes-and-arrows diagram. In our example data animation
then shows the same diagram, but the content of the boxes and the arrows are
changing during the execution of the program. A form of code animation could be
the highlighting of lines of code during the execution phase. Flowcharts are also
simple examples of static algorithm visualization. The use of animation techniques
(to show how the algorithm is working) then leads to the so-called dynamic algorithm
visualization.

The terms Visual Programming (VP) and Programming by Demonstration (PbD)
are mentioned in Figure 3.2, as there is a relationship between these areas and pro-
gram visualization. VP is a technique using ”visual” (graphical) techniques for the
specification of a program. The focus of VP is to make programs easier to write.
Program visualization aims at making programs easier to understand.

PbD (sometimes also called Programming by Example) is based on the idea of
using user demonstrated examples. Users need not have advanced programming
skills, they only have to demonstrate an example and the system infers a program
automatically.

3.2.7 Program Comprehension Tools

There are many tools supporting program comprehension. These program compre-
hension tools can be divided into three basic classes:

T1 Software visualization tools that focus on the textual representation. They
mainly use pretty-printing (or maps) for increasing the comprehension process.
This class of tools mainly deals with static code and data visualization.

T2 Tools presenting the dynamic execution of programs. They are used for de-
bugging, profiling and for the understanding of run-time behavior. Tools of
this class are predominantly used for data and code animation.

T3 Tools for the animation of algorithms and data structures. These tools are the
so-called “classical” algorithm visualization tools.

Most approaches only focus on a specific problem domain and do not support dif-
ferent cognition models. Thus, they can only be applied in very specific fields: there
are visualizing tools for concurrent programs (PVaniM, [SDB+98, p.237f]), tools
in the field of education (beginning with BALSA or Piper, see [SDB+98, p.383f])

3.3. Program Comprehension versus Specification Comprehension 31

or tools in the field of software engineering (e.g. maintaining large systems using
SeeSoft [SDB+98, p.315f]).

The above mentioned models have been used to improve and evaluate the RIGI
tool [TMO92, MTO+92, SWH98] which has been designed for the support of re-
verse engineering. The RIGI Reverse Engineering tool uses views to direct the user’s
focus on visual data and to guide the exploration of spatial data to support pro-
gram documentation and understanding. In 1993 the RIGI system already consisted
of a parsing subsystem, a repository and a graph editor. The reverse-engineering
methodology is based on subsystem comprehension, views and hypertext layers.

The reverse engineering process involves parsing of the program which results in a
graph where nodes represent functions and data-types and arcs represent dependen-
cies among them. In 1996 the RIGI model was extended by SHriMP views [SM96],
simple hierarchical multi-perspective views (fish-eye views) of nested graphs. It was
shown [SWF+96] that SHriMP views help to enhance comprehension and navigation
aspects.

Size is always a problem (especially for graph structured approaches), but dif-
ferent hyper-medial representations (sound or virtual spaces) and different views
(like the above mentioned SHriMP views) are of great help. An upcoming ap-
proach to overcome the problem of complexity (introduced by Knight and Munro
[KM99, YM98]) is the use of three-dimensional visualization techniques.

3.3 Program Comprehension versus Specification Comprehension

Chap. 2 and Chap. 3.1 discussed the problem of complexity, and Chap. 3.2 pre-
sented aids for comprehending complex programs. Formal specifications are, like
programs, documents which exactly describe the behavior of a system. Hence it is
most likely that approaches for comprehending programs strongly resemble compre-
hension approaches for specifications. With the background of Chap. 3.2 similarities
and differences are analyzed.

3.3.1 Terminology

In analogy to program comprehension, the term “specification comprehension” is
defined as follows:

Definition 3.5: Specification comprehension is the process of acquiring knowledge
about a system’s specification.

This definition extends the idea of program comprehension by specifications as
the basic input-source to the comprehension processes. It also specifies the general

32 3. Introduction to Specification Comprehension

definition, as the input is limited to specifications only and the processes objective
is only to understand the system as described by the specification itself.

In accordance with this definition, program comprehension models (Chap. 3.2.2)
and strategies (Chap. 3.2.3) are examined and mapped to the world of specifications.

3.3.2 Comprehension Models

There is no reason to argue that cognitive models describing specification compre-
hension differ from cognitive models of program comprehension (see Chap. 3.2 and
classes M1 and M2). Existing knowledge is used to acquire new knowledge and to
create a mental representation of a specification.

M1’ Application of lower-level models:

• Top-down comprehension models can be applied without problems. Formal
specifications provide a simple and compact description of the system. More
important, they provide an abstract view which makes it easier to formulate
hypotheses.

• Bottom-up comprehension is also possible, even though it is more difficult to
group parts to higher levels of abstractions. This is partly due to the fact
that formal specifications are at a quite high level of abstraction already – and
further abstraction would be impeded or unnecessary. Otherwise the type,
the dialect of the specification language and the structure of the specification
affect the ease with which a bottom-up procedure can be used.

M2’ Application of higher-level models:

• As lower-level comprehension models are applicable to specifications, higher-
level models are also suitable to describe the comprehension process. All
models are based on documents. Additional knowledge about the system is
gained by the recurring tasks of micro and macro strategies applied onto these
documents.

Similarly to program comprehension, the factors influencing the comprehension
process are the same, namely, the characteristics of the person trying to comprehend
the specification, the characteristics of the specification itself and the characteristics
of the task.

3.3. Program Comprehension versus Specification Comprehension 33

Fig. 3.3: Diagram showing the relationship between requirements, specifications and pro-
grams. (The diagram is based on a figure given in [Jac95b].)

3.3.3 Common Features and Differences

Following the software development life-cycle and by moving from requirements to
implementation, one is changing the level of abstraction. Michael Jackson [Jac95b]
argues that the requirements – the problem – is in the world, and that the solution
is the machine which is constructed by software engineers. Requirements, specifi-
cations and programs are often closely related, but the relationship is not a simple
one4.

Requirements, on the one hand, are only concerned with the problems and phe-
nomena of the real world. Programs, on the other hand, are concerned with phe-
nomena in the machine (sets PW and PM in Fig. 3.3). According to Jackson, the
gap (represented by set PW ∩ PM) is bridged by specifications, because their pur-
pose is to describe those properties and behavior of the machine which fulfill the
requirements of the real world. Thus, a specification is both a requirement and a
program [Jac95b, p.285].

Trying to comprehend a system can be considered as concluding from elements
in set PM to elements in set PW (by abstracting from machine or implementation
related details). Here, specifications are valuable as they exactly deal with the phe-
nomena of the world; but they are also concerned with phenomena of the machine. It
is this particular relationship that makes it possible to map program comprehension
approaches to specifications.

4 Michael Jackson mentions four relevant facets: the modelling facet, the interface facet, the
engineering facet, and the problem facet.

34 3. Introduction to Specification Comprehension

Despite this common ground the level of abstraction cannot be neglected. Al-
ready at the pragmatic level difficulties and differences between requirements, spec-
ifications and programs can be observed:

• With specifications it is generally not possible to describe all phenomena of the
real world. Additionally, specifications are abstracting from implementation
related details – thus, covering only a part of the phenomena of the machine.
In many cases the intersection PW ∩ PM only forms a small part. Neither
a specification nor a program will suffice to reconstruct all truths about the
world.

• A specification that describes the world and the machine has to abstract from
control properties. Furthermore it is control behavior in the real world that
cannot be compared to control-constructs in programs [Jac95b, p.285]. This
feature is considered in many (declarative) specification languages. It goes
hand in hand with the level of abstraction but constitutes a big difficulty
when applying program comprehension approaches like slicing or chunking to
specifications.

Specifications are too limited to describe all phenomena of the world. They are
not programs, as they are too abstract to be executed. But they are sufficiently
related so that program comprehension strategies can be applied to specifications.

3.3.4 Strategies

Programs and formal specifications are documents providing the basis for the com-
prehension processes. The cognitive models for program and specification compre-
hension are similar, and even the three basic activities, as described in [Til95], are
more or less the same (see Chap. 3.2.3, activity classes A1, A2 and A3). Only on
the semantic and syntactic level the differences between specifications and programs
turn out to be more important. On the whole it can be said:

A1’ The first activity described data gathering using static and dynamic analysis.
Source code and specification text comprehension work similarly. Textual,
lexical and syntactic analysis is possible and supported by tools5.

The first big difference pops up when trying to analyze control and data-flow.
With imperative programs, an explicit flow of control is given. Line-numbers
represent an explicit order among statements or other constructs. Hence,
the well-known technique of constructing a PDG can be applied. However,

5 E.g. cadiz for Z. http://www-users.cs.york.ac.uk/∼ian/cadiz. Last visited: Oct. 2003. And
vdmsl for VDM. http://www.ifad.dk/Products/vdmtools.htm. Last visited: Oct. 2003.

3.3. Program Comprehension versus Specification Comprehension 35

when looking at declarative specification languages like VDM or Z, there is no
explicit flow of control. There are also no line numbers and the ordering of the
specification’s statements is irrelevant. Hence, the notion of data-dependency
has to be re-interpreted.

Another difference becomes clear when trying to perform dynamic analysis.
Formal specifications are, in general, not executable. In some special cases
(when predicates are defined in an explicit manner) parts of a specification
can automatically be transformed into another language. Partial execution is,
even for Z or VDM, with restrictions, feasible. A full execution is not possible6.

A2’ The second activity is based on tasks defined in A1’ and focuses on different
types of abstractions. The principles of slices, chunks and clichés are well
understood for programs and the concepts are useful for focusing on and/or
separation of documents. Slices help with focusing on relevant parts in the
specification text, whereas chunks and clichés manage to abstract from speci-
fication structures.

The problem here is that slices, chunks and clichés are not defined for specifi-
cations. Another problem is the fact that these forms of abstraction are partly
based on dependencies which are actually not existent. Chap. 4 presents an
approach to overcome this problem – thus, providing the basis for specification
abstractions.

Abstract interpretation, as something in between static and dynamic analysis,
is well supported. Specification languages provide means for describing the
semantics and rewrite systems allow for further analysis. In order to gain
insight into the meaning of parts of the specification, this class of tools provides
means for reformulating the specification and for reasoning about it. This is
done by deducing properties of the specification and by arguing about it. See
[Jon90, BG94] for more details.

A3’ The third class of activities is concerned with information visualization and
tools. Up to now only tool class T1 (textual analysis) is broadly supported.
The reason for this is the simplicity of static code analysis. However, their
limit is reached when the analysis of data- and/or control- dependencies gets
necessary. Tool class T2 (dynamic execution) is not fully supported. The same
is valid for tool class T3. Translation and animation libraries (see Chap. 4.1.1)
for subsets of the specification provide a way out of this dilemma.

6 For more details on Z transformations see e.g. Possum: http://svrc.it.uq.edu.au/Possum. Last
visited: Oct. 2003.

36 3. Introduction to Specification Comprehension

3.4 Summary

Chap. 3 provides a short introduction to comprehension models and approaches
for program comprehension. It also connects these models and approaches to the
field of specification comprehension. Finally it turns out that there are not many
differences. The following observations were made:

• The original mental model behind a specification and a program is the same in
most cases, especially when concerning those requirements of the world that
are recordable.

• Comprehension models can be applied to specifications without change.

• Comprehension strategies (including the activities known from program com-
prehension) can be assigned to specifications one to one.

• The notion of programming abstractions can be mapped to specifications. But
there are limits and impediments.

The impediments depend on the different natures of programs and specifications.
Mapping program comprehension approaches to specifications also has its problems:

• Specifications abstract from implementation related details and the notion of
control. In many cases they do not provide control structures and therefore de-
pendencies are not easily deduced. This impedes the application of approaches
based on these concepts.

• Up to now there is a lack in the definition of specification abstractions. Widely
known types of abstraction (e.g. slices and chunks) are not well defined. Thus,
they cannot be derived from a full specification automatically.

• Specifications are, in general, not executable. Even a paper-and-pencil run
is impeded due to a missing ordering of statements. However, there are a
lot of hidden dependencies and comprehension gets more complicated with
increasing quantity of the latter.

Chap. 4 examines these impediments. Firstly, it provides a neat definition of
specification abstractions. Secondly, it presents an approach for the identification
of specification’s control and data dependencies.

4. SPECIFICATION ABSTRACTIONS

Ex parvis saepe magnarum
momenta rerum pendent.

Livius XXVII 9,1

Chap. 3 illustrated the importance of specification comprehension, and demon-
strated that a mapping of program comprehension approaches to specifications is
promising. One main emphasis was on program comprehension concepts, as a shift to
specifications is possible and useful. However, there are relevant differences between
specifications and programs. These differences impede the generation of specification
abstractions when applying ordinary program comprehension algorithms.

This chapter takes a closer look at these impediments. Firstly, it provides a neat
definition of specification abstractions and secondly, it presents an approach for the
identification of dependencies in Z specifications.

4.1 State-of-the-Art

With the increasing number (and size) of specifications, there is also a growing
demand for support and tools. Up to the mid 1990s several research groups (and
companies) worked on the question whether and how formal methods pay off in
the software development process (see Chap. 2.1). Several notations have been
developed and specification languages have been extended in order to fit the modern
object-oriented design principles. However, up to now most of the effort has been put
into forward engineering activities: to support the creation of formal specifications,
to integrate formal specifications into other environments/methods (e.g. the VDM
link to Rational Rose1) and to generate code from specifications. Maintenance
considerations, on the other side, are rare. The rest of this section presents an
overview of specification visualization approaches and then moves on to approaches
for reverse-engineering and maintenance activities.

1 For details see: http://www.ifad.dk/Products/VDMTools/rose-vdmpp.htm. Last visited
November 2003.

38 4. Specification Abstractions

4.1.1 Specification Visualization

Similar to the classification provided for program comprehension approaches (see
Chap. 3.2.7), specification visualization tools and approaches can be assigned to the
following three classes (SV1, SV2 and SV3) [MBPRR01]:

SV1 This first class comprises tools for writing, reading and browsing specifications
(e.g. providing some kind of pretty-printing). Class SV1 deals with the appro-
priate visualization of the needed information and can be further divided into
three subclasses:

a) The first subclass contains tools for information formatting and focussing.
These tools are related to tools for syntax highlighting in source code or
to other tools providing some specific points of focus on textual rep-
resentations. It is well known from source-code comprehension that the
geometrical arrangement of statements substantially aids comprehensibil-
ity. The same argument applies for the presented amount of information,
the specification styles and the respective arrangement of terms. The
Emacs-Editor (with its corresponding LATEX cadiz or VDM styles) is a
tool which belongs to this class. Tools for focusing on specification text
do not exist, at least not until now.

b) The second subclass is concerned with the proper visualization of specifi-
cations, in the sense of transforming textual information into some graph-
ical representation. Here, people reason about the formal model in terms
of the graphical representation. The RSL specification language and the
corresponding editor [Ped00] provide such a feature: syntactical relation-
ships between statements of the specification are presented in a graphical
and hierarchical manner.

c) The third subclass contains cross-level tools that allow tracing from a
specification to the implementation. Such links (e.g. service channels
[PMRR98]) can be built into the system in a rather simple way or be
dynamically established with carefully built systems. A cross-section of
such approaches can be found in the literature on software evolution
[BKP98b].

SV2 This class makes use of animation as the next step to render formal speci-
fications “digestible”. Here, executable specifications (or sub-specifications)
are needed or at least a way to generate test data from specifications as a
prerequisite [OJP99]. However, when talking about animation of specifica-
tions, the terms interpretation and execution of the specification are much
more appropriate [Utt94].

4.1. State-of-the-Art 39

In the context of specifications, animation allows posing “questions” that can
be answered automatically. This can also be seen as a low-cost alternative to
formal proofs. There are two approaches of specification animation. (i) The
first one is to translate (subsets of) the specification to another language (a
functional language or, in most cases, Prolog) and thus makes interpretation
possible. (ii) Another solution is the direct interpretation of the specification.
The VDM toolkit follows this approach [FL96] and allows for animation of
VDM specifications2.

Possum [HST97, HST98] follows the first approach and animates the specifi-
cation after transforming it into an interpretable language called SUM (which
itself is based on Z). In Possum, SUM is used to produce a model-oriented
formal specification. Possum interprets SUM in two ways: as declarations
building an internal representation of SUM declarations (and returning true,
if the declaration is valid) and as queries, where responses are simplifications
of SUM terms of an execution model for state machines3. In addition to
that, schemata can be called by the Possum environment. Queries to a SUM
specification are interpreted and finally (simplified) expressions are returned.
Possum allows user-defined Tcl/Tk procedures which are plugged into the ex-
isting interface to explicitly support animation. These Tcl/TK procedures
cannot alter Possum’s state directly. They have to issue special queries. The
Tcl/TK procedures then parse the responses and manage the output on the
display.

Other animation tools are Jaza (an open source Z animator), PiZA (a tool for
animation of Z into Prolog) and the B-toolkit. A good overview of these tools
can be found in [Bow00, Utt00].

SV3 The third class of specification comprehension tools aims at rewriting a spec-
ification and/or reasoning about it. Here, the objective is certainly to raise
comprehensibility by generating a more compact representation or by focus-
ing on specific characteristics. Usually the level of abstraction is changed or
raised.

Ergo [Wat01, URN02], and Isabell [KSW96, NPW02] are environments that
can be used. Another environment is MOCHA [dA00], providing model check-
ing, trace containment and system execution. However, rewriting and (for-
mally) reasoning about specifications is a cost-, and in many cases, a resource-
intensive task.

2 In addition to that it also enables the translation to C++ and Java.
3 As an example, the SUM query {g : 1..10 | g2 < 50} leads to the simplification {1, 2, 3, 4, 5, 6, 7}

as a response.

40 4. Specification Abstractions

4.1.2 Looking for Partiality

Existing specification visualization approaches support the creation of specifications
and help establishing links to other representational forms. There is no explicit
support for comprehension activities. However, as argued by Boehm and Sullivan in
their roadmap for SW economics [BS00, p.321], “the fundamental goal of all good
design and engineering is to create maximal value added for any given investment”.
Still most of the life-cycle cost is expended in change. Boehm and Sullivan add
“that for a system to create value, the cost of an increment should be proportional
to the benefits delivered”. The cost itself is determined by several factors and the
time needed for the change is one of the most important factors.

When dealing with formal specifications the above argument also holds. It is nec-
essary to optimize performance. One solution is to support developers by providing
work-spaces that enable more efficient activities. The key idea is that, in the context
of the underlying task, only relevant parts of a specification are presented. What is
missing is the support of developers (or maintenance personnel) with well-defined
types of specification abstractions, namely partial specifications.

• A partial specifications is smaller than the original specification, but contains
all relevant parts of interest (for the problem at hand).

• If partial specifications are substantially smaller than the full specification,
they are easier to grasp. It is size that matters.

• In an optimal case partial specifications are derived from the full specification
automatically.

The informatics literature contains several concepts of partiality, aiming to pro-
vide an interested party just the perspective needed for a particular task. The
already discussed notions of slices and chunks come to mind now. They have been
introduced in detail in Chap. 3.2.5. In the literature specification views and multi-
dimensional hyperslices are also mentioned. In the following the applicability of
these concepts of partiality to specifications is discussed.

1. Slices. Slices have not only been applied to programs. The concept of Weiser
[Wei79] has been transferred to specifications in the work of Oda and Araki
[OA93] (who first defined a static forward slice) and Chang and Richardson
[CR94] (who extended the idea of Oda and Araki by a dynamic slice). However,
a direct transfer to specifications is still problematic, since Weiser-slices depend
on control-flow which is not existent in Z-specifications. The definitions will
be elaborated on in the sequel of Chap. 4.2.2.

4.1. State-of-the-Art 41

2. Chunks. Chunks have been introduced by Burnstein [BRS+97], but have never
been used for specifications. However, chunks promise a slim and fascinating
concept. Specification chunks have first been mentioned in [Bol02] and have
been defined in [BM03]. The application of chunks and the exact definition
will be provided in Chap. 4.2.2.

3. Views. They have initially been defined in the data base area and are intro-
duced to the specification literature by Jackson [Jac95a]. He defined views as
partial specifications (consisting of a state space and a set of operations) and
put these views together to end up with the full specification. By using multi-
ple representations of different views, it is possible to improve the clarity and
modularization of specifications, following the idea of separation of concerns.
This is done by composing several views and by linking them through their
states and operations. As an illustration of views, Jackson refers to the pop-
ular example of a word-processor specification. There text-oriented functions
like search/replace could be separated from text justification. Each of these
views then has its own state space. The interaction between these states is
postponed until the views are composed. As Jackson argues in [Jac95a, p.24],

separating different aspects of the function of a system into dif-
ferent views allows each to be expressed in its most natural repre-
sentation.

The composition itself is supported by a number of invariants and opera-
tions. One should note, though, that database views are drawn from a given
conceptual schema. As long as update operations via views are restricted,
the view mechanism necessitates no additional integrity constraints on the
schema. Jackson’s specification views, though, are bottom-up constructions
and the full specification of the system apparently has to allow for updates on
the state space. Hence, developing software specifications via views requires
additional support structures to maintain consistency of all views [MB03].

Views are definitely partial specifications. A view is smaller than the full
specification and focuses on a specific aspect of the functionality. However, a
broader application of views is impeded for two reasons:

(a) Views are especially well-suited for Z. The reason is that Z supports global
invariants, allows for conjoining operations and combines pre- and post-
conditions with a logical AND operation. This simplifies the combination
of states and operations. In fact, these properties are vital for working
with views. They are, thus, not that suitable for other specification
languages.

42 4. Specification Abstractions

(b) Views are bottom-up constructs. They are not designed to partition
the specification after its completion. If a specification is composed of
several views, these views can be reconstructed by reversing (or omitting)
the composition operations. If a specification is not view-structured,
the separation into views is not straight-forward. Slicing and clustering
approaches might decompose the specification in respect to a specific
functionality or state variable, but invariants for view composition cannot
be deduced this way.

4. Multi-dimensional hyperslices. Hyperslices and the related concepts are going
back to the work of Tarr et.al [TOHS99] and are introduced in connection with
aspect-oriented or subject-oriented programming.

If done well, the separation of concerns provides many software engineering
benefits4. However, predominant methodologies enable only orthogonal sepa-
ration of concerns along a single dimension of composition and decomposition.
The approach of Tarr et.al allows simultaneous separation of overlapping con-
cerns in multiple dimensions.

They define a hyper-space where so-called units are organized in a multi-
dimensional matrix. A unit is a syntactic construct which can be a declaration,
a class, an interface or a document. Each axis in the matrix represents a
dimension in concern and each point on an axis represents a concern in that
dimension. The coordinates of a unit indicate all concerns it affects [TOHS99].

The term “hyperslice” combines the two terms of “program slicing” and “hyper-
planes”. Slicing envisions the action of cutting through a system, whereas
hyper-planes indicate that the concern is encapsulated in a space (across mul-
tiple dimensions) defined by the dimensions of concern. Units can be combined
to form compound units or modules. As a result, a hyperslice is nothing else
than a set of modules written in any formalism.

However, the approach is not suitable as a concept for generating partial spec-
ifications out of a given specification.

(a) The identification of concerns is not a trivial task and there are no ways
to detect to which concern(s) parts of a specification are contributing to.

(b) The approach is intended to be used in a generative manner. If it is
not used during specification development, it cannot be used as a means
of generating partial specifications during backward engineering. The
hyper-space is missing.

4 The application of Parnas’ principle of separation of concern renders reduced complexity,
improves reusability and also allows for simpler evolution.

4.2. Components of Specifications 43

Fig. 4.1: A formal specification consists of a set of specification literals. However, these
literals are too fine granular to be understandable outside a given context. For
different problems different forms of abstraction are useful. What is needed is a
partial specification that is smaller than the original specification, but contains
sufficient information to solve the problem at hand. The motivation for Chap. 4.2
is to identify suitable forms of abstraction, in order to fill in the gap accentuated
by a question-mark between specification literals and the full specification.

There is definitely a need for partial specifications. Views and hyperslices are
mainly generative approaches. They are only useful when they have already been
applied during the creation of the specification. Otherwise the concept is of no
use. As will be explained in the subsequent section, slices and chunks appear to be
promising options. They are decomposing the specification in a well-defined manner.
But which parts are relevant?

It becomes necessary to look at possible components of specifications.

4.2 Components of Specifications

For the scope of this work various types of specification abstractions (partial spec-
ifications) are interesting. Looking only at terminals (literals) of the specification
language is not sufficient. On the one hand those parts of a specification that can
be calculated automatically are needed. On the other hand those parts are of in-
terest that can be used to identify (meaningful) patterns in specifications. Fig. 4.1
demonstrates the situation so far.

For the definition of suitable elements a bottom-up approach has been chosen.
First, basic (and rudimentary) elements are identified. Then these elements are
composed so that they form the basis for higher-level specification concepts.

44 4. Specification Abstractions

4.2.1 Syntactic Specification Elements

In general, specifications are constructed from basic (atomic) units. These basic
elements are also called specification literals. They can easily be identified by looking
at the grammar of the specification language. As an example, specification literals
can be keywords of the specification language, any operators or identifiers. When
looking at the Z set-comprehension expression

“{x : N | x < 5}′′

the specification literals are { ′{′, ′x ′, ′ :′, ′N′, ′ |′, ′ <′, ′5′, ′}′ }. However, speci-
fication literals are not very expressive when standing alone. It is the combination
of literals that makes it rich in content. By aggregating specification literals, prime
objects of a specification can be built.

Definition 4.1: Prime object. A specification prime object represents the basic
entity of a specification – it is built out of specification literals and forms logical,
syntactic or semantic units.

In specification languages these prime objects can be expressions or predicates,
but they can also be generic type or schema type definitions. Some examples of Z
specification primes are:

“Report ::= OK | NOK ′′, “result ! : Report ′′, or “[limit : N | limit = 10]′′

Prime objects are not only restricted to simple expressions. As they form logical
units, the simple primes mentioned above can be combined together in order to form
so-called higher-level primes. The Success operation schema in Z notation (which
does nothing else than returning an OK when being evaluated)

Success
result ! : Report

result ! = OK

is an example of such a higher-level prime. In literature the terms “modules” and
“operations” are sometimes used to denote higher-level specification prime objects
[CDHW93].

The important thing is that these prime objects are immutable in the sense that
they form the fundamental units (states and operations) on which specifications are
built upon. Moreover, it is also important to known that they are merely defined by

4.2. Components of Specifications 45

syntactical rules of the specification language. The assembly of several specification
prime objects leads to specification fragments.

A specification fragment consists of several prime objects, but does not necessarily
constitute a complete specification. It is a composition of several primes which are
isolated from their surrounding context. The following set of primes forms a simple
specification fragment:

Add

name? 6∈ known
known ′ = known ∪

{name? 7→ date?}

The fragment is an incomplete portion of specification code. It consists of two
primes checking and modifying the state. However, for their exact meaning a sur-
rounding text is necessary. Another example would be the Z expression:

(Add ∧ Success) ∨ (Delete ∧ Success)

The exact meaning becomes clear when realizing (for the Add specification frag-
ment) that name is a state variable which contains pairs of names and dates of birth.
The second fragment becomes much clearer when bringing to mind that Add and
Delete are operations for adding and removing entries in a birthday book database
and that Success is used to indicate when the application of the schema operation
was successful.

The above fragments are not higher-level prime objects, as they do not form a
semantic unit in the specification (in our case at least a complete schema operation).
This is a key property of specification fragments: it is an incomplete or isolated
portion of (specification) code that cannot be understood without a surrounding
context, an explanation or commentary.

Literals, primes and fragments are basic elements of a specification. However, to
aid the process of comprehension higher-level specification concepts are also needed
– concepts that bear specific types of semantics.

4.2.2 Semantic Specification Concepts

As mentioned above, a partial specification is smaller than the original specification,
but it contains all relevant parts of interest for a problem at hand. What is needed
is some higher-level abstraction with clearly defined semantics. For this reason it

46 4. Specification Abstractions

Fig. 4.2: The Venn diagram demonstrates the relationship between basic specification el-
ements (syntactic concepts like literals, primes and fragments) and higher level
forms of specification abstractions (semantic concepts like chunks, slices and
clichés), latter which contribute to partial specifications.

makes sense to start constructing these abstractions from well-known specification
elements, namely from literals and primes.

Based on syntactic elements, several types of abstractions can be derived. Fig. 4.2
presents an overview of those types in form of a Venn diagram. They represent the
already known concepts of chunks, slices and clichés.

Chunks, slices and clichés form so-called semantic elements of a specification.
They are discussed in more detail in the subsequent sections.

However, when talking about the meaning of an element it is also relevant to
know in which context this element can be used, in what parts of a specification the
element is valid and from where it can be referred to and used. This introduces the
problem of the scope of an element. On a very general level, the scope is defined as
follows:

Definition 4.2: The specification scope of an element denotes those parts of the
specification where this element is used or can be referred to.

Scope (and related problems) will be discussed in more detail in Chap. 5.2.2.
However, only if the scope of an element is clear it can be used in the correct
semantic context.

4.2.3 Specification Chunks

Chunks are syntactic or semantic abstractions of text structures. In accordance with
Def. 3.2, to be found in Chap. 3.2.5, a specification chunk is a specification fragment

4.2. Components of Specifications 47

that achieves a coherent purpose and can be understood outside of the context in
which it is used.

Definition 4.3: A specification chunk is (i) a prime including all primes con-
tained within it or, (ii) a set of primes that exists within the same specification
scope. For each pair of primes within the set of primes either one prime is data-
dependent on the other or both primes are data-dependent on a third prime (within
the set of primes).

The really important thing is that a chunk always has to be comprehensible
in isolation. Compared to a specification fragment, a chunk contains enough (sur-
rounding) context to stay understandable. That means that at least enough semantic
information has to be taken into consideration when generating specification chunks.

The following Z specification is derived from a popular example in the formal
methods literature [Spi89b]. It is the specification of a simple database called BB
that allows to store, search for and delete names and dates of birth (see App. C.1
for the full specification in the extended, graphically decorated notation).

[NAME ,DATE]
Report ::= OK | NOK
BB == [known : PNAME ; birthday : NAME 7→ DATE |
InitBB == [BB | known = ∅]
Add == [∆BB ; name? : NAME ; date? : DATE |

name? 6∈ known; birthday ′ = birthday ∪ {name? 7→ date?}]
Delete == [∆BB ; name? : NAME |

name? ∈ known; birthday ′ = birthday \ {name? 7→ birthday(name?)}]
Find == [ΞBB ; name? : NAME ; date! : DATE |

name? ∈ known; date! = birthday(name?)]
Success == [report ! : REPORT | report ! = OK]
FunctioningDB == Add ∧ Delete

Based on the above BB specification, a specification chunk can be generated by
looking at the specification prime birthday ′ = birthday ∪ {name? 7→ date?} in the
Add operation schema and by regarding all primes which are data dependent on
that prime and which are necessary to ensure the correct context:

[NAME ,DATE]
BB == [known : PNAME ; birthday : NAME 7→ DATE |

known = dom birthday]
Add == [∆BB ; name? : NAME ; date? : DATE |

birthday ′ = birthday ∪ {name? 7→ date?}]
Delete == [∆BB ; name? : NAME |

birthday ′ = birthday \ {name? 7→ birthday(name?)}]

48 4. Specification Abstractions

The previous chunk describes how entries are added to and deleted from the
database. It is substantially smaller than the original specification. The initializa-
tion schema, two operations (Find , Success) and several primes (e.g. name 6∈ known)
have been omitted. Nevertheless, the chunk is understandable. The reason for the
inclusion of the two primes containing the definition of birthday ′ is that there is data
dependency between them. The identification of such dependencies is not a trivial
task and will be discussed in more detail in Chap. 4.3.

4.2.4 Specification Slices

Program slices are computed by analyzing dependencies in the program source code.
However, it is not easy to apply program based slicing approaches to specifications
for the following two reasons:

1. In many specifications, control (and data) dependencies are not explicit. In
most cases specification languages even do not provide control structures like
that of the well-known “if ..then..else” construct.

2. The slicing criterion (as introduced in Chap. 3.2.5) cannot be mapped from
texts containing programming code into texts containing software specifica-
tions. A single line is not the dominant item (unit or entity) of a specification.

However, slices have already been defined for specifications. In 1993, Oda and
Araki [OA93] first used static slicing techniques for analyzing Z specifications based
on a simple definition of data-dependency. One year later, Chang and Richardson
[CR94] introduced dynamic specification slicing (by extending the idea of Oda and
Araki). By defining a slicing function they indirectly introduced a specification slice:

Any function removing tokens from the specification can be consid-
ered a slicing function as long as the specification remains syntactically
and semantically correct.

Based on this idea they define a static specification slice StaticDep on a Z spec-
ification criterion (s , σ, p, v) where s is a Z specification, σ a schema in s , p is a
predicate in σ and v is a variable in p. The result is a set of predicates and en-
closing schemas that are dependent on the Z specification criterion. Chang and
Richardson state that

predicates on which p is not dependent are not included in the slice
even though their enclosing schemas may be included.

4.2. Components of Specifications 49

Chang and Richardson define their slicing approach in a top down manner. The
limits of their definitions are multi-faceted.

• Their approach is designed for Z-specifications. The slicing criterion is bound
to a specific element in a Z specification, namely to one predicate in the dec-
laration section of an operation schema. This criterion has to be restated in
order to be applicable to other specification languages.

• Another problem is to define the slicing function as a function that preserves
the semantics of the resulting slice. It has to be defined, which elements are to
be omitted or included. The approach of Oda and Araki mingles bottom-up
and top-down strategies, but fails to deal with the semantics of the included
(and omitted) elements.

The above definition of a slicing function is too general and has to be re-stated.
On the other hand the definition of the slicing criterion for specifications is too Z-
related and thus has to be re-stated, too. Instead of lines, prime objects are taken
as basic, structuring units.

Definition 4.4: A slicing criterion of a specification determines a specific point
of interest in the specification. It consists of a specification prime and a set of literals
which are element of the specification prime.

Definition 4.5: A specification slice is a syntactically and semantically correct
specification which is the result of adding those primes to an (initially empty) spec-
ification which are directly or indirectly contributing to the slicing criterion.

In contrast to the concept of a specification fragment (and the definition of a
specification chunk), Def. 4.5 demands that a specification slice is both syntacti-
cally AND semantically correct. With respect to the slicing criterion “birthday ′ =
birthday ∪ {name? 7→ date?}” in the Add operation schema the slice leads to the
following BB-specification slice:

[NAME ,DATE]
BB == [known : PNAME ; birthday : NAME 7→ DATE |
InitBB == [BB | known = ∅]
Add == [∆BB ; name? : NAME ; date? : DATE |

name? 6∈ known; birthday ′ = birthday ∪ {name? 7→ date?}]
Delete == [∆BB ; name? : NAME |

name? ∈ known; birthday ′ = birthday \ {name? 7→ birthday(name?)}]
FunctioningDB == Add ∧ Delete

50 4. Specification Abstractions

The previous slice represents a syntactically correct specification. It contains all
primes that are directly and indirectly contributing to the slicing criterion. But it
is smaller than the original specification. In fact, two operation schemata (Success
and Find) are omitted. Success does not contribute to the application of the prime
and Find does not modify or influence the value of the birthday state variable.

Beginning with a large, but formally correct specification, it is advisable to start
the slicing process in a bottom up manner at the slicing criterion. This assures that
each slice which is carved out of a specification, has well defined semantics. Starting
with the prime representing the slicing criterion, the slice is driven by this prime’s
semantics. By aggregating additional primes properly, the resulting specification
fragment will always have defined semantics.

Proceeding the other way round (in a top down manner) makes the process much
more difficult. A function that deletes “the parts not needed” then has to be applied
to the specification. Either the word “needed” gets very complex semantics, or the
semantics of the fragmental specification cannot necessarily be given. This idea of
adding well-known elements to an element with clear semantics is also mentioned in
[MB03].

4.2.5 Specification Clichés

Another concept leading to partial specifications is that of clichés. As is the case
with programs, clichés are basic knowledge units used to build and comprehend
specifications. Like Def. 3.4 of a program cliché [BF99], the following definition is
provided for specifications:

Definition 4.6: A specification cliché is a basic knowledge unit used to build
and recognize specification text.

Similar to the definition of a cliché in Chap. 3.2.5, specification clichés might
consist of both, fragments of specification code and intermediate specification clichés
(from which further specification clichés may be inferred).

Slices and clichés have a lot in common. They represent different concepts, but
the differences are rather vanishing. Specification slices are based on the notion
of control- and data-dependencies and include all parts of a specification that are
somehow syntactically dependent. In contrast to slices, clichés have a heavy focus
on concepts including problem specific dependencies.

Slices can be seen as substructures of clichés. The problem here is that clichés
cannot be deduced from specifications automatically without additional knowledge.
Clichés are recurrent structures. The best way to deal with clichés is to treat them
as commonly understood patterns.

4.2. Components of Specifications 51

Cliché (or pattern) recognition requires a knowledge base with commonly used
structures to be compared with. When a sub-structure is identified as a part of a
cliché, specification slicing techniques can be used for carving out the cliché from
the specification. Thus, clichés might consist of several slices, but a slice is not
necessarily a cliché.

At first sight clichés might also be treated as reverse engineering views. The
idea behind views is to specify a most suitable specific functionality of the system
in a state space. In that sense views examine a specification from different perspec-
tives. The specification then is the result of all solutions’ projections to the problem
domain. Different perspectives are merged to form the final specification which is
the real difference to clichés. On the conceptual level the projection of views to a
specification is many-to-one. It is the combination of several perspectives that form
the final “image” of the specification. However, a cliché is a one-to-one (or one-to-
many) mapping between a (recurring) concept and specification elements. Elements
of a cliché thus might be element of a view, but might also belong to several views
at a time.

Up to now several forms of abstractions have been discussed. All abstractions
are not useful in all situations. Their application depends on the problem at hand
and on the point of interest.

4.2.6 The Point of Interest

Chap. 4.2.2 presents several types of abstraction that might be used to support
comprehension tasks. It did not suggest when and which type of abstraction should
be used. In fact, the answer depends on the problem at hand. Typical situations
are as follows:

• Change of a requirement. A requirement changes and thus a small part (e.g.
a prime) of the specification is about to change, too. It gets necessary to see
the minimal portion of the specification affected by changing a specification
prime (or literal). As slices guarantee the inclusion of all dependent primes,
this situation can be controlled by generating specification slices.

• Design recovery. In order to understand the specified system, it gets necessary
to focus on minimal portions of the specification text. Not all dependencies
are of interest at the same time and locality is usually more important than
global relationships [GZ99]. This situation can be controlled by generating
specification chunks. On the other hand both specific and distributed por-
tions (fragments) of the specification text might be of interest. This situation
could arise when looking for operations that modify a well defined set of state
variables.

52 4. Specification Abstractions

• Restructuring. Again, slicing and chunking techniques can be applied when
identifying and changing whole portions of the specification text. A chunk
(or set of chunks) helps focusing on specific parts of the specification, and,
whenever the focus is clear, the slice guarantees that all relevant portions of
specification text can be considered.

At this point the answer to question Q1, raised in Chap. 1.2 (“What kind of
abridgements or reductions are practicable for what problem?”) can be provided.
Almost all tasks of specification comprehension activities can be sustained by slices,
chunks and fragments. This does not mean that other approaches are to be excluded,
but with partial specifications two important activities become possible: focusing
on small parts of the specification and putting an eye on relevant (which means
related) parts of the specification. With slices, chunks and fragments, the basis for
useful abstraction is provided.

Remains the question of how to state the point of interest (the criterion) ab-
stractions are based upon. The answer to this question is split into two parts.

1. Firstly, the focus will have to be set to a specific position in the specification.
As argued in Chap. 4.2.2, it only makes sense to look at the smallest entity
(with a well defined semantics) available in a specification: the specification
prime.

2. Secondly, different types of abstraction require an adjustable focus. The focus
itself can be set by making use of two features: in the first place there are
the types of dependencies that are of interest. However, adjusting the focus
via inclusion or exclusion of dependent primes is a rather coarse mechanism.
Thus, the focus should additionally be adjusted by considering specification
literals.

The criterion for creating specification abstractions consists of three parts: a
specification prime (representing the point of interest), a description of relevant
dependencies (that have to be considered) and a set of literals (for optionally con-
trolling dependencies).

4.2.7 Sub-Specifications and Partitions

In addition to the higher-level specification concepts defined above, other forms
of partiality are mentioned in literature. They are herein summarized as sub-
specifications and specification partitions. The idea is to identify related (or dis-
joint) specification fragments, and, in addition to that, to support some form of
classification.

4.3. Deriving Dependencies 53

A sub-specification is a self-contained partial specification. In many cases a sub-
specification can be regarded as a slice or as a collection of slices and clichés. Sub-
specifications illuminate some, but not all aspects of the original specification. Deal-
ing with specification views [Jac95b] can be seen as dealing with sub-specifications.

On the other hand it is also possible to divide specifications into several parts or
partitions. Depending on the algorithms that are used to generate these parts, two
other terms for specification partitions can be found in literature:

1. Specification modules. Carrington, Duke, Hayes and Welsh [CDHW93] defined
the notion of a specification module as a set of Z-operations that refer/modify
similar sets of state variables.

2. Specification clusters. More complex systems can be defined in order to dis-
parate a specification into more comprehensible parts. Clustering algorithms
[Wig97] are used to identify related parts. Clustering algorithms are applied
to programs, components and software architectures, but up to now they have
not been applied to specifications.

The problem with clustering is that clustering methods are concerned with the
grouping of entities based on their interrelationships or similarities. On an abstract
level, groups of entities are formulated and entities in one group are more closely
related to each other than to entities in other groups. But how can similarities
between entities of a specification be measured and what are suitable entities?

A step into the direction of clustering and partitioning is the work of Jilani,
Desharnais, and Mili [JDM01] who define a measure of functional distance between
specifications. With that and the separation of large specifications into smaller par-
tial specifications a clustering algorithm can be formulated. The distances between
all partial specifications can now be calculated. Finally, based on a pre-defined
trash-hold clusters can be built.

4.3 Deriving Dependencies

Decomposition techniques seem to be very promising approaches for supporting
program and specification comprehension. Most of the approaches are based on the
generation of a program dependence graph (PDG for short). A PDG is a graph where
nodes represent statements of the program and edges represent dependence relations
[FOW87]. Usually data dependence and control dependence are used. Chap. 3.3.3
named several difficulties in identifying these types of dependencies in specifications.
When applying algorithms that are based on a similarly defined specification depen-
dence graph (SDG for short), we first need mechanisms for identifying these types
of dependencies. And that is the main problem. Especially the notion of control

54 4. Specification Abstractions

is not dominant in declarative specifications. Even when an abstract syntax tree
is available, control dependencies are not easy to identify. Chap. 5.1 discusses the
problems of abstract syntax trees in more detail.

The objective of this section is to identify and to define dependencies in specifi-
cations. First well-known dependencies in programs will be looked at (Chap. 4.3.1).
Then these dependencies will be mapped to specifications (Chap. 4.3.2).

4.3.1 Dependency Types

Dependencies are used in various fields of application. Apart from program analysis
they are also used as a basis for software testability measures [Jun02] as well as for an
optimization in concurrent machine performance [Uht91]. Furthermore, dependency
based approaches are applied on concurrent logic programs [ZCU97] and even in
software architectures [Zha99].

Dependencies can (according to [Uht91]) be divided into three classes: resource,
syntactic and semantic dependencies.

• Resource/Environmental dependencies. Resource/Environmental dependency
arises due to limitations in hardware and service availability. However, they do
not become apparent until the execution of the system. They are limitations
which are controlled from outside, and they are difficult to detect when the
environment is unknown to a large extent.

• Syntactic dependencies. Programming languages demand a specific ordering
of statements so that the resulting program is kept syntactically correct. The
same is true for most specification languages. In fact, if it is not the ordering,
at least the existence of specific statements is demanded. In Z, for instance,
types have to be defined “before” they can be used.

• Semantic dependencies. Semantic dependencies go back to relationships which
exist between statements in the program code and require an ordering of in-
structions. On a very general level a semantic dependency between two state-
ments occurs, when their execution must be ordered for a correct program
run. There are two sub-classes of semantic dependencies: data dependency
and control (sometimes also called procedural or branch) dependency.

Being limitations determined from outside, resource/environmental dependencies
are not treated in the sequel. However, syntactic and semantic dependencies can
be identified by looking at the program code at hand. In the sequel syntactic
and semantic dependencies are defined for programs. In the next section these
dependencies are related to specifications.

4.3. Deriving Dependencies 55

Syntactic dependencies are well known from compiler construction. On a very
general level, a statement in a program (e.g. “name = 20; ”) syntactically depends
on another statement (e.g “int name = 0; ”), if the second statement is needed to
keep the program syntactically correct:

Definition 4.7: Syntactic dependencies in programs. Let s1 and s2 be two
statements of a source program p (s1 6= s2). s1 is said to be syntactically dependent on
s2 (s1 →s s2) if statement s2 is needed to keep s1 syntactically correct (in accordance
with the language definition).

Control dependencies arise in the program code as a result of decision statements.
In general, semantic dependencies are, like syntactic dependencies, unidirectional.
This means that statements are control dependent on decision statements, but not
the other way round. The result of the execution of the decision statements in-
fluences the execution of the statement. Thus, it is important that the decision
statement is executed before the dependent statement.

Definition 4.8: Control dependencies in programs. Let s1 and s2 be two
statements of a source program p (s1 6= s2). s1 is said to be control dependent on s2

(s1 →c s2) if

i. s2 is a statement representing a conditional predicate and

ii. the result of s2 determines whether s1 is executed or not.

Depending on the type of reference to the data element, there are different types
of data dependency:

• Flow dependency: A relation between s1 and s2 where s1 writes to a data
element of p and s2 subsequently reads that value.

• Output dependency: A relation between s1 and s2 where s1 writes to a data
element and s2 subsequently overrides it.

• Anti-dependency: A relation between s1 and s2 where s1 uses a data element
and s2 subsequently overrides it.

Anti-dependency, as the name suggests, is a dependency that describes the rela-
tionship in an inverse manner. As anti-dependency can be identified by looking for
flow dependency, it will not be dealt with in the sequel. The most widely used inter-
pretation is that of flow-dependency upon which the following definition is based.

56 4. Specification Abstractions

Definition 4.9: Data dependencies in programs. Let s1 and s2 be two state-
ments of a source program p (s1 6= s2). s1 is said to be data dependent on s2 and a
data element v (s1 →d ,v s2), if

i. s2 assigns a value to the data element v , and

ii. s1 refers to the data element v , and

iii. at least one execution path exists from s2 to s1 without redefining that data
element v .

The next section takes the above definitions of syntactic and semantic dependen-
cies and derives dependencies for formal specifications. However, the identification
of these dependencies is not trivial and depends on the specification language at
hand. Therefore Chap. 4.4 related the definitions of dependencies to Z. Chap. 5.5
presents an approach for the calculation of syntactic and semantic dependencies in
Z specifications.

4.3.2 Specification Dependencies

Semantic dependencies, as described in definitions 4.8 and 4.9, are going back to
ordering of instructions. Here one characteristic of specification languages (like
Z) is getting cogent: for the most part there is no strict ordering of primes and
therefore also no execution order. Nevertheless, a first set of general definitions can
be provided.

Definition 4.10: A specification prime p is syntactical dependent on a specification
prime q , if q is needed to keep p syntactically correct.

Definition 4.11: A specification prime p is control dependent on a specification
prime q , if q potentially decides whether p is applied or not.

Definition 4.12: A specification prime p is data dependent on a specification prime
q , if data potentially propagates from q to p through a series of state changes.

However, the above definitions are too general. They serve as a basis for the
identification of dependencies in specifications, but have to be stated more precisely
when applied to a specific specification language.

In fact, two terms within the above definitions are important: firstly, the occur-
rence of a potential application of primes and secondly, a series of potential state
changes. The next section presents an approach for identifying potential applications
of primes and state changes in Z.

4.4. Dependencies in Z 57

Fig. 4.3: The left window shows the cadiz output of the Z specification of the birthday
book (see also Appendix F.1). The second, overlapping window shows the pre-
and post-condition calculation performed by cadiz.

4.4 Dependencies in Z

Declarative specification languages do not provide an explicit notion of control.
However, the definition of control (Def. 4.8) is based on the concept, that a state-
ment is evaluated. This evaluation then decides whether another statement is ex-
ecuted or not. A similar concept can be identified within specifications: pre- and
post-conditions. The pre-condition part is evaluated and this evaluation determines
whether the post-condition part of the specification is applicable or not.

Fig. 4.3 presents parts of the birthday book specification (the state space and
a schema operation called AddBirthday for adding birthday entries to the birthday
book). Apart from the definition of two state variables (name and birthday) the
state space BirthdayBook contains one predicate (4.1). The schema AddBirthday
contains two predicates (4.2) and (4.3):

known = dom birthday (4.1)

name? 6∈ known (4.2)

birthday ′ = birthday ∪ {name? 7→ date?} (4.3)

Predicate (4.1) in the BirthdayBook state space guarantees that only names that
are known are stored in the birthday book database. Predicate (4.2) checks whether
the provided name is in the birthday database, whereas predicate (4.3) adds the
name and the accompanying date to the database of birthdays. The crux of the

58 4. Specification Abstractions

matter is that a semantic analysis of the given operation schema does not generally
lead to (4.2) as a pre-condition and (4.3) as a post-condition.

Diller [Dil99] uses the terms before state invariant and pre-condition for predi-
cates that do not describe an after state. Such a predicate cannot be both a pre-
condition and a state invariant. In fact, a state invariant is a pre-condition of every
operation state. In that sense, predicate (4.1) is a before state invariant and predi-
cate (4.2) is a pre-condition, but not necessarily the pre-condition for all states that
could be successfully carried out by the schema operation. An after state invariant
is a predicate that contains decorated identifiers. The identifier can either be an
after state variable (decorated by a ’), or an output operation (decorated by an

!).

Z provides a pre-condition operator (pre) for the calculation of a pre-condition
(for those states that can by carried out successfully). It makes a schema out of
a schema by hiding all the after and output variables. Fig. 4.3 shows the result
of applying the pre operator to the AddBirthday schema (pre AddBirthday ==
pre AddBirthday) and presents the predicate which is the pre-condition to the oper-
ation schema. The result of the calculation of the post-condition can also be taken
from Fig. 4.3 (post AddBirthday == post AddBirthday).

Actually the predicates in preAddBirthday and postAddBirthday are the true
pre-conditions and post-conditions of the operation schema. But as the following
example demonstrates, the calculation is not always trivial.

Let Operation be an operation schema consisting of a set of declarations and
predicates:

Operation
Declaration

Predicate

In Z, the following equation (simple at first sight) defines the pre-condition of
the operation schema:

pre Operation = ∃ State ′ • Operation (4.4)

The pre-condition of a schema is the collection of before states and inputs for
which some after state (State ′) can be shown to exist. Outputs are hidden by the
introduction of an existential quantifier. This means that the following algorithm
can be provided for the calculation of the pre-condition (out of [WD96, p.206]):

4.4. Dependencies in Z 59

1. The declaration section Declaration is divided into three parts:

• Before contains only inputs and unprimed state components.

• After contains only outputs and primed state components.

• Mixed contains all other declarations and inclusions.

2. If Mixed is not empty, every schema in Mixed is expanded. All input and
before components are added to Before. All output and after components are
added to After . As there may be several levels of schema inclusions, repeat
this step until Mixed is empty.

3. The pre-condition of Operation is then

Operation
Before

∃After • Predicate

This procedure can be applied to every operation schema, but does not necessar-
ily lead to a simple set of pre-conditions. The following Z-specification is an example
of a simple room (with a capacity of Max people), where people are allowed to enter.
It consists of a state schema Room and an operation Enter (a Leave operation has
been omitted for reasons of space). (Supposed that Person is a given set, and Max
is a predefined constant.)

Room
in : PPerson

]in ≤ Max

Enter
∆Room
p? : Person

]in < Max
p? 6∈ in
in ′ = in ∪ {p?}

Based on the above step-by-step guide, the pre-condition of Enter is calculated.
The inclusion has been dissolved, the before-components form the new declaration,

60 4. Specification Abstractions

and all predicates are enclosed in an existential quantifier expression with the after
component as type declaration.

PreEnter
d : PPerson
p? : Person

∃ in ′ : PPerson •
(]in ≤ Max ∧]in ′ ≤ Max ∧
]in < Max ∧
p? 6∈ in ∧
in ′ = in ∪ {p?})

However, when trying to identify pre- or post-condition predicates in Z, this schema
paragraph is not that helpful yet. Another step of simplification is necessary. By
applying the one-point law5, the existential quantifier can be removed. This is done
by replacing every expression containing “in ′” with “in ∪ {p?}”. An additional
simplification6 leads to the following schema:

PreEnter
d : PPerson
p? : Person

]in < Max
p? 6∈ in

That means that the two predicates “]in < Max” and “p? 6∈ in” are pre-condition
predicates of the Enter operation schema.

However, this last step (the simplification) is not straight forward. To avoid
time-consuming semantic analysis, another approach has been chooses in this work,
namely that of an approximation to the semantic analysis.

4.4.1 Syntactical Approximation to Semantic Analysis

The above section demonstrated that pre-conditions as well as post-conditions can be
simplified by applying semantic analysis and rewriting. However, this simplification
cannot be automated to its full extend. Rewrite systems are necessary and an
automatic reduction is costly regarding time and hardware resources. What can

5 The one-point law is useful for simplifying existential quantifier expressions. The law is defined
as follows: P [t/y] a` ∃ y : Y • P ∧ y = t . Here t is a term of the same type as variable y . y
can occur free in the formula P . The law is used to successively replace terms y by corresponding
sub-terms t .

6 As p 6∈ in, we have](in ∪ {p}) =]in + 1. It holds that]in < Max , which implies]in ≤ Max .

4.4. Dependencies in Z 61

still be observed [Dil99, p.165], is that in most cases the resulting conditions are
exactly those predicates that contain only pre-state expressions. They lead to pre-
conditions in the specification. The remaining expressions are after state invariants
which lead to post-conditions.

Granted that S is an operation schema of a Z specification, it is common to write
the schema in a horizontal form as follows:

S == [d ; d ′ | pr(d); po(d , d ′)]

Here, d represents undecorated identifiers and input identifiers. d ′ represents
after-state and output identifiers. pr is a (possible empty) list of predicates con-
taining undecorated and input identifiers. po is a (possible empty) list of predicates
containing all types of identifiers. pr thus represents before state invariants and
pre-condition predicates. po represents after state invariants. The pre-condition of
S can then be written as:

pre S == pre [d ; d ′ | pr(d); po(d , d ′)]
== [d | ∃ d ′ • pr(d); po(d , d ′)] % by applying equ. (4.4)
== [d | pr(d); ∃ d ′ • po(d , d ′)] % d not bound in ∃ d ′

This means that pr(d) is an essential component of the pre-condition of schema
S . When pr(d) is the pre-condition of S , it holds that

(pre S == [d | pr(d)]) ⇔ ([d | ∃ d ′ • po(d , d ′)] == [d | true]) (4.5)

It only makes sense to calculate pre-conditions if a post state exists. Furthermore,
only if the existential quantifier expression can be simplified and eliminated, pr(d)
is the sole pre-condition.

1. In most cases (according to observations by [Spi89b, WD96, Dil99]) the exis-
tential quantifier can be simplified and eliminated. This means that pr is the
pre-condition of the schema.

2. If the remainder (the existential quantifier expression) cannot be simplified
and eliminated, predicate pr is, in any case, part of the pre-condition.

Neglecting the existential expression leads to a weaker pre-condition. In that
case it holds

pre S == [d | pr(d); ∃ d ′ • po(d , d ′)] v prew S == [d | pr(d)] (4.6)

62 4. Specification Abstractions

The advantage of weakening the pre-condition as in equation (4.6) is that no
semantic analysis has to be performed. On the other hand some kind of inaccuracy
is introduced. However, pr is part of the pre-condition in any case. There is also
a conjunction with the remainder. Thus, pr has to be true in any case in order to
keep the whole pre-condition true.

A similar consideration holds for the identification of post-conditions. Every
predicate containing output and primed identifiers is treated as a post-condition.
In fact, these predicates describe the after-state of an operation. Thus, they are
definitely elements of the post-condition. However, they do not fully describe a
formally deduced post-condition of the schema (see Fig. 4.3).

The basic idea is to skip the calculation of the pre- and post-conditions. Instead,
the pre-condition of a schema is said to consist of just the pr -predicates (which
are before state invariants and pre-condition predicates). The post-condition of a
schema is said to consist of just the po-predicates (which are after-state invariants).
To sum up it can be said that when the remainder is neglected, a syntactic approx-
imation to the semantic analysis takes place.

Predicates are one of the basic semantic units in our specification. They are called
primes in the sequel7. For every prime it is possible to determine whether it contains
input and unprimed identifers. In that case it is (according to the terminology of
Diller) a before-state invariant or pre-condition predicate. Otherwise it contains at
least one primed or one output identifier. In that case it is an after-state invariant.
The above considerations lead to the following definitions:

Definition 4.13: Z pre-condition prime. A Z-specification prime p is considered
a pre-condition prime, if prime p is either a before state invariant or a pre-condition
predicate.

Definition 4.14: Z post-condition prime. A Z-specification prime p is consid-
ered a post-condition prime, if prime p is an after state invariant.

Based on these definitions it is possible to identify pre-condition and post-
condition primes in Z-specifications. Furthermore, it holds that every prime, rep-
resenting a predicate in a Z specification, is either a pre-condition prime or a post-
condition prime. It cannot be both. The reason is simply that the prime either
contains primed or output identifiers (thus, it is an after-state invariant) or the
prime is a before state invariant or a pre-condition predicate.

7 Chap. 5 presents an approach for the identification of primes in specifications. As discussed in
more detail in Chap. 5.3.2, predicates form prime objects of Z specifications.

4.4. Dependencies in Z 63

In the birthday book specification (introduced at the beginning of this chapter)
predicate (4.3) is a post-condition prime (as the identifier birthday ′ is decorated de-
noting an after state invariant). Predicates (4.1) and (4.2) are pre-condition primes.
The reason for this is that predicate (4.1) is a before state invariant and predicate
(4.2) is a pre-condition predicate.

With this approximation to pre- and post-conditions, relationships between re-
lated primes can be identified. This identification is the topic of the subsequent
section.

4.4.2 Arrangement of Primes

There is no “sequential execution” of primes in Z specifications. The ordering of
primes in the predicate part of a schema operation is irrelevant. Furthermore, it
does not matter whether the schema reads like

Enter == [∆Room; p? : Person |]in < Max ; p? 6∈ in; in ′ = in ∪ {p?}]
or

Enter == [p? : Person; ∆Room | in ′ = in ∪ {p?}; p? 6∈ in;]in < Max]

It is rather a matter of style, and several authors suggest a specific format for
writing Z specifications (see [Dil99, p.65ff] for a typical style guide).

However, the Z language definition implicitly prescribes some kind of ordering
at the syntactical level. This global organization of any Z document is governed by
the principle called “definition before use” [Dil99, p.64]. This ordering suggests the
use of the term “before”. In the case of Z it points to the fact that one expression
has to be existent in the scope of the other. Some of the rules mentioned by Diller
are:

• Z-schemata can only be referred to when they have been defined “before” they
are “used”. Given set and axiomatic expression definitions are global, but they
also have to be defined “before” they can be used.

• In general Z-schema boxes are divided into two parts: a declaration part and a
predicate part. Expressions in the schema declaration part describe the scope
of the predicate part and are thus defined ”before” the predicate part.

This relationship can also be detected in the birthday book example. The given
set expression [NAME , DATE] has to be defined ”before” these sets can be used in
the state schema BirthdayBook .

Def. 4.7 mentions statements that have to be existent in order to keep other
statements syntactically correct. The same holds for Z specifications.

64 4. Specification Abstractions

Fig. 4.4: (a) Within a schema a post-condition prime is control dependent on a pre-
condition prime. (b) Within a logical combination of two schemata both post-
condition primes are control dependent upon both pre-condition primes. (c) The
sequential composition of two schemata leads to control dependency between the
post-condition of the second schema upon the pre-condition of the first schema,
but not vice-versa.

Definition 4.15: Syntactical dependency of Z-primes. A Z-specification prime
p is syntactically dependent on a specification prime q (p 6= q) if

i. p is in the scope of q and

ii. q is needed in order to keep p syntactically correct.

According to Def. 4.11, the notion of control is defined by some kind of “or-
dering” of primes in the specification. One prime has to be evaluated “before” the
other prime is evaluated. The same holds for pre- and post-condition primes. Pre-
condition primes are evaluated before the evaluation of the post-condition primes.
In other words: irrespective of the ordering in the specification text there is the
notion of control between a pre- and a post-condition prime (see Fig. 4.4(a)). This
leads to the definition of control dependencies between specification primes.

Definition 4.16: Control dependency of Z-primes. A Z-specification prime p
is control dependent on a specification prime q (p 6= q) if

i. q is a pre-condition prime and

ii. p is a post-condition prime in the scope q .

4.4. Dependencies in Z 65

For the identification of dependencies within higher-level primes one has to look
for pre- and post-condition primes. These primes are identified according to Def. 4.13
and Def. 4.14. Precondition-predicates are assigned to pre-condition primes. If
there is no chance to mix the terms up, they will be used interchangeably in the
sequel. However, in order to explicitly denote primes representing predicates of a
specification, a retrieve operation Π is defined. Π takes a schema as an argument
and returns the set of all pre- and post-condition primes present in the declaration
part of the schema.

Definition 4.17: Retrieving primes of Z schemata. Let S be a schema of a
syntactically correct specification. Furthermore, let P be the set of primes of S .

The operation Π returns the set of all primes that are representing predicates in
schema S . It holds:

Π S == {p : Prime | p is a predicate prime in S}

The retrieve operation Π does nothing else than returning the set of primes
(representing predicates) to be found in a schema. It does not consider operators
when predicates are combined. For example, let S and T be two schemata, and let
px (x : 1..4) be several predicates:

S == [dS ; d ′S | p1 ∨ p2]
T == [dT ; d ′T | p3 ∧ p4]

When Π is applied to S or T only predicate primes are returned. Thus, Π S ==
{p1, p2}, and Π T == {p3, p4}.

As discussed in the sequel, the retrieve function is used to extract primes out of
combined schemata. However, first of all dependencies are of interest in a single Z
schema. In Z schema boxes, pre- and post-condition primes are in the same scope
(and therefore in the scope of each other). According to Def. 4.16, the following
definition for the identification of control dependencies within schema boxes can be
advanced:

Definition 4.18: Control dependencies in Z schemata. Let S be a schema of
a syntactically correct specification. Furthermore, let prS be the non-empty set of
pre-condition primes of S and poS the non-empty set of post-condition primes of S .

Then primes in poS are said to be control dependent on primes in prS (abbrevi-
ated as poS ⇒c prS). It holds:

poS ⇒c prS == ∀ p1 : poS ; p2 : prS • p1 →c p2

66 4. Specification Abstractions

Every predicate which is a pre-condition prime is element of the set prS and every
predicate which is a post-condition prime is element of the set poS . Given that S is
a schema that consists of two pre-condition primes (pr1, pr2) and two post-condition
primes (po1, po2), the schema can be written as follows:

S == [dS , d ′S | pr1(dS); pr2(dS); po1(dS , d ′S); po2(dS , d ′S)]

Then po1 is control dependent on pr1 and pr2, whereas po2 is also control dependent
on pr1 and pr2. For short this can be put down as:

(po1 ∪ po2) ⇒c (pr1 ∪ pr2)

Def. 4.18 can be used to provide a rule for the identification of control depen-
dencies in Z schemata.

Rule 4.1: Control dependencies in Z schemata. Let S be a schema of a
syntactically correct specification. Furthermore, let prS be the set of pre-condition
primes of S and poS the set of post-condition primes of S .

There is control dependency (poS ⇒ prS) within schema S , if prS and poS are
not empty.

2

In Z, there are several operators that can be used to combine operation schemata.
There are disjunction (∨), implication (⇒), conjunction (∧), bi-implication (⇔),
projection (¹), sequential composition (o

9) and piping (>>). Additionally, a schema
can be negated by using the NOT-operation (¬). Depending on the operation the
approximation to the calculation of pre- and post-conditions (see Chap. 4.4.1)differs.

The calculation is discussed in the sequel of this section. It strictly sticks to the
following methodology:

1. Pre- and post-conditions of the schema are calculated on the syntactical level.

2. These pre- and post-conditions are used to identify pre- and post-condition
primes.

3. These primes are used to provide rules for the identification of dependencies.

The following equation will be used several times to simplify expressions. It says
that the existential quantification distributes through disjunction:

∃A • P ∨ Q ⇔ ∃A • P ∨ ∃A • Q (4.7)

4.4. Dependencies in Z 67

Let S be an operation schema of a syntactically correct Z specification. Further-
more, let prS be the set of predicates that are pre-condition primes and let poS be
the set of predicates that are post-condition primes. Equation (4.8) presents the
schema in its horizontal form. If there is no danger of mixing identifiers, the schema
can also be written in a more space saving manner (thus, the identifiers dS and d ′S
can be omitted in the predicate part):

S == [dS ; d ′S | prS (dS); poS (dS , d ′S)] == [dS ; d ′S | prS ; poS] (4.8)

According to Woodcock [WD96], every schema can be written as the conjunction
of its pre- and post-conditions. Thus, a schema S can be written down as follows:

S == pre S ∧ post S == [dS ; d ′S | prS ; poS] (4.9)

In this case prS is the true pre-condition of S and as poS is the true post-condition
of S it holds:

prS == Π (pre S) ∧ poS == Π (post S)

As prS and poS are the pre- and post-condition primes of S , the post-condition
predicates are true when calculating the pre-condition of S . This means that an
after-state exists. It also means that the pre-condition predicates are true when
calculating the post-condition:

(pre S == [dS | prS]) ⇔ ([dS | ∃ d ′S • poS] == [dS | true]) (4.10)

(post S == [dS ; d ′S | poS]) ⇔ ([dS | prS] == [dS | true]) (4.11)

The first operator to be examined is the logical NOT (¬). In order to deter-
mine the sets of pre- and post-condition primes, first the pre- and post-condition
predicates of a negated schema S are calculated.

pre (¬ S) == pre ([dS ; d ′S | ¬ (prS ; poS)])
== pre ([dS ; d ′S | (¬ prS) ∨ (¬ poS)])
== [dS | ∃ d ′S • (¬ prS) ∨ (¬ poS)]
== [dS | (∃ d ′S • (¬ prS)) ∨ (∃ d ′S • (¬ poS))] % (4.7)
== [dS | ¬ prS ∨ ∃ d ′S • ¬ poS] % ds not bound

The pre-condition of schema ¬ S consists of the predicates in prS and a remaining
term. Neglecting the remaining term leads to a weaker pre-condition of the schema8.

pre(¬ S) v prew(¬ S) == [dS | ¬ prS] (4.12)

8 The symbol v is borrowed from refinement calculus [WD96, p.298]. An expression P v Q is
pronounced “P is refined by Q”. The function prew is just a shorthand and denotes the calculation
of the weakened pre-condition (by neglecting the remaining term).

68 4. Specification Abstractions

The post-condition of schema ¬ S is calculated in a similar manner:

post (¬ S) == post ([dS ; d ′S | ¬ (prS ; poS)])
== post ([dS ; d ′S | (¬ prS) ∨ (¬ poS)])
== [d ′S | ∃ dS • (¬ prS) ∨ (¬ poS)]
== [d ′S | (∃ d ′S • (¬ prS)) ∨ (∃ d ′S • (¬ poS))] % (4.7)
== [d ′S | false ∨ (∃ d ′S • (¬ poS))] % (4.11)
== [d ′S | ∃ d ′S • (¬ poS)]

The post-condition consists of a term that is solely dependent on the post-
condition predicates. The post-condition can be strengthened9:

post(¬ S) v posts(¬ S) == [d ′S | ¬ poS] (4.13)

According to Def. 4.13, predicates representing before-state invariants or pre-
condition predicates are taken as pre-condition primes Ppre . The same applies for
the identification of post-condition primes: after-state invariants are taken as post-
condition primes Ppost . This leads to the following set of pre- and post-condition
primes of schema ¬ S :

Ppre == Π (prew ¬ S) == prS

Ppost == Π (posts ¬ S) == poS

As prS = Ppre is the set of pre-conditions of ¬ S , and as poS = Ppost is the
set of post-conditions of ¬ S , the following rule for the identification of control
dependencies in negated Z schemata can be provided:

Rule 4.2: Control dependencies in negated Z schemata. Let S be a schema
of a syntactically correct specification, let prS be the set of pre-condition primes in
S and let poS be the set of post-condition primes in S. Furthermore, let Ŝ be the
negated Z schema of S (Ŝ == ¬ S).

If prS and poS are not empty, then there is control dependency between primes
poŜ and prŜ in Ŝ . It holds:

poŜ ⇒c prŜ

2

Negated Z-schemata can be handled based on rule 4.2. Next, schema operations
that combine two schemata are of interest. Let S and T be two operation schemata
of a Z specification. Additionally, let prS be the pre-condition of schema S and

9 The function posts is just a shorthand and denotes strengthening the post-condition by agreeing
to do more than was originally required.

4.4. Dependencies in Z 69

poS the post-condition of S . Similarly let prT be the pre-condition of T and poT

the post-condition of T . As in equations (4.10) and (4.11) this implies that the
post-condition exists when calculating the pre-condition of S or T. It also implies
that the pre-condition evaluates to true when calculating the post-condition.

When calculating the pre-condition of a schema, disjunction is the simplest case.
The pre-conditions of the schema disjunction S ∨ T is calculated as follows:

pre (S ∨ T) == pre ([dS ; d ′S | prS ; poS] ∨ [dT ; d ′T | prT ; poT])
== pre ([dS ; d ′S ; dT ; d ′T | (prS ; poS) ∨ (prT ; poT)])
== [dS ; dT | ∃ d ′S ; d ′T • ((prS ; poS) ∨ (prT ; poT))]
== [dS ; dT | (∃ d ′S • (prS ; poS)) ∨ (∃ d ′T • (prT ; poT))] % (4.7)
== [dS ; dT | (prS ; ∃ d ′S • poS) ∨ (prT ; ∃ d ′T • poT)]
== [dS ; dT | (prS ; true) ∨ (prT ; true)] % (4.9)
== [dS ; dT | prS ∨ prT]
== pre S ∨ pre T

This means that prS and prT are the sole pre-conditions primes of the schema
S ∨ T . Post-conditions are calculated in a similar way:

post (S ∨ T) == post ([dS ; d ′S | prS ; poS] ∨ [dT ; d ′T | prT ; poT])
== post ([dS ; d ′S ; dT ; d ′T | (prS ; poS) ∨ (prT ; poT)])
== post ([dS ; d ′S ; dT ; d ′T | ((prS ; poS) ∨ prT); ((prS ; poS) ∨ poT)])
== post ([dS ; d ′S ; dT ; d ′T | (prS ∨ prT); (poS ∨ prT);

(prS ∨ poT); (poS ∨ poT)])
== [dS ; d ′S ; dT ; d ′T | true; true; true; (poS ∨ poT)] % (4.11)
== [dS ; d ′S ; dT ; d ′T | poS ∨ poT]
== post S ∨ post T

This means that poS and poT are the sole post-conditions of the schema S ∨ T .
In this sense, the schema can be written as

S ∨ T == pre(S ∨ T) ∧ post(S ∨ T)
== (pre(S) ∨ pre(T)) ∧ (post(S) ∨ post(T))

With that background, pre- and post-condition primes of the composed schema
can be identified. As post-conditions and pre-conditions are in the same scope,
post-condition primes poS and poT are control-dependent on both prS and prT . For
the identification of dependencies between primes that are element of a Z schema
disjunction this leads to the following rule:

Rule 4.3: Control dependencies in Z schema disjunctions. Let S and T
be two operation schemata of a syntactically correct specification and (S ∨ T) a

70 4. Specification Abstractions

schema disjunction. Furthermore, let prS be the set of pre-condition primes of S
and poS the set of post-condition primes of S . prT is the set of pre-condition primes
of T , and poT is the set of post-condition primes of T .

i. There is control dependency (poS ⇒c prS) within schema S if prS and poS are
not empty. There is control dependency (poT ⇒c prT) within schema T if
prT and poT are not empty.

ii. For schema (S ∨ T) holds that, according to Def. 4.16, there is control depen-
dency between primes in post (S ∨ T) and primes in pre (S ∨ T).

There is control dependency between schema S and T in the case that at least
(prS 6= ∅ ∧ poT 6= ∅) or (prT 6= ∅ ∧ poS 6= ∅). Then primes in poT are
control dependent on primes in prS , and primes in poS are control dependent
on primes in prT . This means:

Πpost (S ∨ T) ⇒c Πpre(S ∨ T) == (poS ∪ poT) ⇒c (prS ∪ prT)

2

In fact, post-condition primes are not strictly dependent on prS and prT , but, as
both pre-conditions potentially decide whether the post-conditions are applied or
not, there is control dependency as defined in Def. 4.11.

The next basic operation is that of a conjunction. The pre-condition of schema
conjunction S ∧ T is calculated as follows:

pre (S ∧ T) == pre ([dS ; d ′S | prS ; poS] ∧ [dT ; d ′T | prT ; poT])
== pre ([dS ; d ′S ; dT ; d ′T | (prS ; poS ; prT ; poT)])
== [dS ; dT | ∃ d ′S ; d ′T • prS ; poS ; prT ; poT]
== [dS ; dT | (prS ; prT) ∧ ∃ d ′S ; d ′T • poS ; poT] % dS , dT not bound
== pre S ∧ pre T ∧ t(poS , poT)

That means that prS and prT are part of the pre-condition primes of the schema
(S ∧ T), but there is also a remaining term t (t = [dS ; dT | ∃ d ′S ; d ′T • poS ; poT]) .

It is possible to eliminate the remaining term t if the sets d ′S and d ′T are disjunct
and poS and poT do not share common identifiers. In that case the existential
quantifier can be split into two expressions ∃ d ′S • poS and ∃ d ′T • poT , and these
expressions can be reduced to true according to equation (4.11).

In any other case it is not that simple (if even possible) to reduce t . However,
the previous section introduced the idea of a syntactical approximation already. The
condition is weakened by neglecting this remaining term t :

4.4. Dependencies in Z 71

pre(S ∧ T) v prew(S ∧ T) == pre S ∧ pre T (4.14)

The post-condition of S ∧ T can be calculated in a similar way.

post (S ∧ T) == post ([dS ; d ′S | prS ; poS] ∧ [dT ; d ′T | prT ; poT])
== post ([dS ; d ′S ; dT ; d ′T | prS ; poS ; prT ; poT])
== [dS ; d ′S ; dT ; d ′T | true; poS ; true; poT] % (4.11)
== [dS ; d ′S ; dT ; d ′T | poS ; poT]
== post S ∧ post T

This means that poS and poT are the sole post-conditions of the schema S ∧ T .
In this sense, the schema can be written as

S ∧ T == pre(S ∧ T) ∧ post(S ∧ T)
v
prew(S ∧ T) ∧ post(S ∧ T)
==
(pre(S) ∧ pre(T)) ∧ (post(S) ∧ post(T))

Again, pre-conditions and post-conditions are in the same scope. This means
that all post-conditions poS and poT are control dependent on the pre-conditions
prS and prT . This leads to the rule for the identification of control dependencies in
Z schema conjunctions:

Rule 4.4: Control dependencies in Z schema conjunctions. Let S and T be
two operation schemata of a syntactically correct specification. Let (S ∧ T) be a
schema conjunction. Furthermore, let prS be the set of pre-condition primes of S
and poS the set of post-condition primes of S . prT is the set of pre-condition primes
of T and poT is the set of post-condition primes of T .

For schema (S ∧ T) holds that (according to Def. 4.16) there is control depen-
dency between primes in post (S ∧ T) and primes in prew (S ∧ T). It holds:

i. There is control dependency (poS ⇒c prS) within schema S if prS and poS are
not empty. There is control dependency (poT ⇒c prT) within schema T if
prT and poT are not empty.

ii. There is control dependency between schema S and schema T in (S ∧ T) if
(prS 6= ∅ ∧ poT 6= ∅) or (prT 6= ∅ ∧ poS 6= ∅). It holds:

Πpost (S ∧ T) ⇒c Πprew(S ∧ T) == (poS ∪ poT) ⇒c (prS ∪ prT)

2

72 4. Specification Abstractions

With the identification of pre- and post-conditions for conjunction and disjunc-
tion, most of the schema operations defined in Z can be dealt with. An implication
can be re-written as a disjunction which leads to the following set of pre-condition
primes pr and post-condition primes po:

S ⇒ T == (¬ S ∨ T)
pr == Π (pre (S ⇒ T)) == Π (pre(¬ S ∨ T))

== Π (prew(¬ S) ∨ pre(T)) == prS ∪ prT

po == Π (post (S ⇒ T)) == Π (post(¬ S ∨ T))
== Π (posts(¬ S) ∨ post(T)) == poS ∪ poT

Bi-implication can be re-written as a combination of a conjunction and two
disjunctions. Pre-condition primes pr and post-condition primes po are calculated
as follows:

S ⇔ T == (¬ S ∨ T) ∧ (S ∨ ¬ T)
pr == Π(pre (S ⇔ T)) == Π(pre((¬ S ∨ T) ∧ (S ∨ ¬ T)))

== Π(pre(¬ S ∨ T) ∧ pre(S ∨ ¬ T)) == prS ∪ prT

po == Π(post (S ⇔ T)) == Π((¬ S ∨ T) ∧ (S ∨ ¬ T))
== Π(post(¬ S ∨ T) ∧ post(S ∨ ¬ T)) == poS ∪ poT

Schema projection is more complex to dissolve. In Z a schema projection S ¹ T
can be re-written as a schema conjunction S ∧ T where those identifiers x1, .., xn of
S are hidden which do not appear in T :

S ¹ T == (S ∧ T) \ (x1, .., xn)

In fact two situations can occur when combining two schemata via schema pro-
jection:

1. If all identifiers of S are also declared in T , then the projection equals the
schema conjunction. In this case the set of pre-condition primes is (prS ∪prT).
The set of post-condition primes is (poS ∪ poT).

2. If there are identifiers in S that are not declared in T , then some (or even
all) identifiers of S are hidden. In that case some or all predicates in S are
hidden by using an existential quantifier. To ease the calculation of pre- and
post-conditions the declaration sections of S and T are split into several sets:
d̂S = dS \ dT , d = dS ∩ dT , d̂T = dT \ dS , d̂ ′S = d ′S \ d ′T , d ′ = d ′S ∩ d ′T and

d̂ ′T = d ′T \ d ′S . With this separation of identifiers the schemata S and T can
be re-written as follows:

S == [d̂S ; d ; d̂ ′S ; d ′ | prS (d̂S , d); poS (d̂S , d , d̂ ′S , d ′)]
T == [d̂T ; d ; d̂ ′T ; d ′ | prT (d̂T , d); poT (d̂T , d , d̂ ′T , d ′)]

4.4. Dependencies in Z 73

The pre-conditions of a schema projection is calculated as follows:

pre((S ∧ T) \ (d̂S , d̂ ′S)) == [d ; d̂T | ∃ d ′; d̂ ′T • ∃ d̂S ; d̂ ′S •
prS (d̂S , d); poS (d̂S , d , d̂ ′S , d ′);
prT (d , d̂T); poT (d , d̂T , d ′, d̂ ′T)]

== [d ; d̂T | prT (d , d̂T) ∧ ∃ d̂S • prS (d̂S , d)]

If the pre-condition is weakened, then the set of pre-condition primes is prT .
Nevertheless, the pre-condition of S has to exist in order to satisfy the pre-
condition of S ¹ T . Thus, the set of relevant primes is prS ∪ prT .

The post-conditions of a schema projection is calculated as follows:

post((S ∧ T) \ (d̂S , d̂ ′S)) == [d ′; d̂ ′T | ∃ d ; d̂T • ∃ d̂S ; d̂ ′S •
prS (d̂S , d); poS (d̂S , d , d̂ ′S , d ′);
prT (d , d̂T); poT (d , d̂T , d ′, d̂ ′T)]

== [d ′; d̂ ′T | ∃ d ; d̂T ; d̂S ; d̂ ′S •
poS (d̂S , d , d̂ ′S , d ′); poT (d , d̂T , d ′, d̂ ′T)]

If the post-condition is strengthened, then the set of post-condition primes is
(poS ∪ poT).

In both cases the post-condition contains the post-condition predicates of S and
T . It seems to be natural to take the set poS ∪ poT as the set of primes which are
post-condition primes of schema S ¹ T .

In the case of the pre-condition, prT definitely contributes to the set of pre-
condition primes. prS also has to be part of the pre-condition. Thus, prS ∪ prT is
the set of primes which contains the pre-condition primes of schema S ¹ T .

Analogous to Rule 4.3, control dependencies in schema implications, bi-implica-
tions and projections are identified as follows:

Rule 4.5: Control dependencies in Z schema (bi-)implications and pro-
jection. Let S and T be two operation schemata of a syntactically correct spec-
ification and (S ♦ T) a schema operation where ♦ is either a implication, a bi-
implication, or a projection. Furthermore, let prS be the set of pre-condition primes
of S and poS the set of post-condition primes of S . prT is the set of pre-condition
primes of T and poT is the set of post-condition primes of T . It holds:

i. There is control dependency (poS ⇒c prS) within schema S if prS and poS are
not empty. There is control dependency (poT ⇒c prT) within schema T if
prT and poT are not empty.

74 4. Specification Abstractions

ii. There is control dependency between schema S and schema T , if at least
(prS 6= ∅ ∧ poT 6= ∅) or (prT 6= ∅ ∧ poS 6= ∅). It holds:

Π(post (S♦T)) ⇒c Π(pre(S♦T))
==
(poS ∪ poT) ⇒c (prS ∪ prT)

2

Five schema operations (∧, lor ,⇒,⇔, ¹) have been dealt with. Remain the two
schema operations of sequential composition (o

9) and schema piping (>>). Compo-
sition is defined as follows:

S o
9 T == (S [d+/d ′] ∧ T [d+/d]) \ (d+) (4.15)

After state identifiers d ′ of the first schema and before state identifiers of the
second schema are renamed to d+ (thus, the two schemata are related by an interme-
diate state). These identifiers are finally hidden by using existential quantification.

Renaming and identifier hiding also happen when schema piping is applied:

S >> T == (S [d+/d !] ∧ T [d+/d?]) \ (d+) (4.16)

In this case identifiers d !, representing the output of S , and identifiers d?, rep-
resenting the input of T , are renamed to d+. Again, these identifiers are hidden by
using an existential quantification.

For a meaningful composition or piping the related sets of identifiers have to
match. This means that the intersection of the set of identifiers in d ′S and dT has

to be non-empty: d̂ = d ′S ∩ dT .

In the case of a composition of S and T , d̂ contains after-state identifiers of S
that are also before-state identifiers of T . In the case of schema piping, d̂ contains
output identifiers of S that are also input identifiers of T .

For the following calculation of pre- and post-conditions, the declaration sections
of S and T are split into three parts. Due to the state change, parts of the identifiers
have to be renamed. For this reason pre- and post-condition predicates contain the
full list of identifiers they depend upon. For schemata S and T holds:

S == [dS ; d̂ ; d ′S | prS (dS); poS (dS , d̂ , d ′S)] (4.17)

T == [dT ; d̂ ; d ′T | prT (dT , d̂); poS (dT , d̂ , d ′T)] (4.18)

4.4. Dependencies in Z 75

Thus, the previously introduced sets d ′S and dT are split into two sets (d̂ ,d ′S)

and (dT , d̂). It holds that d̂ ∩ d ′S = ∅ and dT ∩ d̂ = ∅. However, prS and poS still
denote the pre- and post-conditions of schema S and prT and poT denote the pre-
and post-conditions of schema T. This implies:

pre S == [dS | prS (dS)] ⇔ [dS | ∃ d̂ ; d ′S • poS (dS , d̂ , d ′S)] == true
(4.19)

post S == [dS ; d̂ ; d ′S | poS (dS , d̂ , d ′S)] ⇔ [dS | prS (dS)] == true
(4.20)

pre T == [dT ; d̂ | prT (dT , d̂)] ⇔ [dT ; d̂ | ∃ d ′T • poT (dT , d̂ , d ′T)] == true
(4.21)

post T == [dT ; d̂ ; d ′T | poT (dT , d̂ , d ′T)] ⇔ [dT ; d̂ | prT (dT , d̂)] == true
(4.22)

With that, pre- and post-conditions of schemata S o
9 T and S >> T can be

calculated. The operator ♥ is used to denote either schema composition or schema
piping:

pre (S♥T) == pre ([dS ; d̂ ; d ′S | prS (dS); poS (dS , d̂ , d ′S)]

♥ [dT ; d̂ ; d ′T | prT (dT , d̂); poT (dT , d̂ , d ′T)]) % (1)

== pre [dS ; d ′S ; dT ; d ′T | ∃ d̂+ •
prS (dS); poS (dS , d̂+, d ′S);

prT (dT , d̂+); poT (dT , d̂+, d ′T)] % (2)

== [dS ; dT | ∃ d ′S ; d ′T • ∃ d̂+ • % (3)

prS (dS); poS (dS , d̂+, d ′S);

prT (dT , d̂+); poT (dT , d̂+, d ′T)]

== [dS | prS (dS) ∧ ∃ d̂+; d ′T ; d ′S • % (4)

poS (dS , d̂+, d ′S); prT (dT , d̂+); poT (dT , d̂+, d ′T)]
== pre S ∧ t(poS , prT , poT)

The calculation is straight forward: (1) First the operator is dissolved by a
conjunction of S and T , and (2) hides the inter-state identifiers. (3) Then the
pre-condition calculation is made explicit by hiding the after-state identifiers. The
predicates are re-arranged. The pre-condition of S is extracted from the quantifiers
as there is no bound identifier in prS . (4) This leads to a pre-condition containing
the pre-condition predicate of S and a remaining term t . In any case, the remaining
term t depends on inter- and after state identifiers. As we are only interested in
pre-state predicates, the remaining term is neglected again. The pre-condition is
weakened.

76 4. Specification Abstractions

pre (S♥T) == pre S ∧ t(poS , prT , poT)
v
prew (S♥T) == pre(S) == [dS | prS (dS)]

Post-conditions are calculated in the same way. Again, an inter-state is built
by first renaming identifiers, combining the schemata and then hiding inter-state
identifiers:

post (S♥T) == post ([dS ; d̂ ; d ′S | prS (dS); poS (dS , d̂ , d ′S)]

♥ [dT ; d̂ ; d ′T | prT (dT , d̂); poS (dT , d̂ , d ′T)])

== post [dS ; d ′S ; dT ; d ′T | ∃ d̂+ •
prS (dS); poS (dS , d̂+, d ′S);

prT (dT , d̂+); poT (dT , d̂+, d ′T)]

== post [dS ; d ′S , dT ; d ′T | prS (dS) ∧ ∃ d̂+ •
poS (dS , d̂+, d ′S);

prT (dT , d̂+); poT (dT , d̂+, d ′T)]

== [d ′S ; d ′T | ∃ dS ; dT • ∃ d̂+ • % (4.20)

poS (dS , d̂+, d ′S);

prT (dT , d̂+); poT (dT , d̂+, d ′T)]

== [d ′S ; d ′T | ∃ dS ; dT ; d̂+ • % (4.22)

poS (dS , d̂+, d ′S); poT (dT , d̂+, d ′T)]
== t(poS , poT)

In this case the post-condition is a combination of the post-condition of S and the
post-condition of T . The remainder cannot be simplified without semantic analysis,
and it can also not be split into a combination of separate post-conditions of S and
T (as they share common identifiers d̂+). On the other hand it is possible to refine
the post-condition by strengthening the condition.

post (S♥T) == [d ′S ; d ′T | ∃ dS ; dT ; d̂+ •
poS (dS , d̂+, d ′S); poT (dT , d̂+, d ′T)]

v (post − condition strengthening)

posts (S♥T) == [dS ; d ′S ; d̂+; dT ; d ′T |
poS (dS , d̂+, d ′S); poT (dT , d̂+, d ′T)]

==
post (S) ∧ post (T)

In this case, the strengthened post-condition consists of the post-condition of
S and the post-condition of T . Control dependency is defined between post- and
pre-condition primes in the schema. The pre-condition prime of S♥T is prS , the
post-condition primes of S♥T are poS and poT . As poS is element of schema S , there

4.4. Dependencies in Z 77

Schema Approximation via Conditions Related Primes
S Π post S ⇒c Π pre S poS ⇒c prS
¬ S Π posts(¬ S) ⇒c Π prew (¬ S) poS ⇒c prS
S ∨ T Π post(S ∨ T) ⇒c Π pre(S ∨ T) (poS ∪ poT) ⇒c (prS ∪ prT)
S ⇒ T Π posts(S ⇒ T) ⇒c Π prew (S ⇒ T) (poS ∪ poT) ⇒c (prS ∪ prT)
S ∧ T Π post(S ∧ T) ⇒c Π prew (S ∧ T) (poS ∪ poT) ⇒c (prS ∪ prT)
S ⇔ T Π posts(S ⇔ T) ⇒c Π prew (S ⇔ T) (poS ∪ poT) ⇒c (prS ∪ prT)
S ¹ T Π post(S ¹ T) ⇒c Π prew (S ¹ T) (poS ∪ poT) ⇒c (prS ∪ prT)
S o

9 T Π posts(S o
9 T) ⇒c Π pre(S o

9 T) (poS ∪ poT) ⇒c prS
S >> T Π posts(S >> T) ⇒c Π pre(S >> T) (poS ∪ poT) ⇒c prS

Tab. 4.1: Control dependency calculation differs, depending on the type of schema oper-
ation. This table provides an overview of relevant primes and their related pre-
and post-condition considerations.

is control dependency between poS and prS . Additionally poT is control dependent
on prS . This leads to the rule for the identification of control dependencies within
schema composition and piping:

Rule 4.6: Control dependencies in schema composition and piping. Let S
and T be two operation schemata of a syntactical correct specification and (S ♥ T)
a schema operation where ♥ is either a composition or a piping operation. Further-
more, let prS be the set of pre-condition primes of S and poS the set of post-condition
primes of S . prT is the set of pre-condition primes of T and poT is the set of post-
condition primes of T . It holds:

i. There is control dependency (poS ⇒c prS) within schema S if prS and poS are
not empty. There is control dependency (poT ⇒c prT) within schema T if
prT and poT are not empty.

ii. There is control dependency between schema S and schema T if prS 6= ∅ ∧
poT 6= ∅. It holds:

Π(posts (S♥T)) ⇒c Π(pre(S♥T)) == (poS ∪ poT) ⇒c prS

2

With the above rules for the identification of control dependencies it is possible
to deal with all types of Z schema operations. However, only in one case (∨) can the
calculation of pre- and post-conditions of the compound schemata be traced back
to the (simpler) calculation of pre- and post-conditions of the involved schemata.

78 4. Specification Abstractions

In all other cases semantic errors are made. In five cases (¬ ,∧,⇒,⇔, ¹) the pre-
condition is weakened. This means that a little bit more cases are handled by the
schema than originally intended. In five cases (¬ ,⇒,⇔, o

9,>>) the post-condition
is strengthened. This means that the schema is agreeing to do more than originally
intended. Table 4.1 summarizes the involved operations, as well as the pre- and
post-conditions that are taken as a basis for the calculation of involved primes.

Fig. 4.4 (at the beginning of Chap. 4.4.2) presents three examples for the iden-
tification of control dependencies in specifications. Within schema-box S1, all post-
condition primes are control dependent on pre-condition primes (case (a)). Case
(b) demonstrates the logical combination of two schemata S2 and S3. Here, both
post-condition primes are control dependent on both pre-condition primes. The sit-
uation is different, if an explicit sequential ordering is carried out (case (c)). Then
the post-condition primes of the second schema are control dependent on both pre-
condition primes, but the pre-condition prime of the second schema has no influence
on the post-condition of the first schema.

However, the above syntactic approximation is quite accurate. Concerning the
weakened pre-conditions, the neglected term t consists of post-condition predicates
solely (ensuring that an after-state exists). In the context of looking for possible pre-
condition primes, an incessantly existing after-state is not that important. There
might be cases where the pre-condition does not hold, but in any case the weakened
terms have to be considered.

Concerning the strengthened post-condition, no term is neglected. In fact, the
refinement is used to produce a much stronger post-condition on the semantic level.
On the syntactic level the same primes are involved again. In the true post-condition
they are potentially involved, in the strengthened post-condition they are definitely
involved.

With the notion of control, the definition of data dependency gets possible, too.
Def. 4.9 points to the parts to look for: the definition (or assignment) of values and
the use of data elements.

In Z, a literal denoting a data element is said to be an identifier. According to
the terminology used in the Z community, an identifier is said to be

• declared, if it appears at the left side of a declaration or at the left side of a
schema expression. In the declaration “p? : Person”, the identifier p is said to
be declared. Another example is the expression “ZeroOp == Enter ∧ Leave”,
where two operation schemata (Enter ,Leave) are combined to declare a new
operation (ZeroOp). The declaration of an identifier can be compared to type
definitions within programs.

• defined, if the identifier is decorated and appears at the left side of a value
assignment. In the expression “p! = newperson”, the identifer p is said to be

4.5. The Need for an Alternative Representation 79

defined. The declaration of an identifier can be compared to value assignments
within programs.

• used, if it is neither declared nor defined. In the above examples, the identifers
Person, Enter , Leave and newperson are used. It is important to distinguish
between decorated and undecorated identifiers. In the expression p = {} the
identifier p is used. There is no value assignment and no definition.

In Z, definitions and uses of data elements are easy to detect. If a specification
prime contains an equation or assignment and a left-hand side identifier (a literal

denoting a data element) which is decorated by a ’ or ! , it is said to have a value
assignment (it is defined). If it is not decorated or decorated with a question-mark

? , it is a reference to a data element (it is used). Based on this terminology,
data-dependency in Z specifications (see Def. 4.19) is defined as follows:

Definition 4.19: Data dependency between Z-primes A specification prime
p is data dependent on a specification prime q (p 6= q) if

i. there exists at least one identifier v (literal denoting a data element) that
occurs in both p and q , and

ii. v is defined in q and used in p, and

iii. either p and q are in the same scope, or p is control dependent on q .

With the introduction of the notion of control in Z specifications, it gets pos-
sible to define control and data dependencies. However, it is just a means to an
end. Dependencies alone to not suffice to sustain the comprehension process. Based
on dependencies, specification abstractions can be calculated, but it is not only
abstraction that counts. The subsequent section introduces the idea of visualiz-
ing dependencies properly and thus leads on to the topic of the next chapter, the
augmented specification relationship net.

4.5 The Need for an Alternative Representation

Specification visualization class SV1 (Chap. 4.1.1) comprises tools for writing, read-
ing and browsing specifications. The first subclass (SV1-a) can now be supported by
abstractions based on the above definitions of dependencies. However, what is still
missing is support for proper visualization (identified as specification class SV1-b).

The concepts of specification primes, slices and chunks support comprehension
tasks rather in the sense of focusing and locality. On the other side, specification
visualization class SV1-b (see Chap. 4.1.1) demands support for alternative, more
graphical views onto the specification. Here, the idea is

80 4. Specification Abstractions

• to show relationships (both syntactical and structural) hidden behind the spec-
ification and

• to focus on specific properties of a specification.

What is a graphical view? A Colored Petri Net [Jen97] is such an example of a
formal specification. The net is defined by using statements based on mathematics.
It is common to check the specification syntactically, to proof properties of the net
and even to animate [LW98, KMW98] the net10. Even if there is a textual represen-
tation of the net (which is the basis for proofs), the most widely used representation
is its graphical form. It focuses on structural relationships and abstracts from the
nitty-gritty details of variables by using (colored) tokens. The advantage is that us-
ing the graphical form of the net’s representation, its (sub-) structures, similarities
between its (sub-) structures and special properties can easily be deduced.

The same considerations hold for other types of specification languages. In Z
or in VDM, there are relationships between parts of the specification. There are
structures and substructures, each of which interrelated by syntactic and seman-
tic dependencies. For a proper visualization it is necessary to make them explicit.
Whereas Chap. 4.1 elaborated on setting the focus on specific parts of the specifica-
tion by making use of dependencies, the basic idea now is to make the dependencies
explicit. The next chapter presents an alternative view to model-oriented specifi-
cations. Moreover, this type of a specification’s representation also simplifies the
calculation of dependencies. The alternative representation of the specification is
called Augmented Specification Relationship Net.

4.6 Summary

The objective of this work is to make specifications more comprehensible. So this
chapter starts with an overview of existing tools and approaches. It divides them
into three specification visualization classes (SV1 to SV3) and explains why existing
tools are not fully applicable to specification comprehension tasks. Basically there
is

• missing knowledge about useful components (substructures) of a specification,

• no support for focusing on specific parts of a specification,

• a lack in the visualization of specifications and substructures of and within
specifications.

10 Design/CPN is a tool for defining and animating Colored Petri Nets. See
http://www.daimi.aau.dk/designCPN for more details. Web page last visited: Nov. 2003.

4.6. Summary 81

The chapter then focuses on components of specifications and provides defini-
tions for specification abstractions. Based on these definitions, the first question in
the motivation section of this work is answered: abridgements (specification primes,
fragments, chunks and slices) are practicable for most common specification compre-
hension activities. The basic mechanism is, as with most program comprehension ap-
proaches, to look for control and data-dependencies. This chapter therefore provides
an approach for the identification of these types of dependencies in Z-specifications.

Control dependencies in Z are located in a schema between pre- and post-
condition primes. The calculation of pre- and post-conditions is a time-consuming
task. Thus, the calculation is skipped by directly taking before-state predicates as
pre-conditions and after-state predicates as post-conditions. This chapter demon-
strates that this approach is a useful approximation to the semantical analysis, but
is also discusses the semantic error that is made.

Control dependencies are also to be found in schemata which are combined via
schema operations. Here, again some approximation is conducted. The semantic
analysis is skipped, and pre- as well as post-condition expressions are again reduced
to sets of before- and after-state primes. Based on these considerations, this chapter
then presents rules for detecting control dependencies within a Z schema and four
rules for detecting control dependencies within composed schemata.

With the presented specification abridgements the demand for partiality is being
met. But partiality is not the only solution to specification comprehension. Exist-
ing relationships between components of specifications also have to be taken into
consideration. Thus, this chapter closes with the observation that there is need for
proper (graphical) visualization.

82 4. Specification Abstractions

5. AUGMENTED SPECIFICATION RELATIONSHIP NET

Look at every path closely and deliberately.
Try it as many times as you think necessary.

Then ask yourself, and yourself alone, one question:
Does this path have a heart?

If it does, the path is good; if it doesn’t, it is of no use.

Carlos Castanedas, The Teaching of Don Juan

The objective of this work is to sustain the process of specification compre-
hension. One solution is to reduce the complexity of the formal specifications at
hand. Here, specification slices, chunks and fragments enable focusing on a specific
problem. However, the identification is based on dependency analysis.

Tearing specifications into pieces is not the only solution. Another solution is to
provide additional and supporting information for the problem at hand. Connections
and dependencies (of different types) between parts of the specification can add
valuable information. This approach makes implicit information explicitly available.
However, the identification is based on dependency analysis again.

Both approaches are based on dependency analysis. As has already been men-
tioned in previous chapters the identification of dependencies in specifications is
hard. The declarative nature and the freedom in placing specification primes im-
pede the reconstruction of hidden control and data-dependencies. Conventional
program dependency analysis cannot be applied. Nevertheless, control and data
dependencies are important, and the previous chapter presented an approach for
their identification.

This chapter presents an alternative view on state-based specifications: the aug-
mented specification relationship net (ASRN for short). It can be used to detect
dependencies and to visualize a specification’s structure as well as dependencies.
Whereas the net is generic, the necessary transformation dependents on the specifi-
cation language at hand. To demonstrate this transformation, this chapter presents
rules which are necessary to establish an isomorphic mapping between Z specifica-
tions and augmented specification relationship nets.

84 5. Augmented Specification Relationship Net

5.1 Motivation for Specification Transformation

Specification languages have built in clues to convey semantics. As with program-
ming languages, syntax and layout of specification languages1 try to sustain the
process of creation. Chap. 3 explains why these characteristics are detrimental for
detecting programming-language-like dependency types. So, how can hidden struc-
tural properties of written specifications be detected? And how can dependencies be
identified simultaneously? A look at the state-of-the-art of other disciplines helps:

• In differential calculus it is sometimes easier to transform an equation into an-
other space, solve the equation there and perform a backward transformation.

• When dealing with programming languages, a program is transformed to an
abstract syntax tree [ASU86, p.49] which enables the construction of a pro-
gram dependency graph, and which ultimately facilitates program dependency
analysis2.

• For concurrent logic programming languages Zhao showed in [Zha96] that a
transformation of concurrent logic programs to a graph is useful for depen-
dency detection. He also showed that this graph can be used as a basis for
metrics calculation [ZCU96].

Following these ideas, it seems appropriate to transform the specification into a
graph, analyze dependencies and

(i) either use the graph to visualize relationships hidden in the specification, or

(ii) apply filter/selection operations to the graph and perform a back-transformation
of the resulting sub-graph.

As we will see later in this chapter, the graph presents itself as an intermediate
aid to generate specification abstractions.

What is needed is a structure that, on the one hand, fully replaces the original
specification, and, on the other hand, eases the identification of dependencies. In
addition to that the structure should be isomorphic. This guarantees that a trans-
formation and backward transformation is possible in any case, and that it is up to
the peruser which representation s/he chooses for the problem at hand.

1 Layout and syntactic possibilities are manifold for different approaches. There are state-based
approaches focusing on the model of the system behavior, property oriented approaches focusing
on pre- and post-conditions and process algebras focusing on support for concurrent, real-time and
distributed systems [BH97].

2 Program dependency analysis has two main research streams: performing optimizations and
support for comprehension and maintenance approaches.

5.1. Motivation for Specification Transformation 85

Using a syntax tree seems to be an obvious choice, but it is not the most appropri-
ate one. Abstract syntax trees are commonly used during the analysis phase where
tokens of a source program are grouped into grammatical phrases3. An abstract
syntax tree is less appropriate for the following reasons [MB03]:

• An abstract syntax tree follows the most dominant structuring principle of
programming languages: control. The notion of control is not dominant in
declarative specification languages. However, disregarding control (to some
respect) is a key principle of several specification languages, and this key prop-
erty should be kept as far as possible.

• An abstract syntax tree focuses on the syntax of the specification and not on
the layout. In conventional programs layout has no semantic meaning, but
dismantled layout distorts readability. When creating an abstract syntax tree
for a specification, the syntactic relationships between grammatical phrases
are made explicit. E.g. sub-expressions as children of nodes are combined to
nodes denoting expressions which are itself children of nodes denoting schema
expressions, and so on. This means that the syntactic structure of the speci-
fication is dominant and not the overall layout.

• There is a certain degree of freedom in gluing specification elements together.
An abstract syntax tree, on the other side, introduces hierarchies, hierarchies
that are not predominant in specifications. Again, any strict ordering (that an
abstract syntax tree suggests) would be detrimental for the overall comprehen-
sion process. In the abstract tree there is a clear ordering of the grammatical
phrases. This ordering is stipulated by the syntactic rules of the language
definition and the automaton that is creating the tree. In most cases the tree
is created by scanning the specification text in top-down manner, creating a
tree reflecting exactly the ordering of primes.

For these reasons a net is introduced [Bol02]. The structural information of
the specification is captured in a net called Specification Relationship Net (SRN).
Vertices in the SRN represent primes of the specification, and arcs represent rela-
tionships among them. The net will be expounded in more detail in Chap. 5.2. The
SRN is extended by additional information dependent on the specification language
at hand. An eSRN is created. It deals with layout and formatting and will be
discussed in Chap. 5.3.1. The eSRN is then augmented by the use of identifiers and
thus captures the explicit semantics of the specification. The resulting net is called

3 These grammatical phrases are represented in a tree called parse tree. An abstract syntax
tree is a compressed representation of the parse tree where each node represents an operator or
non-terminal and where the children of a node represent the operands or terminals contributing
to the parent node.

86 5. Augmented Specification Relationship Net

Fig. 5.1: By using a transformation operation, a specification (upper left) is ported from
the source space representation (textual form) to its graphical eSRN represen-
tation. This net is augmented by definition and use information of identifiers,
which leads to the ASRN. This net can be used to calculate and visualize re-
lations hidden in the specification. By applying filter and selection functions,
specification components can be identified. A backward transformation leads to
the textual form of the such generated specification abstraction.

Augmented Specification Relationship Net (ASRN). It will be expounded in more
detail in Chap. 5.4.

Fig. 5.1 demonstrates the general idea without going too much into detail for
the moment. Firstly, all primes of the specification are transformed into an SRN.
Secondly, language-dependent structural information is added to produce an eSRN.
Then the net is augmented by declaration, definition and use information – result-
ing in an ASRN. On the basis of the ASRN dependencies (of different types) are
calculated and, occasionally, visualized. The ASRN is used for the following four
tasks:

1. Analysis. Based on reachability definitions, various types of relationships be-
tween vertices can be identified in the net. As will be discussed in this chapter
later, programming-like dependencies can easily be calculated.

2. Focusing. Filter and selection functions (based on dependencies that are iden-

5.2. The Specification Relationship Net 87

tified in the analysis step) can be applied. They automatically construct con-
text around a given point of interest. As we will see in this chapter later,
chunks and slices can be identified this way. As the transformation is de-
fined in a bijective manner, a backward transformation is possible. This leads
to the textual representation of the filtered specification (e.g. a specification
fragment, chunk, or slice).

3. Visualization. Experiments showed [MB03] that the layout of the net contains
a lot of relevant information concerning the relationships between parts of the
specification. The ASRN can be visualized, and this view onto the net can be
used (i) to ease setting the point of interest, (ii) to browse the specification,
and (iii) to visualize structural properties of the specification.

4. Metrics. Last but not least, the transformed specification (the augmented
SRN) can be used for metrics calculation [MB03]. Details are provided in the
subsequent chapter.

5.2 The Specification Relationship Net

This section presents the basic formal definition of the SRN, the specification rela-
tionship net. Firstly, a common mathematical background is provided, and secondly,
properties of the SRN are presented. This and the subsequent sections provide quite
a lot of definitions. To ease orientation the most important terms are set in bold
letters.

5.2.1 Basic Definitions

The definition of a specification relationship net is based on the definition of a
bipartite graph. The general idea is that primes in a specification are represented as
special vertices in the graph, and relationships between these primes are expressed
via typed arcs.

Definition 5.1: Bipartite graph. A bipartite graph is an ordered pair (V ,A),
where V is a finite set of elements called vertices, and A is a finite set of elements of
the Cartesian product V ×V , called arcs (A is a binary relation on V, A ⊆ V ×V).

A simple bipartite graph is a bipartite graph (V ,A), such that no (v , v) ∈ A for
any v ∈ V . For any arc ai = (v1, v2) ∈ A, α(ai) = v1 is called the initial vertex of
the arc, and ω(ai) = v2 is called terminal vertex of the arc.

In an SRN , arcs can belong to different classes. Thus, the notion of an arc-
classified bipartite graph is provided in the following definition. The graph consists
of a set of vertices V and n − 1 sets of arcs (thus, it makes up an n-tuple):

88 5. Augmented Specification Relationship Net

Definition 5.2: Arc-classified bipartite graph. An arc-classified bipartite graph
is an n-tuple (V ,A1,A2, ...,An−1) such that every pair (V ,Ai) (i ∈ {1..(n − 1)}) is
a bipartite graph and Ai ∩ Aj = ∅ for i , j ∈ {1..(n − 1)}, and i 6= j .

A so-called simple arc-classified bipartite graph is an arc-classified bipartite graph
(V ,A1,A2, ...,An−1), such that no (v , v) ∈ Ai (i ∈ {1..(n − 1)}) for any v ∈ V .

Def. 5.2 presents the basis, upon which the specification relationship net, a bi-
partite graph containing arcs of special (but mutual exclusive) classes, is defined. A
sequence of connected arcs in the graph is called a path:

Definition 5.3: Path. A path p in an arc-classified bipartite graph (V ,A1,A2, ...,
An−1) is a sequence of arcs a1, a2, ..., am (ai ∈

⋃
j=1..(n−1) Aj for i ∈ {1 . . m}), where

for every i (1 ≤ i < m) the terminal vertex of ai is the initial vertex of ai+1.
m is called the length of path p. α(p) = α(a1) = vi is called initial vertex of

path p. ω(p) = ω(am) = vt is called terminal vertex of path p. A vertex vk is said
to be element of the path if it holds: vk is the initial vertex of path p, or vk is the
terminal vertex of one of the arcs a1, ..., am of p. Let vi be the initial vertex of path
p and vm the terminal vertex of p. Then the path is called a path from v1 to vm .

The general idea of an SRN is that primes of a specification are represented in
such a way that a higher-level prime is a sub-graph with a unique syntactic start-
vertex and a unique syntactic end-vertex. A prime object of the specification is
assigned one-to-one to a prime vertex in the net. The SRN consists of vertices
representing either primes, start-, or end-vertices. Arcs represent the logical struc-
ture of the specification. Primes can be combined via conjunctions, disjunctions,
or by an explicit sequential operation. Thus, they are classified as AND-, OR-, or
sequential-control arcs. In the subsequent definition, in-degree(v) is an operation
that returns the number of arcs ending at vertex v .

Definition 5.4: Specification relationship net. A specification relationship net
(SRN for short) of a specification is an 8-tuple (V ,Vpr ,Vstart ,Vend , Ac,Aand ,Aor , t)
where (V ,Ac,Aand ,Aor) is a simple arc-classified bipartite graph. V is the set of all
vertices in the net, Ac is the set of sequential-control arcs, Aand is the set of AND-
control arcs, and Aor is the set of OR-control arcs (Ac ⊂ V × V , Aand ⊆ V × V ,
Aor ⊆ V × V). Furthermore, it holds that:

i. Vpr ⊂ V is a set of vertices called prime vertices such that Vpr = {v |
v represents a prime of the specification}.

ii. Vstart ⊂ V where Vstart ∩ Vpr = ∅ is a set of vertices called start vertices.

5.2. The Specification Relationship Net 89

Fig. 5.2: By applying a transformation function, a Z specification (left side) is transformed
from the source space representation (textual form) into its SRN representation.
Vertices I1, ..Im represent references to schemata SI1, ..SIm , vertices D1, ..Dn rep-
resent schema declarations, and vertices P1, ..,Po represent predicate primes of
the specification. In this figure sequential-control arcs are dashed, AND-control
arcs are marked by their logical operator.

iii. Vend ⊂ V where Vend ∩ Vpr = ∅ is a set of vertices called end vertices
(Vstart ∩ Vend = ∅).

The vertex vt ∈ V is called totality vertex. It is a unique vertex such that
the in-degree(vt) = 0. Any arc (v1, v2) ∈ Ac (referred to as (v1, v2)c) is called a
sequential-control arc, any arc (v1, v2) ∈ Aand (referred to as (v1, v2)∧) is called an
AND-control arc, and any arc (v1, v2) ∈ Aor (referred to as (v1, v2)∨) is called an
OR-control arc.

Primes that consist of other primes (e.g. in the case of inclusions) contain vertices
that refer to those primes. Between the start and end vertices there are those vertices
that represent the prime objects of which this higher-order prime is constructed of.
Start- and end-vertices thus represent the concept of single entry/exit structures
and they are needed to deal with the problem of locality (and scoping). This topic
will be discussed in Chap. 5.2.2.

In Z, for instance, a schema block prime is represented by a relatively simply
directed graph. Fig. 5.2 demonstrates how a general Z schema block looks like in
the SRN representation. Declarations and predicates (D1 . . Dn , and P1 . . Po) are
represented by vertices connected to a start vertex (via AND-control arcs) and to an
end vertex (via sequential-control arcs). References to higher-level primes (SI1 . .SIm)
are represented by vertices (I1 . . Im) that are connected to the higher-level primes
using AND-control arcs.

90 5. Augmented Specification Relationship Net

Fig. 5.3: Z specification and SRN representing the birthday book state schema and the
Add operation schema. Vertices belonging to a set of start and end vertices (SRN
blocks) are encapsulated in dotted boxes. For reasons of readability the vertices
are annotated by line numbers of the specification source. For instance, vertex
P4 (upper left) represents the predicate prime “known : P NAME” at line 6
in the specification, and vertex P13 (lower right) represents the predicate prime
“birthday ′ = birthday ∪{name? 7→ date?}” (lines 22 and 23 in the specification).
Based on this net neighbours, successors and paths can easily be identified.

Most vertices in the net have antecessors and neighbors. If we are only looking
at antecessors that are reachable via AND-control arcs, we are looking at so-called
AND-antecessors (likewise for OR-antecessors).

Definition 5.5: Antecessor. Let (V ,Vpr ,Vstart ,Vend ,Ac,Aand ,Aor , t) be an SRN
representing a specification, and (v1, v2) ∈ Ac ∪ Aand ∪ Aor . Additionally, let v3

and v4 be two vertices in the net (v3 ∈ V ,v4 ∈ V).
v1 is referred to as direct AND-antecessor of v2 if (v1, v2) ∈ Aand . It is a direct

OR-antecessor if (v1, v2) ∈ Aor . Otherwise, v1 is referred to as direct antecessor of
v2. v2 is said to be a direct successor of v1.

If there is a path p from v3 to v4, v3 is referred to as antecessor of v4. If it is true
for every arc a of path p that a ∈ Aand , then v3 is referred to as AND-antecessor of
v4; if a ∈ Aor , v3 is referred to as OR-antecessor of v4. v4 is said to be a successor
of v3.

5.2. The Specification Relationship Net 91

To know about vertices’ antecessors in the net is important. As will be discussed
in Chap. 5.2.2 they tell a lot about structural relationships. Neighbors, on the other
hand, indicate that the vertices belong to the same syntactical block.

Definition 5.6: Neighbor. Let (V ,Vpr ,Vstart ,Vend ,Ac,Aand ,Aor , t) be an SRN
representing a specification with (v1, v2) ∈ Ac ∪ Aand ∪ Aor , and (v1, v3) ∈ Ac ∪
Aand ∪ Aor .

v2 is said to be an AND-neighbour of a vertex v3 iff (v1, v2) ∈ Aand ∧ (v1, v3) ∈
Aand). Iff (v1, v2) ∈ Aor ∧ (v1, v3) ∈ Aor , v2 and v3 are called OR-neighbours.

In the SRN of the birthday book (see Fig. 5.3) vertex S4 is an AND-antecessor
of P9, P10, P11, P12 and P13. However, S4 is also an AND-antecessor of P6 as there
is a path from S4 to P6 (over AND-control arcs from P9 to S2).

If neighbours of the vertex are reachable via AND-control arcs, we refer to them
as AND-neighbours (which is the same for OR-neighbours). This means that vertices
P9,P10,P11 and P12 are AND-neighbours of vertex P13.

As can be seen in Fig. 5.3, SRN start and end vertices form specific sub-structures
that are called SRN-blocks.

Definition 5.7: SRN block. Let (V ,Vpr ,Vstart ,Vend ,Ac,Aand ,Aor , t) be an SRN
of a Z specification. An SRN block SRNi is a set of vertices SRNi ⊆ V containing
at least a start vertex vs ∈ Vstart and an end vertex ve ∈ Vend , and a non-empty set
of prime vertices Vpr i

⊆ Vpr . For every prime vertex vpr ∈ Vpr i
in the SRN block it

holds that vs is a direct antecessor of vpr , and vpr is a direct antecessor of ve .

In the above example vertices P4 to P6 are in the same SRN block (SRN2). The
reason is that – for all of the vertices P4,P5 and P6 – vertex S2 is a direct antecessor
and vertex E2 is a direct successor.

5.2.2 Nesting and Scoping

The concept of scope is extensively used in mathematics. Local definitions are intro-
duced in order to state the current meaning of a mathematical symbol. Expressions
like “let n : N be . . .” are commonly understood when reading a section of a text
although there are no formal rules that define the scope of such a textual declaration
in the whole text.

The idea of a declaration having a scope that is less than the whole program
or specification allows the same identifier to be used for different purposes in sepa-
rate parts (or contexts). The concept of locality was introduced into programming

92 5. Augmented Specification Relationship Net

languages with the rise of block-oriented languages (e.g. Algol60). Not all program-
ming languages adopted the concept of scoping (e.g. Basic or Cobol, see [ML87,
p.187ff]), but the concept of locality reduced complexity (at least in some aspects)
and permitted more flexibility in inventing names for identifiers.

However, block structures, nesting of expressions and blocks, and ramification
introduced complexity on a different level: scope rules for resolving references to
identifiers are needed in order to define the set of names that may be used at a
given point in the program or specification. A conventional scope rule for block
oriented programming languages is Rule 5.1 [ML87, p.195]:

Rule 5.1: Simple scope rules.

1. The scope of a declaration includes the block in which it is found but excludes
all blocks surrounding it.

2. The scope of a declaration includes all blocks within the block in which it is
found but excludes any blocks in which the same identifier is re-declared.

State-based specification languages like VDM and Z also follow the concept of
blocks. Thus, scope rules are important, too. In an SRN there is no strict graphical
“ordering” of primes, but there is still a syntactical one. Nested expressions and the
scope of identifiers4 are relevant and have to be dealt with. However, this section
provides a first and general definition of a scope, namely of the scope of primes. It
is solely based on the structure of the net. The scope of identifiers depends on the
specification language at hand and will be discussed for Z in Chap. 5.4.

According to Def. 5.7, SRN blocks are used to form structural entities. An SRN
block is a container, and it is basically used to define the scope of a prime. There
are two ways to interlink SRN blocks in the graph, and this extension affects the
scope of primes:

1. Inclusions of SRN blocks (Fig. 5.4(a)). A schema A which is represented by
an SRN sub-graph SRNA with start node SA1, might include another schema
B which is represented by an SRN sub-graph SRNB with start node SB1. In
that case there is an AND arc connecting SRNA with SB1.

2. References to SRN blocks (Fig. 5.4(b)). Primes and sub-graphs in the SRN
can be combined, forming complex, nested structures. Two schemata E (rep-
resented by sub-graph SRNE) and F (represented by sub-graph SRNF) might

4 Z follows the “classical”, simple scope rules as defined in Rule 5.1. According to [Spi89b, p.36]
in Z all identifiers (except that of Z schema names) can additionally have nesting of scope.

5.2. The Specification Relationship Net 93

Fig. 5.4: Simple SRN Graph with dotted boxes encapsulating those vertices which are part
of an SRN block. Due to the structure of the SRN, two types of nested structures
are possible. (a) Inclusions are represented by a single AND-arc that is connected
to the included SRN block. Here, SRN BlockC is included by SRN BlockB due
to arc (PB1,SC1). (b) References are represented by connecting the referred SRN
block to the referring prime via AND and sequential-control arcs. SRN BlockE is
referenced by SRN BlockD via AND-control arc (PD1,SE1) and sequential-control
arc (EE1,PD1).

be combined by a conjunction. In that case a sub-graph SRND is introduced,
referring to sub-graphs SRNE and SRNF . References to sub-graphs are to be
found in the net due to two arcs (AND- and sequential-control arcs) connecting
the SRN blocks.

SRN blocks, references and inclusions are sufficient for dealing with simple scope
rules. Blocks are assigned to SRN-blocks in the net, and these blocks are extended
by either references or inclusions. In the case of inclusions the scope is nested; in
the case of references the scope (and with it the SRN block) is extended.

Fig. 5.4 demonstrates that sub-graphs might also contain further references and
inclusions. This means that nested structures can contain nested sub-structures. As

94 5. Augmented Specification Relationship Net

will be discussed later, this has an impact on the scope of prime objects containing
identifier declarations5.

If a sub-graph A is connected to a sub-graph B , the SRN block of the referenced
sub-graph is reachable by the SRN block of the referring sub-graph.

Definition 5.8: Reachability. Let (V ,Vpr ,Vstart ,Vend ,Ac,Aand ,Aor , t) be an SRN
representing a specification. An SRN block SRN1 ⊆ V is said to be reachable from
an SRN block SRN2 ⊆ V (SRN1 ρ SRN2 for short), iff there exist a start vertex vs1

in SRN1 (vs1 ∈ SRN1) and a start vertex vs2 in SRN2 (vs2 ∈ SRN2) and a path p
from vs2 to vs1 .

If for every arc ai ∈ p holds ai ∈ Aand ∪ Aor , the block is said to be AND/OR-
reachable (SRN1 ρAO SRN2). Otherwise, if for every arc ai ∈ p holds ai ∈ Aand , the
block is said to be AND-reachable (SRN1 ρA SRN2). Likewise, if all arcs of p are
OR-arcs, a block is said to be OR-reachable (SRN1 ρO SRN2).

The path p is called reachability path. The length of the path p is called reach-
ability distance. An SRN block SRNi is said to be element of the reachability path
p, if the start vertex vs of SRNi (vs ∈ SRNi) is element of the path p.

The reachability path is defined as a path between the two start vertices of the
involved SRN blocks. In Fig. 5.4 the SRN Block SRNC is reachable from SRN block
SRNA, as there is a path from start vertex SA1 to SC1. The reachability distance of
path p = 〈(SA1,PA1), (PA1, SB1), (SB1,PB1), (PB1, SC1)〉 is 4.

With the definition of an SRN block (see Def. 5.7), the definition of the scope of
a prime vertex is possible. Similarly to the definition of the scope of an identifier in
Z, the scope of a prime vertex can be defined as those parts of the net, where the
prime can be referred to or used6.

Definition 5.9: SRN scope. Let (V ,Vpr ,Vstart ,Vend ,Ac,Aand ,Aor , t) be an SRN
representing a specification, and let SRNv be an SRN block containing prime vertex
v . The SRN scope σ(v) of a vertex v (v ∈ V) is a set of vertices, with

(i) SRNv ⊆ σ(v), and

(ii) SRNi ⊆ σ(v), if SRNi is an SRN block of SRN and (SRNv ρAO SRNi).

5 The scope of a declared identifier in Z denotes those parts of the specification where this
identifier can be referred to or used.

6 Please notice that identifiers are not considered for the scope of primes. Thus, the nesting of
sub-graphs has no influence on the scope of primes.

5.3. Transformation of Z Specifications 95

Fig. 5.4 demonstrates how to identify SRN scopes of vertices. The SRN scope
of prime vertex PB2 consists of two SRN Blocks, SRN BlockA and SRN BlockB , as
the vertex PB2 is element of SRN BlockB , and SRN BlockB is AND-reachable from
SRN BlockA.

The SRN is only the structural basis for the transformed specification. The
transformation itself depends on the specification language that is used. As a first
step the subsequent chapter presents the transformation of Z specifications to the
SRN.

5.3 Transformation of Z Specifications

Transforming a Z specification to an SRN is simple, but up to now two clues are
still missing. Firstly, there are no rules for detecting primes in Z specifications.
Secondly, a Z specification uses quite a lot of mathematical symbols and decorations
(like boxes and lines), and mark-up languages (like groff/troff or LATEX7) are used
to write down specifications: They ease formatting and printing.

Before transformation rules are presented in this chapter, the subsequent sections
explain the influence of LATEX and introduce simple instructions for detecting Z prime
objects.

5.3.1 A Word on LATEX

A Z specification contains more text than is displayed in the pretty-printed specifi-
cation (see Fig. 5.5). In fact, these LATEX literals (also called LATEX text) are used for
reasons of pretty printing and control. To ensure that a backward transformation
of the SRN representation of the specification is possible, LATEX text also has to be
transformed into the net. As will be discussed later, this transformation has some
impact on the definition of the SRN.

Breuer and Bowen [BB95] treat terminals that are not part of the grammar of
the Z-specification as directives or comments. Additionally, inline annotations in
LATEX are possible, too. Generally speaking there are:

1. Comments and inline-annotations. In general a comment (as defined in [BB95])
is a text which is written outside of a Z-paragraph. There is no way of writing
comments into a Z schema box or an unboxed paragraph. In Z it is common
to annotate paragraphs by using natural language descriptions (which are
type-set by using LATEX mark-ups). Inline-annotations are LATEX-comments,

7 For more information on LATEX see [GMS94]. Information about groff/troff can be obtained
via http://www.gnu.org/software/groff. Page last visited: December 2003.

96 5. Augmented Specification Relationship Net

Fig. 5.5: When using LATEX for type-setting a Z specification, the specification contains
more than only Z literals (that are part of Z primes). LATEX literals and mark-ups
are used to format (and pretty-print) the Z specification. On the left side there is
a part of the pretty-printed birthday-book specification (commonly referred to as
the Z specification) and on the right side, annotated with line numbers, there is
the corresponding specification source (commonly referred to as the LATEX text)
is to be found.

starting with a single percent sign “%”. It is text that is included in the LATEX
source, but not printed in the Z-specification. The Z specification in Fig. 5.5
contains several comments (lines 1 and 3) and inline-annotations (lines 12 to
14).

2. Directives. This is a set of LATEX commands used to control the output of Z
symbols. There are some syntactical restrictions8, however, as directives can
appear inside or outside of a schema box or unboxed paragraph and as they
are not displayed in the pretty-printed version of the Z specification.

3. General LATEX literals. This LATEX text is used to pretty-print the output. It
can be, but does not have to be part of a prime object. There are several
examples for this situation. Line 23 in Fig. 5.5 has an extra tabulator “\t2...”
to indent the line. This literal is part of a prime object consisting of lines

8 A list of Z directives and Z mark-ups can be found at: http://www-
users.cs.york.ac.uk/ ian/cadiz/latexmarkup.html. Page last visited: December 2003.

5.3. Transformation of Z Specifications 97

22 and 23. Another example is the LATEX literal “\where” in line 20 which
draws the line separating the declaration part from the axiomatic part. In
many cases these literals, together with specification primes, form higher-level
specification prime objects. The LATEX literal “\begin{schema}{Add}” is such
a literal. It is not a prime for itself, but together with primes representing
declarations and predicates it forms a higher-level prime object representing a
schema operation.

There are several possibilities of how to deal with these literals:

(i) The literals are ignored. However, omitting text means to lose information
which has been considered necessary by the writer of the specification. Fur-
thermore, a backward transformation of the net to the specification source
would be impeded. The structure of the net and the Z primes alone do not
suffice to reconstruct the original LATEX text.

(ii) Another solution would be to attach the additional text to start-, end- and
prime vertices. That would mean to mix plain semantic bearing vertices
(primes) up with structure bearing vertices. A prime vertex would be more
than a prime – it would also take over the role of a structuring entity.

(iii) A third approach is to introduce new types of vertices. Comments and direc-
tives are additional information relevant for reading the specification (layout
matters). The rest (general LATEX literals not part of a prime) is of structural
nature (be it for LATEX or for Z).

To ignore the elements means to lose relevant information (in respect to the
original specification source). To attach the literals to existing vertices means to
overload the semantics of the vertices. Adding new types seems to be an appropriate
solution, but how many types of vertices should be added?

In fact, up to now there are already two classes of vertices in the SRN: structure-
generating vertices (start- and end-vertices) and semantic-bearing vertices (prime
vertices).

Start- and end-vertices are used to form (sub-)units in the SRN. They can rep-
resent LATEX literals like “\begin{schema}{BB}”, but cannot cope with all LATEX
literals (e.g “\where”, the line separating a schema box). It seems to be very likely
to extend this class of structure preserving vertices by a third type of vertex which
represents this additional structural information. A vertex of this type is called
structural vertex.

There are no vertices in the SRN representing comments or annotations of the
specification. Thus, a new class of vertices is created. Vertices which belong to this
class are called comment vertices.

98 5. Augmented Specification Relationship Net

Fig. 5.6: Z primes, Z literals and LATEX literals are all assigned to the SRN. This figure
demonstrates that LATEX literals are assigned to structural vertices in the net.
For reasons of readability line numbers are attached to the vertices in the SRN.
Literals, assigned to vertices in the SRN, are encapsulated by dashed boxes.

This separation has several advantages:

1. The general structure of the SRN (sub-graphs encapsulated between start- and
end-vertices) remains untouched.

2. Comments, annotations and directives are additional information that can
easily be faded in and out when dealing with the net. (That means that it is
either possible to focus on the structure and ignore comment vertices, or to
focus on the specification text and take the comments into consideration).

Thus, two new types of vertices are introduced. On the one hand, there are com-
ments (annotating the specification), and, on the other hand, there are structuring
elements that pertain the readability of the specification.

To summarize, a specification consists of more than pretty-printed prime objects
only. In order to deal with the additional information, Def. 5.4 is extended by
adding new types of vertices. The eSRN is an SRN which is extended by two types
of vertices: vertices representing comments and directives in the LATEX source code
and vertices representing additional structural information. Fig. 5.6 presents an
example of an extended SRN. The eSRN is defined as follows:

Definition 5.10: Extended SRN. An extended specification relationship net (also
eSRN for short) of a specification is a 10-tuple (V ,Vpr ,Vstart ,Vend ,Vstruct , Vcomment ,
Ac,Aand ,Aor , t) where (V ,Vpr ,Vstart ,Vend ,AC ,Aand ,Aor , t) is an SRN and Vcomment

and Vstruct are vertices of V (Vcomment ∩ Vstruct = ∅).
Vcomment ⊂ V is a set of vertices called comment vertices; Vstruct ⊂ V is a set

of vertices called structural vertices. For all vertices v ∈ Vcomment ∪ Vstruct it holds
that v is not element of Vpr ∪ Vstart ∪ Vend .

5.3. Transformation of Z Specifications 99

Fig. 5.7: A Z specification consists of a series of Z paragraphs (see [BB95] for details).
Generally speaking, there are two types of paragraphs: the first one is undeco-
rated (Unboxed Paragraph), the second one is decorated and is called Z schema
box. There are three types of schema boxes (Schema Box , Axiomatic Box ,
Generic Box), and each of them is split into a declaration part and an optional
axiomatic part. Basic prime objects are identified by looking at the non-terminals
in the grammar of Z.

With the extension of the SRN mentioned above every literal of a specification’s
LATEX text is assigned to the net. The eSRN grasps all prime objects of a speci-
fication and provides vertices for syntax-related elements as well as for comments.
However, the detection of prime objects depends on the specification language at
hand. The subsequent section presents an approach for the identification of primes
in Z specifications.

5.3.2 Detecting Primes in Z

Primes are one of the semantic bearing entities of a specification. Executing the
approach of a specification’s transformation, prime objects are assigned to prime
vertices in the net. The definition of a prime in Chap. 4.2.1 does not explain how

100 5. Augmented Specification Relationship Net

to identify primes exactly. The reason for this is that the exact definition depends
on the specification language at hand.

When transforming a specification to an SRN the choice of the prime objects
has a strong influence on the complexity and usefulness of the net. If the mapping
is defined too coarse9, the net is easy to grasp (as only a few prime vertices are in
the net), but the chances of reducing the specification are limited (e.g. inter-schema
dependencies are vanishing). On the other hand, a too fine granular mapping leads
to a rather complex net (which, if the net is used for comprehension activities, is
hard to assess). The advantage of a detailed net is that it enables the detection of
several interrelationships.

So, what are suitable prime objects for Z specifications? In Chap. 4.2.1 the
answer has already been indirectly provided: one has to look for immutable, funda-
mental units that are merely defined by syntactic rules of the specification language.
A look at the Z reference manual [Spi89b] and the Z syntax in [BB95] helps to iden-
tify useful primes. The strategy is to look at those non-terminals which form small,
but not too small, semantic units of a specification.

By following the grammar rules the basic structuring elements are identified in a
straight forward manner: They are Z paragraphs which can be unboxed paragraphs
and schema boxes. Fig. 5.7 shows an example as well as the basic syntactic elements
that Z specifications are constructed upon.

Based on a top-down approach basic prime objects are identified as follows:

(i) The first step takes paragraphs and boxes as basic prime objects. The SRN
is then very simple as it contains as many prime vertices in the net as there
are paragraphs in the specification. However, this level of granularity does
not allow separating pre-condition and post-condition primes (as introduced
in Chap. 4.4.1). The prime itself would consist of both pre-condition and
post-condition primes at the same time.

(ii) The next step is to split paragraphs into their declaration part and axiomatic
part. The argument in step (i) applies again as these elements are too coarse
to identify pre-conditions and post-conditions.

(iii) Decomposing these elements furthermore leads to another recommendation of
a set of basic prime objects. At this level of granularity pre-condition and
post-condition primes can be identified.

9 According to Chap. 4.2.1 a prime object can be a whole operation schema. On the other, side
it can also be a sub-expression within an expression in a Z schema predicate.

5.3. Transformation of Z Specifications 101

Fig. 5.8: Relevant part of the Z grammar according to the Z reference manual [Spi89b] and
the preccx grammar as defined in [BB95]. Upper-case letters indicate terminals,
mixed upper- and lower-case letters indicate non-terminals. Non-terminals in
bold letters represent prime objects of the specification, underlined non-terminals
represent higher-level primes. Literals starting with an “L ” indicate LATEX lit-
erals.

This approach leads to the definition of Rule 5.2 which is based on the Z grammar
as defined in [Spi89b, BB95]. Fig. 5.8 presents an annotated version of the relevant
parts of the Z grammar.

Rule 5.2: Identification of primes in Z specifications. A Z specification con-
sists of a set of Z paragraphs. A Z-paragraph is either an unboxed Z paragraph
1 , a schema box 2 , an axiomatic box 3 , a generic box 4 , a directive 5 , or a

comment 6 . Depending on the corresponding non-terminals, primes are identified
as follows (examples refer to the BB-specification in Fig. 5.7):

1. Unboxed Z paragraphs 1 . The list of items consists of given set declarations,
schema declarations, global expressions , free type definitions and predicates :

102 5. Augmented Specification Relationship Net

• Given set declarations 1a . Each given set represents a prime object. In
the BB example “NAME” and “DATE” (line 1) are two prime objects.

• Schema declarations 1b . The left-hand side of the declaration is a
schema name and represents a prime object. The right-hand side is a
schema expression that forms a higher-level prime. “AddSuccess” is a
prime object, and “Add ∧ Success” is a higher-level prime (lines 16
and 17). The schema expression is further decomposed. It consists of

a quantified schema expression b1 or a set of sub-expressions b2 . The
quantified schema expression forms a semantic unit and is assigned to
a prime object. Each sub-expression is treated as a higher-level prime
and is decomposed until basic primes like schema references b3 , decla-

rations b4 , or predicates b5 remain. The expression “Add ∧ Success”
is decomposed into “Add” and “Success”, and thus consists of two prime
objects.

• Global Expressions 1c . The whole expression is treated as one prime
object. There is no global expression in the BB-specification. However,
an example would be the expression “square == λ i : N • i · i”. It would
have been treated as one prime object.

• Free-type declarations 1d . Every free type declaration consists of bran-
ches (which are either identifiers, or identifiers and expressions). Every
free-type declaration forms a prime. “Report ::= OK | NOK” (line 2) is
such a prime object.

• Predicates 1e . In Z, a predicate can appear as its own paragraph. This
is not the case in the BB-specification. However, a predicate paragraph
“maxentries ≥ 0” might be inserted between lines 4 and 5. In this case,
the predicate at hand would be one prime object.

2. Schema 2 , axiomatic 3 , and generic 4 boxes. They consist of a declaration
section and an optional axiomatic section. Looking at these non-terminals
leads to the following set of primes:

• Declaration Parts. Each box has a declaration section which might con-
sist of a list of basic declarations. Basic declarations are declaration
expressions 2a or references 2b . Each declaration expression is as-
signed to a prime object. For instance “maxentries : Z” (line 3) and
“result ! : RESULT” (line 14) are prime objects. Apart from declara-
tions, references (schema inclusions) might arise in the declaration part.
Each reference is represented by a prime. “∆BB” (line 8) is another
prime object in the BB example above.

5.3. Transformation of Z Specifications 103

• Predicates. The axiomatic part of a schema box consists of a list of
predicates 2c . Here, every predicate is represented by a prime object.
”known = dom birthday” (line 7) or ”report ! = OK” (line 15) are two
prime objects of the BB specification.

3. Directives 5 and Comments 6 . There are no comments or directives in the
BB-example. However, they are directly treated as primes.

2

By applying Rule 5.2 literals forming semantic units of a specification are as-
signed to prime objects. Schema boxes, axiomatic boxes and generic boxes are
decomposed into their declaration and axiomatic part. Every declaration leads to
a prime. The same holds for every predicate in the axiomatic part. Comments and
directives are directly treated as primes. Unboxed paragraphs are decomposed into
items. Items representing predicates, global expressions and generic type definitions
are directly assigned to prime objects. Items representing given set declarations
and schema expressions are decomposed. Every given set is assigned to a prime
object. Schema expressions are decomposed until they are reduced to declarations
and predicates.

Primes are identified by a very simple heuristic: looking for the smallest set of
Z-literals that (i) form non-terminals of the language definition and that (ii) are
commonly referred to when describing or augmenting Z paragraphs. Line numbers
are not relevant; what counts are semantic-units that can be assigned to primes.
They form the “components” [Spi89b, p.77] that specifications are built upon, and
these non-terminals are easy to identify: basic declarations, references, (schema,
set, and free type) identifiers, identifiers representing other schema elements and
predicates.

It would have been possible to choose a different level of refinement (e.g. staying
on the top-down track of decomposition). However, further decomposing the non-
terminals is not practical for the following two reasons:

1. The decomposition of predicates (e.g. “∀ x : PNAME | x ⊆ known •
#x ≤ maxentries”) leads to several terms and sub-expressions (in the above
example the declaration part “∀ x : PNAME”, the filter “x ⊆ known”, and
the predicate “#x ≤ maxentries”). The two terms and the predicate are,
if standing alone, too small to form a useful semantic unit. A prime object
“∀ x : PNAME” definitely forms a syntactic unit, but has too general se-
mantic meaning. For this reason the approach does not decompose nested
expressions and handles the whole expression as one prime. The same is true
for branches in free-type declarations. An “OK” is almost too small to form
a self-containing semantic unit.

104 5. Augmented Specification Relationship Net

2. Developers use Z to model a system by describing static and dynamic behavior
via states and operations. Spivey uses the term invariant [Spi89b, p.7] for the
relationships which are specified by developers. Invariants are exactly the
predicates and expressions identified above. Thus, this choice of basic prime
objects seems to be the most appropriate one as these primes are generally
used when describing invariants through natural language.

As a further argument rewriters and animation tools for Z are also based on
these basic primes. Possum, for instance, looks for declarations and predicates in
order to simplify and to transform them to the SUM specification language [HST98]
(which can then be animated by executing queries to the specification).

5.3.3 Transformation Rules for Z

The eSRN is defined independently of particular specification languages. How-
ever, the rules to translate a specification into an eSRN in a syntax- and semantic-
preserving manner have to be defined in a language dependent manner. This section
describes the basic steps that are necessary to transform a Z specification into an
eSRN.

According to the grammar of Z (see again Fig. 5.8), there are six types of Z
paragraphs: unboxed paragraphs, schema boxes, axiomatic boxes, generic boxes,
directives and comments. The creation of an eSRN follows a simple heuristic: Every
paragraph in the specification is transformed into an SRN block and is connected
to the totality vertex of the net. Primes that represent declarations and predicates
are added to that block. Every time a vertex is created the position and text of the
prime or literal it represents is attached to it.

However, there are two special situations: Firstly, a prime might represent an
inclusion of a schema, and secondly, two schema expressions might be combined by
a schema operation. In the first case an AND-control arc is used to connect the
referring prime to the referred schema. In the second case an additional SRN block
(with a predicate vertex for the left-hand and a predicate vertex for the right-hand
side of the expression) is created. The two schema expressions involved are then
(recursively) assigned to eSRN subgraphs. Depending on the type of the schema-
operation these subgraphs are connected to the predicate vertices. Rule 5.3 describes
this approach in more detail.

Several SRN blocks are created during the transformation. The following abbre-
viations are used to shorten the description of the following procedure:

Definition 5.11: eSRN Operations used in Rule 5.3. The following operations
are used when transforming a Z specification to an eSRN. ID represents a unique

5.3. Transformation of Z Specifications 105

identifier, SRN represents an SRN subgraph, V represents a vertex in the net,
Prime represents a specification prime, OP a schema operator:

• createSRN : ID → SRN ; This operation creates the frame of an SRN block
SRNID . A start vertex SID and an end vertex EID are introduced. They are
connected by a sequential control arc (EID , SID)C . It returns the subgraph.

• addVertex : V × SRN 7→ V ; This operation takes a vertex Vi and adds
it to the SRN block SRNi (with start vertex Si and end vertex Ei) via arcs
(Si ,Vi)∧ and (Vi ,Ei)c. It returns the vertex Si .

• includeSRN : V ×SRN 7→ V ; This operation takes a vertex Vi and connects
it to SRN block SRNi (with start vertex Si) via arc (Vi , Si)∧. It returns vertex
Vi .

• referSRN : V × SRN 7→ V ; This operation takes a vertex Vi and connects
it to the SRN block SRNi (with start vertex Si and end vertex Ei) via arcs
(Vi , Si)∧ and (Ei ,Vi)c. It returns vertex Vi .

• createRefSRN : ID 7→ V ; This operation creates an SRN block SRNID (via
operation createSRN (ID)) and a predicate vertex Pr . Pr is connected to this
block via operation referSRN (Pr , SRNID) and it is returned.

• findSRN : Prime 7→ SRN ; This operation returns the SRN subgraph that
represents the higher-level prime Prime.

• mergeSUB : (V ×OP ×V × SRN) 7→ V ; This operation takes two vertices
P1 and P2 and adds them to a given SRN block SRNm (with start vertex Sm

and end vertex Em). The following steps are conducted:

If P1 is the start vertex of an SRN block SRN1, a predicate vertex P ′
1 is created

and connected to SRN1 via referSRN (P ′
1, SRN1). Otherwise P1 is renamed to

P ′
1.

If P2 is a start vertex (of an SRN block SRN2), a predicate vertex P ′
2 is created

and connected to SRN2 via referSRN (P ′
2, SRN2). Otherwise P2 is renamed to

P ′
2.

Depending on the type of the operator OP , one of the following steps is exe-
cuted:

– The operator is a conjunction (∧), bi-implication (⇔), or projection
(¹). Then the prime vertices are connected via arcs (Sm ,P ′

1)∧, (Sm ,P ′
2)∧,

(P ′
1,Em)c, (P ′

2,Em)c.

106 5. Augmented Specification Relationship Net

– The operator is a disjunction (∨), or an implication (⇒). Then the predi-
cate prime vertices are connected via arcs (Sm ,P ′

1)∨, (Sm ,P ′
2)∨, (P ′

1,Em)c,
(P ′

2,Em)c.

– The operator is a sequential composition operator (o
9), or a piping operator

(>>). Then the predicate prime vertices are connected via arcs (Sm ,P ′
1)∧,

(P ′
1,Em)c, (Sm ,P ′

2)c, (P ′
1,P

′
2)c, and (P ′

2,Em)c.

With the operations provided in Def. 5.11 a simple rule for the transformation
of a Z specification to an eSRN can be provided:

Rule 5.3: Simple transformation of a Z specification to an eSRN. For every
non-empty specification, a totality vertex t is created. The list of paragraphs is
decomposed, and, for every paragraph (depending on the non-terminal) one of the
following steps is conducted:

1. Unboxed paragraph 1 . The non-terminal is decomposed. An SRN block
SRNp is created via operation createSRN (p), and it is connected to the ter-
minal vertex t by using operation includeSRN (t , SRNp).

The terminal L BEGIN ZED is assigned to Sp , the terminal L END ZED is
assigned to Ep . For every terminal SEP a structural vertex Ps is created and
added to the SRN block via addVertex (Ps , SRNp).

Every non-terminal Item is transformed according to one of the following steps:

a. Given set declaration 1a . For every prime object representing a given
set a predicate vertex Pi is created and inserted into the SRN block via
addVertex (Pi , SRNp). For every terminal (L OPENBRACKET, L COMMA
and L CLOSEBRACKET) a structural vertex Ps is created and added
to the SRN via addVertex (Ps , SRNp).

b. Schema expression 1b . A predicate vertex Pi is created and added to the
SRN block by operation addVertex (Pi , SRNp). Pi represents the prime
at the left-hand side of the expression.

For the terminal L DEFS a structural vertex Ps is created and added to
the SRN via addVertex (Ps , SRNp).

The non-terminal Schema Exp (at the right-hand side of the expres-
sion) is further decomposed. The following steps are carried out (re-
cursively) until the schema expression is reduced to simple prime ob-
jects. The result is a vertex Vsub which is added to the SRN block via
addVertex (Vsub , SRNp).

5.3. Transformation of Z Specifications 107

i. The non-terminal Schema Exp consists of a single prime object b1 ,

or a sub-expression b2 . If it is a single prime object pj , a predicate
prime Pj is created and assigned to Vsub . If it is a sub-expression
p, then p is transformed and the result is assigned to Vsub . Vsub is
returned.

ii. The non-terminal Schema Exp 1 consists of a single sub-expression
p1 (non-terminal Schema Exp 2). Then p1 is transformed. The result
is assigned to Vsub , and Vsub is returned.

iii. The non-terminal Schema Exp 1 consists of two sub-expressions p1

(non-terminal Schema Exp 2) and p2 (non-terminal Schema Exp 1).
Then p1 and p2 are transformed. These transformations lead to
two vertices Vsub,1 and Vsub,2. An SRN block SRNe is created via
createRefSRN (e); the returned vertex is assigned to Vsub .
For the terminal L IMPLIES a syntactical vertex Ps is created and
added to the SRN block via addVertex (Ps , SRNe).
Vertices Vsub,1 and Vsub,2 are merged into the actual SRN block SRNe

via mergeSUB(Vsub,1,⇒,Vsub,2, SRNe). Vsub is returned.

iv. The non-terminal Schema Exp 2 consists of a single sub-expression
p1 (non-terminal Schema Exp 3). Then p1 is transformed. The result
is assigned to Vsub , and Vsub is returned.

v. The non-terminal Schema Exp 2 consists of two sub-expressions p1

and p2 (non-terminals Schema Exp 3). Then p1 and p2 are trans-
formed. These transformations lead to two vertices Vsub,1 and Vsub,2.
An SRN block SRNe is created via createRefSRN (e); the result is
assigned to Vsub .
For the terminal (L LAND, L LOR, L IFF, L COMP, L RESTRICT,
or L PIPE) a syntactical vertex Ps is created and added to the SRN
block via addVertex (Ps , SRNe).
The operation OP is determined, and the subgraphs are added to the
SRN block via mergeSUB(Vsub,1,OP ,Vsub,2, SRNe). Vsub is returned.

vi. The non-terminal Schema Exp 3 consists of a single sub-expression
p1 (non-terminal Schema Exp U). Then p1 is transformed. The re-
sult is assigned to Vsub , and Vsub is returned.

vii. The non-terminal Schema Exp 3 consists of two sub-expressions p1

and p2 (non-terminals Schema Exp U). Then p1 and p2 are trans-
formed. These transformations lead to two vertices Vsub,1 and Vsub,2.
An SRN block SRNe is created via createRefSRN (e); the result is
assigned to Vsub .
For every terminal which is not part of the sub-expressions, a syntac-
tical vertex Ps is created and added to SRNe via addVertex (Ps , SRNe).

108 5. Augmented Specification Relationship Net

The operation OP is determined, and vertices Vsub,1, and Vsub,2 are
added to the actual SRN block via mergeSUB(Vsub,1,OP ,Vsub,2, SRNe).
Vsub is returned.

viii. The non-terminal Schema Exp U consists of a single schema refer-

ence b3 referring to prime pr . A predicate vertex Pr is created and
assigned to Vsub . The referred SRN block is identified and connected
to Pr by referSRN (Pr , findSRN (pr)). Vsub is returned.

ix. The non-terminal Schema Exp U consists of a schema text expres-
sion (non-terminal Schema Text). This expression consists of decla-
rations, literals and predicates. An SRN block SRNe is created via
operation createRefSRN (e). The result is assigned to SRNsub .

For every basic declaration pd b4 a predicate vertex Pd is created
and assigned to SRNe via operation addVertex (Pd , SRNe). If the
basic declaration pd is a reference to a prime pr , the referred SRN
block is identified and included via includeSRN (Pd , findSRN (pr)).

For every predicate b5 a predicate vertex Pp is created and assigned
to the SRN block via operation addVertex (Pp , SRNe).
For every terminal that is not part of a prime, a structural vertex Ps

is created and assigned to the SRN block via operation addVertex (Ps ,
SRNe). Finally, Vsub is returned.

x. The non-terminal Schema Exp U consists of a schema expression ps

(non-terminal Schema Exp U or Schema Exp) and literals.
The sub-expression ps is transformed. The result is a vertex Vsub,1.

∗ If Vsub,1 is a single predicate vertex, an SRN block SRNe is cre-
ated via operation createRefSRN (e). The result is assigned to
Vsub . Vsub,1 is assigned to SRNe via addVertex (Vsub,1, SRNe).

∗ Otherwise Vsub,1 is a vertex referring to an SRN block SRNsub .
Then SRNsub is renamed to SRNe , and Vsub,1 is assigned to Vsub .

For every terminal that is not part of a prime, a structural vertex
Ps is created and assigned to the SRN block SRNsub via operation
addVertex (Ps , SRNe). Finally, Ve is returned.

c. Global expression 1c , free-type declaration 1d , or predicate 1e . For
such a prime object a predicate vertex Pi is created and added to the
SRN block via addVertex (Pi , SRNp).

2. Z schema box 2 , axiomatic box 3 , or generic box 4 . The non-terminal
is decomposed. An SRN block SRNb is created via createSRN (b), and it is
connected to the terminal vertex t by using an AND-control arc (t , Sb)∧.

5.3. Transformation of Z Specifications 109

Up to the declaration part the terminals and literals are assigned to the start-
vertex of SRNb . The terminal after the axiomatic part is assigned to the
end-vertex of SRNb .

The declaration part is decomposed. For every basic declaration pd a predicate
vertex Pd , and for every terminal SEP a structural vertex Ps is created. They
are added to the SRN block via addVertex (Pd , SRNb) and addVertex (Ps , SRNb).
If the basic declaration is a reference to a prime pr , the referred SRN block is
identified and connected to Pj via includeSRN (Pd , findSRN (pr)).

If there is an Axiomatic Part, a structural vertex Ps (for terminal L WHERE)
is created and added to the SRN block SRNb via addVertex (Vs , SRNb). The
axiomatic part is decomposed. For every predicate pa a predicate vertex Pa ,
and for every terminal SEP a structural Vertex Ps is created. They are added
to the SRN block via addVertex (Pa , SRNb) and addVertex (Ps , SRNb).

3. Directive 5 or comment 6 . A comment vertex Pc is created. It is connected
to the totality vertex t by using an AND-control arc (t ,Pc)∧.

2

According to Rule 5.3 every prime and literal of a syntactically correct spec-
ification is assigned to the eSRN. By strictly following the grammar-rules, every
non-terminal is decomposed to a set of non-terminals (which are finally assigned
to prime vertices) and terminals (which are assigned to structural vertices). Every
vertex is either added to an SRN block, or directly added to the totality vertex. The
eSRN is emerging.

Again, the birthday book specification out of [Spi89b] is taken for illustrative
reasons. For reasons of readability comment vertices and structural vertices are
omitted in the subsequent figures. Additionally, the Delete operation schema of the
BB specification is omitted because the transformation steps are the same as those
of the Add operation schema. In Appendix C.1 there is the full BB specification as
well as the transformation to the eSRN10.

The transformation of schema, axiomatic and generic boxes is straight forward.
An SRN block is created, linked to the totality vertex, declarations and predicates
are assigned to vertices, and these vertices are linked to the SRN block.

Fig. 5.9 demonstrates how to transform the ”Add” operation schema. It includes
the state schema BB in line 17. According to step 2 (Rule 5.3), an SRN block is

10 For nearly all Z-examples presented in this work, most of the arcs are AND arcs. The reason
for this is that predicates in a Z-schema are, if not otherwise stated, logically combined via an
AND operation. This property is, of course, made explicit in the net by using AND-control arcs.
However, primes can be combined via disjunction. Thus, OR-control arcs are possible, too.

110 5. Augmented Specification Relationship Net

Fig. 5.9: Transformation of three paragraphs of the birthday book specification to the
eSRN representation. The columns present the specification source (in LATEX),
the specification and the eSRN. Additionally, every vertex has a line number
attached to it. E.g. prime vertex P4 represents the prime object starting at line
(6) in the specification source. For reasons of readability, structural vertices are
omitted.

created, and for every basic declaration and predicate, predicate vertices are added
to the SRN block. As there is a schema inclusion in the declaration part of the Add
operation schema, the referred prime is identified (the BB state schema), and linked
to the referring prime. Thus, the state schema (with start node S2) is AND-control
arc connected to prime object P9.

The transformation of unboxed paragraphs is, except for one special case – that
of a schema expression, again straight-forward. Fig. 5.9 presents a simple example
of how to transform an unboxed paragraph (given set and free-type declarations in
lines 2 and 3) into an eSRN. An SRN block is created, and the primes are added to
the block. P1 represents the prime object NAME , P2 represents the prime object
DATE . They are added to the eSRN due to step 1.a in rule 5.3. P3 represents the
prime Report ::= OK | NOK . It has been added to the eSRN due to step 1.c.

5.3. Transformation of Z Specifications 111

Fig. 5.10: Schemata that are combined via logical operations are encapsulated between
nested SRN blocks. The schema FunctioningDB is annotated by the corre-
sponding vertices in the eSRN. Additionally, every vertex has a line number
attached to it. For reasons of readability, structural vertices are omitted.

Much more complex than operation schemata is the transformation of unboxed
paragraphs representing schema expressions. Fig. 5.10 demonstrates how the schema,
resulting from the schema expression FunctioningDB == (Add ∧ Success) ∨ (Delete
∧ Success) (lines 40 and 41 in the specification source), is transformed into the eSRN.
As there are several transformation steps to be conducted, Fig. 5.11 summarizes
these steps and decomposes the expression into its non-terminals and terminals.

As the paragraph is an unboxed paragraph, step 1 of Rule 5.3 has to be applied.
An SRN block SRN7 is created. The literal “\begin{zed}” is assigned to S7, the
literal “\end{zed}” is assigned to E7. The paragraph consists of one item and does
not contain any separators. Step 1.b is applied.

112 5. Augmented Specification Relationship Net

Fig. 5.11: The schema FunctioningDB (Fig. 5.10 bottom) consists of schema references
that are combined via conjunctions and one disjunction. The schema is trans-
formed into an eSRN by applying rule 5.3. This figure presents the non-
terminals and terminals, and, for one schema reference, the steps (beginning
with 1.b.i) that are to be conducted.

Predicate vertex P20 is created and added to SRN7. It represents the left hand
side of the expression. The literal “==” (terminal L DEFS) is assigned to a struc-
tural vertex and added to SRN7, too. The same holds for literal “\t1”. The right-
hand side is a single schema expression. Thus, it is transformed and the resulting
subgraph (that is referred to from vertex P21) is connected to SRN7.

The sub-expression is a single subexpression; thus, step 1.b.ii is applied, and the
expression is transformed into the eSRN. The expression consists of two subexpres-
sions that are combined by a logical OR operation, applied during step 1.b.v. An
SRN block SRN8 and a vertex P21 which refers to SRN8, is created. The literal
“\lor” (terminal L LOR) is assigned to a structural vertex and is added to SRN8.

The transformation of the sub-expressions are straight-forward. The first sub-
expression is reduced (step 1.b.vi) to a single sub-expression and some literals (step
1.b.x). The literals represent the parenthesis, the sub-expression is transformed.
The result of this transformation is an SRN block SRN9. Thus, the literals are
added to the block. The same happens to the second sub-expression. The result is
SRN block SRN10.

The generation of SRN9 is as follows: Due to steps 1.b.i and 1.b.ii the sub-
expression is reduced to an expression consisting of two sub-expressions and an
operator. Step 1.b.v is applied. The literal representing the operator is assigned to
a structural vertex, the vertex is added to SRN9. An SRN block SRN9 and a vertex
P21,1 referring to this SRN block are created. This vertex is then included in SRN
block SRN8. However, the result of the transformation of the sub-expressions is
included in the SRN block, and, due to steps 1.b.vi and 1.b.viii, it is a single prime
vertex P21,3. The same holds for the second sub-expression. It is a single schema
reference. The result is vertex P21,4.

5.3. Transformation of Z Specifications 113

Both vertices are added to SRN block SRN9. This block is referred to from SRN
block SRN8, which is referred to from SRN7. The resulting eSRN subgraph can be
found in Fig. 5.10.

By following rule 5.3 it is possible to generate an eSRN representation of a
syntactically correct specification. Again, the full specification transformation of
the birthday book including syntactic vertices can be found in Appendix C.1.2.

5.3.4 Properties of the SRN and the Transformation

Rule 5.3 describes a transformation function which takes a syntactically correct
Z specification as input and produces an extended specification relationship net.
However, the net is a means to an end. The eSRN is used as a basis for the
identification of dependencies and for the generation of specifications’ abstractions.
It is also of interest whether the specification (in its eSRN form of representation)
can be transformed back to its LATEX form of representation.

This section argues that the transformation, as described in Rule 5.3, is bijective
(leading to Theorem 5.7). This implies that a backward transformation exists. The
proof makes use of several theorems that are presented hereafter.

The steps presented in Rule 5.3 focus on the special structure of the SRN.
Whereas sequential ordering in the LATEX source text of the specification is ne-
glected, block-building structures and nested expressions are taken into account.
When considering properties of the net, strongly connected components are of inter-
est. Strongly connected components are subgraphs, where every vertex in the graph
is reachable from all other vertices (and vice-versa):

Definition 5.12: Strongly connected vertices. Let SRN = (V ,Vpr ,Vstart ,
Vend , Vstruct , Vcomment , Ac, Aand ,Aor , t) be the eSRN of a specification.

Two vertices vi and vj are called strongly connected (vi ∼ vj), if vi is reachable
from vj and vj is reachable from vi .

∼ defines an equivalence relation on V × V . Sets of vertices satisfying this
relation belong to the class of so called strongly connected components.

Definition 5.13: Connected components. Let SRN = (V ,Vpr ,Vstart , Vend ,
Vstruct , Vcomment , Ac, Aand ,Aor , t) be the eSRN of a specification. Let SRNsub =
(Vsub ,Asub) be a subgraph of SRN , where Vsub ⊆ V , Asub ⊆ (Ac ∪ Aand ∪ Aor).

The sub-graph SRNsub is called strongly connected, if it consists of exactly one
strongly connected component.

The sub-graph SRNsub is called connected, if the corresponding symmetric graph
SRN ∗

sub is strongly connected. The symmetric graph is defined as follows: SRN ∗
sub =

SRNsub ∪ {(vi , vj) | (vj , vi) ∈ SRNsub}

114 5. Augmented Specification Relationship Net

The steps in Rule 5.3 map block structures of a specification to SRN blocks.
The most obvious block structure in Z specifications is that of a boxed Z paragraph.
All steps first start to generate a set of SRN blocks, and every prime and literal of
this specification block is then embedded in the SRN block. For Z paragraphs it
can be observed that nested expressions are dissolved by making use of references
and inclusions. Inclusions are represented by AND-arcs connecting a vertex of the
referred SRN block to a vertex of the referring SRN block. The involved SRN blocks
are not strongly connected (as there is no arc that connects the SRN blocks the other
way round). References lead to strongly connected SRN blocks. In fact, for every
two (referred) specification blocks a new block is introduced (which refers to those
blocks).

A syntactically correct specification consists of a list of specification primes,
comments, directives and literals. If there is no risk of misunderstanding, they are
summarized under the term specification elements in the sequel.

What is even more important is the fact that the steps presented in Rule 5.3
lead to a transformation function that is total:

Theorem 5.1: For every literal in a syntactically correct specification Ψ there is
a vertex in the eSRN Υ. The transformation T R, as defined in Rule 5.3, is total
(T R : Ψ → Υ).

Proof: The proof is divided into two parts: (i) showing that every literal of Ψ is
either assigned to a prime object, a structural object, a comment, or directive, and
(ii) showing that every such object (generated out of Ψ) is then assigned to a set of
vertices in Υ.

ad (i). Section 5.3.2 presented an approach for the identification of primes in Z
specifications. A literal in the specification is either element of a Z prime object, or
it is a comment, structural or directive literal. Suppose that there exists a literal
in Ψ that is not contributing to the non-terminal of a Z paragraph. This can only
happen if Ψ is syntactically not correct. In this case the basic assumption is vio-
lated because the literal is neither identified as a prime object, nor as a comment,
structural or directive literal.

ad (ii). According to Rule 5.3, every non-terminal of a Z paragraph is reduced
to a set of primes and literals (step 1 or 2) and directives and comments (step 3).

Unboxed paragraphs are decomposed by steps 1.a to 1.c. Every prime object
is assigned to a prime vertex in step 1.a, and every literal is assigned to a struc-
tural vertex. Step 1.b recursively decomposes schema expressions. Primes of the
schema expression are assigned to the net by steps 1.b.i (quantified schema expres-
sion), 1.b.viii (schema references) and 1.b.ix (declarations and predicates). Thus,

5.3. Transformation of Z Specifications 115

all primes are assigned to the net. Composed expressions might contain literals
which are not element of a prime object. These literals are assigned to the net by
steps 1.b.iii (Schema Exp 1), 1.b.v (Schema Exp 2), 1.b.vii (Schema Exp 3), 1.b.ix
(Schema Exp Text) and finally 1.b.x (Schema Exp U). Thus, all literals of a schema
expression that are not part of a prime are assigned to the net. Step 1.c maps ex-
pressions, declarations and predicates to the net, and every literal that is element
of these non-terminals is part of the prime object.

Schema, axiomatic and generic boxes are transformed by step 2. Again, every
prime object is assigned to a prime vertex in the net, and every literal which is not
element of a prime is assigned to a structural vertex. Finally, for every directive and
for every comment in the specification a vertex is introduced.

Thus, all rules of the Z grammar are handled by the above described steps, and
every non-terminal and terminal is assigned to the SRN. However, suppose that
there is an element that is not assigned to a vertex in Υ. This means that it is nei-
ther a prime object, nor a structural object, nor a comment object, nor a directive.
This, in consequence, means that Ψ is syntactically not correct. The basic assump-
tion would be violated. Thus, every object gets its vertex in Υ. The transformation
is total.

2

During the transformation phase a set of SRN blocks is generated. These blocks
have special properties. First of all, the SRN block represents a strongly connected
component because all vertices in the block are reachable from each other.

Theorem 5.2: Every SRN block SRNi of an eSRN Υ representing a syntactically
correct specification Ψ is a strongly connected component. This means

∀ v1, v2 : SRNi | SRNi ⊆ Υ • (v1 ∼ v2)

Proof: The property of strongly connected components implies that all vertices
are mutually reachable in a directed graph (V ,A) :

∀ v1, v2 : V • ∃ p : Path • α(p) = v1 ∧ ω(p) = v2

Every SRN block consists of at least three vertices (one start vertex, one end
vertex and at least one prime vertex). Whenever steps 1 and 2 of Rule 5.3 are
applied, operations createSRN and createRefSRN are executed. These operations

116 5. Augmented Specification Relationship Net

create a start vertex and an end vertex. The end vertex is connected to the start
vertex via a sequential-control arc. Thus, the frame of an SRN block is created.

Whenever such an SRN frame is created, the operation is followed by an addVertex
operation. createSRN in step 1 is followed by an addVertex in 1.a, 1.b, and 1.c. The
same holds for step 2, where at least one vertex representing a basic declaration is
added to the frame. And the operation createRefSRN (in steps 1.b.iii, 1.b.v, 1.b.vii,
1.b.ix and 1.b.x) is followed by an addVertex , too.

addVertex adds a vertex v to the frame. This vertex is connected to the start
vertex, and the end vertex is connected to vertex v . The result is that the start
vertex is connected to the additional vertex, the additional vertex is connected to
the end vertex, and the end vertex is connected to the start vertex. There is a circle
in the initial SRN block, and all vertices are mutually reachable.

2

All vertices in the net are directly connected to the totality vertex or to an
SRN block. The SRN blocks are also connected to the totality vertex, or they
are referred to from SRN blocks (which are directly or indirectly connected to the
totality vertex). This means that an eSRN is a connected graph.

Theorem 5.3: Every eSRN Υ representing a syntactically correct specification Ψ
is a connected graph.

Proof: Every literal of a specification paragraph is either transformed into a
vertex in an SRN block, or it is transformed into a vertex that is directly connected to
the totality vertex t . Every SRN block created via createSRN is directly connected
to the totality vertex, too. Every SRN block created via createRefSRN is connected
to a predicate vertex that is connected to this SRN block. This predicate vertex
is included via addVertex and mergeSUB operations to referring SRN blocks, and
these SRN blocks are finally referred to from an SRN block created with createSRN .
This guarantees that there is a path p from the totality vertex to the start node of
every SRN block. The graph Υ is connected.

Suppose that there is a vertex v in Υ which is not reachable from the totality
vertex. In this case it cannot be a comment vertex, or a directive. The reason is
that it is not connected to the totality vertex directly. If it is a prime or structural
vertex it has to be a vertex of an SRN block. Because an SRN block is strongly
connected, there has to be a path from the start vertex of that SRN block to the
vertex v . As there is a path from the totality vertex to every start vertex of an
SRN block, this means that there is a path from the totality vertex t to the vertex
v . Otherwise the vertex is not a prime or structural vertex, which means that Ψ is
syntactically not correct.

2

5.3. Transformation of Z Specifications 117

Additionally, all literals, except those outside a Z schema box, are part of an
SRN block.

Theorem 5.4: Every literal that is element of a syntactically correct specification
Ψ is part of an SRN block that is element of the eSRN Υ. This holds for all literals
except for those representing comments and directives.

Proof: It has already been shown that every literal has a corresponding vertex
in Υ. Literals can be part of a prime object. In this case they are directly connected
to an SRN block via operation addVertex . In all other cases they are assigned to
structural vertices, comment or directive vertices. Comments and directives are
excluded from SRN blocks (and from this theorem). Structural vertices are directly
connected to SRN blocks. Thus, all literals, other than those denoting comments
and directives, are element of an SRN block.

2

Literals are not just assigned to vertices in the eSRN. Literals that are closely
related (which means that they are element of the same paragraph) are element of
strongly connected SRN blocks.

Theorem 5.5: All literals that are element of the same paragraph of a syntactically
correct specification Ψ are part of the same SRN block S or of an SRN block T that
forms a strongly connected component together with S (S ∼ T).

Proof: It already has been shown that every literal that is element of a paragraph
is assigned to an SRN block. According to transformation steps 1 and 2, every
Z paragraph gets its own SRN block. Every vertex representing a literal of this
paragraph is added to this SRN block, and is thus strongly connected to the SRN
block.

If, according to step 1.b, a higher-level prime is decomposed into several SRN
blocks the SRN blocks are getting connected via two opposite arcs (using operation
referSRN). The SRN blocks are thus strongly connected. Due to this connection,
this vertex (which has to be part of an SRN block which is itself a strongly connected
component) is element of a strongly connected component.

2

The property of strongly connected SRN blocks will be useful when arguing
about structural dependencies in the subsequent section. Next, it is important to
show that for every literal in the specification there is a unique vertex in the eSRN.
This is the case as just one non-terminal or terminal is assigned to the net at a time.

118 5. Augmented Specification Relationship Net

Theorem 5.6: For every specification element (prime or literal that is independent
of a prime) of a syntactically correct specification Ψ there is a unique vertex in the
SRN Υ. Thus, the transformation is injective (T R : Ψ ½ Υ).

Proof: It has already been shown that every literal in a syntactically correct
specification Ψ is assigned to a vertex in the eSRN Υ. The transformation into Υ
is total. A unique vertex in Υ means that

∀ x1, x2 : Element | x1 ∈ Ψ; x2 ∈ Ψ; x1 6= x2 • T R(x1) 6= T R(x2)

At a particular point of time the transformation function takes only one non-
terminal and replaces it by non-terminals and terminals until a specification element
is identified. This object is transformed into the net by creating a new vertex and
adding it to the eSRN. There is no step in Rule 5.3 that identifies a prime and assigns
it to an already existing vertex in the net. This procedure means that elements in
Ψ are identified only once (x1 6= x2), and that for every new element a new vertex
in Υ is created (T R(x1) 6= T R(x2)). Thus, the transformation is injective.

2

It is important that every specification can be assigned to a unique SRN. How-
ever, it is crucial that the SRN representation can be transformed back to the
specification in its LATEX form of representation.

With the theorems discussed above, it is possible to show that the transforma-
tion is bijective. This means that there is a backward transformation, and that a
transformed specification can be reconstructed without loss of information:

∃ T R−1 ∧ T R−1(T R(Ψ)) = Ψ

The SRN can be used as a representation replacing the original specification
text. The above results are essential for the use of the SRN. This means that every
specification can be transformed into an SRN, and that every piece of information
in the specification text is assigned to a corresponding vertex in the net. And it
is also possible the other way round. Everything interesting in the eSRN can be
assigned back to the specification source.

Theorem 5.7: The transformation function T R, transforming a syntactically cor-
rect specification Ψ to an eSRN Υ, is bijective (T R : Ψ ½→ Υ).

Proof: This theorem implies that (with Υ representing a syntactically correct
specification Ψ) the specification source can be reconstructed without loss of in-
formation. A bijective function is a function that is both injective and surjective.

5.3. Transformation of Z Specifications 119

Theorem 5.6 already showed that every specification element in Ψ is assigned to a
unique vertex in Υ. The transformation is injective.

What is left to show is that the transformation function is surjective (T R : Ψ →→
Υ). For every vertex in Υ (representing a prime or literal PL) there has to be a
distinct specification element (SpecElement) in Ψ:

∀ v : V | v ∈ Υ \ {t} ∧ v ∈ PL • ∃1 x : SpecElement | x ∈ Ψ • T R(x) = v

Suppose there is a vertex w that has more than one or no corresponding speci-
fication object in Ψ. Two situations can occur:

1. If there are several corresponding objects in Ψ, then Theorem 5.6 would be
violated.

2. If there is no corresponding specification element, the net is not an SRN:

(a) Either the vertex w is isolated (not connected to Υ). This would mean
that the net is not an eSRN.

(b) Or the vertex w is connected to Υ. Then it belongs to an SRN block, or
it is connected to the totality vertex. In both cases the vertex is part of
a Z paragraph and thus must have been transformed. The only reason
for not having been transformed by transformation function T R is that
of an incorrect Ψ.

2

The transformation also preserves the scope of primes in the specification. The
scope of a Z prime (see also Rule. 5.1) is defined as follows:

Definition 5.14: Scope of a Z prime. Let Ψ be a syntactically correct Z speci-
fication, P and Q be paragraphs of Ψ, and p be prime object that is element of P .
The scope of the prime p

1. includes the prime p itself,

2. includes those primes q that are element of the same paragraph and

3. includes all paragraphs Q that directly or indirectly refer to paragraph P .

SRN blocks are used to provide the notion of a local scope, and referred/included
SRN blocks provide the notion of nested scope. With this it can be shown that the
SRN scope equals the scope of primes in Z specifications:

120 5. Augmented Specification Relationship Net

Theorem 5.8: Let p be a prime of the syntactically correct Z specification Ψ, and
let v be a vertex in an eSRN Υ representing prime p. Then the SRN scope σ(v)
equals the scope of p in Ψ.

Proof: In Z the scope is defined by simple scope rules (see Def. 5.14). Firstly,
the prime is in the scope of itself. This is also the case in the SRN scope (see
Def. 5.9) as the SRN block, that is encapsulating the vertex v , is also element of the
scope.

Secondly, the whole paragraph is element of the scope. The paragraph is assigned
to an SRN block, and the SRN block is, per definition, element of the SRN scope,
too.

Thirdly, it includes all elements of Ψ that are closely related to the prime. It
has already been shown that closely related elements in Υ are forming a strongly
connected component in the net. For that reason they are reachable from v . The
same holds for included elements. They form at least a connected subgraph and are
reachable from v , too. The SRN scope can be used to detect the scope of primes in
Z specification.

2

Next, in order to discover dependencies in specifications, the eSRN graph is
enriched by declaration, definition and use information of identifiers attached to the
prime vertices. The ASRN emerges.

5.4 Augmenting the eSRN

In the second step of the transformation the eSRN is augmented by information
to be inferred from the semantic and syntactic definitions of the respective spec-
ification language. The particular nature of such dependencies depends again on
the specification language under consideration. As with customary compilers, this
augmentation step is executed during the transformation into the eSRN. However,
for reasons of clearness this process is treated as a distinct augmentation step.

5.4.1 Definitions of an ASRN

An augmented SRN is an extension of an eSRN , where vertices take attributes de-
scribing the “use” of identifiers which belong to these vertices. This “use” can
be the declaration or assignment of variables, the use of variables, a type, an
input or output channel declaration. A variable is nothing else than a specifi-
cation literal which is used as a variable in the specification. In the predicate
“known = dom birthday”, “known”, “dom” and “birthday” are specification literals,
and “known” and “birthday” are specification literals representing variables.

5.4. Augmenting the eSRN 121

During the transformation step predicate-, start- and end-vertices are augmented.
Structural vertices and comment vertices are not augmented. This means that only
the SRN sub-graph of the eSRN is affected. However, as only the eSRN represents
the full specification source, the following definition and rule are based on the eSRN .

Definition 5.15: Augmented SRN. An augmented specification relationship net
(ASRN) of a specification is a 7-tuple (NeSRN , Σv ,T ,Tl ,C ,D ,U) where NeSRN is
an extended specification relationship net (V ,Vpr ,Vstart ,Vend , Vstruct , Vcomment , Ac,
Aand , Aor , t), Σv is a finite set of symbols called variables, and D , U , T , Tl , C are
five total functions with the following semantics:

• D : V → P(Σv). The function D(v) leads to the set of all variables that have
a value assignment (are defined) at vertex v .

• U : V → P(Σv). The function U (v) leads to a set of variables that are used
at vertex v .
Thus, D and V serve to make def-/use relationships explicit.

• T : V → P(Σv). The function T (v) (type declaration) leads to the set of all
declared variables at vertex v .

• Tl : V → P(Σv). Function Tl(v) (local type declaration) leads to the set of
all variables at vertex v that are locally declared.

• C : V → P(Σv). The function C (v) (channel type declaration) leads to a
set of values that are syntactically defined (variable declaration) as input or
output variables.

The five functions are necessary to cope with the use of identifiers in prime
objects:

• T (v),C (v). Syntactically, an identifier is declared in a prime, but the decla-
ration is intended to be used also outside the prime. An “name? : NAME”
in the declaration section of a schema block is such an example. In this case
name? is valid even outside the prime object (but still inside a well defined set
of blocks). It has an influence on at least every prime element of the axiomatic
part of this schema block.

• Tl(v). An identifer is declared for use in the scope of the prime itself. As
an example, an identifier n might be declared as a variable in the following
exists-expression: “∃ n : N • . . .”. In this case the identifier n is only valid
between the boundaries of this prime object.

122 5. Augmented Specification Relationship Net

Prime/Literal v T (v) Tl(v) C (v) U (v) D(v)
\begin{schema}{Delete} S5 Delete
∆BB P14

name? : NAME P15 name NAME
\where Str5
name? ∈ known P16 name, known
birthday ′ = birthday . . . P17 birthday ,name, date birthday
\end{schema} E5

Tab. 5.1: Delete paragraph of the birthday book specification, ASRN representation (in-
cluding augmented vertices) and table summarizing the functions that are ap-
plied to the primes in the operation schema. Line numbers and vertex identifiers
refer to the full BB specification as presented in Chap. C.1.2.

• U (v),D(v). An identifier can be used at a specific specification prime, or it can
get a value assignment at that prime. In Z, a prime “counter ′ = counter+inc?”
uses two identifiers (counter , inc), and re-defines the value of counter .

For all vertices in the net, the eSRN is augmented by declaration, definition and
use information of identifiers. Tab. 5.1 presents the Delete operation schema and the
values of the functions D(v),U (v),T (v),Tl(v) and C (v). The identifier birthday
in the last prime object v of the BB-Delete schema belongs to the set U (v) and to
the set D(v), whereas name only belongs to the set U (v) of the respective prime.
Beside the position and text that is represented by the vertex in the eSRN, the
ASRN provides values for identifiers that are (locally) declared, defined and used at
the specification element.

5.4.2 Transformation

As mentioned at the beginning of the previous section, the structure of the extended
SRN equals the structure of the SRN. The difference between an SRN and an eSRN
is that in an eSRN additional structural and comment vertices are present. These
vertices do not declare, define or use variables. Thus, the following augmentation

5.4. Augmenting the eSRN 123

step works on both graphs. The necessary steps for augmentation are simple. Every
vertex is augmented by the type of the use of identifiers.

Rule 5.4: Augmenting an eSRN to create an ASRN.

For every vertex v representing a specification element e extract the identifiers
declared, (re-)defined or used at e. Assign them to the range of the functions
T (v), Tl(v), C (v), D(v) and U (v).

At the level of identifiers, nested structures imply that the scope of an identifier
changes due to a possible re-declaration of the identifier in one of the referring SRN
blocks. What is needed is the definition of a scope that considers this property.
Here, the ASRN can be used to refine the notion of the SRN scope (Def. 5.8). A
vertex in the ASRN is in the scope of another vertex in respect to an identifier i ,
if it is element of the same SRN block. If it is element of another SRN block, it is
necessary to detect wheter the blocks are reachable in the net. In this case they are
at least in the same SRN scope. Due to a nested scope, an identifer could have been
re-declared in an SRN block that is element of the reachability path (Def. 5.8). In
the latter case there is an SRN scope, but no ASRN scope. Formally, the ASRN
scope is defined as follows:

Definition 5.16: ASRN scope. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U) be an ASRN of a
Z specification, and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,Ac,Aand ,Aor , t).
Let SRNv be an SRN block of NeSRN containing vertex v , and let i be an identifer
that is declared at vertex v (i ∈ T (v) ∪ C (v)).

The ASRN scope σ(i , v) of identifier i at vertex v is a subset of the SRN scope
σ(v) of vertex v . A vertex w that is element of SRN block SRNw is element of the
ASRN scope of vertex v with regard to identifier i iff

1. w ∈ SRNw and SRNw ⊆ σ(v), and

2. there is no local declaration of identifier i at vertex w (i 6∈ Tl(w)), and

3. SRNw does not contain a vertex with a declaration of identifier i . Thus, it
holds that:

¬ ∃ v : V | v ∈ SRNw • i ∈ T (v) ∪ C (v)

4. no SRN block on the reachability path p between SRNv and SRNw contains
a vertex with a re-declaration of identifier i .

124 5. Augmented Specification Relationship Net

Fig. 5.12: Simple Z specification consisting of two state spaces S and T and an operation
schema Inc. The operation is used to increment the value of identifier a. This
example is used to demonstrate how the ASRN scope of a vertex (in respect to
an identifier) is identified.

Fig. 5.12 shows the Z specification of a rather simple example for incrementing
the value of an identifier a. However, it covers several cases of references to other
schemata. The state space is split into two state schemata, the operation schema
does nothing else than adding a value in? to the state space identifier a and returning
the value of a.

The SRN scope is defined for a whole SRN block. Thus, SRN blocks SRN1, SRN2,
SRN3 are element of the SRN scope of vertex P2. However, in respect to identifier
b, the ASRN scope σ(P2, b) differs from the SRN scope σ(P2). The reason is that
identifier b is re-declared in SRN block SRN2. Thus, every vertex that is element of
block SRN2 is excluded from the ASRN scope.

5.4. Augmenting the eSRN 125

The same is true for vertices that are element of block SRN3. In fact, SRN3 is
on the reachability path to block SRN1, but the same holds for SRN2 (which has a
re-declaration of identifier b and thus violates condition 4 in Def. 5.16).

On the other side, the ASRN scope σ(P1, a) is the set of vertices that are element
of blocks SRN1, SRN2 and SRN3 – except vertex P7, as there is a local declaration
of identifier a (and thus violates condition 2 in Def. 5.16).

Before demonstrating that the above definition provides a useful approach to
identify dependencies in specifications, it has to be shown that the ASRN scope
covers the scope of Z primes. The scope of an identifier in Z is defined as follows:

Definition 5.17: Scope of a Z prime in respect to an identifier. Let Ψ be
a syntactically correct Z specification, P be a paragraph of Ψ, and p be a prime
object that is element of P . Furthermore, let i be an identifier, declared at prime
p. The scope of prime p in respect to identifer i consists of the scope of prime p
(Def. 5.14) but excludes

1. primes q with a local declaration of identifer i , and

2. paragraphs that re-declare identifer i , and

3. all paragraphs that refer to paragraphs that are excluded due to condition 2
or 3.

With that it is possible to show that the ASRN scope (as defined in Def. 5.16)
can be used to identify the scope of an identifer i which is element of a specification
prime.

Theorem 5.9: Let p be a prime in the syntactically correct Z specification Ψ. Fur-
thermore, let v be a vertex in the eSRN Υ representing prime p, and let z be an
identifier declared at vertex v . Then the ASRN scope σ(z , v) equals the scope of
the identifier z in Ψ at element p.

Proof: It has already been shown that Υ copes with all information of Ψ, and
that Υ contains all primes and literals of Ψ. The ASRN is structurally equivalent
to Υ; it just makes the information about the declaration, definition and use of
identifiers explicit. For that reason it does not matter whether a literal in Ψ or the
corresponding vertex in Υ is considered in order to find out the use of an identifier
in the specification. Four conditions in Def. 5.16 describe whether a vertex w is in
the scope of v or not:

1. Every vertex w that is element of the same SRN block has to be in the SRN
scope of v . For a vertex v representing prime p, Theorem 5.8 already demon-
strated that the SRN scope of v includes exactly those vertices of the eSRN

126 5. Augmented Specification Relationship Net

that are in the scope of p in Ψ. This means that it includes all elements in Ψ
that can refer to p.

2. A vertex w is excluded if it has a local re-declaration of identifier i . This is
exactly what happens in the specification due to condition 1 in Def. 5.17.

3. The whole SRN block is excluded if it has a re-declaration of identifier i . This
is exactly what condition 2 in the Def. 5.17 calls for.

4. All SRN blocks on the reachability path between the declaration of identifer
i and the SRN block containing w are examined. If only one of the blocks
contains a re-declaration of identifier i , then w is not element of the scope.
The reachability path represents references in the net, and thus this condition
equals condition 3 in Def. 5.17.

Both definitions start by looking at all elements (and vertices) that are in the
scope of an identifier and remove elements (and vertices) that have re-declarations.
As a result, exactly those vertices are eliminated in Υ that are also eliminated in Ψ.

In other words, as the transformation is bijective, the scope of an identifier i
can be identified by using the ASRN. It represents all elements in Ψ that are in the
scope of that identifier i .

2

There are many applications of ASRNs. In the first place an ASRN can be used
to identify dependencies in specifications. This approach is simple and it is based
on the identification of paths (reachability conditions) in the eSRN. It is described
in the subsequent section. Based on this approach, specification abstractions are
deduced. These abstractions are discussed in the next but one section.

5.5 Dependencies in Z Specifications

Based on the definitions of scope (in sections 5.2.2 and 5.4.2) and the notion of
control- and data- dependencies, different types of dependencies between vertices in
the ASRN can be identified. This section provides three definitions of dependencies
in Z specifications which then form the basis for the identification of Z abstractions
in the subsequent section.

In Z, identifiers have to be declared before they can be used. This implies that
primes which use an identifier i have to be in the scope of another prime which
declares that identifier. Assigned to the ASRN, this means that a vertex which uses
an identifer i has to be in the ASRN scope of the vertex declaring this identifier i .
This dependency is termed declarational dependency. It corresponds to the definition

5.5. Dependencies in Z Specifications 127

of syntactical dependency of primes (Def. 4.15), where one prime is required in order
to keep another prime syntactically correct. Declarational dependency is formally
defined as follows:

Definition 5.18: Declarational dependency. Let (NeSRN , Σv ,T ,Tl , C ,D ,U)
be an ASRN of a Z specification, and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,
Ac, Aand ,Aor ,t), and u and v be any two vertices of the net (u 6= v). Vertex u is
said to be declarational dependent on v , iff

1. u is in the ASRN scope σ(z , v), and

2. the identifier z is used (but not re-declared) at vertex u.

z ∈ D(u) ∪ U (u) ∧ z 6∈ T (u) ∪ Tl(u) ∪ C (u)

Declarational dependency between two vertices u and v holds, if an identifier z
is declared at vertex v and if the identifier is used at the other vertex u (which is in
the scope of v).

Fig. 5.13 demonstrates how to identify declarational dependencies. When look-
ing at prime P12 (lower left), the identifiers name and known are used. P12 is
declarational dependent on prime P10 as the variable name is used at P12, defined
as input variable at P10, and P10 is an AND-neighbor of P12 (which means that it
is in the same SRN scope).

Furthermore, P12 is declarational dependent on P4 (upper left), as at P12 the
identifier known is used, it is element of SRN block SRN4 which is in the ASRN scope
of SRN block SRN2. This means that there is a path which consists of AND/OR-
control arcs from direct AND-antecessor S4 to vertex P4.

Theorem 5.10: The ASRN (based on the eSRN Υ) suffices to identify syntactical
dependencies of primes in a syntactically correct Z specification Ψ.

Proof: When looking at Def. 4.15, two aspects are important for syntactical
dependency between two primes p and q : Firstly the dependent prime p has to be
in the scope of prime q , and, secondly, the prime q is necessary in order to keep p
syntactically correct. These two aspects are taken into consideration in Def. 5.18.

1. If a vertex u is in the ASRN scope of z (u ∈ σ(z , v)) then the element p (repre-
senting u in specification Ψ) is in the scope of element q (which is representing
v in Ψ). This has already been shown in Theorem 5.9.

128 5. Augmented Specification Relationship Net

Fig. 5.13: A slightly modified birthday book specification (on the left) and the corre-
sponding ASRN (on the right) in order to demonstrate the identification of Z
dependencies. Here, the operation schemata Add and Delete are combined by
using a logical AND operation. SRN blocks SRN1 . . .SRN5 are marked by dot-
ted rectangles. Vertices are enriched by their corresponding ASRN information
concerning declaration, definition and use of identifiers.

2. Declarational dependency ensures that for every vertex which uses an identifier
there is another vertex in the scope that declares (but not re-declares) the
identifier. As p and q are unequivocally assigned to the eSRN Υ, and as the
backward transformation exists, the same holds for the vertices in the net.
Assigned back to the specification Ψ this means that for every prime using the
identifier there is another prime (in the scope) that declares the identifier.

2

According to Def. 4.16, post-condition primes are said to be control dependent
on the pre-condition primes (if they are in the scope of the pre-condition primes).
Pre-condition primes are primes that only contain before-state and input identifiers.
Post-condition primes are primes that contain at least one after-state or output
identifier. Here the ASRN can be used to identify control dependencies in the net
(and thus also in the specification). A predicate vertex v represents a pre-condition
prime if it does not contain an identifier that is defined (D(v) = ∅). On the other

5.5. Dependencies in Z Specifications 129

side a vertex u is said to be a post-condition prime if it contains at least one identifier
that is re-defined (D(u) 6= ∅).

If u is in the scope of v then there is control dependency between u and v .
However, Chap. 4.4.2 also introduced the notion of control dependency between
primes in composed Z schemata. In that case SRN blocks are created, and predicate
vertices in the SRN block refer to the referred schemata (which can itself contain
references to referred schemata). In such a case it is not enough to look at the scope
of a prime v . The SRN block that combines the schemata has to be identified. As
related blocks are strongly connected components (see Theorem 5.5), this can be
done by looking for start-vertices that are AND/OR-antecessors of vertex v in the
net. If there is a path from such an antecessor of vertex v to vertex u, then these
vertices are element of the same paragraph. Formally, control dependency is defined
as follows:

Definition 5.19: Control dependency in ASRNs. Let (NeSRN , Σv ,T ,Tl ,C ,D ,
U) be an ASRN of a Z specification, and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,
Vcomment ,Ac,Aand , Aor , t), and u and v be any two vertices of the net (u 6= v).
Vertex u is said to be control dependent on v (u →c v) , iff

1. D(v) = ∅ and D(u) 6= ∅ and C (v) = ∅ and T (v) = ∅, and

2. if either

(a) u is element of the SRN scope σ(v), or

(b) if there is a path p from a start-vertex s which is an AND/OR-antecessor
of v to u.

Again Fig. 5.13 can be used to demonstrate the identification of control depen-
dencies. Vertex P13 is control dependent on vertex P12, as P12 and P13 are in the
same SRN block (in the same SRN scope), and D(P12) = ∅ and D(P13) 6= ∅.
Additionally, vertex P17 is control dependent on vertex P12, as D(P12) = ∅ and
D(P17) 6= ∅, and there exists a path p (S13, P13,1, S4, P17) from S13 to P17, and S13

is an AND-antecessor of P13, which means that the SRN block is AND-reachable
(and thus element of the SRN scope).

The ASRN (and Def. 5.19) can be used to identify control dependencies in Z
specifications. According to Def. 4.16, a prime p is control dependent on another
prime q , if prime q is a pre-condition prime and if prime p is a post-condition prime
in the scope of q . As the ASRN can be used to determine scope and pre- and
post-conditions, it can also be used to detect control dependency between primes.

130 5. Augmented Specification Relationship Net

Theorem 5.11: The ASRN (based on the eSRN Υ) can be used to identify control
dependency between primes p and q in a syntactically correct specification Ψ.

Proof: It has already been shown that the ASRN can be used to identify the
scope of a specification element and that the SRN scope equals the scope of primes
in the specification. There are two conditions in Def.5.19:

1. Control dependency detection is based on the identification of pre- and post-
condition primes in specifications. A syntactical approximation is to look for
decorated and undecorated identifiers at specification primes. It has already
been shown that it does not matter whether the identifiers are looked for in
Ψ or in Υ. In the ASRN the information is explicitly available due to the
functions T (v),C (v),D(v) and U (v). By looking for vertices with identifiers
that are only used, pre-condition elements are identified.

2. It has already been shown that the scope σ(v) can be used to determine
the scope of a prime in the specification. However, it is a special case with
sequential composition and schema piping. In that case the sequential-control
arc is used to connect subgraphs in the ASRN. In Ψ, piping and composition
means that one prime can be referred to from the other, but not the other way
round. Assigned to Υ this means that it has to be tested whether one vertex
is reachable from the other vertex but not the other way round. The ASRN
can be used to check these conditions. If there is a path from a start-vertex v
(which is an antecessor of the vertex v) to a vertex u, then the vertex u can
be referred to (according to Theorem 5.5). As only AND/OR antecessors are
considered, the other way round is not possible.

2

According to Def. 4.19, a Z prime is data dependent on another prime, if they
share a common identifier in the same scope, and one prime assigns a value to that
identifer, and the other prime uses this identifier.

The ASRN can be used to detect data dependencies between vertices in the net
(representing two primes in the specification). First the ASRN is used to check
whether, at a vertex v , the identifer is re-defined, but not locally re-declared (z ∈
D(v) ∧ z 6∈ Tl(v)). Then it is used to check whether the second vertex u uses the
identifer (z ∈ U (u)). Finally, the net can be used to determine whether they are
referring to the same identifier z . Formally, data dependency is defined as follows:

Definition 5.20: Data dependency in ASRNs. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U)
be an ASRN of a Z specification, with NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,

5.5. Dependencies in Z Specifications 131

Vcomment , Ac, Aand ,Aor , t), and u and v be any two vertices of the net (u 6= v).
Vertex u is said to be data dependent on v (u →d v), iff

1. there exists at least one variable z so that z ∈ U (u) and z ∈ D(v) and
z 6∈ Tl(v), and

2. vertices u and v are declarational dependent (in respect to identifier z) on the
same vertex w (w ∈ V). Thus, it holds that:

∃ z : Σv ; u, v : V | z ∈ U (u) ∧ z ∈ D(v) ∧ z 6∈ Tl(v) •
∃w : V | z ∈ T (w) • u ∈ σ(z ,w) ∧ v ∈ σ(z ,w)

Fig. 5.13 can also be used to demonstrate how to identify data dependencies by
just following the conditions in Def. 5.20. Vertex P13 (at the center bottom) is data
dependent on P17 (lower right), as the identifier birthday is used at P13 and defined
at P17. In addition to that, both vertices are in the ASRN scope σ(P5, birthday) in
respect to the identifier birthday .

As there is a backward transformation, the ASRN can be used to identify data
dependencies in specifications: the specification is transformed into an ASRN, data
dependencies between vertices of the net are identified, and these vertices are trans-
formed back to prime objects – indicating data dependencies in the specification.

Theorem 5.12: An ASRN (based on the eSRN Υ) can be used to identify data
dependencies between primes p and q of a syntactically correct Z specification Ψ.

Proof: It has already been shown that the ASRN can be used to identify the
scope of a prime in respect to an identifier z .

Data dependency is defined (see Def. 4.19) as a relation between two primes in
a specification (within the same scope) where these primes share at least a common
identifier, and where the value of this identifier is (eventually) changing. To detect
data dependencies in an ASRN two conditions have to hold.

1. The vertices have to share at least one common identifier (with a value that
is eventually changing). This is checked by looking at the functions U and D
in Def. 5.20.

2. The use of the identifier has to happen in the same scope. Again, it has already
been shown that the ASRN can be used to identify the scope of an identifier in
respect to a specific vertex and that this scope equals the scope of the primes’
representation in specification Ψ.

2

132 5. Augmented Specification Relationship Net

Based on the ASRN (and with it the definitions of declarational, control and data
dependency) it is possible to identify specification chunks and slices as introduced
in Chap. 4.2. The subsequent section provides the definitions.

5.6 Identification of Z Abstractions

Chunks and slices are defined on a specific point of interest in the specification. This
point of interest is called abstraction criterion. According to Chap. 4.2.6, the point
of interest consists of a prime object, relevant dependencies and a set of literals
denoting identifers of the specification. In respect to the ASRN, the abstraction
criterion is defined as follows:

Definition 5.21: ASRN abstraction criterion. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U)
be an ASRN of a syntactically correct Z specification, with NeSRN = (V ,Vpr ,
Vstart , Vend , Vstruct , Vcomment , Ac,Aand ,Aor , t).

An abstraction criterion for a specification is a triple (vp , Θ, Γ), where vp is a
prime vertex (vp ∈ V) containing the literal l of interest. Furthermore it holds
that Θ ⊆ Σv is a set of variables defined or used in the ASRN, and Γ is a set
of dependencies, Γ ⊆ {C ,D , S}, with C denoting control dependency, D denoting
data dependency and S denoting declarational dependency.

The notion of chunks is based on the idea of context around a specific point of
interest. This point of interest is not restricted to a single point (a single prime) in
the specification. Thus, the abstraction criterion of Def. 5.21 is a little bit extended:
the prime is replaced by a set of primes. For a specification chunk the point of
interest is defined as follows:

Definition 5.22: ASRN chunking criterion. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U) be
the ASRN of a syntactically correct Z specification, with NeSRN = (V ,Vpr ,Vstart ,
Vend ,Vstruct , Vcomment , Ac,Aand ,Aor , t).

A chunking criterion for a specification is a triple (PL, Θ, Γ), where PL is a
set of prime vertices. PL represents primes P of the specification and literals L
that also appear within some uniquely identifiable set of prime vertices in the SRN.
Furthermore it holds that Θ ⊆ Σv is a set of variables defined at literal l ∈ L, and
Γ is a set of dependencies, Γ ⊆ {C ,D , S}, with C ,D , S denoting control-, data-, or
declarational dependency respectively.

The chunking criterion according to Def. 5.22 postulates a specification frag-
ment contained within a common context (a set of primes and literals). Analogous
to Burnstein’s original idea, Def. 5.23 characterizes the B-chunk as the immediate
context of this specification fragment according to some well defined filter criterion:

5.6. Identification of Z Abstractions 133

Fig. 5.14: Birthday book specification (on the left) and the corresponding ASRN (on the
right) in order to demonstrate the identification of Z abstractions. Here, the
operation schemata Add , Success and Delete are combined using a logical AND
and OR operation. Control dependencies are visualized via red thick arcs; data
dependency is visualized by using blue, thick, dashed arcs.

Definition 5.23: Static Burstein chunk. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U) be the
ASRN of a Z specification S , with NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,
Ac,Aand , Aor , t). A static Burnstein chunk, referred to as BChunk(PL, Θ, Γ) of
S on chunking criterion (PL, Θ, Γ), PL 6= ∅ and Γ 6= ∅, is a subset of vertices
VBChunk ⊆ V , PL ⊆ VBChunk such that for all v ∈ V holds that vertex v ∈ VBChunk

1. if there exists a data dependency with respect to the variables defined in Θ
between vertices in PL and D ∈ Γ, or

2. if there exists control dependency between the vertex v and vertices in PL and
C ∈ Γ, or

3. if there exists declarational dependency between vertex v and vertices in
VBChunk and S ∈ Γ.

134 5. Augmented Specification Relationship Net

An abstraction criterion focuses on a specific position and a set of literals in the
specification. This set of literals can unequivocally be assigned to a set of vertices
in the ASRN. The same is true for the chunking criterion which consists of a set of
specification elements and every element in this set can be unequivocally assigned
to a vertex in the ASRN.

Fig. 5.14 presents a slightly modified specification of the birthday book and the
corresponding ASRN. The specification consists of the state space BB and three
operation schemata: Add , Delete and Success . These schemata are combined in
order to make up another schema: AddDelete.

BB == [known : PNAME ; birthday : NAME 7→ DATE |
Add == [∆BB ; name? : NAME ; date? : DATE |

name? 6∈ known; birthday ′ = birthday ∪ {name? 7→ date?}]
Delete == [∆BB ; name? : NAME |

name? ∈ known; birthday ′ = birthday \ {name? 7→ birthday(name?)}]
Success == [rep! : Report | rep! = OK]
AddDelete == (Add ∧ Success) ∨ (Delete ∧ Success)

Imagine that one is interested to know more about the identifier birthday in the
Add operation schema. As a first step only those primes are of interest that are
manipulating the identifier (thus, data dependencies are of interest).

A chunking criterion “({P13}, {birthday}, {S ,D})” seems to be appropriate. P13

denotes the literal that corresponds to the point of interest: the prime P13 =

birthday ′ = birthday ∪ {name? 7→ date?} . D and S denote that both data depen-

dencies (concerning the identifier birthday) and declarational dependencies should
be considered. This criterion can be used to calculate the static Burnstein chunk

BChunk({P13}, {birthday}, {S ,D})

A look at Fig. 5.14 shows the data dependencies that exist in the net. P13 is
directly data dependent on P17 (and vice versa). Thus, both vertices are in the
result set. However, P13 is not data dependent on P6 (the dependency works the
other way round). As syntactical dependencies are also required by the criterion, all
primes that are declarational dependent on vertices P13 and P17 are included in the
result set (for reasons of space not displayed in the figure). The Burnstein chunks
corresponds to the following specification:

5.6. Identification of Z Abstractions 135

BB
birthday : NAME 7→ DATE

Add
∆BB
name? : NAME
date? : DATE

birthday ′ = birthday ∪ {name? 7→ date?}

Delete
∆BB
name? : NAME

birthday ′ = birthday \ {name? 7→ birthday(name?)}

AddDelete == Add ∨ Delete

Quite a lot of primes have been pruned from the specification source. The operation
schema Success has been removed completely. The same holds for the pre-condition
primes in Add and Delete. With this smaller specification it becomes clear that the
identifier birthday is used to manage tuples of names and birthdays.

This definition provides the immediate context of the chunking criterion. How-
ever, it is not complete in the sense that primes outside of this context might still
influence this chunk in an indirect way. Additionally, the chunk might have sec-
ondary effects beyond those elements of the specification which it directly affects.
Hence, the full static specification chunk is proposed next in Def. 5.24. This defini-
tion is the transitive closure over the B-chunk, provided in Def. 5.23.

Definition 5.24: Full static specification chunk. Let (NeSRN , Σv ,T ,Tl ,C ,D ,
U) be an ASRN of a Z specification S , with NeSRN = (V ,Vpr ,Vstart ,Vend ,
Vstruct , Vcomment , Ac,Aand , Aor , t). A full static specification chunk, referred to as
SChunk(PL, Θ, Γ) of S on the chunking criterion (PL, Θ, Γ), is a subset VSChunk of
vertices of V (PL ⊆ VSChunk), so that for all v ∈ V it holds that vertex v ∈ VSChunk ,
iff there is data dependency between at least one vertex w ∈ VSChunk and v with
respect to the variables defined in Θ and D ∈ Γ, or there is control dependency

136 5. Augmented Specification Relationship Net

between v and at least one vertex w ∈ VSChunk and C ∈ Γ, or there is declarational
dependency between v and any v ∈ VSChunk and S ∈ Γ.

The above application of the Burnstein chunk is useful as it leads to rather
small specifications. However, it is often the case that indirect dependencies are
necessary in order to understand the interplay of operation schemata in Z. One
might want to know which primes influence prime object “birthday ′ . . .” (P13) in the
Add schema. At first sight this is a candidate for a Burnstein chunk (thus, gener-
ating the immediate context around this prime by including control dependency).

BChunk({P13}, {}, {C , S}) leads to:

BB
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

Add
∆BB
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ = birthday \ {name? 7→ date?}

Delete
∆BB
name? : NAME

name? ∈ known

AddDelete == Add ∨ Delete

As there is control dependency between vertex P13 and vertices P12,P16, and P6,
these primes are included in the result. One can see that the resulting chunk is
indeed only the minimal context around the point of interest. To detect all primes
that directly or indirectly contribute to prime P13, a full static specification chunk

SChunk({P13}, {}, {C , S}) has to be calculated.

5.6. Identification of Z Abstractions 137

However, the result is a specification containing exactly those primes which are
element of the static slice. There are no indirect dependencies in the birthday-book
specification.

As declarational dependency is considered, the resulting specification is syntac-
tically correct. On the other side the size of the specification has not been reduced.
The reason for this is the fact that the specification is too small, and there is control
dependency between all six prime objects in the specification. Chap. 8 presents
a more complex specification demonstrating that a full static chunk can be much
smaller than the original specification.

As the static chunk extends over the whole specification, it can be directly used
for the definition of slices. This replaces the definition of a specification slice given
in Def. 4.5. When all types of dependencies are included in the abstraction-criterion
of the static chunk, the chunk equals a static specification slice:

Definition 5.25: Static specification slice. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U) be
an ASRN of a syntactically correct Z specification, with NeSRN = (V ,Vpr ,Vstart ,
Vend , Vstruct , Vcomment , Ac,Aand ,Aor , t). Let vp be a prime vertex containing the
literal of interest.

A static slice SSlice(vp , Θ) of a specification on a given abstraction criteria (vp , Θ)
equals the static Burnstein chunk BChunk({vp}, Θ, {D ,C , S}).

The static specification slice is very useful when looking at a specific point of
interest and when considering all dependencies that might arise. When trying to
understand the meaning of a prime in a specification, neither data nor control de-
pendencies can be neglected.

Looking at the birthday book specification with respect to identifier birthday ,
the Add and the Delete operation schemata are of interest. Success is not relevant
for birthday . Thus, when intending to get all relevant primes in respect to a point

of interest (e.g. P13), a static specification slice SSlice(P13, {birthday}) has to be

calculated. The result is a syntactically correct specification. It contains prime
vertices P12,P6 and P16 as they are control dependent on P13, and prime vertex P17

and again P6, as these vertices are data dependent on vertex P13.

As can be seen in the subsequent example, Success is pruned from the specifi-
cation. No vertex in the SRN block representing the operation schema is directly

dependent on the point of interest birthday ′ = birthday ∪ {name? 7→ date?} .

138 5. Augmented Specification Relationship Net

BB
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

Add
∆BB
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

Delete
∆BB
name? : NAME

name? ∈ known
birthday ′ = birthday \ {name? 7→ birthday(name?)}

AddDelete == Add ∨ Delete

The static specification chunk includes all primes that directly depend on the
point of interest and all primes that directly contribute to the point of interest. As
with full program slices, indirect dependencies in specification are also of interest.
Thus, the definition of a full static specification slice is provided:

Definition 5.26: Full static specification slice. Let (NeSRN , Σv ,T ,Tl ,C ,D ,U)
be an ASRN of a Z specification, with NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,
Vcomment ,Ac,Aand ,Aor , t). Let vp be a prime vertex containing the literal of interest.
The full static slice FSSlice(vp , Θ) of a specification on a given abstraction criteria
(vp , Θ) is equivalent to the full static specification chunk SChunk({vp}, Θ, {D ,C , S}).

With regard to a slicing criterion c the full static specification slice contains all
primes that are (directly and indirectly) declarational-, control- and data-dependent
on c. This means that it is possible to calculate a specification chunk in respect
to this criterion, and to include all types of dependencies. In other words, it holds
that a specification slice is nothing else than a special case of a specification chunk.

5.7. Direct Use of the ASRN 139

Containing all types of dependencies it equals the static chunk. However, as all
dependencies are included, the above approach does not guarantee that the resulting
specification is smaller than the original specification.

With regard to prime vertex P13 and identifier birthday the full static specifica-
tion slice is as large as the full specification. Again the reason is the simplicity of
the birthday book specification and the fact, that there is no separable component
in the specification11. Together with static program slicing, the static and full static
specification slicing share the problem that a slice is often as large as the original
program.

Chunks enable the reader to cope with a rather narrow domain, by highlighting
specific parts in a specification. In contrast to chunks, slices focus on a broader
domain as they always include all types of dependencies. The advantage is that
slices are understandable in this specific domain. As is the case with program code
slices, specification slices can become rather big. With densely interwoven specifi-
cations, the slice might be identical to the full specification [CR94]. Experiments
have shown though [MB03], that substantial reduction of size can be obtained even
with relatively small specifications (see also Chap. 8).

5.7 Direct Use of the ASRN

One objective of this work is to solve the problem of how specifications can be made
more comprehensible. One proposed solution is to reduce the size and thus omit
irrelevant parts of a specification (for a specific problem at hand). Another solution
aims at supporting the reconstruction of structure and/or behavior of the original
specification (see Chap. 4.1.1). Implicit information is made explicit.

The structure of the net exactly provides this kind of information. It enables the
creation of suitable forms of abstractions. Visualization is supported by interacting
with the ASRN. From cognition theory ([DDZ96] as cited in [Kad02]) it is known
that

visualization is an act in which an individual establishes a strong
connection between an internal construct and something to which access
is gained through the senses.

In our cases this “something” is an image – the image of the graph and the
opportunity to navigate/to focus on the graph, to play around, to follow different
paths. With this it is possible to

11 In larger systems there are often several interacting objects, and these objects usually form
disjoint subsets that do not interact with one another.

140 5. Augmented Specification Relationship Net

Totality

SRNBlock 1: L(1..4)
Unboxed

AAT (1)

SRNBlock 2: L(5..10)
BB

AAT (1)

SRNBlock 3: L(11..15)
InitBB

AAT (1)

SRNBlock 7: L(38..43)
Unboxed

AAT (1)

DDT (1)

SRNBlock 4: L(16..24)
Add

DDT (1)

SRNBlock 5: L(25..32)
Delete

DDT (1)

AAT (1)

AAT (1)

DDT (1)

DDT (1)

SRNBlock 8: L(40)
LogicalAND

CAT (1)

AAT (1)

DDT (1)

DDT (1)

SRNBlock 9: L(40)
LogicalAND

CAT (1)

AAT (1)

SRNBlock 6: L(33..37)
Success

AAT (1)

SRNBlock 10: L(41)
LogicalOR

CAT (1)

AAT (1) AAT (1)

CAT (1) CAT (1)

CAT (1)

AAT (1)

AAT (1)

AAT (1) CAT (1)

Fig. 5.15: dotty generated image of the eSRN of the birthday book. SRN blocks are
represented both via boxes containing an SRN label and the line number(s) in
the specification source. Besides, AND-control arcs (bold), sequential-control
arcs (dashed) and data dependency arcs (bold blue) are inserted to the net. The
layout is generated automatically by using the dot option of dotty’s graphviz
environment.

• uncover hidden relationships. In the image of the ASRN additional arcs can
be introduced, arcs expressing control-, data and declarational dependencies.
The previous definitions of the eSRNs and ASRNs do not tell anything about
the representation on the screen. So it is quite possible that the graph is used
to display only a subset of primes or related primes, display slices and chunks,
visually marked SRN blocks, or even partitions and clusters. In Fig. 5.15
the graph is used to display hidden data dependencies between blocks of the
specification. It quickly becomes clear that there is data dependency (bold
blue arcs) between the schemata Add , Delete, BB and InitBB .

• sustain focusing on a specific point of interest. Fig. 5.15 enables to navigate
the structure of the specification. Beginning with the totality vertex it quickly
gets clear that Add and Delete are logically AND combined with the Success
SRN block. In the net the peruser of the image potentially detects that there
are quite a lot of dependencies entering and leaving the Delete block. Thus,

5.8. Summary 141

s/he navigates to this block, eventually examines the vertices in this block and
stipulates the calculation of a specification slice.

• emphasize on specific properties of the specification. Such properties might
be the number of hidden dependencies, the number of connected and strongly
connected sub-graphs and its derived metrics (metrics will be treated in the
subsequent chapter in more details). Case studies (see Chap. 8) show that
sub-graphs which are correlated by various types of dependencies evolve out
of larger specifications. Furthermore, it can be observed that parts of the
net are more interwoven than others. This can be used as an indicator for
correlation properties. Fig. 5.16 (for reasons of space on the last page of this
chapter) presents an overview of the Elevator specification (see Chap. C.3 for
an annotated specification source), a specification describing a simple elevator
control system. It is noticeable that there are three regions that are not
that closely related. The first region (top right) is concerned with schemata
opening and closing the door. The second (larger) region in the center of the
image deals with all aspects of movements and the last region (bottom left) is
concerned with events.

Variations of the graphical representation (the image) of the ASRN are not the
topic of this work. However, the prototype used for the calculation of slices and
chunks in Chap. 8 provides the possibility to export the ASRN into a dotty format12,
and thus indirectly enables the output of a graphical image.

5.8 Summary

This chapter starts with the overall motivation for the transformation of a spec-
ification into an augmented net. It explains why an abstract syntax tree is less
appropriate for out purpose (the notion of control is not dominant in specification
languages), and why the transformation pays off (the net can be used as a means of
dependency calculation, visualization, and metrics calculation).

The net is used to cope with syntactic and semantic information. The struc-
tural information is captured in a net called Specification Relationship Net (SRN).
Vertices in the SRN represent primes of the specification, and arcs represent rela-
tionships among them. The SRN is independently defined of a specification language
in Chap. 5.2.

12 dotty is a simple toolkit available for Unix and Windows platforms. It enables pretty printing
of various forms of graphs described by a rather simple text-based definition language.

142 5. Augmented Specification Relationship Net

As specifications contain language- and layout-related information, the SRN is
extended by vertices representing structural information and comments. This ex-
tension depends on the specification language at hand. The same holds for prime
objects. Thus, Chap. 5.3 defines the eSRN (extended SRN), provides an approach
for the detection of primes in Z and presents rules for the transformation of Z spec-
ifications (which is type-set in LATEX) into an eSRN.

Additionally, important properties of the eSRN and the transformation are
pointed out:

1. The eSRN can be used to deal with any information that exists in the Z
specification.

2. The transformation function of a Z specification into the eSRN is bijective.
This means that a backward transformation is possible.

3. The scope of Z primes can be identified by just using the eSRN. This means
that the net can be used to deal with nested expressions and included schemata.

To ease the identification of dependencies, the eSRN is augmented by declaration,
definition and use information of identifiers attached to prime vertices. Chap. 5.4
defines the Augmented Specification Relationship Net (ASRN). The ASRN captures
the explicit semantics of the specification. It is shown that the ASRN can be used
to identify dependencies in Z specifications.

Based on reachability conditions, Chap. 5.5 extends the idea of dependencies
proposed in Chap. 4.4. The ASRN is used to define control, data and declarational
dependencies in Z specifications. These dependencies are then used to form the basis
for the definition of slices and chunks.

Chap. 5.6 redefines the point of interest and introduces the so-called abstraction
criterion. It consists of

1. one prime or a set of primes representing one or more relevant prime objects
for the problem at hand,

2. a set of identifiers that are to be taken into consideration, and

3. the number and type of dependencies that are relevant.

Based in this criterion and the notion of control, data and declarational depen-
dencies, static chunks, full static chunks (which are just the transitive closure over
the static chunk), static slices and full static slices are defined. It turns out that
the full static slice is a special case of a full static chunk. The full static slice is a

5.8. Summary 143

full static chunk where all types of dependencies are considered. The chapter closes
with some examples and presents some ideas for a further use of the ASRN.

The net itself represents more than just a hidden structure of a specification.
It reveals quite a lot of properties of the specification: its size, inter-relationships
between primes and number and type of dependencies. Thus, it is a candidate for
calculating specification metrics, the topic that Chap. 6 is going to deal with.

144 5. Augmented Specification Relationship Net

Totality

SRNBlock 1: L(5..10)
Unboxed

AAT (1)

SRNBlock 2: L(11..24)
Elevator

AAT (1)

SRNBlock 3: L(25..35)
InitElevator

AAT (1)

SRNBlock 7: L(69..72)
Unboxed

AAT (1)

SRNBlock 15: L(163..166)
Unboxed

AAT (1)

SRNBlock 23: L(190..195)
Unboxed

AAT (1)

AAT (1) CAT (1)

SRNBlock 4: L(36..41)
NoRequestsOrCalls

AAT (1)

CAT (1)

SRNBlock 5: L(42..54)
ElevatorButtonEvent

AAT (1)

CAT (1)

SRNBlock 6: L(55..68)
FloorButtonEvent

AAT (1)

CAT (1)

CAT (1)
SRNBlock 8: L(71)

LogicalOR

AAT (1)

AAT (1)

AAT (1)

CAT (1)

SRNBlock 9: L(73..86)
BasicMoveUp

AAT (1)

CAT (1)

SRNBlock 10: L(87..101)
BasicMoveDown

AAT (1)

CAT (1)

SRNBlock 11: L(102..116)
ChangeUpToDown

AAT (1)

CAT (1)

SRNBlock 12: L(117..131)
ChangeDownToUp

AAT (1)

CAT (1)

SRNBlock 13: L(132..147)
RestartMovingUp

AAT (1)

CAT (1)

SRNBlock 14: L(148..162)
RestartMovingDown

AAT (1)

CAT (1)

CAT (1)
SRNBlock 20: L(165)

LogicalOR

AAT (1)

AAT (1)

CAT (1)

SRNBlock 19: L(164)
LogicalOR

AAT (1) CAT (1)

SRNBlock 16: L(164)
LogicalOR

AAT (1)

AAT (1)

CAT (1)

SRNBlock 17: L(164)
LogicalOR

AAT (1) AAT (1) CAT (1)

SRNBlock 18: L(164)
LogicalOR

AAT (1) AAT (1) CAT (1)

AAT (1) AAT (1) CAT (1)

SRNBlock 21: L(167..177)
OpenDoor

AAT (1)

CAT (1)

SRNBlock 22: L(178..189)
CloseDoor

AAT (1)

CAT (1)

CAT (1)

SRNBlock 30: L(191)
LogicalAND

AAT (1)

SRNBlock 31: L(192)
LogicalOR

AAT (1)
SRNBlock 32: L(194)

LogicalAND

AAT (1)

CAT (1)

SRNBlock 28: L(191)
LogicalAND

AAT (1)
SRNBlock 29: L(191)

PAREN

AAT (1) CAT (1)

AAT (1)

CAT (1)

CAT (1)

CAT (1)

CAT (1)

SRNBlock 24: L(191)
LogicalAND

AAT (1)

CAT (1)

SRNBlock 25: L(191)
LogicalAND

AAT (1) CAT (1)

SRNBlock 26: L(191)
PAREN

CAT (1)

SRNBlock 27: L(191)
LogicalAND

AAT (1)

AAT (1) CAT (1)

AAT (1)

AAT (1) CAT (1)

CAT (1)

Fig. 5.16: dotty representation of the Elevator specification. SRN blocks are represented
via boxes containing an SRN label and the line number in the specification
source. AND arcs are bold and sequential-control arcs are visualizes by dashed
lines. The layout is automatically generated.

6. SPECIFICATIONS’ COMPLEXITY

That many things, having full reference
To one consent, may work contrariously;

As many arrows, loosed several ways,
Come to one mark.

W. Shakespeare (King Henry V., I,2)

Chap. 2 addressed several reasons for the complexity of specifications, and size
and hidden dependencies were identified as two of the most crucial ones. Chaps. 4
and 5 claim that it is possible to reduce the complexity by generating specification
abstractions. So far it has not been shown that there really is a reduction of com-
plexity. Thus, the goal of this chapter is to provide the basis for such validations.
This chapter focuses on the effort which is necessary to measure both complexity in
general and complexity of specifications.

There are two possibilities to assess the approach of specification abstractions.
Firstly, by describing the effects on complexity via suitable metrics and secondly, by
conducting empirical studies. These possibilities are not mutually exclusive. How-
ever, even in the case of empirical studies, metrics are necessary for the assessment.

On the search for suitable specification metrics, this chapter starts with popular
software metrics. It turns out that size/bulk-based software metrics can be applied
to specifications, but that structure-based software metrics need further adaptations.

This chapter suggests to use the ASRN in order to simplify the calculation and
to facilitate the application of structure-based metrics. In general, the calculation
of ASRN related complexity measures is independent of the specification language.
However, the approach is applied and validated on the basis of Z specifications.

This chapter is structured as follows. Firstly, software complexity measures are
presented. Then, existing specification metrics are discussed. Next, the applicability
of procedural metrics to specifications is discussed and, finally, the ASRN is sug-
gested to serve as a basis for the calculation. The chapter closes with a short example
demonstrating the simplicity of calculating ASRN-based complexity measures.

146 6. Specifications’ Complexity

6.1 Measuring Complexity

“You cannot control what you cannot measure” is a popular quote from Tom De-
Marco in 1982 (reacting to the SW-crisis). Metrics and measurement set up a basis
for the controlled software development process.

It is widely agreed that the complexity of software development generally results
from interacting effects between the programmer, the program and the programming
task. As illustrated in Chap. 2, the same consideration holds for specifications. This
implies that complexity factors are not only to be found in the specification source,
but that a certain amount of complexity is also inherent to the problem1 itself.

Measuring complexity is not easy. A lot of metrics have been proposed, but it is
still difficult to provide an adequate definition of the term complexity. The Webster’s
Encyclopedic Unabridged Dictionary [Boo96] states that complexity is the state or
quality of being complex, and the term complex is defined as follows:

com·plex (adj.) 1. composed or interconnected parts; compound;
composite. 2. characterized by a very complicated or involved arrange-
ment of parts, units, etc. 3. so complicated or intricate as to be hard to
understand or deal with. 4. [...]

Complexity is expressed by the difficulty of describing/understanding parts, or,
in our case, pieces of software. The Software Engineering Institute provides two
definitions of complexity in their Online Glossary2:

(Apparent) The degree to which a system or component has a design or im-
plementation that is difficult to understand and verify [Ins90].

(Inherent) The degree of complication of a system or system component, de-
termined by such factors as the number and intricacy of interfaces, the number
and intricacy of conditional branches, the degree of nesting, and the types of
data structures [WM87].

Parts that are hard to understand indicate low comprehensibility, low maintain-
ability, low testability and even low reliability and correctness.

It is tempting to define a single value for complexity, and a lot of approaches
generate just a single number. However, one gets different complexities from different
types of difficulties [Edm99, p.72], and thus complexity cannot be reduced to just
one dimension. As stated in [Mil98, p.185]:

1 Irrespective of the underlying specification language or technique that is used, this problem-
inherent complexity will be the same.

2 SEI Glossary to be found at: http://www.sei.cmu.edu/str/indexes/glossary/complexity.html.
Last visited: March 2004.

6.1. Measuring Complexity 147

“More recent studies of software complexity indicate that there are
several basic underlying aspects of software complexity, and that it is
unreasonable to expect that any one metric can completely measure the
true complexity of a program.”

The suggested solution for grasping complexity in its entirety is the combina-
tion of different measures. Quite a lot of metrics (see also related bibliography in
Chap. B) have been defined and related to each other since the late 1970s. In 1985
Kearney et al. [KST+85] already counted more than 170 experiments investigating
the correlation between pairs of complexity measures.

Although many metrics have been proposed, only a few are widely accepted.
The objective of this chapter is to identify useful measures for specifications, and the
subsequent section starts with an overview and a classification of existing complexity
metrics.

6.1.1 Classes of Complexity Metrics

Reliable statements about a system’s complexity are formed out of a set of different
complexity factors. Many factors have been proposed for measuring complexity, or
measuring whatever human beings think of contributing to complexity. There are
quite a lot of terms used to describe different types of complexity. Besides the above
division into an inherent and apparent view of complexity, there are [FP97, p.245]:

1. Algorithmic complexity. Algorithmic complexity is determined by algorithmic
requirements and boundaries. This complexity often describes the efficiency
of the software.

2. Conceptual complexity. Conceptual complexity describes the human costs
(time, effort) for creation and understanding. Influencing factors are the logical
design, the algorithm, the size and logical depths. Conceptual complexity is
often described by means of design complexity (sometimes also called logical
complexity), computational complexity, the information content and logical-
depth complexity3.

It is not always easy to assign one measure to one type of complexity, but it is
possible to classify measures with respect to the basis that is used for calculation.

Due to simplicity, two classes of measurement are commonly used since the 1970s:
those based on the physical size of the source text and those based on analysis of
the flow of data and control [Mil88]. In addition, qualitative measures have been

3 Here, effective complexity has to be separated from logical depth. The effective complexity of
an Mandelbrot algorithm is quite low, but the logical depth is, due to recursion/nesting very high.

148 6. Specifications’ Complexity

developed in order to describe the semantic compactness of components or functions
of a system [SMC74] (as cited in [Bal01]).

It is possible to identify three basic classes of metrics: quantity/size based com-
plexity metrics, structure based complexity metrics and semantic based complexity
metrics.

M1 Quantity/Size-based complexity metrics. Physical size (sometimes also called
bulk) has very early been identified as an important factor which determines a
system’s complexity [She93]. One way to measure the size or bulk of a system
(be it a program or a specification) is to count the number of occurrences of
an item (that is to be specified before). Counting itself looks quite simple,
but it is not always clear what to count. The possibilities for counting are
manifold as there are quite a lot of different items in the source: number
of language statements, decision statements, functions, lines of code, delivered
source instructions, number of words or identifiers (just to name some of them).
The big advantage of these approaches is that these measures can be expressed
in quantitative terms, are easily calculated and well founded due to a huge
amount of studies.

M2 Structure-based complexity metrics. The general idea behind this class of mea-
sures is that systems containing complicated control or data structures are
more complex and thus more difficult to comprehend. When looking at the
logical structure of a system, the flow of control is of major interest. When
looking at data structures, the number of identifiers, their validity and number
of references are of interest. Measures belonging to this class of complexity
metrics can also be expressed in quantitative terms. However, intermediate
forms of representation (mostly trees or flow-graphs) are needed.

M3 Semantic-based complexity metrics. When looking at a system (be it a pro-
gram or a specification), different relations between different components of the
system can be detected. Semantic complexity describes the semantic relation-
ships between and within those components. They are commonly expressed
by the dual properties of coupling and cohesion. Coupling is a measure for the
strength of the inter-component connections, and cohesion is a measure for
the mutual affinity of sub-components of a component. Semantic complexity
measures cannot be expressed in quantitative terms and are hard to calculate
algorithmically.

Size- and structure-based metrics are prevalent and they are used to measure
complexity in various fields of application4. They often also form the basis for other

4 They can be and are used for several types of estimations (see [Mil88] for an overview).

6.1. Measuring Complexity 149

estimation models like that of quality or cost/effort [Mil98, p.184]. For the scope of
this work we are mainly interested in factors contributing to the complexity of sys-
tems. Therefore the subsequent section presents an overview of existing complexity
measures.

6.1.2 Popular Complexity Measures

Size-, structure- and semantic-based metrics are often called product metrics. This
is due to the fact that nearly all measures focus on the final software product: the
source and object code. Nevertheless, the term “product” refers to all representa-
tional forms that are produced for the required software. This includes specification-,
design- and all associated documentation.

For the scope of this section we are interested in attributes that are used to
indicate software complexity. According to [FP97], typical attributes are length
(describing the physical size of the product), structural complexity5 and function-
ality. Concerning the separation into three basic classes, popular measures used to
quantify these attributes will be discussed in the sequel of this section.

ad M1) Quantity/Size-based metrics have a long tradition. Typical repre-
sentatives are Lines of Code (LOC), (thousands of) Delivered Source Instructions
(K)DSI, the Halstead’s Metrics [Hal77], Function Points [Alb79] and the α-Metric
[KPB98].

LOC seems to be easy to define, but, in fact, there are a number of slightly
different6 definitions to be found in literature [Jon78]. For that reason the approach
is not undisputed. Due to these ambiguities results across different projects cannot
be compared reasonably. On the other side quite a lot of studies show that LOC, if
carefully defined and applied, is a suitable attribute when measuring the complexity
of a program (and with it the complexity of a product). In addition to that it is
still one of the most important inputs for cost/effort models [Jon86].

In many cases the number of lines of code that are developed is different from
the number of lines of code that are delivered. For this reason (K)DSI counts those
statements of the program which are processed into machine code [FP97, p.248].
Generally speaking, it counts separate statements on the same line of code, but
it excludes comment lines. A DSI is one statement but should not be mixed up
with the measure of the number of executable statements (ES). Unlike executable
statements, DSI treats data declarations and headings as source instructions.

5 Fenton an Pfleeger mention control-flow structure, hierarchical structure and modular structure
as examples for attributes contributing to structural complexity.

6 E.g.: What is to be considered as a line? Are comments or empty lines to be included?

150 6. Specifications’ Complexity

Metric Definition Description
Vocabulary η η = η1 + η2 total number of unique tokens
Program Length N N = N1 + N2 length of implementation
Estimated Length N ′ N ′ = η1 · log2η1 + η2 · log2η2 estimated program length
Volume V V = N · log2η measure of storage volume
Difficulty D D = (η1 ·N2)/(2η2) difficulty to write/understand program
Regularity D N = N ′/N estimates readability

Tab. 6.1: By employing basic measures based on the source text, Halstead defined a set of
metrics in order to describe typical characteristics of programs. They also can
be used as a basis to calculate the effort and time required to develop a software.
Halstead’s basic measures are η1 . . . number of unique operators, η2 . . . number
of unique operands, N1 . . . total number of used operators, N2 . . . total number
of used operands.

Counting lines of code focuses only on one aspect of the underlying product,
that of the physical length. In contrast to LOC, Halstead [Hal77] devised a set
of metrics that apply to several bulk-related aspects of the product. His attempt
is to measure conceptual complexity7. The set of measures (e.g. the volume V of
a program or the program length N) is based on the number and use of operators
and operands in a program (see Tab. 6.1).

Empirical studies conducted by Halstead show that the values of LOC, N and
V are linearly correlated. The metrics are easy to calculate and can be used for all
programming languages. However, it is (as Halstead also admits) not always easy
to distinguish between operators and operands. Thus, there is the risk of ambiguity
in the approach, too. Furthermore, the main focus is on applying the measures onto
implementations.

In general, machine-readable documents are missing at the beginning of projects;
thus, size based approaches are not that often applied at earlier stages in the SW-
development process.

To provide a measure for earlier stages in the development process, Albrecht
[Alb79] devised a metric based on the functionality of a product: the function
point metric. The metric is well-suited for data processing systems, but otherwise
less significant. It is primarily a size metric, but the measure is adjusted by various
additional factors8. The idea is to count basic measures like the number of inputs,
outputs, files, references and inquiries. These counts are weighted by factors (derived
from empirical observations) and provide the so-called unadjusted function count

7 Conceptual complexity measures attempt to quantify the amount of difficulty that a program-
mer will experience in writing or comprehending a piece of code ([Coo82] as cited in [OWE94]).

8 A detailed list of tools sustaining the calculation of metrics can be found at:
http://iac.dtic.mil/dacs/. Page last visited: Dec. 2003.

6.1. Measuring Complexity 151

UFC. The UFC is then adjusted by a technical complexity factor influenced by
interface complexity and data communication requirements. These factors allow
the UFC to be changed by a factor of ±30%. As the function point approach is not
bound to the implementation, nearly every document from which data-processing
functions can be deviated can be used as a starting point for the calculation. Several
factors are based on experiences gained during projects, but factors change over time.
Therefore quite a lot of extensions of the function point method have been developed
so far.

Another metric describing the complexity of a program is the so-called α−metric
from Kokol [KPB98]. He measures the information content of a program (and of
other textual writings). His approach translates a program into a series of characters
(according to a pre-defined translation table relating a character to a 6-bit represen-
tation) and transforms the binary representation into a Brownian walk using every
0 bit as a step down and every 1 bit as a step up. It then calculates the root of
mean square fluctuation F (l) about the average of the displacement. This approach
can be compared to the calculation of the long range correlation in human writings.

In a two-dimensional Brownian walk model F (l) is defined as follows:

F (l) =

√
[∆y(l , l0)]2 − [∆y(l , l0)]2 ∆y(l , l0) = y(l0 + l)− y(l0)

When calculating the fluctuation F (l), l is the distance between two points of
the walk on the x-axis, l0 is the initial position on the x-axis where the calculation of
F (l) for one pass starts, y is the position of the walk (and thus the distance between
the initial position and the current position on the y-axis). The bars indicate the
average over all positions l0.

If the string sequence is uncorrelated, then it holds F (l) ≈ l0.5. If there are
correlations, then it holds that F (l) ≈ lα with α 6= 0.5. The higher the value of α,
the higher the correlation and the complexity.

Thus, this complexity measure is related to the information content and the
entropy of the analyzed text (source). Higher complexity means more information
content and thereafter lesser entropy. Case studies of Kokol et.al demonstrate that
the α-metric can be applied to all programming languages for which a translation
table is defined. On the other side they also show that there is no correlation between
the α-metric and the metrics of Halstead or McCabe (see structure-based metrics
below).

ad M2) Structure-based metrics have been introduced as several developers
claimed that the size of a program is a relatively unimportant factor in programmer
comprehension. Instead the number and types of loops, branches and conditions are

152 6. Specifications’ Complexity

considered to be factors which contribute most to complexity [O’N93, p.204]. Popu-
lar measures based on flow of control are Thomas McCabes’s cyclomatic complexity
v(G) [McC76] (and derived extensions) and knots of Woodward et.al [WHH79].
Typical measures based on data flow information are Henry and Kafura’s informa-
tion flow metrics [HK81] and the DU (G) metrics of Tai [Tai84].

McCabe saw no relationship between the length of a module and its complexity.
Instead he suggested to take the number of control paths as a “better” indicator,
especially as it has a strong correlation to testing effort. The cyclomatic complex-
ity v(G) [McC76] of a program is based on its representation as a control flow-graph
G . The calculation is based on graph-theoretic concepts, and the basic idea is to
measure the maximum number of linearly independent paths9 through a program
[FP97, p.38]. The cyclomatic complexity is extracted by counting the minimum
set of paths which can be used to construct all other paths through the graph. It
measures aspects of the structural complexity of a program and has originally been
devised to estimate the effort of testing. Cyclomatic complexity is not uncontested.
Fenton and Pfleeger note that cyclomatic complexity if at all only presents a partial
view of complexity [FP97, p.293].

The cyclomatic complexity of a graph with n vertices, e edges and p connected
components is calculated as follows:

v(G) = e − n + 2p

If the program consists only of one component, and if there are only binary
decisions, then the formula simplifies to

v(G) = number of decision statements + 1

In addition to that, a “1” is added to complexity for every logical connective
which is used in the decision statement.

The cyclomatic complexity is well-established and has been extended in several
ways (see again [Mil88] for a list of references). To broaden the field of application,
McCabe and Butler applied the approach to design documents by looking at paths
in design trees and design subtrees. They introduced three additional measures:
module design complexity iv(G), design complexity S0 and integration complexity
S1. These metrics are derivatives of the cyclomatic complexity. The approach first
reduces the flow-graph by some reduction rules10 and then calculates the cyclomatic

9 A set of paths is linearly independent if no path in the set is a linear combination of any other
paths in the set [FP97, p.333].

10 In the flow-graphs only calls to subordinate modules are considered. All other nodes are
eliminated. Loops are eliminated, too. The algorithm is described in more detail in [McC89].

6.1. Measuring Complexity 153

complexity of that graph [McC89]. The module design complexity iv(G) is the com-
plexity of the reduced graph. Design complexity is then defined as S0 =

∑
i∈D iv(Gi),

and integration complexity is defined as S1 = S0 − n + 1 (whereby n is the number
of modules in the system).

The knots count metric is (like cyclomatic complexity) based on control flow
information. Woodward et.al suggest to use the number of arc intersections of a
program flow graph as an index of structuredness. Every statement and every block
of sequentially connected statements is represented by a vertex in a graph. The knot
count then represents the number of necessary crossing of directional lines in that
graph. This means that the knot count is increased every time the flow of control
is crossed. This happens if the language permits a goto statement (which allows
the flow of control to “jump” directly to a position inside another path in the flow
of control). The knot count metric is used to indicate the coding clarity. If the
program is fully-structured, the knot-count is zero.

Alternatively the flow and the use of data are used to measure the complexity
of a component. Henry and Kafura [HK81] suggest to count the number of local
information flow entering (fan − in, input) and leaving (fan − out , output) a
procedure. The information flow metric c of a procedure is calculated by the formula

c = [procedure length] · [fan − in · fan − out]2

The general idea is that the complexity of a module is related to the number of
flows or channels of information between the module and its environment [She93,
p.41]. As the module’s internal complexity is also relevant, Henry and Kafura suggest
to measure this internal complexity by counting the lines of code. The fan − in is
calculated by adding the number of information flow (terminating at a procedure) to
the number of data structures (from which information is retrieved). The fan − out
is calculated by counting the number of flows originating at a procedure and adding
the result to the number of data-structures (where information is updated).

The Definition-Use (DU (G)) metric [Tai84] is based on data flow informa-
tion, but uses a control flow graph G as its basis. The control-flow graph is annotated
by definition (d) and use (u) information of identifiers representing data items. The
DU (G) value of a structured program is then defined as the maximum number of
(d − u) - tuples in the control flow graph.

ad M3) Semantic-based metrics. Up to now it is most difficult to cope
with semantic complexity. In the early 1970s Constantine identified five levels of
relationship between sets of activities in a program. He called them processing
elements and the relationships associative principles. Some years later Stevens,
Myers and Constantine [SMC74] then extended the list to seven which then de

154 6. Specifications’ Complexity

Cohesion Description
Coincidental none of the above
Logical elements are realizing logically related tasks (one element or the other)
Temporal elements that are activated at about the same point of time
Procedural elements that have to be executed in some given order
Communicational elements operate on the same set of data
Sequential output of one serves as input for the other
Functional all parts contribute to one single and specific function

Tab. 6.2: Summary of levels of cohesion (according to [SMC74]) in increasing order. The
table describes the level of cohesion between so-called processing elements in a
program. The exact meaning of processing elements has been left open in order
to permit the classification to be applicable to modules and other elements of
design documents.

facto lead to the new standard in describing module cohesion (see Tab. 6.2). They
defined an informal algorithm to “calculate” the level of cohesion: the cohesion
of a module is defined as the lowest level of cohesion between all pairs of processing
elements. However, the informal definition of the processing element and associative
principles makes cohesion a subjective measure.

Lakhotia and Nandigam formally define processing elements and provide an al-
gorithm capable of calculating the level of cohesion [Lak97]. They take output
variables as processing elements and examine control and data flow in a variable
dependence graph (a graph where nodes are representing identifiers and arcs are
standing for dependencies) representing the program. The level of cohesion is then
defined by logical rules involving the existence or non-existence of control and data
dependencies (see Tab. 6.3) between output variables. The algorithm tests for all
levels of cohesion (according to Stevens et.al, beginning with the highest – sequential
cohesion) and takes the minimum of the level of cohesion that is detected between
these variables.

Lakhotia et.al demonstrate that their algorithm is able to implement the informal
algorithm of Stevens et.al, except for temporal cohesion.

According to the principle of structured design, a system is decomposed into
several parts, and relationships between them are identified. In addition to the
notion of cohesion, Steven, Myers and Constantine suggest another structural design
criteria: that of coupling. Coupling is a measure for the strength of intermodule
connections. Thus, coupling is a dual measure of cohesion.

Van Vliet names five types of coupling [vV93]. From highest to lowest there are:
content coupling (where one component directly affects the order of events of another
component by changing another component’s data or by passing control from one

6.1. Measuring Complexity 155

Cohesion Ci Rules rulei : Var ×Var → Bool
Coincidental rule1(x , y) = ¬ (∀i∈2..5 •

rulei(x , y))
Logical rule2(x , y) = ∃ z ; n; k ∀ l •

z →c(n,k) x ∧ z →c(n,¬ k) y ∧
¬ (z →c(n,l) x ∧ z →c(n,l) y)

Procedural rule3(x , y) = ∃ z ; n; k •
z →c(n,k) x ∧ z →c(n,k) y

Communicational rule4(x , y) = ∃ z ∀n; l ; k •
¬ (z →c(n,k) x ∧ z →c(n,¬ k) y) ∧
¬ (z →c(n,k) x ∧ z →c(n,k) y) ∧
((z → x ∧ z → y) ∨ (x → z ∧ y → z))

Sequential rule5(x , y) = x → y ∨ y → x
Functional ∃1 x (there exists only one output variable)
Undefined ¬ ∃ x (there are no output variables)

Tab. 6.3: Summary of levels of cohesion between processing elements (out of [Lak97]). x
and y denote output variables, x →c(n,k) y denotes control dependency between
x and y with regard to a statement n that is evaluating a value k (which is
either true or false). x → y denotes either control or data dependency between
x and y .

component to the middle11 of another), common coupling (where two components
share global data), control coupling (where one component directs the execution
of another component by passing control-data), stamp coupling (when whole data
structures are passed between components) and data coupling (when simple data is
passed from one component to the other).

Generally speaking, it is widely presumed that the more distinctive the structure
of a system is, the smaller renders the complexity. This means that even during the
development of a system should cohesion already be as high as possible whereas
coupling should be as low as possible.

However, up to now there are only informal approaches that detect types of
coupling (e.g. between classes in object oriented programming [LJK+01]), and there
is no approach measuring the level of coupling between components of a system.
Coupling is, like cohesion, a qualitative measure.

11 According to van Vliet a “jump to the middle” means that control is passed from one compo-
nent to some point within another component.

156 6. Specifications’ Complexity

6.2 Complexity of Specifications

The previous section named several approaches that are used to determine the com-
plexity of a system, be it a program or a design document. Metrics for specifications
are not that wide-spread. This section presents existing specification based metrics
and compares them to the above mentioned approaches. It discusses their limitation
and suggests to use the ASRN as a basis for measuring specification’s complexity.

A number of studies (see also Chap. 2.1) show that the use of formal specifications
provides quite a lot of benefits. Finney and Fenton [FF96] claim that the use of a
formal specification in the SW-development process “leads to code that has a factor
of 2.5 times fewer problems12 than projects not using formal methods”. The benefit
of the use of formal methods is uncontested, but Finney and Fenton also showed
that there are some weaknesses in the study due to the inappropriate use of different
metrics13. So what kinds of measures do exist? And which metrics are applicable?
The subsequent three sections present an overview.

6.2.1 Quantity/Size-based Specification Metrics

Quantity/Size based metrics are simple to calculate automatically. It is no wonder
that the majority of specifications’ metrics so far used in projects belongs to this
class. The following approaches are discussed in the sequel of this section: lines
of specification code [SND87], item count [VLK98], fine/large granularity metrics
[NLBN00], module count [SND87] and the α-metric [KPHR99].

i. The above mentioned CICS/ESA study uses two factors describing the Z spec-
ification: Lines of Specification Code and the time expended for writing the
specification [CNS91]. The same holds for the studies presented in Chap. 2.1.
Counting lines is wide-spread, but, again, it is not clearly defined what should
be considered as a line in a specification. However, when thoroughly defined
the measure of LOC has its benefits. Studies conducted by Samson et. al
[SND87] show that the correlation between LOC of a specification and the
LOC of its implementation is very high (greater than 0.96).

Lines of (Specification) Code describes the size of a specification, assuming that
the more lines there are in the text the more information has to be captured in mind.
However, this is not very precise and seems to be less appropriate. In contrast to

12 The paper of Finney and Fenton refers to a formal-methods-project successfully conducted by
the Oxford University’s Programming Research Group together with IBM: the CICS/ESA project
at the early 1990s.

13 The most important problem in the CICS/ESA documentation is that there is no complete
measure of complexity related to Z and non-Z developments.

6.2. Complexity of Specifications 157

programs, lines are not the dominant semantic bearing units. Chap. 4 analyzed
specifications and identified specification prime objects (primes) as the minimal
portion of a semantic bearing unit of which specifications are constructed. Thus, it
would make sense to count primes in order to quantify size-complexity.

ii. Besides looking at the number of lines of specification text, counting of items
is wide-spread. Vinter et.al [VLK98] count the type and number of logical con-
structs in Z specifications. Their study indicates that these measures correlate
with the complexity of the specification; however, up to now a quantitative
assessment of the approach is missing.

iii. Nogueira et.al [NLBN00] suggest to use two complexity measures: the Fine
Granularity Complexity Metrics (FGC) and the Large Granularity Complexity
Metrics (LGC). The FGC expresses the complexity of each operator14 in the
system and is calculated by counting input (fan − in) and output (fan − out)
data related to the operator. The LGC expresses the complexity of the whole
system and is based on the number of operators (O), total number of input and
output data (D) and the number of types (T) to be found in the specification.

FGC = fan − in + fan − out LGC = O + D + T

iv. Samson, Nevill and Dugard [SND87] suggest three measures for specifications.
According to their approach a specification consists of a set of modules; each
of which defines a set of operations. The following measures are determined:
number of equations per operation (NEQOP), number of equations per module
(NEQMOD) and number of operations per module (NOPS).

Samson et.al have been inspired by the observation that the number of equa-
tions required to define an operator is frequently equal to the cyclomatic com-
plexity of code based on the specification [SND87]. Their basic idea is to apply
an approximation to the cyclomatic complexity onto specifications. According
to the idea of McCabe, a “1” is added to the complexity each time a logi-
cal connective occurs (as this can be considered as an additional path in the
control-flow graph). In the approach of Samson et.al no flow-graph is calcu-
lated, but the number of predicates is counted. Every predicate adds “1” to
the complexity. A small case study shows that there is a correlation between
the cyclomatic complexity and the LOC of the implementation15.

14 In their terminology an operator is a component defining a specific operation.
15 The results are based on a relatively small case-study using HOPE as a specification language

and Modula-2 for implementation. The correlation between NEQOP and V (G)OP is 0.92, and
between NEQOP and LOC of the implementation it is 0.705. The correlation between NOPS and
LOC is 0.966, and between NOPS and V (G)MOD it is 0.955. V (G)OP is the cyclomatic complex-

158 6. Specifications’ Complexity

Counting the number of specific operators or input/output variables is another
approach where items (not necessarily primes) are counted. In contrast to LOC
counts, these items represent units with clearly defined semantic complexity, or at
least with comparable semantic complexity. This means that it is possible to say that
some items are more complex than others. It also implies that some kind of ordering,
some kind of quantification, is possible. For that reason approaches like FGC/LGC
and NEQOP ,NEQMOD ,NOPS are appropriate as complexity measures.

v. Kokol et.al did not only use the α-metric for programs but also applied their
approach to specifications [KPHR99]. In a case study they tested the metric on
a set of specifications languages specifying the popular steam boiler problem
[ABL96]. However, the study mainly demonstrates that the α-metric is differ-
ent for different specification languages. This is not surprising as functionally
equal programs written in different programming languages also have different
values when calculating complexity measures. The study also demonstrates
that the complexity of a specification and the complexity of the generated
implementation differ considerably between different specification languages.
In general the α-metric, when applied to specifications, at large tends to be
lower than the α-metric applied to the corresponding implementation.

Kokol et. al. omit further discussions and reflections. Thus, up to now the
α-metric has no impact on current industrial practice.

Although the α-metric is an outsider it has successfully been applied to specifi-
cation. However, the entropy of the text is quantified and surely contributes to the
complexity of a specification. Kokol admits that the calculation is not simple and
for very long texts it is almost impossible to calculate the true entropy according to
Shannon’s information theory.

Remains one important question: Are size/bulk-based measures enough to quan-
tify a specification’s complexity? The answer is quite simple: it is not only size that
counts:

1. It is questionable whether specifications of the same size (e.g. LOC) are always
of the same complexity.

2. It is also logical complexity that counts. The total complexity of a component
is not the sum of the complexity of its sub-components. Different logical
relationships between items of a component add quite a lot of information,
information that has to be considered somehow.

ity of the implemented operation, and V (G)MOD the cyclomatic complexity of the implemented
module.

6.2. Complexity of Specifications 159

When arguing about the complexity of a specification it seems to be valuable to
extend the set of measures. The subsequent section presents some structure-based
specification measures.

6.2.2 Structure-based Specification Measures

The application of structure-based metrics is impeded for the following three related
reasons:

1. The notion of control- or data-flow is not necessarily a dominant principle of
a specification language.

2. As the notion of control is not a dominant principle, formal specifications often
do not contain explicit control structures.

3. It is hard to detect control and data dependencies, and thus it is hard to
generate a control-flow or data-flow representation of the specification.

Without modifications structure based metrics are not applicable to formal speci-
fications. Due to the simplicity of size-based measures and the problems determining
control-flow, it is no wonder that size-based measures are preferred to structure-
based measures. However, size-based approaches have been inspired by structure
based approaches:

1. The basic idea behind the approach of Samson et.al [SND87] (NEQOP , NOP ,
NEQMOD) is cyclomatic complexity, and thus a structure based metric. They
argue that the calculated number for the complexity v(G) equals the number
of equations in the specification. As a consequence, this approximately equals
the number of “decision statements” in a program. However, their approach
does not really take the flow of control into consideration.

2. The approach of Nogueira et.al [NLBN00] (FGC ,LGC) makes use of data-
flow considerations. Again, the approach is not directly based on examining
data-flow dependencies. For reasons of simplicity they stick to counting the
number of inputs and outputs.

Dependencies are “hard to detect” (argument 3 above). This is in so far true that
they are not explicitly visible in the specification source. There are no “if . . . then . . .
else” or “while . . . do” constructs indicating flow of control. However, Chaps. 4 and
5 demonstrated that it is possible to deduce dependencies from specifications. It has
also been shown that control- and data-dependencies can be detected quite easily
by using an augmented net (ASRN) representing the specification.

160 6. Specifications’ Complexity

With the possibility of determining control and data dependencies it is for the
first time possible to consider them directly when calculating specification metrics.
It seems reasonable to extend the set of specification metrics by structure-based
metrics. A look at existing measures reveals what is possible:

1. Cyclomatic complexity has been introduced in order to measure computa-
tional complexity. Every (binary) decision adds further complexity to the
system and is thus correlated to independent paths in a control-flow graph. In
specifications there is often no extensive flow of control, but there are control
dependencies between primes of the specification. When the ASRN is extended
by arcs representing control dependencies, then these arcs represent parts of
the control-flow of the specification. In most cases (as there is not necessarily
a complex flow of control) there will be a set of unconnected arcs represent-
ing control and data dependency in the net. Analogous to programs, every
arc represents a decision statement. The total number of control-dependency
arcs can thus be regarded as an increment of the cyclomatic complexity. For
that reason it is suggested to define the cyclomatic complexity of specifications
based on control-dependency information deduced from the ASRN.

2. The knot count metric is a measure for the clarity of a program and it is
based on control dependencies. The more complicated the flow of control (the
more intersections there are), the more complicated it is to read the program.
Knots in the flow of control happen when the programming language permits
control to be passed across paths (using goto-statements). This is not possible
in declarative specification languages. Thus, the knot-count metric is not
applicable.

3. The metric of Henry and Kafura is based on the amount of information that
is shared and used by a procedure of the program. Data flow within (or better
across) the whole program is not considered. However, it is not possible to
apply their approach to specifications by just using the ASRN. The ASRN
differs between identifiers declared for use in an SRN block, but does not
separate input from output identifiers. It would, of course, be possible to
extend the ASRN.

4. The DU (G) approach is also concerned with the flow of data, and real data-
flow dependencies across the whole program are considered. The DU (G) count
reflects all data dependencies that are to be identified in the program. With
the ASRN this approach can easily be related to specifications. The DU (G)
count equals the number of data dependencies in the specification.

To summarize, there is no approach dealing directly with the structural com-
plexity of specifications. However, with the introduction of specification dependen-

6.2. Complexity of Specifications 161

Description Calculation

Cohesion of a module Cohesion(σ) = no. read or write entries for module σ
total no. of entires in τ

Coupling between modules Coupling(σ1, σ2) = ∃ shared state variable in Σ
Coupling of specification Coupling(Σ) = no. of coupled modules

m!

Closeness between two modules Closeness(σ1, σ2) =](σ1.v ∩ σ2.v)
](σ1.v ∪ σ2.v)

Tab. 6.4: Quantitative measures for coupling, cohesion and closeness of Z specification
modules (out of [CDHW93]). They are based on entries in a cross-reference
table τ which summarizes the references to state variables v for each module in
the specification Σ. Here σ denotes one schema (module) in the specification.
m corresponds to the total number of modules in the specification, and σi .v is
the set of variables accessed by schema σi .

cies (and the use of the ASRN) it gets possible to adopt approaches presented in
Chap. 6.1.2. It is suggested to make use of the ASRN and to relate two structural
complexity measures to the field of specifications: the cyclomatic complexity metrics
and the DU(G) count.

6.2.3 Semantic-based Specification Measures

Semantic-based metrics have already been applied to specifications, but there is no
approach determining the level of cohesion of components of a specification. The
same is true for the type of coupling. However, Carrington, Duke, Hayes and Welsh
[CDHW93] define a quantitative measure for functional (and partly communica-
tional) cohesion and a quantitative measure for communication coupling of modules
in a specification. Their approach is based on counting both the total number of
state variables and the number of state variables that are jointly used by different
modules (see Tab. 6.4).

The idea is based on the assumption that a cohesive module is responsible for
a single part of functionality of the system. One way to interpret this is to look at
how modules operate on the state space. If a subset of operations only requires a
subset of the state to define their effect, then one can argue that the whole module
is not cohesive and should be split. On the other hand, if modules refer to the same
set of state variables, they are said to be coupled.

For a Z specification Σ consisting of m schemata, Carrington et.al build a ref-
erence table τ . Rows represent the m schema operations σ and columns represent
state variables v . In τ there is an entry (r or w) at position (v , σ) if there is a
reference (read or write) to variable v in σ. Taking the table as a basis, they define
the notion of cohesion of a schema σ, the notion of coupling of the overall specifi-
cation and the notion of closeness between two operations (see Tab. 6.4) by simply
counting the occurrences of entries in the reference table.

162 6. Specifications’ Complexity

Measures mainly Some representatives Representatives for
based on for programs/documents specifications
Size/Quantity LOC [Jon78] Specification LOC

Number of Operators †) [SND87]
FGC/LGC ‡) [NLBN00]

Halstead’s Metrics [Hal77] −
α-metric [KPB98] α-metric [KPHR99]

Structure Cycl. complexity v(G) [McC76] −†)
Knot-count [WHH79] −
Information-flow [HK81] −‡)
DU (G) [Tai84] −

Semantic Slice Profiles [OT89] Cross-ref. table [CDHW93]
Rule-bases approach [Lak97] −

Tab. 6.5: Popular representatives for approaches that are (among other things) used for
measuring the complexity of programs and specifications. Approaches for object-
oriented programs and (cost-) estimation models have been omitted as there are
no comparatives for formal methods. †) The approach is based on the idea of
control dependencies and related to v(G), however, only items (equations) are
counted. ‡) FCG/LGC considers data-flow in the specification, however, only
items (input/output data) are counted.

Chap. 6.1.2 presented another semantic-based approach: the rule-based approach
of Lakhotia. However, it cannot fully be transformed into specifications represented
by an ASRN. The classification is based on logical expressions that evaluate to a
boolean value. That would not be a problem so far, as a pre-condition prime in
Z either evaluates to true or false. However, to detect logical or communicational
cohesion, control dependency between primes is not enough. The approach requires
differentiation between success or failure of the application of the prime. As an
example consider the first part of the rule for logical cohesion:

rule2(x , y) = ∃ z ; n; k ∀ l • z →c(n,k) x ∧ z →c(n,¬ k) y ∧ . . .

There is logical dependency between identifier x and y at primes px and py , if
these primes are control dependent on a prime pz . The logical rules prescribes that
px is control dependent on pz and px is only executed when pz evaluates to k (either
true or false). It also prescribes that py is control dependent on pz and that py

is only executed when pz evaluates to ¬ k . This cannot be detected by using the
ASRN as the semantics of the involved operations (k or ¬ k) which is encapsulated
by the prime vertices.

Up to now a detailed description of program and specification metrics have been
provided. As can bee seen in Tab. 6.5, there are quite a lot of measures that are used

6.3. Complexity Measures based on the ASRN 163

to calculate the complexity of a program, but there are only a few that are used for
specifications. It is remarkable that there are no structure-based measures. Here,
the ASRN provides a great opportunity. With the ASRN dependencies become
explicit for the first time. The remainder of this chapter describes how complexity
measures can be calculated by using the ASRN.

6.3 Complexity Measures based on the ASRN

The previous section demonstrated that most of the approaches quantifying the
complexity of specifications go back to popular program metrics. When coping with
conceptual complexity it suggests to use the ASRN representation as a basis for the
metrics calculation. To be more precise it proposes to extend the set of existing
specification measures by:

• Counting specification primes in order to quantify the information content
of specifications. The measure is called Conceptual Complexity CC of the
specification.

• Calculating the cyclomatic complexity of the specification in order to
determine the logical complexity of the specification.

• Determine the DU(G) metric for specifications, again, in order to deter-
mine the logical complexity of specifications.

The following three sections introduce specification measures based on the ASRN.
Finally, Chap. 6.3.4 presents a short example to demonstrate the simplicity of ap-
plying these measures to Z specifications.

6.3.1 Conceptual Complexity of Specifications

The first measure is called conceptual complexity CC . It is based on the number
of primes in a specification. In an ASRN prime vertices represent these semantic
units.

However, in the ASRN prime vertices represent prime objects and higher-level
primes. A higher-level prime FunctioningDB == Add ∨ Delete consists of three
primes (FunctioningDB , Add , Delete) and one higher-level prime Add ∨ Delete.
In the ASRN prime vertices representing higher-level primes do not declare or use
identifiers. Thus, when counting primes in the ASRN, higher-level primes have to
be excluded (by neglecting vertices with no declaration, definition, or use of an
identifier). The conceptual complexity CC is defined as follows:

164 6. Specifications’ Complexity

Fig. 6.1: ASRN of a specification and several possible implementations. Cyclomatic com-
plexity is based on control dependencies (in the ASRN drawn as red arcs) going
back to decision statements. Even for small specifications and simple logical
connectives it is hard to find a suitable relation between specification predicates
and program predicates. Statements 1a) to 2c) present different interpretations
of two simple SRN blocks which consequently leads to different cyclomatic com-
plexities. (v(1a) = v(1b) = 2, v(1c) = v(1d) = 3, v(2a) = 2 or 3, v(2b) = 3,
and v(2c) = 5)

Definition 6.1: Conceptual complexity CC (Ψ) of a specification Ψ. Let Υ =
(NeSRN , Σv ,T ,Tl ,C ,D ,U) be an ASRN of a syntactically correct Z specification
Ψ, and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,Ac,Aand ,Aor , t) the corre-
sponding extended SRN.

Then the conceptual complexity CC (Ψ) is the total number of predicate vertices
Vpr in the eSRN:

CC (Ψ) =]{v : V | v ∈ Vpr ∧ (D(v) ∪ T (v) ∪ Tl(v) ∪ C (v) ∪ U (v)) 6= ∅}

Chap. 6.3.4 presents a short example of how to calculate the conceptual com-
plexity of a specification.

6.3. Complexity Measures based on the ASRN 165

6.3.2 Cyclomatic Complexity of Specifications

The cyclomatic complexity is based on the identification of control dependencies in
control flow graphs. McCabe already suggested (as an abbreviation) to look at the
number of decision statements that can be identified in the program.

However, relating his approach to specifications is not that easy, as there is no
general agreement about how to deal with compound statements16. Fig. 6.1 demon-
strates that the relation is indeed not trivial. When looking at SRN block SRN1,
there are one pre-condition prime (PR1) and two post condition primes (PO1,PO2).
The pre-condition prime represents the decision statement. If it is evaluated to true,
the postcondition primes are evaluated, too. This means that there is one decision
statement in that particular part of the specification. These pre- and post-conditions
can be assigned to if − then − else statements in different ways. Corresponding to
program variant 1a) or 1b) a cyclomatic complexity of 2 could be provided.

Another interpretation is that of variant 1c). There are two postcondition primes,
two dependencies and thus two control-dependency paths to be regarded. In that
case a cyclomatic complexity of 3 could be provided.

SRN block SRN2 demonstrates a case with several pre-condition primes. When
assuming a single statement as in variant 2a), the complexity would be 2 or 3,
depending on the algorithm that has been chosen (counting logical connectives or
not). Variant 2b) treats the logical connective as an extra statement. Finally, variant
2c) does not aggregate the post-conditions, which leads to a maximum number of
separate control paths.

Different interpretations lead to values of v(G) between 2..3 for SRN block SRN1

and between 2..5 for SRN block SRN2.

A similar situation has been detected for the cyclomatic complexity of programs
where rather simple conditions in single statements lead to high complexity mea-
sures. In 1977 Myers [Mye77] suggested to extend v(G) to v ′(G) = [l : u] where
l and u are lower and upper bounds. The lower bound value l equals the number
of decision statements plus one. This means that decisions, even when containing
sub-expressions, are only counted once. The upper bound value is the number of all
control dependencies plus one. In our case this means to count all control arcs in
the net.

According to the findings above, first the cyclomatic complexity of a specification
is defined by counting all control dependencies in the ASRN. This measure will then
be the upper bound value of the extended cyclomatic complexity.

16 Not all authors add a one to the cyclomatic complexity for every logical connective in the
expression of a decision statement.

166 6. Specifications’ Complexity

Definition 6.2: Cyclomatic complexity v(Ψ) of a specification Ψ. Let Υ =
(NeSRN , Σv ,T ,Tl ,C ,D ,U) be an ASRN of a syntactically correct Z specification
Ψ and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,Ac,Aand ,Aor , t) the corre-
sponding extended SRN.

Then the cyclomatic complexity v(Ψ) equals 1 plus the total number of control
dependencies in the ASRN:

v(Ψ) =]{v1, v2 : V | v1 ∈ Vpr ∧ v2 ∈ Vpr ∧ (v1 →c v2)} + 1

The extended cyclomatic complexity is an ordered tuple consisting of a lower and
an upper bound value. The value of the upper bound is determined by the cyclo-
matic complexity as defined above. For the lower bound only dependency arcs which
have different initial vertices are counted – thus counting different decision state-
ments. When related to the ASRN, this means counting vertices which represent
pre-condition primes that are initial vertices of control dependence arcs.

Definition 6.3: Extended cyclomatic complexity v ′(Ψ) of a specification Ψ.
Let Υ = (NeSRN , Σv ,T ,Tl ,C ,D ,U) be an ASRN of a Z specification Ψ and
NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,Ac,Aand ,Aor , t) the corresponding
extended SRN.

The extended cyclomatic complexity v ′(Ψ) is an ordered pair (l , u). The upper
bound value u equals the cyclomatic complexity of Ψ. The lower bound value l is 1
plus the number of vertices which are terminal vertices of control dependence arcs
in the ASRN:

l =]{v2 : V | ∃ v1 : V | v1 ∈ Vpr ∧ v2 ∈ Vpr ∧ (v1 →c v2)} + 1

The extended cyclomatic complexity v ′ is defined as an ordered pair consisting of
the values of l and u = v(Ψ):

v ′(Ψ) = (l , u)

6.3.3 Definition/Use Count Metric of Specifications

The DU (G) metrics is simple to relate to specifications. Transformed to the ASRN,
the measure implies counting the number of data dependencies in the net.

Definition 6.4: DU count metric (DU (Ψ)) of a specification Ψ. Let Υ =
(NeSRN , Σv ,T ,Tl ,C ,D ,U) be an ASRN of a syntactically correct Z specification
Ψ and NeSRN = (V ,Vpr ,Vstart ,Vend ,Vstruct ,Vcomment ,Ac,Aand ,Aor , t) the corre-
sponding extended SRN.

6.3. Complexity Measures based on the ASRN 167

Fig. 6.2: Simplified birthday book specification (on the left) and the corresponding ASRN
(on the right) in order to demonstrate the identification of Z measures. Here,
the operation schemata Add , Success and Delete are combined using a logical
AND and OR operation. Control dependencies are visualized via thick arcs, data
dependency is visualized by using thick dashed arcs. Primes are marked by thick
circles.

The DU count metrics of a specification equals the total number of data depen-
dencies in the ASRN. It holds:

DU (Ψ) =]{v1, v2 : V | v1 ∈ Vpr ∧ v2 ∈ Vpr ∧ (v1 →d v2)}

This completes the transformation of wide-spread program complexity measures
to specifications. The next section presents a short example of how these measures
are calculated by using the birthday-book specification as an experimental object.
Chap. 8 then presents several case studies and demonstrates how these measures are
used in order to validate the approach of generating specifications’ abstractions.

168 6. Specifications’ Complexity

6.3.4 Calculating Complexity Measures

The previous section relates procedural complexity measures to specifications. The
calculation of specification metrics based on the ASRN is quite simple and will
be performed step-by-step for the birthday book example in the remainder of this
section.

The birthday book specification as presented in Fig. 6.2 consists of 38 lines of
specification text written in LATEX. However, it is not that easy to determine the lines
of specification code as it is not clear which lines to count and which lines to skip.
So it is quite possible to skip all lines which represent decorations and boxes. When
counting all lines (including empty ones and those containing graphical decorations)
the BB specification consists of 33 LOC; when neglecting all graphical decoration
it consists of 21 LOC which is a difference of more than 36% in size. It is also
conceivable that the Z specification is written in its compact notation (horizontal
form). The Add schema would then consist of 2 lines of specification code (instead
of 6 to 9) and would look like:

Add == [∆BB ; name? : NAME ; date? : DATE |
name? 6∈ known; birthday ′ = birthday ∪ {name? 7→ date?}

For just that reason it is a good idea to stick to counting semantic elements on which
the specification is built upon. The conceptual complexity CC (BB) is calculated
by counting specification primes. In this example CC (BB) = 22 as there are 22
primes in the specification which are assigned to 22 prime vertices in the ASRN.
They contain at least a declaration, a definition or make use of an identifier.

For determining the cyclomatic complexity the number of pre-condition primes,
post-condition primes and control dependencies is relevant. P13,P17,P19 are control
dependent on P6. P19 is also control dependent on P13 and P17. In fact, there are 9
dependencies to be regarded. The cyclomatic complexity v(BB) is 10.

There are three decision statements (P6,P12,P16) in the specification and there
also three control dependency paths terminating at different prime vertices. For
the birthday book the lower bound value of v ′(BB) is l = 4. Thus, the extended
cyclomatic complexity of the birthday book specification is v ′(BB) = (4, 10).

The birthday book specification is rather small; nevertheless there are several
data-dependencies. birthday is modified and used in different primes and primes
P16,P13,P17 are involved again. Altogether there are 4 data-dependencies in the
specification (P6 →d P13, P6 →d P17, P13 →d P17, P17 →d P13) leading to a
maximum number of 4 (d , u)-tuples. The DU count metric of the birthday book
specification is DU (BB) = 4.

With the calculation of different complexity metrics it is now possible to grasp
the complexity of a specification extensively.

6.4. Summary 169

6.4 Summary

This chapter starts with a short introduction to procedural complexity measures.
Three classes of complexity measures are identified (size/bulk-based, structure based
and semantics-based), and for each class some popular metrics are discussed. Next,
the state of the art of complexity measures for specifications is examined and the
few existing approaches (Lines of Specification Code, Item count, Fine/Large Gran-
ularity Complexity Metrics and the α-Metric) are examined, too. It turns out that
size-based measures are commonly used, whereas structure-bases approaches are
missing due to the fact that control- and data-dependencies are not explicitly avail-
able in the underlying specification.

Nevertheless, size-based measures are not enough for describing complexity. It
is not only size that counts. Firstly, specifications of equal size are not necessarily
of the same complexity, and secondly, logical complexity cannot be neglected.

It pays off to enrich the set of existing specifications’ metrics by structure based
metrics. This chapter suggests to use the ASRN as a basis for the calculation as the
augmented net makes the necessary dependencies explicit.

The complexity measures mentioned above are examined and discussed in respect
to their applicability to specifications and the ASRN. It turns out that most of the
existing approaches can be applied to the augmented specification relationship net.
Based on the ASRN the following complexity measures are defined:

• Conceptual Complexity CC (Ψ) of a specification Ψ. Here, primes are counted
– not the number of lines of specification code.

• Extended Cyclomatic Complexity v ′(Ψ) of a specification Ψ. Based on the
number of control dependencies, lower and upper bounds for decisions in a
specification are counted.

• The DU count metric DU (Ψ) of a specification Ψ. By counting the number of
data dependencies the maximum number of data relationships are identified.

With these extensions a wide range of specifications’ metrics exists. What is
more important is the fact that, based on these quantities, comparisons between
different specifications become feasible. This advantage is used in the remainder of
this work. Chap. 8 demonstrates that abstractions, as suggested in Chap. 4 and
Chap. 5, are really reducing the complexity of the underlying specification.

170 6. Specifications’ Complexity

7. COMPREHENSION TOOLKIT PROTOTYPE

Nihil recte sine exemplo decetur.

Columella, res rusticae, XI 1,4

Chap. 5 presented the Augmented Specification Relationship Net. It is used
as an alternative representation of a specification and eases the calculation of de-
pendencies. However, for the scope of the previous chapter the transformation of
a specification to the ASRN was done by hand. When specifications get larger,
however, this step is too laborious.

The ASRN is defined in a language-independent manner, but the transformation
rules depend on the specification language at hand. Therefore transformation rules
for Z were proposed. Based on these rules, a small prototype has been implemented.
The prototype is introduced in more detail in this chapter.

The prototype is designed to be used on Windows and Linux Systems and it is
based on a publicly available grammar of Z. It is able to transform Z-specifications
(that are type-set in LATEX) to an ASRN in order to calculate dependencies in the
specification. It is also able to transform the ASRN representation back to the
specification text.

This chapter is organized as follows: the motivation for the implementation of
the prototype and its features are presented in Chap. 7.1. The structure of the
prototype and the design decisions are discussed in Chap. 7.2. Finally, limitations
and possible improvements are discussed in Chap. 7.3.

7.1 Generation of Abstractions for Z

The generation of an ASRN is straight-forward and Chap. 5.3.3 presented the rules
necessary for the transformation of a Z specification (that is written in LATEX) into
the augmented net. Doing the transformation by hand is laborious. The same holds
for the identification of dependencies. The birthday-book specification used so far in
this work is so small that an automated transformation is not necessary. However,
transforming larger specifications is not practicable either.

In order to deal with large specifications, a simple text-based prototype for Z
has been implemented. It serves as a basis for the case studies presented in Chap. 8.

172 7. Comprehension Toolkit Prototype

The following recurring tasks are handled by the prototype:

1. It generates an ASRN representation from a syntactically correct specification.

2. It calculates dependencies based on the ASRN.

3. It calculates partial specifications, that is Burnstein chunks, static or full static
chunks, static specification slices and full static specification slices.

4. It calculates statistics based on the ASRN representation of the specification.
This includes the number of primes, the number of control-dependencies (lower
and upper-bound values) and the number of data-dependencies.

5. It generates output in two ways. Firstly, the net can be stored in a graphi-
cal format in order to visualize the net via dotty . Secondly, the net can be
transformed backward to the specification source.

This subsequent section describes the prototype in more detail. It can be down-
loaded (in pre-compiled form) from the web-page of the author1.

7.2 Prototype Description

To ensure portability, the prototype (also called “SliZe” toolkit) has been imple-
mented in Java. It is available for Windows and Linux platforms. For reasons of
simplicity, the SliZe toolkit is based on the preccx grammar2 of Z which has been
defined by Breuer and Bowen [BB95]. The compiler produced by preccx is able to
check for syntactically correct Z specifications written in LATEX and has been mod-
ified in order to produce an intermediate representation of the specification. This
representation then serves as an input to the SliZe application (see Fig. 7.1).

There are two reasons for splitting the prototype into a front-end (which is based
on standard-C and the preccx grammar) and a back-end (which is based on Java):

1. The aim is to make the approach (and with it the SliZe toolkit) independent
from the specification language at hand. When using languages others than Z
only the front-end has to be replaced. The back-end remains the same.

1 Author’s web-page: http://www.ifi.uni-klu.ac.at/Andreas.Bollin/private/SliZe. Page last vis-
ited: March 2004.

2 Breuer and Bowen’s preccx home-page: http://www.afm.lsbu.ac.uk/archive/redo/precc.html.
Page last visited: March 2004.

7.2. Prototype Description 173

Fig. 7.1: General structure of the prototype. The preccx grammar of Z is used to gen-
erate an intermediate representation of the specification. This representation
serves as an input to the SliZe application. The application itself is controlled
by command-line arguments and enables both, the generation of partial specifi-
cations and the generation of dotty representations of the ASRN.

2. The preccx -grammar, as defined by Breuer and Bowen, is the only publicly
available grammar for Z-specifications which are type-set in LATEX. It is based
on the language definition of Spivey [Spi89b] but has been extended by Breuer
and Bowen to cope with LATEX input. Up to now there is no Z-grammar for
Java compilers, and the freely available Java compilers (like JLex3 and CUP4)
still have have problems with the ambiguities of the language definition. (These
ambiguities are due to mixing Z grammar and LATEX-grammar. However, they
can be resolved rather neatly when using preccx 5).

The prototype is used for the proof of concept and for metrics calculation only.
Therefore it is sufficient to control the application via command-line arguments.
Displaying the specification by using a graphical interface is appealing, but not
without its problems. At the moment the prototype is implemented as text-based
application for the following reasons:

1. Mathematical symbols make it hard for Java to display the specification cor-
rectly. Remains to display the specification in its LATEX form of representation.
However, a graphical interface would then simply be an overhead.

3 JLex was developed by Elliot Berk at Princeton University. It is now maintained by C. Scott
Ananian. http://www.cs.princeton.edu/ appel/modern/java/JLex. Page last visited: March 2004.

4 CUP home-page (Scott E. Hudson): http://www.cs.princeton.edu/ appel/modern/java/CUP.
Page last visited: March 2004.

5 There are several reasons why the transformation to another grammar is impeded. The main
advantage of preccx is that it can handle context-dependent grammars. The reader is referred to
[BB95] for more details.

174 7. Comprehension Toolkit Prototype

Fig. 7.2: Command-line arguments for the SliZe prototype written in Java. It takes an
input-file (-i) and optionally writes to an output-file (-o) in either dotty (-t dot) or
LATEX (-t z) format. Additionally the LATEX output can be printed to the screen
either by including comments (-l 1) or by omitting comments (-l 2). SRN blocks
can be displayed, too. They are either switched off (-c 0), they are displayed and
include all vertices of the net (-c 1), or only the SRN blocks are displayed (-c
2). For the generation of partial specifications the type of abstraction (-s), the
point(s) of interest (-n), relevant dependencies (-d), the calculation of the closure
(-h) and the set of literals (-r) can be provided. Additionally all possible sets of
abstractions can be calculated by using the (-m) option.

2. Another solution would have been the integration into an existing environment.
Here, the source code is not easy to obtain, and it would only solve the problem
of displaying the specification itself. It would still need an extra effort to
display the augmented net.

The command-line options (see Fig. 7.2) have proven useful during the generation
of partial specifications. By simply switching from the dotty mode (-t dot) to the
Z-specification source mode (-t z) the prototype is able to generate the LATEX text
representing the partial specification. This specification can be compiled (pretty-
printed) to a PDF document and is then visualized in an usual and readable manner.
Again, by switching the level of abstraction the net can be displayed in full detail
(-t dot -c 0). Otherwise it can be displayed in a more compact manner by just
displaying the SRN blocks (-t dot -c 2).

The identification of dependencies is separated from displaying them in the net.
The identification is controlled by the (-a)-switch, and the output is filtered by the

7.3. Limitations and Improvements 175

Fig. 7.3: The set of vertices can be displayed in linear form on the screen by using the
(-l)-option. This screen-shot of the birthday-book specification presents the out-
put generated by using the option (-l 2) which hides vertices that are comment
vertices. Every line represents ASRN information. A line “5/1/3 NAME” de-
scribes the vertex with vertex-ID “5” which is element of SRN-block “1” and
which is a prime vertex (“1” and “2” denote start and end vertices, “3” denotes
prime vertices, a value higher than 3 denotes structural vertices). Next to it is
the associated LATEX-text in the specification: the literal “NAME”.

(-f)-switch. The set of vertices of the ASRN can also be printed to the screen. It is
possible to display all vertices represented by their vertex-identifier and the associ-
ated LATEX-text is displayed by using the (-l)-option (see Fig. 7.3). Furthermore, the
(-m)-option provides a practical switch in order to automatically generate partial
specifications for all possible points of interest (prime vertices) in the specification.

The transformation to the ASRN is based on the rules presented in Chap. 5.3.3.
It takes a syntactically correct Z-specification which is type-set in LATEX input.
The output is either a file in dotty-format or a Z-specification in LATEX-format.
The subsequent chapter discusses the limits of the application of the prototype and
suggests simple improvements.

7.3 Limitations and Improvements

The prototype is needed to calculate dependencies and to generate partial specifi-
cations. For reasons of simplicity is makes use of the existing Z grammar and only

176 7. Comprehension Toolkit Prototype

implements the ASRN functionality. It has been extensively tested and used with
small- and medium-sized Z-specifications. An application to larger specifications is
possible but two aspects should be considered:

1. The generation of the ASRN representation can still be done automatically.
The result is a dotty-source file which serves as an input to the graphviz/dotty
environment. However, when specifications are getting larger (the ASRN has
more than 500 vertices and more than 5000 arcs) dotty needs too much time for
generating the layout. Rendering the ASRN for the Elevator specification (it
consists of 349 vertices and 3668 arcs) takes already two minutes on a Pentium
4 with 1.6 GHz and 512 MB RAM.

2. There is no feedback-loop between the dotty-representation of the ASRN and
the SliZe-prototype. Thus, it is not possible to display the net, then move on
to another point of interest and finally restart the calculation by just clicking
at this point.

When attempting to improve the prototype for industrial use the two aspects
described above have to be dealt with. For a proof of concept it is sufficient to apply
the prototype to a specification first and then generate a dotty representation of the
ASRN. For an industrial use a direct graphical output has to be implemented as it
gets necessary to deal with nets consisting of thousands of arcs and several hundreds
of vertices. When using dotty all the same, one solution is to abstract from the level
of vertices and display only SRN blocks. This has already been implemented in
the prototype. However, if there are hundreds of SRN blocks, rendering the output
takes a lot of computation power again. Thus, a second step might be needed. It
is conceivable to abstract from SRN-blocks and display sets of blocks as regions in
the net.

Another chance for improvement is the way how the abstraction criteria are
provided for the prototype. A criterion consists of three parts: the point of interest
in form of a set of prime-vertices, the set of dependencies to be considered and the
set of identifiers to be regarded. At the moment the set of prime vertices is provided
by a list of vertex-identifiers. These unique identifiers represent the primes in the
ASRN. A more comfortable solution would be to click directly at the point(s) of
interest in the ASRN and then to start the generation of partial specification.

Finally, the front-end of the prototype is still dependent on the Z-grammar de-
fined for preccx . preccx and the Z-grammar are not maintained at the moment. To
improve and guarantee portability it would be attractive to implement the parser
directly in Java. This is possible but, for the reasons mentioned in Chap. 7.2, not
without effort.

7.4. Summary 177

7.4 Summary

This chapter presented a simple prototype for the generation of partial specifications
in Z. In order to simplify porting the prototype to other specification languages it
has been split into two parts. The first part, the front-end, has been implemented in
standard-C, and it is based on the preccx -grammar of Z. With this, a syntactically
correct Z-specification can be transformed into an intermediate representation. This
representation is taken as an input to the second part of the prototype.

The second part of the prototype is based on Java and implements the ASRN
functionality. It generates the augmented net and provides a command-line interface
to stipulate the generation of partial specifications. The output is either a dotty-file
in order to generate an image of the ASRN, or a LATEX-file in order to pretty-print
the Z-specification.

The prototype has some limitations when displaying and interacting with the
ASRN. As dotty tries to optimize the layout of the net, large specifications lead
to very high computation times. The solution is to abstract from the details in
the net and to display SRN blocks only. This type of abstraction has already been
implemented in the prototype. Another limitation is that the prototype does not
provide a graphical interface for user-input. Finally, it still depends on a piece of
software that is written in C and impedes portability.

Despite these limitations, the prototype proves to be useful. It simplifies the
analysis especially when generating different ASRNs and different partial specifica-
tions for the case studies presented in the subsequent chapter. In the context of these
studies more then 600 partial specifications have been generated and thousands of
dependencies have been detected. And all this within a few minutes.

178 7. Comprehension Toolkit Prototype

8. EVALUATION

We want principles, not only developed-
the work of the closet-

but applied,
which is the work of life.

Horace Mann, Thoughts [1867]

The approach of calculating partial specifications promises to scale down the
complexity of specifications, and this chapter provides case studies to underpin this
argument. Based on the results of the case studies the question raised in Chap. 2
can be answered: Can a reduction of complexity be expounded, and how can it be
measured?

Chap. 6 provided the answer to the second part of this question as it introduced a
measure to cope with the complexity of the information content as well as two mea-
sures to cope with logical complexity. The objective of this chapter is to validate the
concept of partial specifications and to describe the extent of the reduction. For this
reason more than 600 partial specifications derived from four different specifications
(of different and increasing size) have been analyzed.

This chapter is organized as follows: In order to deal with larger specifications
the prototype presented in Chap. 7 has been applied to several specifications. The
setting for the generation of partial specifications and the treatment are described in
Chap. 8.1.1 and Chap. 8.1.2. Then three hypotheses are formulated in Chap. 8.1.3.
Based on the results of the treatment these hypotheses are discussed in Chaps. 8.2,
8.3 and 8.4. Finally, this chapter closes with a reflection about the above findings.

8.1 Studies Description

The previous chapters used the birthday-book specification [Spi89b] as a demonstra-
tion object so far. It was utilized to demonstrate the transformation to an ASNR,
to show how dependencies are identified and to demonstrate the calculation of spec-
ification abstractions. Furthermore, it has been used to explain the calculation of
complexity metrics.

180 8. Evaluation

Fig. 8.1: Complexity overview regarding four Z-specifications. The table summarizes the
total number of vertices V and arcs A in the ASRN representation, the conceptual
complexity CC , the extended cyclomatic complexity v ′ = (v ′(l), v ′(u)) and the
DU count metric.

8.1.1 General Setting

The birthday-book specification is one of the smallest pictorial specifications that
are to be found in textbooks introducing Z. Larger specifications are necessary in
order to express the effects of partial specifications. This includes the influence
of the different types of abstraction, the effect of the approach onto complexity in
general and the effect of larger specifications.

This section makes use of three additional specifications: The “Elevator” spec-
ification out of [CR94], the “Petrol-Station” specification (Petrol for short) which
is used during class labs at the University of Klagenfurt and the “ITC Window
Manager”-specification (WM for short) which is a commercial specification pre-
sented in [Bow96]. The annotated specifications can be found in Chap. C.

Fig. 8.1 summarizes the key attributes of the specifications and visualizes the
measures that contribute to their complexity: the total number of vertices (V) in
the net, the total number of arcs (A) in the net, the extent of conceptual com-
plexity (CC), the lower and upper bound (v ′(l), v ′(u)) of the extended cyclomatic
complexity and the definition/use count (DU) of the specification.

8.1. Studies Description 181

As can be seen, the BB -specification is the most simple one. The Petrol -
specification is also small, but contains twice as much primes (and about twice
as many vertices and arcs). The BB -specification consists of 72 vertices, the Petrol -
specification consists of 134 vertices. The same ratio holds for the other measures,
except for the DU count metric. Here, the Petrol -specification contains 131 data-
dependencies, the BB -specification contains only 4 data-dependencies.

With respect to the number of vertices, the Elevator -specification is the next
larger one. The ASRN contains 349 vertices and is thus smaller than the WM -
specification. It also contains only 144 primes, whereas the WM -specification con-
sists of 213 primes. However, the Elevator -specification contains much more hidden
dependencies. It contains 1069 control dependencies, whereas the WM -specification
contains only 544 control dependencies. Thus, with respect to primes, the Elevator -
specification is less complex than the WM -specification. With respect to the ex-
tended cyclomatic complexity and even the DU metric, the WM -specification is less
complex.

8.1.2 Experiments

The specifications mentioned in Chap. 8.1.1 have been used to investigate the ques-
tion whether and to what extent the generation of partial specifications pays off.
The BB -, Petrol -, Elevator and WM -specifications are used as experimental objects
for the treatment – the application of the generation of partial specifications.

The prototype mentioned in Chap. 7.1 has been used to generate all possible sets
of partial specifications for every predicate prime in the specification. These primes
are the points of interest1.

In the BB -specification there are 7 points of interest. The Petrol -specification
contains 21 points of interest, the Elevator -specification contains 102 points of in-
terest, and the WM -specification contains 92 points of interest. The list of points
of interest and the mapping between these points and the specification source can
be found in App.A.5.

For every point of interest three different types of partial specifications are gen-
erated. In fact, the following steps are conducted during the treatment:

1. For every prime vertex n, representing a point of interest p in the specification,
the full static specification slice FSSlice(n, Σv) is calculated.

2. For every prime vertex n, representing a point of interest p in the specification,
the full static specification chunk SChunk(n, Σv , {S ,D}) is calculated.

3. For every prime vertex n, representing a point of interest p in the specification,
the full static specification chunk SChunk(n, Σv , {S ,C}) is calculated.

1 When applying the prototype to the specifications the (-m 1) option is set.

182 8. Evaluation

For all points of interest slices and two types of chunks (one containing control
dependencies, one containing data-dependencies) are calculated. The set of identi-
fiers is not restricted when calculating the chunk SChunk(n, Σv , {S ,D}). Thus, all
data dependencies are taken into consideration.

Depending on the specification, this leads to 21 (= 7 points of interest · 3 types
of partial specification) possible partial specifications for the BB -specification, 63
partial specifications for the Petrol -specification, 306 partial specifications for the
Elevator -specification and 276 partial specifications for the WM -specification.

The factors which are assumed to change (and which are called response vari-
ables) are the following:

• Attributes regarding the ASRN. They include the total number of vertices V
and arcs A of the net.

• The attribute contributing to the information content of the specification:
CC (Ψ), the conceptual complexity.

• Three attributes contributing to the logical complexity of the specification.
This includes the lower bound l and the upper bound u of the extended cy-
clomatic complexity v ′ and the DU metric of the specification.

These attributes are determined for every partial specification that is generated
during the treatment. For the scope of the evaluation of the approach, the mean
values of these attributes (in respect to a specific type of partial specification) are
often considered. E.g. in the BB -specification there are 7 points of interest, and for
each of these points of interest the full static specification slice is calculated. When
only looking at the number of vertices in the resulting ASRNs, every point of interest
results in a specific number of vertices in the net (V1..7 = 〈54, 26, 38, 54, 38, 54, 66〉).
The mean value of these numbers (V1..7 = 47, 143) is then considered the average
number of vertices when generating a full static specification chunk in respect to the
BB -specification.

In order to indicate the calculation of the mean in respect to a specific type of
partial specification, the function m() is provided. When calculating the mean of
mean values, the function M () is provided.

For the specifications at hand, App. A.5 summarizes these mean values and pro-
vides statistical information in respect to standard deviation, variance and minimum
and maximum values.

The response variables are used to calculate different reduction factors of the
specification; e.g., a specification might have been reduced (due to the generation
of a specification chunk) by a factor r (r = 1/k). As the resulting specification is

8.1. Studies Description 183

smaller than the original one, the corresponding ASRN has also been reduced by a
specific factor. The variable k(V) = V ′/V describes the reduction of the number
of vertices in the net in an inverse manner (V is the number of vertices of the full
specification, and V ′ describes the number of vertices after applying the abstraction
criterion to the specification). The dependent variables, called reduction factors, are
defined as follows:

1. k(V) = V ′/V describes the reduction of the number of vertices in the net.

2. k(A) = A′/A describes the reduction of the number of arcs in the net.

3. k(CC) = CC ′/CC describes the reduction of the conceptual complexity.

4. k(v ′(l)) = (v ′(l))′/v ′(l) describes the reduction of the lower bound of the
extended cyclomatic complexity.

5. k(v ′(u)) = (v ′(u))′/v ′(u) describes the reduction of the upper bound of the
extended cyclomatic complexity.

6. k(DU) = DU ′/DU describes the reduction of the DU metric.

These reduction factors are used to calculate additional factors describing prop-
erties of either the specification or the type of abstraction. The extent of reduction
depends on the type of the abstraction. However, to measure the average effect of
the approach on attributes of the ASRN and the specification, the mean values of
the reduction factors are calculated:

7. m(k(V)) describes the mean of reduction of the number of vertices in the net
with respect to all types of abstraction.

8. m(k(A)) describes the mean of reduction of the number of arcs in the net with
respect to all types of abstraction.

9. m(k(CC)) describes the mean of reduction of the conceptual complexity with
respect to all types of abstraction.

10. m(k(v ′(l))) describes the mean of reduction of the lower bound of the extended
cyclomatic complexity with respect to all types of abstraction.

11. m(k(v ′(u))) describes the mean of reduction of the upper bound of the ex-
tended cyclomatic complexity with respect to all types of abstraction.

12. m(k(DU)) describes the mean of reduction of the DU metric with respect to
all types of abstraction.

184 8. Evaluation

Additionally, two factors are calculated in order to indicate the influence of the
approach on ASRN- and complexity-attributes of the specification. For that reason
the mean value of the reduction of vertices and arcs and the mean value of the
reduction of the four complexity attributes (CC , v ′(l), v ′(u),DU) are provided:

13. M (k(V ,A)) = m(k(V)) + m(k(A)) describes the mean of reduction of ASRN
characteristics with respect to all types of abstraction.

14. M (k(CC , v ′,DU)) = m(k(CC)) + m(k(v ′(l))) + m(k(v ′(u))) + m(k(DU)) de-
scribes the mean of reduction of complexity attributes with respect to all types
of abstraction.

The extent of reduction of vertices and arcs differs. In order to express this ratio
another factor is introduced:

15. f (k) = k(A)/k(V) expresses the ratio between the decrease of vertices and
the decrease of arcs in the net. A value lower than 1 indicates that arcs are
decreased to a greater extent than vertices. m(f (k)) expresses the average
ratio for all types of abstraction.

The ratio between attributes describing the increasing sizes of specifications and
the sizes of calculated partial specifications tell a lot about the efficiency of the
approach.

Let V̂ , Â and ĈC be attributes of a specification Ψ1, and let m(V̂ ′),m(Â′) and
m(ˆCC ′) be the mean values of the attributes of the corresponding partial specifi-
cations. Additionally let Ψ2 be another (larger) specification with attributes V ,A
and CC . Let m(V ′),m(A′) and m(CC ′) be the values of the attributes of the
corresponding partial specifications. Then two factors can be calculated:

16. I () describes the increase of the specification in respect to vertices, arcs and
conceptual complexity. The increase is calculated as follows: I (V) = V /V̂ ,
I (A) = A/Â and I (CC) = CC/ĈC .

17. Delta() expresses the ratio between true values of reduction attributes and
estimated values of that attributes. A value lower than 1 indicates that the
extent of decrease was higher than the expected extent of decrease. The factors
are calculated as follows: Delta(V ′) = m(V ′)/(m(V̂ ′) · I (V)), Delta(A′) =
m(A′)/(m(Â′) · I (A)) and Delta(CC ′) = m(CC ′)/(m(ˆCC ′) · I (CC))

These factors are calculated for all 4 specifications and for the resulting partial
specifications. In the subsequent section three hypotheses are presented. Then,
based on the dependent and independent variables, these hypotheses are discussed
in the remainder of this chapter.

8.2. Extent of Reduction of Complexity 185

8.1.3 Hypotheses

When generating partial specifications, in most cases one reduces the size of the
specification. The resulting partial specification is therefore also less complex. In
order to either sustain or refute this assumption, Chap. 6.3 introduced measures
that describe conceptual and logical complexity. Observations (that have also been
described in [MB03]) show that the reduction factor depends on several aspects of
the specification. For that reason, the following (and up to now informally defined)
hypotheses are being examined in the remainder of this chapter:

H1 Specification chunks reduce complexity more than specification slices do.

H2 The effect obtainable by slicing and chunking rises with the size of the speci-
fication under consideration.

H3 The effect obtainable by slicing and chunking is significant.

The first statement (H1) seems to be obvious. A slice contains all types of
dependencies, whereas a chunk ignores some of them. Therefore a chunk cannot be
larger than the corresponding slice, moreover, it should be smaller.

The second statement (H2) is based on the observation that partial specifications
often represent concepts which the writer of the specification had in mind. Such
concepts (e.g. a stack including access functionality) are independent of the size of
the specification.

The third statement (H3) is correlated to the second statement as there should be
a positive effect when applying the approach to larger specifications. Furthermore,
complexity should be reduced efficiently, and Chap. 8.4 provides a definition of
efficiency with respect to the approach.

In the subsequent three sections these hypotheses are discussed in more detail.
The arguments are based on the evaluation of the data gathered during the case-
studies describes in Chap. 8.1.2.

8.2 Extent of Reduction of Complexity

The first observation is that slices and chunks reduce the size of the specification.
As slices include all types of dependencies and as chunks omit dependencies in the
resulting specification, it seems to be obvious that, for a specific point of interest, a
specification chunk should be smaller than the corresponding specification slice.

Based on this observation, the following two hypotheses can be stated:

186 8. Evaluation

Fig. 8.2: Reduction factor k(V) with respect to the total number of vertices in the
ASRN representation of the BB -specification. Slices (FSSlice()) and chunks
(SChunk(SD), SChunk(SC)) with respect to the 7 possible points of interest
have been calculated. As the reduction factor is defined in an inverse manner, a
lower value means a higher reduction.

Null Hypothesis 8.1: There is no difference in mean values of the reduction fac-
tors r = 1/k between specification slices and specification chunks.

Alternative Hypothesis 8.1: The mean values r1 = 1/k1 of the reduction factors
of specification chunks are in general higher than the mean values r2 = 1/k2 of the
reduction factors of specification slices. The notion of generally higher mean values
r means that for the majority of reduction factors it holds that r1 ≥ r2 ⇔ k1 ≤ k2.

Fig. 8.2 visualizes the results of the application of the slicing and chunking ap-
proach on the BB -specification. For all 7 points of interest slices and chunks have
been generated. Then the factors of reduction (with respect to the vertices in the
net) have been calculated. It can be observed that there is a reduction of complexity
attributes in all cases. This is indicated by values of k that are lower than 1.

Additionally, it can be observed that, with chunks, the values of k(V) are in all
cases lower than the values of the corresponding slices. For the first point of interest
the extent of reduction is k(V) = 0.361 (when generating slices), whereas the extent

8.2. Extent of Reduction of Complexity 187

Fig. 8.3: Mean values of reduction factors with respect to the BB -specification.

of reduction is k(V) = 0, 333 when generating a Burntein chunk. The same holds
for the other points of interest. The null hypothesis 8.1 does not hold for all points
of interest as k(V)SChunk(SC) ≤ k(V)FSSlice and k(V)SChunk(SD) ≤ k(V)FSSlice .

However, this example shows the effect of slices and chunks onto the number of
vertices only. It does not show the effect on other complexity attributes. Therefore
Fig. 8.3 summarizes the mean values of the reduction factors (m(k)) in respect to
complexity attributes of the BB -specification. In all cases the generation of chunks
leads to higher values of the reductions. The same holds for the Petrol -specification
(Fig. 8.4), the Elevator -specification (Fig. 8.5) and the WM -specification (Fig. 8.6).
The disadvantage of neglecting information becomes an advantage as the focus gets
sharper.

When looking at these figures it can be observed that slices do not guarantee
much smaller (and less complex) specifications. As the full static specification slice
is calculated, all dependent (and indirectly dependent) primes are included in the
resulting specification. The mean value of the reduction factor r is higher. For
vertices in the BB it holds that m(kFSSlice()) = 0, 655, m(kSChunk(SD)) = 0, 565 and
m(kSChunk(SC)) = 0, 526. This implies that when generating slices the reduction is
about r = 1, 527(= 1/0, 655). When generating chunks the reduction is in between
r = 1, 770(= 1/0, 565), when applying SChunk(SD), and r = 1.901(= 1/0, 526),
when applying SChunk(SC) to the specification.

188 8. Evaluation

Fig. 8.4: Mean values of reduction factors with respect to the Petrol -specification.

Fig. 8.5: Mean values of reduction factors with respect to the Elevator -specification.

8.2. Extent of Reduction of Complexity 189

Fig. 8.6: Mean values of reduction factors with respect to the WM -specification.

It is observable that chunks do a great job when it comes to reducing logical com-
plexity. With the BB -specification the number of control dependencies is reduced by
factors r = 7, 75(= 1/0, 129 and r = 4, 37(= 1/0, 229); the number of data depen-
dencies is reduced by factors r = 3, 5(= 1/0, 286) and r = 14, 08 = (1/0, 071). The
effect is higher when applied to larger specifications. With the WM -specification
the number of control dependencies is reduced by factor r = 333(= 1/0, 003) and
r = 83, 33(= 1/0, 012); the number of data dependencies is reduced by factor
r = 21, 28(= 1/0, 047) and r = 500(= 1/0, 002).

The results summarized in Figs. 8.3, 8.4, 8.5 and 8.6 also show the difference
between chunks in respect to control-dependencies and data-dependencies. The
measure DU decreases when calculating the chunk SChunk(SC) as data-depen-
dencies are not considered during the generation of the partial specification. And
the measure v ′(u) decreases when calculating the chunk SChunk(SD) due to the fact
that control-dependencies are not in the focus of that type of partial specification.

Summarizing the above results it can be stated that the null hypothesis 8.1 does
not hold. On the other hand, the alternative hypothesis 8.1 is confirmed. In all
treatments the mean of the reduction r = 1/k is higher when applying specification
chunks. It is noticeable that the extent of reduction (e.g. conceptual complexity
CC) increases when looking at larger specifications. In the subsequent section this
assumption is discussed in more detail.

190 8. Evaluation

Fig. 8.7: Table summarizing the mean values m of the reduction factors with respect
to four specifications and three different types of abstractions. Additionally it
provides the mean M of the reduction of ASRN and specification attributes. The
first column names the specification and the corresponding abstraction criteria.
An SCD indicates the generation of a specification slice, an SD and SC indicate
the generation of a specification chunk (SChunk(SD), SChunk(SC)).

8.3 Influence of the Specification’s Size

The second hypothesis states that the effect obtainable by slicing and chunking rises
with the size of the specification under consideration. The assumption is based on
the heuristic that slicing and chunking carve out concepts of the specification, con-
cepts that are independent from the specification at hand and are of (roughly) equal
size. Thus, with larger specifications the extent of the reduction should increase, too.
The following case study investigates the influence of the size on different complexity
measures.

Again the BB -, Petrol -, Elevator - and WM -specification are taken as exper-
imental objects. When talking about the size of a specification, the conceptual
complexity (which is equivalent to the number of primes in the specification) is an
appropriate measure. Independent and dependent variables are the same as pre-
sented in Chap. 8.2. However, to describe the average case the mean values (M)
of all reduction factors are of interest. Fig. 8.7 summarizes the dependent and in-
dependent variables. It can be observed that the mean values M , expressing the
average reduction of ASRN and specification attributes, decrease with increasing
size of the specifications.

8.3. Influence of the Specification’s Size 191

Fig. 8.8: Relationship of the size of the specification (described by CC) and the mean
values M of ASRN and specification-related reduction factors. With increasing
size of the specification the factors M (k(V ,A)) and M (k(CC , v ′,DU)) decrease.
This means that the extent of reduction increases with larger specifications.

Based on the response variables and reduction factors the following two hypothe-
ses can be stated:

Null Hypothesis 8.2: The mean values of the reduction factors r = 1/k for ASRN
and specification attributes M (k(V ,A)) and M (k(CC , v ′, DU)) stay the same or
increase when the treatment is applied to larger specifications (size is described by
CC).

Alternative Hypothesis 8.2: The mean values of the reduction factors r = 1/k
for ASRN and specification attributes M (k(V ,A)) and M (k(CC , v ′, DU)) decrease
when the treatment is applied to larger specifications (size is described by CC).

Fig. 8.8 summarizes the mean M of the mean values of the reduction factors for
ASRN metrics and complexity measures. It can be observed that the larger the
specification the higher the overall reduction. The ASRN of the BB -specification
(CC = 24) is reduced by a factor of 1, 89 (= 1/0, 528). The complexity is reduced
by a factor of 2, 57 (= 1/0, 389). This can be compared with the much larger
WM -specification (CC = 213). Here, the ASRN net is reduced by a factor of
4, 59 (= 1/0, 218). The complexity is reduced by a factor of 6, 06 (= 1/0, 165).

192 8. Evaluation

Fig. 8.9: Relationship of the size of the specification (described by CC) and the mean
values of k(V). The figure is based on the values presented in Fig. 8.7.

The mean value of the reduction factors r increase with increasing size of CC .
Thus, the null hypothesis 8.2 is refuted, and the alternative hypothesis 8.2 is proven
true. However, by using mean values two aspects of the treatment are neglected:
the influence of the type of the specification at hand and the influence of the type
of abstraction. Specifications differ from each other in the number of interrelated
primes and existing dependencies. Slices and chunks are different approaches for
different problems.

The basic assumption that both approaches carve out concepts from a specifica-
tion in a similar way does not hold. Slices ensure that all dependencies are consid-
ered, chunks allow to neglect existing information. This means that when generating
chunks only, the chance is higher to generate smaller specifications. With slices one
might have similar problems as with program slicing – the resulting slice has to
contain all necessary statements and it is thus as large as the original program.

Fig. 8.9 visualizes that the effects strongly depend on the type of the applied
abstraction (slice or chunk). When looking at the generation of specification slices
(FSSlice()) factor k(V) first increases relative to the extent of reduction of the
smaller specifications. This effect can also be observed in Fig. 8.7 by looking at the
lines marked with the abbreviation “(SCD)”. Taking the reduction factor k(V) as
a measure for the extent of reduction, the values for the four specifications differ
considerably.

8.3. Influence of the Specification’s Size 193

Fig. 8.10: Relationship of the size of the specification (described by CC) and the mean
values of k(DU). The figure is based on the values presented in Fig. 8.7.

For the BB -specification it holds that k(V) = 0, 655, for the Petrol -specification
k = 0, 709 and for the Elevator -specification k = 0, 828. Only for the WM -
specification the factor decreases again. The same holds for the number of data
dependencies (see Fig. 8.10). The extent of k(DU) increases from k = 0, 571 (BB)
up to k = 0, 735 (Elevator) and then decreases to k = 0, 367 (WM). Thus, only
in the long range and in the average case the extents of factors m(k) decrease. As
Figs. 8.9 and 8.10 illustrate, the decrease is better noticeable when looking at chunks
only.

Generally speaking, the larger the specification, the higher the mean value of the
reduction factor of the net and the mean value of the reduction of a specification’s
complexity. When considering only one type of abstraction (e.g. FSSlice()), hypoth-
esis 8.2 does not hold. Taking a closer look at the generated specification slices, the
value of k(V) increases with increasing size of the specifications.

Fig. 8.9 and Fig. 8.10 demonstrate (for the three types of partial specifications)
that the extent of the reduction (of the number of vertices in the net and the number
of data dependencies) even decreases during the generation of specification slices.
The reason is the influence (the number and type of interrelated dependencies) of
the specification at hand. This influence can be observed on complexity measures
other than k(V) and k(DU), too. App. A.4 summarizes the values for the other
types of complexity measures.

194 8. Evaluation

Summarizing the above observations it can be stated that the effect obtained
by partial specifications increases with larger specifications. On the other side this
statement only holds when dealing with different types of specification abstractions.
Especially slicing does not guarantee smaller specifications, and so the hypothesis
cannot be confirmed when applying specification slices only. It is still an open
question if the approach is effective, and the objective of the subsequent section
is to clarify the significance of the approach with respect to reducing complexity
factors.

8.4 Efficiency of the Approach

Two aspects are important when applying slicing or chunking techniques to specifica-
tions: the benefits should increase with increasing size of the specifications at hand.
This means that the generated partial specifications should stay at a comparable
conceptual level. Then, logical complexity should decrease significantly. The effect
of scaling down specifications should influence the reduction of hidden dependencies
at least with equal size.

Definition 8.1: Efficiency of the approach. The approach of generating partial
specifications is treated efficient, iff

a) the mean values of the size of the net and the mean values of the complexity
increase at a lower scale than the original specifications.

b) the logical complexity (described via v ′ and DU) is at least reduced to the
same extent as the conceptual complexity (described via CC).

ad Def. 8.1.a) The first part of the definition of efficiency deals with the size of
the specification and the resulting partial specification. For this reason it also has
to do with the influence of size onto reduction factors (Chap. 8.3). However, for the
scope of this chapter not the extents of reduction, but measures contributing to the
information content are of interest: the total numbers of vertices (V) and arcs (A)
in the ASRN and the conceptual complexity CC .

ad Def. 8.1.b) The comparison of conceptual (CC) and logical (v ′,DU) com-
plexity can be carried out by looking at the ratio between the reduction of vertices
(k(V)) and the reduction of arcs (k(A)) in the net. This ratio is described by the
factor f (k) (see Chap. 8.1.2). Vertices represent conceptual entities and arcs repre-
sent logical dependencies. The basic assumption is that the reduction of the number
of vertices leads to a higher reduction of arcs in the net.

Formally, if the ASRN contains n vertices and a arcs, then there are 3·n2 possible
arcs (of types C ,D and S), at the most, in the net. If decreasing the number of

8.4. Efficiency of the Approach 195

vertices n by a factor of kv , then the number of arcs should decrease at least by a
factor ka that is equal or higher than kv . It holds:

a = O(3 · n2)
a ′ = O(3 · (n/kv)

2) with kv = O(n/(n ′))
ka = a/(a ′) = O(3·n2

3·(n/kv)2
) = O(k 2

v)

In the optimal case the reduction factor ka increases with the square of the
reduction of the factor kv . This simple heuristic is the basis for the assumption that
the decrease of the number of dependency-arcs in the net (which influence logical
complexity) is at least as high as the decrease of the number of vertices.

Based on the response variables and dependent variables, the following hypothe-
ses can be stated for the efficiency of the approach. As the definition is split into two
parts, hypothesis (H3) is also split into two parts. First, the hypotheses in respect
to Def. 8.1.a is stated. (For M (Delta) see Chap. 8.1.2):

Null Hypothesis 8.3: The mean value of the sizes of partial specifications (de-
scribed by V ′,A′,CC ′) increases to the same extent as the sizes (based on CC) of
the underlying specifications. An increase of CC (of the specification at hand) by
a factor I results in an increase of size and complexity (of the partial specification)
by a factor I ′ ≥ I . It holds that M (Delta()) ≥ 1.

Alternative Hypothesis 8.3: The mean value of the sizes of partial specifications
(described by V ′,A′,CC ′) increases at a lower scale than the sizes of the underlying
specifications. An increase of CC by a factor I results in an increase of size and
complexity by a factor less than I . It holds that M (Delta()) ≤ 1.

The second part of the definition of efficiency (Def. 8.1.b) deals with the ratio
between logical and conceptual complexity:

Null Hypothesis 8.4: The reduction of the logical complexity is, at the most, as
high as the reduction of the conceptual complexity. Thus, for the generation of all
possible abstractions it holds that M (f (k)) ≥ 1.

Alternative Hypothesis 8.4: The logical complexity is at least reduced to the
same extent as the conceptual complexity. Thus, for the generation of all possible
abstractions it holds that M (f (k)) ≤ 1.

Fig. 8.11 summarizes the values for the response and for the dependent variables.
Based on these results the null and alternative hypotheses are discussed in the sequel
of this section.

196 8. Evaluation

Fig. 8.11: Table summarizing the number of vertices, arcs and the extent of CC before
and after the creation of the partial specifications. The table is split into several
parts. The first part to the left summarizes measures of the specification at hand
(V ,A,CC) and provides the extent of the increase I. The third part presents
the mean values V ′,A′ and CC ′ of the sizes of the partial specifications and
the Mean of these sizes. Additionally, Approx represents the numbers of Ṽ ′, Ã′
and ˜CC ′ which are estimations based on the extent of increase. Delta expresses
the difference (ratio) between the true and the estimated values. To the right,
M (Delta) provides the mean of these differences in respect to V , A and CC .

For Hypothesis 8.3 one has to look at the sizes of the specifications. By looking
at the ratio factor Delta and the mean of Delta for V ,A and CC , it is possible to
determine whether the increase in size and complexity is the same or not.

8.4. Efficiency of the Approach 197

Fig. 8.12: Effect of reduction when increasing the size of the specification (described by
CC). If the effect increases at the same ratio as the original specification, then
the value of Delta should be 1. A value of Delta lower than 1 indicates that the
approach is more efficient.

A value of 1 (or less than 1) indicates that the increase of complexity measures
is equal or less than the increase of the size of the specification. This indicates
that the approach is efficient in terms of Def. 8.1.a. The complexity of the partial
specifications increases at lower scale than the size of the underlying specifications.
If the value is about 1 then there is still reduction of complexity. However, this
implies that if the size of the specification increases by a factor of 2, the approach
generates partial specifications that also increase by a factor of 2.

As can be seen in Fig. 8.12 (which displays the values of Delta in Fig. 8.11) there
is a decrease in the value of M (Delta) with growing sizes of the specification. Starting
with the BB -specification the factor is 1, 000. The Petrol -specification is about twice
as large as the BB -specification (for the number of vertices I = 1, 8). However, the
partial specification contains V ′ = 70, 667 vertices in the mean, and not Ṽ ′ = 77, 989
vertices. The approach has been a bit more effective, and therefore Delta = 0, 906
which is less than 1. When looking at vertices, arcs and the conceptual complexity,
the mean value M (Delta) is 0, 944 which is also less than 1. The same holds for the
mean values M (Delta) of the Elevator - and WM -specification. For that reason the
null hypothesis 8.3 is refuted and the alternative hypothesis 8.3 is confirmed.

198 8. Evaluation

Fig. 8.13: Table that summarizes the values for V ,A, k(V), k(A) and the factor f (k).

When discussing hypothesis 8.4 one has to look at the relationship between the
reduction factors k(V) and k(A). In fact, the factor f (k)(= k(V)/k(A)) tells a
lot about the ratio between the reduction of vertices and arcs in the net. If f (k)
decreases, this indicates that the number of arcs is reduced to a much greater extent
than the number of vertices. This underpins the heuristic that, in the average case,
the reduction rA = 1/k(A) increases with at least the order of the reduction of the
factor rV = 1/k(V). The factor f (k), calculated for the experimental objects, is
presented in Fig. 8.13 in more detail.

When looking at the factor f (k) it can be observed that all the values are less
than 1. This indicates that, in any case, the extent of reduction of arcs is higher
than the extent of the reduction of vertices. When looking at the mean of the reduc-
tions (M (f (k))) it can also be observed that with increasing size of the underlying
specification, the extent of the reduction increases, too. The approach gets more
and more efficient with larger specifications at hand.

Fig. 8.14 visualizes the values for the factor f (k) (dependent on CC) and the
mean M (f (k)) of the factors. It also underpins the statement of the positive effects
of the approach. For that reason the null hypothesis 8.4 is refuted and the alternative
hypothesis 8.4 is confirmed.

8.5. Summary 199

Fig. 8.14: The effect of reduction (described by the mean value of reduction f (k)) increases
with the size of the specification (described by CC). If the effect increases at
the same ratio as the original specification, then the value of m(f (k)) should be
1. Additionally, the mean of all reductions (M (m(fk))) is presented. For the
values of m(f (k)) and M (m(f (k))) see Fig. 8.13.

The above figures only present the mean values for the reductions and the factor
f (k). A more detailed view of the influence of the size on other measures can be
found in then appendix in App. A.4.

8.5 Summary

This chapter discusses the efficiency of the generation of partial specifications. The
discussion includes

• the influence of the different types of abstraction criteria,

• the effect of the approach on larger specifications and

• the efficiency of the approach.

Three hypotheses are stated. In order to refute or confirm these hypotheses,
four specifications of different (but increasing) size are taken as experimental objects.

200 8. Evaluation

The case studies are conducted by using the simple prototype described in Chap. 7.1.
Bases on the four experimental objects all possible types of partial specifications for
all points of interest have been calculated. The case studies confirm the following
hypotheses:

H1 Specification chunks reduce complexity more than specification slices do. This
observation holds for all specifications that have been examined so far. Addi-
tionally, there is strong evidence that chunks reduce the complexity in more
cases than specification slices do.

H2 The effect obtainable by slicing and chunking rises with the size of the spec-
ification under consideration. For the mean values of complexity attributes
this observation has been confirmed. However, there are a few cases when
this observation does not hold. Again, slices do not always lead to smaller
specifications, while chunks usually do.

H2 The effect observable by slicing and chunking is significant. It can be stated
that the slicing/chunking approach decreases complexity to a much greater
extent when specifications are getting larger. In fact, it can be shown that the
mean value of the increase of complexity of the generated partial specification
is definitely less than the increase of the size of the specification.

In total more than 600 partial specifications have been examined. The specifica-
tions used in this work represent typical specifications to be found in the Z-literature.
However, much larger specifications (with several thousands of primes) are still wait-
ing to be examined, and it is likely that the approach still proves useful. The results
imply that with larger specifications there is generally a trend toward higher extents
of reduction.

This completes the reflection on the efficiency of generating specification slices
and chunks. The approach of generating partial specifications has proven to be
useful and effective. The last chapter of this work summarizes all the findings.

9. CONCLUSION

Finis coronat opus.

Ovid, Heroides II 85

In this work I have argued that it is possible to reduce the perceived complexity
of specifications and to sustain the overall comprehension process. Specifications
are complex buildings and the motivation for this work has been to diminish the
problems that arise when trying to understand and maintain specifications.

The discussion of reasons for comprehension problems showed that specifica-
tion comprehension is impeded by the overall complexity of the specification. Two
aspects contributing to complexity have been discovered:

1. The size of the specification contributes a lot to the perceived complexity of
the problem at hand.

2. There are too few clues for the reconstruction of the original structure and
behavior that the specifier had in mind.

As complexity of size is the most critical type of complexity, it is promising to
focus on size and abridge the specification for a problem at hand. For this reason
the objective of this work has been to find answers to the following three questions:

Q1 What kind of abridgements are practicable? In other words, abstractions that
sustain the comprehension process are to be identified.

Q2 How can those abridgements be achieved? The generation of abstractions has
to be effective and efficient.

Q3 Can a reduction of complexity be expounded? A reduction, if any, has to be
measured and it should be clear what kind of abstraction reduces complexity
and to what extent.

202 9. Conclusion

In order to solve these problems, it is suggested to apply program comprehension
approaches to specifications (Chap. 3). This includes the following two fields: The
generation of partial specifications and the visualization of the structure and hidden
dependencies.

For the identification of partial specifications a common understanding of terms
and existing approaches is necessary.

First, a common terminology is presented (Chap. 4). It denotes those elements
a specification is constructed of. There are several classes of such elements. On the
syntactical level there are literals, primes and fragments. Literals are the primitives
a specification is constructed of (e.g. identifiers or operators). Primes are basic
semantic bearing entities (e.g. predicates), and fragments are simply compositions of
primes. On the semantic level there are partial specifications which can be classified
as specification chunks and slices. Slices and chunks are well-established concepts
used in the field of program comprehension.

In this work it has been shown that specification slices and chunks are suitable
concepts which support the comprehension process. As an answer to question Q1,
it has been suggested to deal with slices and chunks as specification abridgements.

Dependency analysis turns out to be important when visualizing the structure
and the behavior of the specification. It is also significant when calculating specifi-
cation slices and chunks. For these two reasons this work introduces the notion of
dependencies within specifications (also Chap. 4).

There is no execution order and almost no notion of control in declarative specifi-
cation languages. Nevertheless, there are dependencies within specifications, depen-
dencies which decide whether parts of a specification are to be evaluated or not. This
work presents the definition of the notion of control dependencies in specifications.
It is based on the simple idea that in specifications post-conditions are control de-
pendent on pre-conditions. This reduces the problem of the identification of control
dependencies to the problem of the identification of pre- and post-conditions.

Based on the notion of control this work provides definitions for control-, data-
and syntactic dependencies in specifications. Upon this basis, specification slices
and chunks are then defined.

However, not all specification languages make pre- and post-conditions as explicit
as VDM. In Z, pre- and post-conditions have to be calculated by using pre-defined
operations. Formally, a semantic analysis has to take place, but this is a time- and
resource-consuming task which cannot be fully automated. Therefore it has been
suggested to shorten the identification of pre- and post-conditions by looking at the
use of identifiers in predicates. If there are identifiers that denote an after-state in
a predicate, then the predicate is called a post-condition predicate. Otherwise, if
there are no after-state identifiers, the predicate is called a pre-condition predicate.

203

For the visualization and calculation of dependencies one has to transform the
specification to a network representation (Chap. 5). The net is called Augmented
Specification Relationship Net (ASRN). It is designed to represent the loose struc-
ture of specification and thus exemplifies syntactic relationships and semantic de-
pendencies. Vertices of the net contain value/definition/use information, and arcs
represent the structural information and dependencies.

The transformation is bijective, thus, a backward transformation is possible,
too. The net is also defined in a language-independent manner, however, the neces-
sary transformation obviously depends on the specification language at hand. This
work provides the transformation rules necessary to transform Z-specifications to
the ASRN.

The transformation for Z is derived from the grammar of the specification lan-
guage. The ASRN then provides the basis for an automated calculation of pre- and
post conditions. With this, the net also enables the calculation of partial specifica-
tions, namely specification slices and chunks.

The ASRN (and the related transformation) can be used to generate effective
abridgements of specifications. With this, question Q2 is answered.

Based on the ASRN, partial specifications are calculated efficiently. A small Java-
based prototype has been implemented to transform Z specifications to an ASRN
and to enable the generation of partial Z-specifications (Chap. 7). A reduction of
size can be observed when applying the approach to existing specifications. The
approach does not only reduce the size-complexity of the specification, but it has
also effects on the logical complexity. Chap. 8 looks at these effects in more detail.

Partial specifications are generally smaller than the original specifications. There
are several attributes which contribute to complexity. To measure the extent of
the reduction of complexity, this work applies well-known complexity measures to
specifications (Chap. 6).

Analogous to the measure of delivered lines of source instructions the number of
primes are taken as a measure of size. In this thesis this measure is called Conceptual
Complexity (CC for short).

The logical complexity is often measured by looking at dependencies. Here, the
notions of the extended cyclomatic complexity and the definition/use count metric
are assigned to specifications. The first looks at the number of control dependen-
cies that are existent in the specification, the second looks at the number of data
dependencies in the specification.

These measures are applied to four specifications of different (and increasing)
size. For these specifications, several partial specifications are calculated, and case
studies demonstrate the effects of partial specifications (Chap. 8). The following
three hypotheses have been confirmed:

204 9. Conclusion

H1 Specification chunks reduce complexity to a greater extent than specification
slices do.

H2 The effect obtainable by slicing and chunking rises with the size of the speci-
fication under consideration.

H3 The effect obtainable by slicing and chunking is significant in terms of reducing
logical and conceptual complexity.

This analysis demonstrates that a reduction of complexity can be achieved, and
that the approach is effective and efficient. This answers question Q3.

This thesis shows that partial specifications (specification slices and specification
chunks) reduce the perceived (logical and cognitive) complexity of specifications.
The effect of the approach is measurable, and it has been evaluated by making
use of several specifications to be found in literature. The effect is amplified by
visualizing hidden dependencies, dependencies which are used to calculate partial
specifications anyway.

APPENDIX

A. EVALUATION MEASURES

This chapter summarizes the results of the studies describes in Chap. 8. For all
primes in the axiomatic part of a Z paragraph, slices and two types of chunks (one
containing control dependencies, one containing data-dependencies) were calculated.
The set of identifiers was not restricted when calculating the chunk SChunk(n, Σv ,
{S ,D}). Thus all data dependencies were taken into consideration. The measures
are described in detail in Chaps. 8.1.2 and 6.3. The list of points of interest (POIs)
can be found in App. A.5.

A.1 Comparison of Complexity and Influence of Size

Fig. A.1: Comparison of four different specifications, the “Birthday-Book” specification
(BB), the “Petrol-Station”-specification (Petrol), the “Elevator”-specification
(Elevator), and the “ITC Window Manager”-specification (WM).

208 A. Evaluation Measures

S
p

e
c
.(

D
e
p

s
.)

V
A

k
(V

)
k
(A

)
k
(C

C
)

k
(v

'(
l)

)
k
(v

'(
u

))
k
(D

U
)

C
C

B
B

 (
S

C
D

)
7
2

2
6
7

0
,6

5
5

0
,5

5
5

0
,5

4
2

0
,6

7
9

0
,4

8
6

0
,5

7
1

2
4

B
B

 (
S

D
)

7
2

2
6
7

0
,5

6
5

0
,4

2
9

0
,3

8
7

0
,2

8
6

0
,1

2
9

0
,2

8
6

2
4

B
B

 (
S

C
)

7
2

2
6
7

0
,5

2
6

0
,4

3
8

0
,4

3
5

0
,5

7
1

0
,2

2
9

0
,0

7
1

2
4

m
(k

)
0
,5

8
2

0
,4

7
4

0
,4

5
4

0
,5

1
2

0
,2

8
1

0
,3

1
0

M
(k

)
0
,5

2
8

0
,3

8
9

P
e
tr

o
l
(S

C
D

)
1
3
4

6
7
4

0
,7

0
9

0
,6

6
1

0
,6

8
6

0
,8

2
9

0
,8

1
6

0
,6

8
5

5
3

P
e
tr

o
l
(S

D
)

1
3
4

6
7
4

0
,6

3
1

0
,5

1
0

0
,5

5
6

0
,1

3
8

0
,0

7
7

0
,4

4
1

5
3

P
e
tr

o
l
(S

C
)

1
3
4

6
7
4

0
,2

4
2

0
,1

1
8

0
,1

4
7

0
,2

0
0

0
,0

7
1

0
,0

0
4

5
3

m
(k

)
0
,5

2
7

0
,4

3
0

0
,4

6
3

0
,3

8
9

0
,3

2
1

0
,3

7
7

M
(k

)
0
,4

7
8

0
,3

8
8

E
le

v
a
to

r
(S

C
D

)
3
4
9

3
6
6
8

0
,8

2
8

0
,7

5
2

0
,7

5
3

0
,9

1
5

0
,7

7
8

0
,7

3
5

1
4
4

E
le

v
a
to

r
(S

D
)

3
4
9

3
6
6
8

0
,5

4
8

0
,1

9
4

0
,2

9
3

0
,0

3
9

0
,0

0
5

0
,1

4
0

1
4
4

E
le

v
a
to

r
(S

C
)

3
4
9

3
6
6
8

0
,3

1
5

0
,0

7
1

0
,1

6
4

0
,3

5
8

0
,0

1
1

0
,0

0
2

1
4
4

m
(k

)
0
,5

6
4

0
,3

3
9

0
,4

0
3

0
,4

3
7

0
,2

6
4

0
,2

9
3

M
(k

)
0
,4

5
1

0
,3

4
9

W
M

 (
S

C
D

)
5
2
0

2
6
3
3

0
,4

5
4

0
,3

6
4

0
,3

5
9

0
,5

2
9

0
,3

0
7

0
,3

7
6

2
1
3

W
M

 (
S

D
)

5
2
0

2
6
3
3

0
,1

7
6

0
,0

6
0

0
,0

6
1

0
,0

3
1

0
,0

0
3

0
,0

4
7

2
1
3

W
M

 (
S

C
)

5
2
0

2
6
3
3

0
,1

8
5

0
,0

7
0

0
,0

8
8

0
,1

6
8

0
,0

1
2

0
,0

0
2

2
1
3

m
(k

)
0
,2

7
2

0
,1

6
5

0
,1

6
9

0
,2

4
2

0
,1

0
7

0
,1

4
1

M
(k

)
0
,2

1
8

0
,1

6
5

Fig. A.2: Table summarizing the extent of reduction k in respect to four different specifi-
cations and three different types of abstraction.

A.1. Comparison of Complexity and Influence of Size 209

Spec.(Deps.) V A CC V' A' CC' M

BB Total 72 267 24

BB (SCD) 47,143 148,143 13,00

BB (SD) 40,714 114,571 9,29

BB (SC) 37,857 117,000 10,43

Mean 41,905 126,571 10,905

Increase I 1,00 1,00 1,00 1,00

Approx. 41,905 126,571 10,905

Delta 1,000 1,000 1,000 1,000

Petrol Total 134 674 53

Petrol (SCD) 95,000 445,429 36,38

Petrol (SD) 84,619 343,667 29,48

Petrol (SC) 32,381 79,429 7,81

Mean 70,667 289,508 24,556

Increase I 1,86 2,52 2,21 2,20

Approx. 77,989 319,510 24,081

Delta 0,906 0,906 1,020 0,944

Elevator Total 349 3668 144

Elevator (SCD) 289,059 2759,765 108,36

Elevator (SD) 191,167 710,216 42,16

Elevator (SC) 110,000 261,284 23,57

Mean 196,742 1243,755 58,029

Increase I 4,85 13,74 6,00 8,20

Approx. 203,122 1738,816 65,429

Delta 0,969 0,715 0,887 0,857

WM Total 520 2633 213

WM (SCD) 236,087 958,087 76,41

WM (SD) 91,739 159,283 13,08

WM (SC) 96,217 183,696 18,71

Mean 141,348 433,688 36,065

Increase I 7,22 9,86 8,88 8,65

Approx. 302,646 1248,174 96,780

Delta 0,467 0,347 0,373 0,396

Fig. A.3: Table summarizing the mean values of vertices and arcs in the partial specifica-
tions. The factor I expresses the increase in size, Approx . describes the assumed
size of the partial specification, and Delta expresses the ratio between the real
and supposed sizes.

210 A. Evaluation Measures

Fig. A.4: With increasing size of the specification, the number of vertices in the partial
specification decreases.

Fig. A.5: With increasing size of the specification, the number of arcs in the partial spec-
ification decreases.

A.1. Comparison of Complexity and Influence of Size 211

Fig. A.6: With increasing size of the specification, the conceptual complexity CC of the
partial specification decreases.

Fig. A.7: With increasing size of the specification, the definition/use count DU of the
partial specification decreases.

212 A. Evaluation Measures

Fig. A.8: With increasing size of the specification, the lower bound of the extended cycl.
complexity of the partial specification decreases.

Fig. A.9: With increasing size of the specification, the upper bound of the extended cycl.
complexity of the partial specification decreases.

A.2. Reduction of Complexity Attributes 213

A.2 Reduction of Complexity Attributes

This section visualizes the amount of reduction r = 1/k of complexity for different
specifications and their representation as an ASRN. Used complexity attributes are
the number of vertices V and arcs A in the net, the conceptual complexity CC
of the specification, the extended cyclomatic complexity v ′ = (v(l), v(u)), and the
definition/use count metric (DU).

The following figures summarize the values for the reduction factor k , which is
the result of calculating the ratio between the corresponding value of the partial
specification and the value of the original specification. A lower value of k indicates
higher reduction.

A.2.1 The Birthday Book Specification

Fig. A.10: Extent of reduction of vertices for seven different points of interest and three
different types of abstraction.

214 A. Evaluation Measures

Fig. A.11: Extent of reduction of arcs for seven different points of interest and three dif-
ferent types of abstraction.

Fig. A.12: Extent of reduction of CC for seven different points of interest and three dif-
ferent types of abstraction.

A.2. Reduction of Complexity Attributes 215

Fig. A.13: Extent of reduction of the lower bound of the extended cyclomatic complexity
for seven different points of interest and three different types of abstraction.

Fig. A.14: Extent of reduction of the upper bound of the extended cyclomatic complexity
for seven different points of interest and three different types of abstraction.

216 A. Evaluation Measures

Fig. A.15: Extent of reduction of DU for seven different points of interest and three dif-
ferent types of abstraction.

Fig. A.16: Summary of reduction of complexity attributes.

A.2. Reduction of Complexity Attributes 217

A.2.2 The Petrol Station Specification

Fig. A.17: Extent of reduction of vertices for 21 different points of interest and three
different types of abstraction.

Fig. A.18: Extent of reduction of arcs for 21 different points of interest and three different
types of abstraction.

218 A. Evaluation Measures

Fig. A.19: Extent of reduction of CC for 21 different points of interest and three different
types of abstraction.

Fig. A.20: Extent of reduction of the lower bound of the extended cyclomatic complexity
for 21 different points of interest and three different types of abstraction.

A.2. Reduction of Complexity Attributes 219

Fig. A.21: Extent of reduction of the upper bound of the extended cyclomatic complexity
for 21 different points of interest and three different types of abstraction.

Fig. A.22: Extent of reduction of DU for 21 different points of interest and three different
types of abstraction.

220 A. Evaluation Measures

Fig. A.23: Summary of reduction of complexity attributes.

A.2.3 The ITC Window Manager Specification

A.2. Reduction of Complexity Attributes 221

Fig. A.24: Extent of reduction of vertices for 92 different points of interest and three
different types of abstraction.

Fig. A.25: Extent of reduction of arcs for 92 different points of interest and three different
types of abstraction.

222 A. Evaluation Measures

Fig. A.26: Extent of reduction of CC for 92 different points of interest and three different
types of abstraction.

Fig. A.27: Extent of reduction of the lower bound of the extended cyclomatic complexity
for 92 different points of interest and three different types of abstraction.

A.2. Reduction of Complexity Attributes 223

Fig. A.28: Extent of reduction of the upper bound of the extended cyclomatic complexity
for 92 different points of interest and three different types of abstraction.

Fig. A.29: Extent of reduction of DU for 92 different points of interest and three different
types of abstraction.

224 A. Evaluation Measures

Fig. A.30: Summary of reduction of complexity attributes.

A.2.4 The Elevator Specification

A.2. Reduction of Complexity Attributes 225

Fig. A.31: Extent of reduction of vertices for 102 different points of interest and three
different types of abstraction.

Fig. A.32: Extent of reduction of arcs for 102 different points of interest and three different
types of abstraction.

226 A. Evaluation Measures

Fig. A.33: Extent of reduction of CC for 102 different points of interest and three different
types of abstraction.

Fig. A.34: Extent of reduction of the lower bound of the extended cyclomatic complexity
for 102 different points of interest and three different types of abstraction.

A.2. Reduction of Complexity Attributes 227

Fig. A.35: Extent of reduction of the upper bound of the extended cyclomatic complexity
for 102 different points of interest and three different types of abstraction.

Fig. A.36: Extent of reduction of DU for 102 different points of interest and three different
types of abstraction.

228 A. Evaluation Measures

Fig. A.37: Summary of reduction of complexity attributes.

A.3 Efficiency of Partial Specifications

According to Chap 8.4, the efficiency of the approach can be described by the
efficiency factor f (k). It is calculated by dividing the reduction factor of arcs with
the reduction factor of vertices (f (k) = k(A)/k(V)). If the value is lower than 1
then the number of arcs (and with them dependencies) decreases to a higher extent
than the number of vertices in the net. The approach is said to be efficient in respect
to logical complexity.

A.3. Efficiency of Partial Specifications 229

Fig. A.38: Variation of the efficiency factor f (k) in respect to seven possible points of
interest and three types of abstraction.

Fig. A.39: Variation of the efficiency factor f (k) in respect to 21 possible points of interest
and three types of abstraction.

230 A. Evaluation Measures

Fig. A.40: Variation of the efficiency factor f (k) in respect to the 92 possible points of
interest and three types of abstraction.

Fig. A.41: Variation of the efficiency factor f (k) in respect to the 102 possible points of
interest and three types of abstraction.

A.4. Influence of Size 231

A.4 Influence of Size

Size strongly influences the efficiency of the approach. The larger the specifica-
tions are, the relatively smaller are the generated partial specifications. There is
much more reduction when generating specification chunks. The following figures
demonstrate that the reduction increases with increasing size of the specification.

For vertices V , arcs A, and the conceptual complexity CC it presents the increase
of the values for the full specification, the values for different partial specifications,
and the mean value summarizing the effect of the application of all types of abstrac-
tion.

Size does not only influence the number of vertices. It also influences the amount
of reduction. Therefore this section summarizes the influence of the size of the
specification on the dependent variables k(V), k(A), k(CC), k(v ′(l)), k(v ′(u)), and
k(CC).

Fig. A.42: With the increasing size of specifications (described by V), the approach re-
duces the number of vertices to a much higher extent.

232 A. Evaluation Measures

Fig. A.43: With the increasing size of specifications (described by A), the approach reduces
the number of arcs to a much higher extent.

Fig. A.44: With the increasing size of specifications (described by CC), the approach
reduces the number of CC to a much higher extent.

A.4. Influence of Size 233

Fig. A.45: With the increasing size of specifications (described by CC), the approach
reduces the number of V to a much higher extent.

Fig. A.46: With the increasing size of specifications (described by CC), the approach
reduces the number of A to a much higher extent.

234 A. Evaluation Measures

Fig. A.47: With the increasing size of specifications (described by CC), the approach
reduces the number of CC to a much higher extent.

Fig. A.48: With the increasing size of specifications (described by CC), the approach
reduces the number of v ′(l) to a much higher extent.

A.4. Influence of Size 235

Fig. A.49: With the increasing size of specifications (described by CC), the approach
reduces the number of v ′(u) to a much higher extent.

Fig. A.50: With the increasing size of specifications (described by CC), the approach
reduces the number of DU to a much higher extent.

236 A. Evaluation Measures

Fig. A.51: ASRN characteristics (V ,A) and characteristics of the specification
(CC , v ′,DU). With the increasing size of the specification (described by CC),
the approach reduces the characteristics to a much higher extent.

A.5 Points of Interest and Response Variables

This section presents statistical data concerning the response variables (mean value,
deviation, variance, minimum and maximum value).

Additionally it provides a complete listing of points of interest (POIs). The
format is as follows: First there is a list of POIs which contains the name of the
specification, the unique vertex ID, the number of the corresponding SRN block and
the literals belonging to that prime. The list of POIs is followed by the full listing
of primes of the corresponding specification.

Finally, the full list of all response variables is provided. Every variable is la-
belled with the corresponding specification name (Specs .), the abstraction crite-
rion (Deps .) and the unique vertex ID (V -ID). The response variables are: V . . .
number of vertices, A . . . number of arcs, S/E . . . number of start and end vertices
(which represents the number of SRN blocks), P . . . number of prime vertices, CC . . .
the conceptual complexity, v ′(l) . . . lower bound of extended cyclomatic complexity,
v ′(u) . . . upper bound of extended cyclomatic complexity and DU . . . the defini-
tion/use count measure.

A.5. Points of Interest and Response Variables 237

Fig. A.52: Statistics concerning the 7 (21) points of interest regarding to the BB (Petrol)
specification and three types of abstraction.

238 A. Evaluation Measures

Fig. A.53: Statistics concerning the 92 (102) points of interest regarding to the WM
(Elevator) specification and three types of abstraction.

A.5. Points of Interest and Response Variables 239

B
B
-
s
p
e
c
i
f
i
c
a
t
i
o
n

P
o
i
n
t
s

o
f

i
n
t
e
r
e
s
t

(
N
a
m
e
,
V
e
r
t
e
x
,
S
R
N
-
B
l
o
c
k
)
:

B
B
,

1
8
,

3
,

k
n
o
w
n

=

\
d
o
m

b
i
r
t
h
d
a
y

B
B
,

2
3
,

4
,

k
n
o
w
n

=

\
e
m
p
t
y
s
e
t

B
B
,

3
2
,

5
,

n
a
m
e
?

\
n
o
t
i
n

k
n
o
w
n

B
B
,

3
4
,

5
,

b
i
r
t
h
d
a
y
'

=

b
i
r
t
h
d
a
y

\
c
u
p
\
{
n
a
m
e
?
\
m
a
p
s
t
o

d
a
t
e
?
\
}

B
B
,

4
1
,

6
,

n
a
m
e
?

\
i
n

k
n
o
w
n

B
B
,

4
3
,

6
,

b
i
r
t
h
d
a
y
'

=

b
i
r
t
h
d
a
y

\
c
u
p
\
{
n
a
m
e
?
\
m
a
p
s
t
o

b
i
r
t
h
d
a
y
(
n
a
m
e
?
)
\
}

B
B
,

4
8
,

7
,

r
e
s
u
l
t
!

=

O
K

L
i
s
t
i
n
g

(
V
e
r
t
e
x
/
S
R
N
-
B
l
o
c
k
,
T
y
p
e
)
:

2
/
1
/
1

\
b
e
g
i
n
{
z
e
d
}

4
/
1
/
4

[

5
/
1
/
3

N
A
M
E

6
/
1
/
5

,

7
/
1
/
3

D
A
T
E

8
/
1
/
4

]

3
/
1
/
2

\
e
n
d
{
z
e
d
}

9
/
2
/
1

\
b
e
g
i
n
{
z
e
d
}

1
1
/
2
/
3

R
e
p
o
r
t

:
:
=

O
K

|

N
O
K

1
0
/
2
/
2

\
e
n
d
{
z
e
d
}

1
2
/
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
B
B
}

1
4
/
3
/
3

k
n
o
w
n

:

\
p
o
w
e
r

N
A
M
E

1
5
/
3
/
5

\
\

1
6
/
3
/
3

b
i
r
t
h
d
a
y

:

N
A
M
E

\
p
f
u
n

D
A
T
E

1
7
/
3
/
4

\
w
h
e
r
e

1
8
/
3
/
3

k
n
o
w
n

=

\
d
o
m

b
i
r
t
h
d
a
y

1
3
/
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
9
/
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
i
t
B
B
}

2
1
/
4
/
3

\
D
e
l
t
a

B
B

2
2
/
4
/
4

\
w
h
e
r
e

2
3
/
4
/
3

k
n
o
w
n

=

\
e
m
p
t
y
s
e
t

2
0
/
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
4
/
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
A
d
d
}

2
6
/
5
/
3

\
D
e
l
t
a

B
B

2
7
/
5
/
5

\
\

2
8
/
5
/
3

n
a
m
e
?

:

N
A
M
E

2
9
/
5
/
5

\
\

3
0
/
5
/
3

d
a
t
e
?

:

D
A
T
E

3
1
/
5
/
4

\
w
h
e
r
e

3
2
/
5
/
3

n
a
m
e
?

\
n
o
t
i
n

k
n
o
w
n

3
3
/
5
/
5

\
\

3
4
/
5
/
3

b
i
r
t
h
d
a
y
'

=

b
i
r
t
h
d
a
y

\
c
u
p
\
{
n
a
m
e
?
\
m
a
p
s
t
o

d
a
t
e
?
\
}

2
5
/
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
5
/
6
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
D
e
l
e
t
e
}

3
7
/
6
/
3

\
D
e
l
t
a

B
B

3
8
/
6
/
5

\
\

3
9
/
6
/
3

n
a
m
e
?

:

N
A
M
E

4
0
/
6
/
4

\
w
h
e
r
e

4
1
/
6
/
3

n
a
m
e
?

\
i
n

k
n
o
w
n

4
2
/
6
/
5

\
\

4
3
/
6
/
3

b
i
r
t
h
d
a
y
'

=

b
i
r
t
h
d
a
y

\
c
u
p
\
{
n
a
m
e
?

\
m
a
p
s
t
o

b
i
r
t
h
d
a
y
(
n
a
m
e
?
)

\
}

3
6
/
6
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
4
/
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
S
u
c
c
e
s
s
}

4
6
/
7
/
3

r
e
s
u
l
t
!

:

R
e
p
o
r
t

4
7
/
7
/
4

\
w
h
e
r
e

4
8
/
7
/
3

r
e
s
u
l
t
!

=

O
K

4
5
/
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
9
/
8
/
1

\
b
e
g
i
n
{
z
e
d
}

5
1
/
8
/
3

F
u
n
c
t
i
o
n
i
n
g
D
B

5
2
/
8
/
4

=
=

5
3
/
9
/
7

(

5
4
/
9
/
3

A
d
d

5
5
/
9
/
5

\
l
a
n
d

5
6
/
9
/
3

S
u
c
c
e
s
s

5
9
/
9
/
8

)

6
0
/
1
1
/
5

\
l
o
r

6
1
/
1
0
/
7

(

6
2
/
1
0
/
3

D
e
l
e
t
e

6
3
/
1
0
/
5

\
l
a
n
d

6
4
/
1
0
/
3

S
u
c
c
e
s
s

6
7
/
1
0
/
8

)

5
0
/
8
/
2

\
e
n
d
{
z
e
d
}

P
e
t
r
o
l
-
s
p
e
c
i
f
i
c
a
t
i
o
n

P
o
i
n
t
s

o
f

i
n
t
e
r
e
s
t

(
N
a
m
e
,
V
e
r
t
e
x
,
S
R
N
-
B
l
o
c
k
)
:

P
e
t
r
o
l
,

1
7
,

2
,

\
d
o
m

w
a
i
t
i
n
g

\
s
u
b
s
e
t
e
q

p
e
t
r
o
l

P
e
t
r
o
l
,

1
9
,

2
,

\
d
o
m

o
p
e
r
a
t
i
o
n

\
s
u
b
s
e
t
e
q

p
e
t
r
o
l

P
e
t
r
o
l
,

2
8
,

3
,

p
e
t
r
o
l

=

\
e
m
p
t
y
s
e
t

P
e
t
r
o
l
,

3
0
,

3
,

w
a
i
t
i
n
g

=

\
e
m
p
t
y
s
e
t

P
e
t
r
o
l
,

3
2
,

3
,

o
p
e
r
a
t
i
o
n

=

\
e
m
p
t
y
s
e
t

P
e
t
r
o
l
,

4
1
,

4
,

z
?

\
i
n

p
e
t
r
o
l

P
e
t
r
o
l
,

4
3
,

4
,

z
?

\
n
o
t
i
n
\
d
o
m

o
p
e
r
a
t
i
o
n

P
e
t
r
o
l
,

4
5
,

4
,

f
z
?
\
n
o
t
i
n
\
r
a
n

o
p
e
r
a
t
i
o
n

P
e
t
r
o
l
,

4
9
,

4
,

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n

\
o
p
l
u
s

\
{

z
?

\
m
a
p
s
t
o

f
z
?

\
}

P
e
t
r
o
l
,

5
1
,

4
,

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

P
e
t
r
o
l
,

5
3
,

4
,

p
e
t
r
o
l
'

=

p
e
t
r
o
l

P
e
t
r
o
l
,

5
6
,

5
,

\
D
e
l
t
a

T
a
n
k
s
t
e
l
l
e

P
e
t
r
o
l
,

6
2
,

5
,

z
?

\
i
n

p
e
t
r
o
l

P
e
t
r
o
l
,

6
4
,

5
,

\
s
h
a
r
p

(
\
r
a
n

o
p
e
r
a
t
i
o
n
)

=

\
s
h
a
r
p

p
e
t
r
o
l

P
e
t
r
o
l
,

6
6
,

5
,

f
z
?

\
n
o
t
i
n
\
r
a
n

o
p
e
r
a
t
i
o
n

P
e
t
r
o
l
,

7
0
,

5
,

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n

P
e
t
r
o
l
,

7
2
,

5
,

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

\
o
p
l
u
s
\
{

z
?
\
m
a
p
s
t
o

(
w
a
i
t
i
n
g

\
,

z
?
)

\
c
a
t
\
l
s
e
q

f
z
?

\
r
s
e
q
\
}

P
e
t
r
o
l
,

7
4
,

5
,

p
e
t
r
o
l
'

=

p
e
t
r
o
l

P
e
t
r
o
l
,

7
6
,

6
,

A
r
r
i
v
a
l

P
e
t
r
o
l
,

1
0
5
,

1
0
,

L
e
a
v
e

P
e
t
r
o
l
,

1
2
0
,

1
3
,

P
e
t
r
o
l
S
t
a
t
i
o
n

L
i
s
t
i
n
g

(
V
e
r
t
e
x
/
S
R
N
-
B
l
o
c
k
,
T
y
p
e
)
:

2
/
1
/
1

\
b
e
g
i
n
{
z
e
d
}

4
/
1
/
4

[

5
/
1
/
3

G
S

6
/
1
/
5

,

7
/
1
/
3

V
H

8
/
1
/
4

]

3
/
1
/
2

\
e
n
d
{
z
e
d
}

9
/
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
P
e
t
r
o
l
S
t
a
t
i
o
n
}

1
1
/
2
/
3

p
e
t
r
o
l

:

\
p
o
w
e
r

G
S

1
2
/
2
/
5

\
\

1
3
/
2
/
3

w
a
i
t
i
n
g

:

G
S

\
p
i
n
j
\
s
e
q

V
H

1
4
/
2
/
5

\
\

1
5
/
2
/
3

o
p
e
r
a
t
i
o
n

:

G
S

\
p
i
n
j

V
H

1
6
/
2
/
4

\
w
h
e
r
e

1
7
/
2
/
3

\
d
o
m

w
a
i
t
i
n
g

\
s
u
b
s
e
t
e
q

p
e
t
r
o
l

1
8
/
2
/
5

\
\

1
9
/
2
/
3

\
d
o
m

o
p
e
r
a
t
i
o
n

\
s
u
b
s
e
t
e
q

p
e
t
r
o
l

2
0
/
2
/
5

\
\

2
1
/
2
/
3

\
f
o
r
a
l
l

z
1
,

z
2

:

G
S

|

z
1

\
i
n

p
e
t
r
o
l

\
l
a
n
d

z
2
\
i
n

p
e
t
r
o
l
\
l
a
n
d

z
1

\
n
e
q

z
2

@

\
r
a
n

(
w
a
i
t
i
n
g

\
,

z
1
)
\
c
a
p
\
r
a
n

(
w
a
i
t
i
n
g

\
,

z
2
)

=

\
e
m
p
t
y
s
e
q
\
l
a
n
d

o
p
e
r
a
t
i
o
n
\
,

z
1

\
n
e
q

o
p
e
r
a
t
i
o
n

\
,

z
2

2
2
/
2
/
5

\
\

2
3
/
2
/
3

\
f
o
r
a
l
l

f
z

:

V
H
;

z

:

G
S

|

z

\
i
n

p
e
t
r
o
l

\
l
a
n
d

f
z

\
i
n
\
r
a
n

o
p
e
r
a
t
i
o
n

@

f
z

\
n
o
t
i
n
\
r
a
n

(
w
a
i
t
i
n
g
\
,

z
)

1
0
/
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
4
/
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
i
t
P
e
t
r
o
l
S
t
a
t
i
o
n
}

2
6
/
3
/
3

P
e
t
r
o
l
S
t
a
t
i
o
n

2
7
/
3
/
4

\
w
h
e
r
e

2
8
/
3
/
3

p
e
t
r
o
l

=

\
e
m
p
t
y
s
e
t

2
9
/
3
/
5

\
\

3
0
/
3
/
3

w
a
i
t
i
n
g

=

\
e
m
p
t
y
s
e
t

3
1
/
3
/
5

\
\

3
2
/
3
/
3

o
p
e
r
a
t
i
o
n

=

\
e
m
p
t
y
s
e
t

2
5
/
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
3
/
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
A
r
r
i
v
a
l
A
n
d
R
e
f
u
e
l
}

3
5
/
4
/
3

\
D
e
l
t
a

P
e
t
r
o
l
S
t
a
t
i
o
n

3
6
/
4
/
5

\
\

3
7
/
4
/
3

f
z
?

:

V
H

3
8
/
4
/
5

\
\

3
9
/
4
/
3

z
?

:

G
S

4
0
/
4
/
4

\
w
h
e
r
e

4
1
/
4
/
3

z
?

\
i
n

p
e
t
r
o
l

4
2
/
4
/
5

\
\

4
3
/
4
/
3

z
?

\
n
o
t
i
n
\
d
o
m

o
p
e
r
a
t
i
o
n

4
4
/
4
/
5

\
\

4
5
/
4
/
3

f
z
?

\
n
o
t
i
n
\
r
a
n

o
p
e
r
a
t
i
o
n

4
6
/
4
/
5

\
\

4
7
/
4
/
3

\
f
o
r
a
l
l

G
S

:

G
S

|

G
S

\
i
n

p
e
t
r
o
l

@

f
z
?

\
n
o
t
i
n
\
r
a
n

(
w
a
i
t
i
n
g

\
,

G
S
)

4
8
/
4
/
5

\
\

4
9
/
4
/
3

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n

\
o
p
l
u
s
\
{

z
?

\
m
a
p
s
t
o

f
z
?

\
}

5
0
/
4
/
5

\
\

5
1
/
4
/
3

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

5
2
/
4
/
5

\
\

5
3
/
4
/
3

p
e
t
r
o
l
'

=

p
e
t
r
o
l

Fig. A.54: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification. The figure contains the list of points of interest and the annotated
listing of the specification.

240 A. Evaluation Measures
3
4
/
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

5
4
/
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
A
r
r
i
v
e
A
n
d
W
a
i
t
}

5
6
/
5
/
3

\
D
e
l
t
a

T
a
n
k
s
t
e
l
l
e

5
7
/
5
/
5

\
\

5
8
/
5
/
3

f
z
?

:

V
H

5
9
/
5
/
5

\
\

6
0
/
5
/
3

z
?

:

G
S

6
1
/
5
/
4

\
w
h
e
r
e

6
2
/
5
/
3

z
?

\
i
n

p
e
t
r
o
l

6
3
/
5
/
5

\
\

6
4
/
5
/
3

\
s
h
a
r
p

(
\
r
a
n

o
p
e
r
a
t
i
o
n
)

=

\
s
h
a
r
p

p
e
t
r
o
l

6
5
/
5
/
5

\
\

6
6
/
5
/
3

f
z
?

\
n
o
t
i
n
\
r
a
n

o
p
e
r
a
t
i
o
n

6
7
/
5
/
5

\
\

6
8
/
5
/
3

\
f
o
r
a
l
l

G
S

:

G
S

|

G
S

\
i
n

p
e
t
r
o
l

@

f
z
?

\
n
o
t
i
n

\
r
a
n

(
w
a
i
t
i
n
g

\
,
G
S
)

6
9
/
5
/
5

\
\

7
0
/
5
/
3

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n

7
1
/
5
/
5

\
\

7
2
/
5
/
3

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

\
o
p
l
u
s
\
{

z
?

\
m
a
p
s
t
o

(
w
a
i
t
i
n
g
\
,

z
?
)

\
c
a
t
\
l
s
e
q

f
z
?

\
r
s
e
q
\
}

7
3
/
5
/
5

\
\

7
4
/
5
/
3

p
e
t
r
o
l
'

=

p
e
t
r
o
l

5
5
/
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

7
5
/
6
/
1

\
b
e
g
i
n
{
z
e
d
}

7
6
/
6
/
2

A
r
r
i
v
a
l

=
=

A
r
r
i
v
e
A
n
d
F
u
e
l

\
l
o
r

A
r
r
i
v
e
A
n
d
W
a
i
t

7
7
/
6
/
3

\
e
n
d
{
z
e
d
}

7
8
/
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
L
e
a
v
e
E
m
p
t
y
Q
u
e
u
e
}

8
0
/
7
/
3

\
D
e
l
t
a

P
e
t
r
o
l
S
t
a
t
i
o
n

8
1
/
7
/
5

\
\

8
2
/
7
/
3

f
z
?

:

V
H

8
3
/
7
/
5

\
\

8
4
/
7
/
3

z

:

G
S

8
5
/
7
/
4

\
w
h
e
r
e

8
6
/
7
/
3

\
e
x
i
s
t
s
_
1

z

:

G
S

|

o
p
e
r
a
t
i
o
n

\
,

z

=

f
z
?

\
l
a
n
d

w
a
i
t
i
n
g

\
,

z

=

\
e
m
p
t
y
s
e
q

@

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n
\
s
e
t
m
i
n
u
s
\
{

z

\
m
a
p
s
t
o

f
z
?

\
}
\
l
a
n
d

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

\
l
a
n
d

p
e
t
r
o
l
'

=

p
e
t
r
o
l

7
9
/
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

8
7
/
8
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
L
e
a
v
e
N
o
n
E
m
p
t
y
Q
u
e
u
e
}

8
9
/
8
/
3

\
D
e
l
t
a

P
e
t
r
o
l
S
t
a
t
i
o
n

9
0
/
8
/
5

\
\

9
1
/
8
/
3

f
z
?

:

V
H

9
2
/
8
/
5

\
\

9
3
/
8
/
3

z

:

G
S

9
4
/
8
/
4

\
w
h
e
r
e

9
5
/
8
/
3

\
e
x
i
s
t
s
_
1

z

:

G
S

|

o
p
e
r
a
t
i
o
n

\
,

z

=

f
z
?

\
l
a
n
d

w
a
i
t
i
n
g

\
,

z

\
n
e
q
\
e
m
p
t
y
s
e
q

@

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n
\
o
p
l
u
s
\
{

z

\
m
a
p
s
t
o
\
h
e
a
d

(
w
a
i
t
i
n
g

\
,

z
)

\
}

\
l
a
n
d

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

\
o
p
l
u
s
\
{

z

\
m
a
p
s
t
o
\
t
a
i
l

(
w
a
i
t
i
n
g
\
,

z
)

\
}
\
l
a
n
d

p
e
t
r
o
l
'

=

p
e
t
r
o
l

8
8
/
8
/
2

\
e
n
d
{
s
c
h
e
m
a
}

9
6
/
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
L
e
a
v
e
W
i
t
h
o
u
t
F
u
e
l
}

9
8
/
9
/
3

\
D
e
l
t
a

P
e
t
r
o
l
S
t
a
t
i
o
n

9
9
/
9
/
5

\
\

1
0
0
/
9
/
3

f
z
?

:

V
H

1
0
1
/
9
/
4

\
w
h
e
r
e

1
0
2
/
9
/
3

\
e
x
i
s
t
s

z

:

G
S
;

i

:

\
n
u
m

|

z

\
i
n

p
e
t
r
o
l
\
l
a
n
d

(
i

\
m
a
p
s
t
o

f
z
?
)

\
i
n

w
a
i
t
i
n
g

\
,

z

@

w
a
i
t
i
n
g
'

=

w
a
i
t
i
n
g

\
o
p
l
u
s
\
{

z

\
m
a
p
s
t
o

\
s
q
u
a
s
h

(

(
w
a
i
t
i
n
g

\
,
z
)
\
s
e
t
m
i
n
u
s
\
{

i

\
m
a
p
s
t
o

f
z
?

\
}
\
,
)
\
,
\
}
\
l
a
n
d

o
p
e
r
a
t
i
o
n
'

=

o
p
e
r
a
t
i
o
n
\
l
a
n
d

p
e
t
r
o
l
'

=

p
e
t
r
o
l

9
7
/
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
0
3
/
1
0
/
1

\
b
e
g
i
n
{
z
e
d
}

1
0
5
/
1
0
/
3

L
e
a
v
e

1
0
6
/
1
0
/
4

=
=

\
\

1
0
7
/
1
1
/
3

L
e
a
v
e
E
m
p
t
y
Q
u
e
u
e

1
0
8
/
1
1
/
5

\
l
o
r

1
0
9
/
1
1
/
3

L
e
a
v
e
N
o
n
E
m
p
t
y
Q
u
e
u
e

1
1
2
/
1
2
/
5

\
l
o
r

1
1
3
/
1
2
/
3

L
e
a
v
e
W
i
t
h
o
u
t
F
u
e
l

1
0
4
/
1
0
/
2

\
e
n
d
{
z
e
d
}

1
1
8
/
1
3
/
1

\
b
e
g
i
n
{
z
e
d
}

1
2
0
/
1
3
/
3

P
e
t
r
o
l
S
t
a
t
i
o
n

1
2
1
/
1
3
/
4

=
=

1
2
2
/
1
4
/
3

I
n
i
t
P
e
t
r
o
l
S
t
a
t
i
o
n

1
2
3
/
1
5
/
5

\
l
a
n
d

1
2
4
/
1
4
/
7

(

\
,

1
2
5
/
1
4
/
3

A
r
r
i
v
e

1
2
6
/
1
4
/
5

\
l
o
r

1
2
7
/
1
4
/
3

L
e
a
v
e

\
,

1
3
0
/
1
4
/
8

)

1
1
9
/
1
3
/
2

\
e
n
d
{
z
e
d
}

E
l
e
v
a
t
o
r
-
s
p
e
c
i
f
i
c
a
t
i
o
n

P
o
i
n
t
s

o
f

i
n
t
e
r
e
s
t

(
N
a
m
e
,
V
e
r
t
e
x
,
S
R
N
-
B
l
o
c
k
)
:

E
l
e
v
a
t
o
r
,

2
1
,

2
,

C
u
r
r
e
n
t
F
l
o
o
r

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

2
3
,

2
,

m
a
x

(

R
e
q
u
e
s
t
s

)

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

2
5
,

2
,

m
a
x

(

U
p
C
a
l
l
s

)

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

2
7
,

2
,

m
a
x

(

D
o
w
n
C
a
l
l
s

)

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

3
2
,

3
,

C
u
r
r
e
n
t
F
l
o
o
r

=

1

E
l
e
v
a
t
o
r
,

3
4
,

3
,

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

3
6
,

3
,

U
p
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

3
8
,

3
,

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

4
0
,

3
,

D
i
r

=

u
p

E
l
e
v
a
t
o
r
,

4
2
,

3
,

D
o
o
r

=

o
p
e
n

E
l
e
v
a
t
o
r
,

4
7
,

4
,

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
c
u
p

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

5
4
,

5
,

F
l
o
o
r
?

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

5
6
,

5
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

E
l
e
v
a
t
o
r
,

5
8
,

5
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
c
u
p

\
{
F
l
o
o
r
?
\
}

E
l
e
v
a
t
o
r
,

6
0
,

5
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

6
2
,

5
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

6
4
,

5
,

D
i
r
'

=

D
i
r

E
l
e
v
a
t
o
r
,

6
6
,

5
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

7
5
,

6
,

F
l
o
o
r
?

\
l
e
q

M
a
x
F
l
o
o
r

E
l
e
v
a
t
o
r
,

7
7
,

6
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

E
l
e
v
a
t
o
r
,

7
9
,

6
,

(
C
a
l
l
D
i
r
?

=

d
o
w
n
)

\
i
m
p
l
i
e
s

(
U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s
)

\
l
a
n
d

(

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s
\
c
u
p
\
{

F
l
o
o
r
?

\
}

)

E
l
e
v
a
t
o
r
,

8
1
,

6
,

(
C
a
l
l
D
i
r
?

=

u
p
)

\
i
m
p
l
i
e
s

(
D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s
)

\
l
a
n
d

(
U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
c
u
p
\
{
F
l
o
o
r
?
\
}
)

E
l
e
v
a
t
o
r
,

8
3
,

6
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

E
l
e
v
a
t
o
r
,

8
5
,

6
,

D
i
r
'

=

D
i
r

E
l
e
v
a
t
o
r
,

8
7
,

6
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

1
0
2
,

9
,

D
i
r

=

u
p

E
l
e
v
a
t
o
r
,

1
0
4
,

9
,

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
0
6
,

9
,

C
u
r
r
e
n
t
F
l
o
o
r

\
l
e
q

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)

E
l
e
v
a
t
o
r
,

1
0
8
,

9
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

\
{

x

:

\
n
a
t
_
1

|

x

\
i
n

(
R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)

\
l
a
n
d

x

>

C
u
r
r
e
n
t
F
l
o
o
r
\
}

E
l
e
v
a
t
o
r
,

1
1
1
,

9
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

1
1
3
,

9
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

1
1
5
,

9
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

1
1
7
,

9
,

D
i
r
'

=

u
p

E
l
e
v
a
t
o
r
,

1
1
9
,

9
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

1
2
4
,

1
0
,

D
i
r

=

d
o
w
n

E
l
e
v
a
t
o
r
,

1
2
6
,

1
0
,

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
2
8
,

1
0
,

C
u
r
r
e
n
t
F
l
o
o
r

\
l
e
q

m
i
n

(

R
e
q
u
e
s
t
s
\
c
u
p

D
o
w
n
C
a
l
l
s
)

E
l
e
v
a
t
o
r
,

1
3
0
,

1
0
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

\
{

x

:

\
n
a
t
_
1

|

x

\
i
n

(
R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s
)

\
l
a
n
d

x

<

C
u
r
r
e
n
t
F
l
o
o
r
\
}

E
l
e
v
a
t
o
r
,

1
3
3
,

1
0
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

1
3
5
,

1
0
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

E
l
e
v
a
t
o
r
,

1
3
7
,

1
0
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

1
3
9
,

1
0
,

D
i
r
'

=

d
o
w
n

E
l
e
v
a
t
o
r
,

1
4
1
,

1
0
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

1
4
6
,

1
1
,

D
i
r

=

u
p

E
l
e
v
a
t
o
r
,

1
4
8
,

1
1
,

(
R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t
\
l
a
n
d

C
u
r
r
e
n
t
F
l
o
o
r

>

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)
)

\
\
\
t
2
\
l
o
r

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
5
0
,

1
1
,

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
5
2
,

1
1
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

)

E
l
e
v
a
t
o
r
,

1
5
4
,

1
1
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

1
5
6
,

1
1
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

1
5
8
,

1
1
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

1
6
0
,

1
1
,

D
i
r
'

=

d
o
w
n

E
l
e
v
a
t
o
r
,

1
6
2
,

1
1
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

1
6
7
,

1
2
,

D
i
r

=

d
o
w
n

E
l
e
v
a
t
o
r
,

1
6
9
,

1
2
,

(
R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t
\
l
a
n
d

C
u
r
r
e
n
t
F
l
o
o
r

<

m
i
n

(
R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

)

)

\
\
\
t
2
\
l
o
r

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

Fig. A.55: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 2 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

A.5. Points of Interest and Response Variables 241

E
l
e
v
a
t
o
r
,

1
7
1
,

1
2
,

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
7
3
,

1
2
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

)

E
l
e
v
a
t
o
r
,

1
7
5
,

1
2
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

E
l
e
v
a
t
o
r
,

1
7
7
,

1
2
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

E
l
e
v
a
t
o
r
,

1
7
9
,

1
2
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

1
8
1
,

1
2
,

D
i
r
'

=

u
p

E
l
e
v
a
t
o
r
,

1
8
3
,

1
2
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

1
8
8
,

1
3
,

D
i
r

=

u
p

E
l
e
v
a
t
o
r
,

1
9
0
,

1
3
,

U
p
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
9
2
,

1
3
,

C
u
r
r
e
n
t
F
l
o
o
r

>

m
a
x

(

U
p
C
a
l
l
s

)

E
l
e
v
a
t
o
r
,

1
9
4
,

1
3
,

D
o
w
n
C
a
l
l
s

\
c
u
p

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

1
9
6
,

1
3
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

(

U
p
C
a
l
l
s

)

E
l
e
v
a
t
o
r
,

1
9
8
,

1
3
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

E
l
e
v
a
t
o
r
,

2
0
0
,

1
3
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s

E
l
e
v
a
t
o
r
,

2
0
2
,

1
3
,

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

E
l
e
v
a
t
o
r
,

2
0
4
,

1
3
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
0
6
,

1
3
,

D
i
r
'

=

u
p

E
l
e
v
a
t
o
r
,

2
0
8
,

1
3
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

2
1
3
,

1
4
,

D
i
r

=

d
o
w
n

E
l
e
v
a
t
o
r
,

2
1
5
,

1
4
,

D
o
w
n
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

2
1
7
,

1
4
,

C
u
r
r
e
n
t
F
l
o
o
r

<

m
i
n

(

D
o
w
n
C
a
l
l
s

)

E
l
e
v
a
t
o
r
,

2
1
9
,

1
4
,

U
p
C
a
l
l
s

\
c
u
p

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

2
2
1
,

1
4
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

\

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
2
3
,

1
4
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

E
l
e
v
a
t
o
r
,

2
2
5
,

1
4
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
2
7
,

1
4
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

E
l
e
v
a
t
o
r
,

2
2
9
,

1
4
,

D
i
r
'

=

d
o
w
n

E
l
e
v
a
t
o
r
,

2
3
1
,

1
4
,

D
o
o
r
'

=

D
o
o
r

E
l
e
v
a
t
o
r
,

2
6
6
,

2
1
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

E
l
e
v
a
t
o
r
,

2
6
8
,

2
1
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

E
l
e
v
a
t
o
r
,

2
7
0
,

2
1
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
7
2
,

2
1
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
7
4
,

2
1
,

D
i
r
'

=

D
i
r

E
l
e
v
a
t
o
r
,

2
7
6
,

2
1
,

D
o
o
r
'
=

o
p
e
n

E
l
e
v
a
t
o
r
,

2
8
1
,

2
2
,

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
c
u
p

U
p
C
a
l
l
s
\
n
e
q
\
e
m
p
t
y
s
e
t

E
l
e
v
a
t
o
r
,

2
8
3
,

2
2
,

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

E
l
e
v
a
t
o
r
,

2
8
5
,

2
2
,

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

E
l
e
v
a
t
o
r
,

2
8
7
,

2
2
,

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
8
9
,

2
2
,

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

E
l
e
v
a
t
o
r
,

2
9
1
,

2
2
,

D
i
r
'

=

D
i
r

E
l
e
v
a
t
o
r
,

2
9
3
,

2
2
,

D
o
o
r
'
=

c
l
o
s
e
d

E
l
e
v
a
t
o
r
,

3
0
0
,

2
4
,

P
a
s
s
e
n
g
e
r
E
v
e
n
t

E
l
e
v
a
t
o
r
,

3
0
4
,

2
5
,

M
o
v
e

E
l
e
v
a
t
o
r
,

3
1
0
,

2
6
,

P
a
s
s
e
n
g
e
r
E
v
e
n
t

E
l
e
v
a
t
o
r
,

3
2
5
,

2
9
,

P
a
s
s
e
n
g
e
r
E
v
e
n
t

E
l
e
v
a
t
o
r
,

3
3
5
,

3
1
,

M
o
v
e
C
y
c
l
e

E
l
e
v
a
t
o
r
,

3
4
2
,

3
2
,

P
a
s
s
e
n
g
e
r
E
v
e
n
t

E
l
e
v
a
t
o
r
,

3
4
4
,

3
2
,

E
l
e
v
a
t
o
r
C
y
c
l
e

L
i
s
t
i
n
g

(
V
e
r
t
e
x
/
S
R
N
-
B
l
o
c
k
,
T
y
p
e
)
:

2
/
1
/
1

\
b
e
g
i
n
{
z
e
d
}

4
/
1
/
3

M
a
x
F
l
o
o
r

=
=

1
0

\
\

5
/
1
/
3

D
i
r
e
c
t
i
o
n

:
:
=

u
p

|

d
o
w
n

\
\

6
/
1
/
3

D
o
o
r
S
t
a
t
e

:
:
=

o
p
e
n

|

c
l
o
s
e
d

3
/
1
/
2

\
e
n
d
{
z
e
d
}

7
/
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
E
l
e
v
a
t
o
r
}

9
/
2
/
3

C
u
r
r
e
n
t
F
l
o
o
r

:

\
n
a
t
_
1

1
0
/
2
/
5

\
\

1
1
/
2
/
3

R
e
q
u
e
s
t
s

:

\
p
o
w
e
r
\
n
a
t
_
1

1
2
/
2
/
5

\
\

1
3
/
2
/
3

U
p
C
a
l
l
s

:

\
p
o
w
e
r
\
n
a
t
_
1

1
4
/
2
/
5

\
\

1
5
/
2
/
3

D
o
w
n
C
a
l
l
s

:

\
p
o
w
e
r
\
n
a
t
_
1

1
6
/
2
/
5

\
\

1
7
/
2
/
3

D
i
r

:

D
i
r
e
c
t
i
o
n

1
8
/
2
/
5

\
\

1
9
/
2
/
3

D
o
o
r

:

D
o
o
r
S
t
a
t
e

2
0
/
2
/
4

\
w
h
e
r
e

2
1
/
2
/
3

C
u
r
r
e
n
t
F
l
o
o
r
\
l
e
q

M
a
x
F
l
o
o
r

2
2
/
2
/
5

\
\

2
3
/
2
/
3

m
a
x

(

R
e
q
u
e
s
t
s

)

\
l
e
q

M
a
x
F
l
o
o
r

2
4
/
2
/
5

\
\

2
5
/
2
/
3

m
a
x

(

U
p
C
a
l
l
s

)

\
l
e
q

M
a
x
F
l
o
o
r

2
6
/
2
/
5

\
\

2
7
/
2
/
3

m
a
x

(

D
o
w
n
C
a
l
l
s

)

\
l
e
q

M
a
x
F
l
o
o
r

8
/
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
8
/
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
i
t
E
l
e
v
a
t
o
r
}

3
0
/
3
/
3

E
l
e
v
a
t
o
r

3
1
/
3
/
4

\
w
h
e
r
e

3
2
/
3
/
3

C
u
r
r
e
n
t
F
l
o
o
r

=

1

3
3
/
3
/
5

\
\

3
4
/
3
/
3

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

3
5
/
3
/
5

\
\

3
6
/
3
/
3

U
p
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

3
7
/
3
/
5

\
\

3
8
/
3
/
3

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

3
9
/
3
/
5

\
\

4
0
/
3
/
3

D
i
r

=

u
p

4
1
/
3
/
5

\
\

4
2
/
3
/
3

D
o
o
r

=

o
p
e
n

2
9
/
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
3
/
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
N
o
R
e
q
u
e
s
t
s
O
r
C
a
l
l
s
}

4
5
/
4
/
3

\
X
i

E
l
e
v
a
t
o
r

4
6
/
4
/
4

\
w
h
e
r
e

4
7
/
4
/
3

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
c
u
p

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

4
4
/
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
8
/
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
E
l
e
v
a
t
o
r
B
u
t
t
o
n
E
v
e
n
t
}

5
0
/
5
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

5
1
/
5
/
5

\
\

5
2
/
5
/
3

F
l
o
o
r
?

:

\
n
a
t
_
1

5
3
/
5
/
4

\
w
h
e
r
e

5
4
/
5
/
3

F
l
o
o
r
?

\
l
e
q

M
a
x
F
l
o
o
r

5
5
/
5
/
5

\
\

5
6
/
5
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

5
7
/
5
/
5

\
\

5
8
/
5
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
c
u
p

\
{
F
l
o
o
r
?
\
}

5
9
/
5
/
5

\
\

6
0
/
5
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

6
1
/
5
/
5

\
\

6
2
/
5
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

6
3
/
5
/
5

\
\

6
4
/
5
/
3

D
i
r
'

=

D
i
r

6
5
/
5
/
5

\
\

6
6
/
5
/
3

D
o
o
r
'

=

D
o
o
r

4
9
/
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

6
7
/
6
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
F
l
o
o
r
B
u
t
t
o
n
E
v
e
n
t
}

6
9
/
6
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

7
0
/
6
/
5

\
\

7
1
/
6
/
3

F
l
o
o
r
?

:

\
n
a
t
_
1

7
2
/
6
/
5

\
\

7
3
/
6
/
3

C
a
l
l
D
i
r
?

:

D
i
r
e
c
t
i
o
n

7
4
/
6
/
4

\
w
h
e
r
e

7
5
/
6
/
3

F
l
o
o
r
?

\
l
e
q

M
a
x
F
l
o
o
r

7
6
/
6
/
5

\
\

7
7
/
6
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

7
8
/
6
/
5

\
\

7
9
/
6
/
3

(
C
a
l
l
D
i
r
?

=

d
o
w
n
)

\
i
m
p
l
i
e
s

(
U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s
)
\
l
a
n
d

(

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
c
u
p
\
{

F
l
o
o
r
?
\
}

)

8
0
/
6
/
5

\
\

8
1
/
6
/
3

(
C
a
l
l
D
i
r
?

=

u
p
)

\
i
m
p
l
i
e
s

(
D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s
)
\
l
a
n
d

(
U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
c
u
p

\
{
F
l
o
o
r
?
\
}
)

8
2
/
6
/
5

\
\

8
3
/
6
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

8
4
/
6
/
5

\
\

8
5
/
6
/
3

D
i
r
'

=

D
i
r

8
6
/
6
/
5

\
\

8
7
/
6
/
3

D
o
o
r
'

=

D
o
o
r

6
8
/
6
/
2

\
e
n
d
{
s
c
h
e
m
a
}

8
8
/
7
/
1

\
b
e
g
i
n
{
z
e
d
}

9
0
/
7
/
3

P
a
s
s
e
n
g
e
r
E
v
e
n
t

9
1
/
7
/
4

=
=

9
2
/
8
/
3

E
l
e
v
a
t
o
r
B
u
t
t
o
n
E
v
e
n
t

9
3
/
8
/
5

\
l
o
r

9
4
/
8
/
3

F
l
o
o
r
B
u
t
t
o
n
E
v
e
n
t

8
9
/
7
/
2

\
e
n
d
{
z
e
d
}

9
8
/
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
B
a
s
i
c
M
o
v
e
U
p
}

1
0
0
/
9
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

1
0
1
/
9
/
4

\
w
h
e
r
e

1
0
2
/
9
/
3

D
i
r

=

u
p

1
0
3
/
9
/
5

\
\

1
0
4
/
9
/
3

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

1
0
5
/
9
/
5

\
\

1
0
6
/
9
/
3

C
u
r
r
e
n
t
F
l
o
o
r

\
l
e
q

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)

1
0
7
/
9
/
5

\
\

1
0
8
/
9
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

\
{

x

:

\
n
a
t
_
1

|

x

\
i
n

(
R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)

\
l
a
n
d

x

>

C
u
r
r
e
n
t
F
l
o
o
r

\
}

1
1
0
/
9
/
5

\
\

1
1
1
/
9
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
1
2
/
9
/
5

\
\

1
1
3
/
9
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

1
1
4
/
9
/
5

\
\

Fig. A.56: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 3 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

242 A. Evaluation Measures
1
1
5
/
9
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
1
6
/
9
/
5

\
\

1
1
7
/
9
/
3

D
i
r
'

=

u
p

1
1
8
/
9
/
5

\
\

1
1
9
/
9
/
3

D
o
o
r
'

=

D
o
o
r

9
9
/
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
2
0
/
1
0
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
B
a
s
i
c
M
o
v
e
D
o
w
n
}

1
2
2
/
1
0
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

1
2
3
/
1
0
/
4

\
w
h
e
r
e

1
2
4
/
1
0
/
3

D
i
r

=

d
o
w
n

1
2
5
/
1
0
/
5

\
\

1
2
6
/
1
0
/
3

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

1
2
7
/
1
0
/
5

\
\

1
2
8
/
1
0
/
3

C
u
r
r
e
n
t
F
l
o
o
r

\
l
e
q

m
i
n

(

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s
)

1
2
9
/
1
0
/
5

\
\

1
3
0
/
1
0
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

\
{

x

:

\
n
a
t
_
1

|

x

\
i
n

(
R
e
q
u
e
s
t
s
\
c
u
p

D
o
w
n
C
a
l
l
s
)

\
l
a
n
d

x

<

C
u
r
r
e
n
t
F
l
o
o
r

\
}

1
3
2
/
1
0
/
5

\
\

1
3
3
/
1
0
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
3
4
/
1
0
/
5

\
\

1
3
5
/
1
0
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
3
6
/
1
0
/
5

\
\

1
3
7
/
1
0
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

1
3
8
/
1
0
/
5

\
\

1
3
9
/
1
0
/
3

D
i
r
'

=

d
o
w
n

1
4
0
/
1
0
/
5

\
\

1
4
1
/
1
0
/
3

D
o
o
r
'

=

D
o
o
r

1
2
1
/
1
0
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
4
2
/
1
1
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
C
h
a
n
g
e
U
p
T
o
D
o
w
n
}

1
4
4
/
1
1
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

1
4
5
/
1
1
/
4

\
w
h
e
r
e

1
4
6
/
1
1
/
3

D
i
r

=

u
p

1
4
7
/
1
1
/
5

\
\

1
4
8
/
1
1
/
3

(
R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t
\
l
a
n
d

C
u
r
r
e
n
t
F
l
o
o
r

>

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s
)
)

\
\

\
t
2
\
l
o
r

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

1
4
9
/
1
1
/
5

\
\

1
5
0
/
1
1
/
3

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

1
5
1
/
1
1
/
5

\
\

1
5
2
/
1
1
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

(

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

)

1
5
3
/
1
1
/
5

\
\

1
5
4
/
1
1
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
5
5
/
1
1
/
5

\
\

1
5
6
/
1
1
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

1
5
7
/
1
1
/
5

\
\

1
5
8
/
1
1
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
5
9
/
1
1
/
5

\
\

1
6
0
/
1
1
/
3

D
i
r
'

=

d
o
w
n

1
6
1
/
1
1
/
5

\
\

1
6
2
/
1
1
/
3

D
o
o
r
'

=

D
o
o
r

1
4
3
/
1
1
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
6
3
/
1
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
C
h
a
n
g
e
D
o
w
n
T
o
U
p
}

1
6
5
/
1
2
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

1
6
6
/
1
2
/
4

\
w
h
e
r
e

1
6
7
/
1
2
/
3

D
i
r

=

d
o
w
n

1
6
8
/
1
2
/
5

\
\

1
6
9
/
1
2
/
3

(
R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t
\
l
a
n
d

C
u
r
r
e
n
t
F
l
o
o
r

<

m
i
n

(
R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

)

)

\
\
\
t
2
\
l
o
r

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

=

\
e
m
p
t
y
s
e
t

1
7
0
/
1
2
/
5

\
\

1
7
1
/
1
2
/
3

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q

\
e
m
p
t
y
s
e
t

1
7
2
/
1
2
/
5

\
\

1
7
3
/
1
2
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

(

R
e
q
u
e
s
t
s

\
c
u
p

U
p
C
a
l
l
s

)

1
7
4
/
1
2
/
5

\
\

1
7
5
/
1
2
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
7
6
/
1
2
/
5

\
\

1
7
7
/
1
2
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

1
7
8
/
1
2
/
5

\
\

1
7
9
/
1
2
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

1
8
0
/
1
2
/
5

\
\

1
8
1
/
1
2
/
3

D
i
r
'

=

u
p

1
8
2
/
1
2
/
5

\
\

1
8
3
/
1
2
/
3

D
o
o
r
'

=

D
o
o
r

1
6
4
/
1
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
8
4
/
1
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
R
e
s
t
a
r
t
M
o
v
i
n
g
U
p
}

1
8
6
/
1
3
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

1
8
7
/
1
3
/
4

\
w
h
e
r
e

1
8
8
/
1
3
/
3

D
i
r

=

u
p

1
8
9
/
1
3
/
5

\
\

1
9
0
/
1
3
/
3

U
p
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

1
9
1
/
1
3
/
5

\
\

1
9
2
/
1
3
/
3

C
u
r
r
e
n
t
F
l
o
o
r

>

m
a
x

(

U
p
C
a
l
l
s

)

1
9
3
/
1
3
/
5

\
\

1
9
4
/
1
3
/
3

D
o
w
n
C
a
l
l
s

\
c
u
p

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

1
9
5
/
1
3
/
5

\
\

1
9
6
/
1
3
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
i
n

(

U
p
C
a
l
l
s

)

1
9
7
/
1
3
/
5

\
\

1
9
8
/
1
3
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

1
9
9
/
1
3
/
5

\
\

2
0
0
/
1
3
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

\
s
e
t
m
i
n
u
s

2
0
1
/
1
3
/
5

\
\

2
0
2
/
1
3
/
3

\
{

C
u
r
r
e
n
t
F
l
o
o
r
'

\
}

2
0
3
/
1
3
/
5

\
\

2
0
4
/
1
3
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

2
0
5
/
1
3
/
5

\
\

2
0
6
/
1
3
/
3

D
i
r
'

=

u
p

2
0
7
/
1
3
/
5

\
\

2
0
8
/
1
3
/
3

D
o
o
r
'

=

D
o
o
r

1
8
5
/
1
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
0
9
/
1
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
R
e
s
t
a
r
t
M
o
v
i
n
g
D
o
w
n
}

2
1
1
/
1
4
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

2
1
2
/
1
4
/
4

\
w
h
e
r
e

2
1
3
/
1
4
/
3

D
i
r

=

d
o
w
n

2
1
4
/
1
4
/
5

\
\

2
1
5
/
1
4
/
3

D
o
w
n
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

2
1
6
/
1
4
/
5

\
\

2
1
7
/
1
4
/
3

C
u
r
r
e
n
t
F
l
o
o
r

<

m
i
n

(

D
o
w
n
C
a
l
l
s

)

2
1
8
/
1
4
/
5

\
\

2
1
9
/
1
4
/
3

U
p
C
a
l
l
s

\
c
u
p

R
e
q
u
e
s
t
s

=

\
e
m
p
t
y
s
e
t

2
2
0
/
1
4
/
5

\
\

2
2
1
/
1
4
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

m
a
x

\

D
o
w
n
C
a
l
l
s

2
2
2
/
1
4
/
5

\
\

2
2
3
/
1
4
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

2
2
4
/
1
4
/
5

\
\

2
2
5
/
1
4
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

2
2
6
/
1
4
/
5

\
\

2
2
7
/
1
4
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

\
s
e
t
m
i
n
u
s
\
{

C
u
r
r
e
n
t
F
l
o
o
r
'
\
}

2
2
8
/
1
4
/
5

\
\

2
2
9
/
1
4
/
3

D
i
r
'

=

d
o
w
n

2
3
0
/
1
4
/
5

\
\

2
3
1
/
1
4
/
3

D
o
o
r
'

=

D
o
o
r

2
1
0
/
1
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
3
2
/
1
5
/
1

\
b
e
g
i
n
{
z
e
d
}

2
3
4
/
1
5
/
3

M
o
v
e

2
3
5
/
1
5
/
4

=
=

2
3
6
/
1
6
/
3

B
a
s
i
c
M
o
v
e
U
p

2
3
7
/
1
6
/
5

\
l
o
r

2
3
8
/
1
6
/
3

B
a
s
i
c
M
o
v
e
D
o
w
n

2
4
1
/
1
7
/
5

\
l
o
r

2
4
2
/
1
7
/
3

C
h
a
n
g
e
U
p
T
o
D
o
w
n

2
4
6
/
1
8
/
5

\
l
o
r

2
4
7
/
1
8
/
3

C
h
a
n
g
e
D
o
w
n
T
o
U
p

2
5
1
/
1
9
/
5

\
l
o
r

2
5
2
/
1
9
/
3

R
e
s
t
a
r
t
M
o
v
i
n
g
U
p

2
5
6
/
2
0
/
5

\
l
o
r

2
5
7
/
2
0
/
3

R
e
s
t
a
r
t
M
o
v
i
n
g
D
o
w
n

2
3
3
/
1
5
/
2

\
e
n
d
{
z
e
d
}

2
6
2
/
2
1
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
O
p
e
n
D
o
o
r
}

2
6
4
/
2
1
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

2
6
5
/
2
1
/
4

\
w
h
e
r
e

2
6
6
/
2
1
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

2
6
7
/
2
1
/
5

\
\

2
6
8
/
2
1
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

2
6
9
/
2
1
/
5

\
\

2
7
0
/
2
1
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

2
7
1
/
2
1
/
5

\
\

2
7
2
/
2
1
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

2
7
3
/
2
1
/
5

\
\

2
7
4
/
2
1
/
3

D
i
r
'

=

D
i
r

2
7
5
/
2
1
/
5

\
\

2
7
6
/
2
1
/
3

D
o
o
r
'
=

o
p
e
n

2
6
3
/
2
1
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
7
7
/
2
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
C
l
o
s
e
D
o
o
r
}

2
7
9
/
2
2
/
3

\
D
e
l
t
a

E
l
e
v
a
t
o
r

2
8
0
/
2
2
/
4

\
w
h
e
r
e

2
8
1
/
2
2
/
3

R
e
q
u
e
s
t
s

\
c
u
p

D
o
w
n
C
a
l
l
s

\
c
u
p

U
p
C
a
l
l
s

\
n
e
q
\
e
m
p
t
y
s
e
t

2
8
2
/
2
2
/
5

\
\

2
8
3
/
2
2
/
3

C
u
r
r
e
n
t
F
l
o
o
r
'

=

C
u
r
r
e
n
t
F
l
o
o
r

2
8
4
/
2
2
/
5

\
\

2
8
5
/
2
2
/
3

R
e
q
u
e
s
t
s
'

=

R
e
q
u
e
s
t
s

Fig. A.57: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 4 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

A.5. Points of Interest and Response Variables 243

2
8
6
/
2
2
/
5

\
\

2
8
7
/
2
2
/
3

U
p
C
a
l
l
s
'

=

U
p
C
a
l
l
s

2
8
8
/
2
2
/
5

\
\

2
8
9
/
2
2
/
3

D
o
w
n
C
a
l
l
s
'

=

D
o
w
n
C
a
l
l
s

2
9
0
/
2
2
/
5

\
\

2
9
1
/
2
2
/
3

D
i
r
'

=

D
i
r

2
9
2
/
2
2
/
5

\
\

2
9
3
/
2
2
/
3

D
o
o
r
'
=

c
l
o
s
e
d

2
7
8
/
2
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
9
4
/
2
3
/
1

\
b
e
g
i
n
{
z
e
d
}

2
9
6
/
2
3
/
3

M
o
v
e
C
y
c
l
e

2
9
7
/
2
3
/
4

=
=

2
9
8
/
2
4
/
3

C
l
o
s
e
D
o
o
r

2
9
9
/
2
4
/
5

\
s
e
m
i

3
0
0
/
2
4
/
3

P
a
s
s
e
n
g
e
r
E
v
e
n
t

3
0
3
/
2
5
/
5

\
s
e
m
i

3
0
4
/
2
5
/
3

M
o
v
e

3
0
8
/
2
7
/
5

\
s
e
m
i

3
0
9
/
2
6
/
7

(

3
1
0
/
2
6
/
3

P
a
s
s
e
n
g
e
r
E
v
e
n
t

3
1
1
/
2
6
/
8

)

3
1
8
/
2
8
/
5

\
s
e
m
i

3
1
9
/
2
8
/
3

O
p
e
n
D
o
o
r

3
2
3
/
3
0
/
5

\
s
e
m
i

3
2
4
/
2
9
/
7

(

3
2
5
/
2
9
/
3

P
a
s
s
e
n
g
e
r
E
v
e
n
t

3
2
6
/
2
9
/
8

)

3
3
3
/
2
3
/
3

\
\

E
l
e
v
a
t
o
r
C
y
c
l
e

3
3
4
/
2
3
/
4

=
=

3
3
5
/
3
1
/
3

M
o
v
e
C
y
c
l
e

3
3
6
/
3
1
/
5

\
l
o
r

3
3
7
/
3
1
/
3

N
o
R
e
q
u
e
s
t
s
O
r
C
a
l
l
s

3
4
0
/
2
3
/
3

\
\

F
u
n
c
t
i
o
n
i
n
g
E
l
e
v
a
t
o
r

3
4
1
/
2
3
/
4

=
=

3
4
2
/
3
2
/
3

P
a
s
s
e
n
g
e
r
E
v
e
n
t

3
4
3
/
3
2
/
5

\
s
e
m
i

3
4
4
/
3
2
/
3

E
l
e
v
a
t
o
r
C
y
c
l
e

2
9
5
/
2
3
/
2

\
e
n
d
{
z
e
d
}

W
M
-
s
p
e
c
i
f
i
c
a
t
i
o
n

P
o
i
n
t
s

o
f

i
n
t
e
r
e
s
t

(
N
a
m
e
,
V
e
r
t
e
x
,
S
R
N
-
B
l
o
c
k
)
:

W
M
,

3
0
,

5
,

p
i
x
_
1

=

(
x
_
1
,

y
_
1
)

W
M
,

3
2
,

5
,

p
i
x
_
2

=

(
x
_
2
,

y
_
2
)

W
M
,

8
3
,

1
7
,

\
l
a
n
g
l
e

h
e
a
d
e
r
,

b
o
d
y

\
r
a
n
g
l
e
\
p
a
r
t
i
t
i
o
n

m
a
p

W
M
,

8
5
,

1
7
,

a
r
e
a

=

\
d
o
m

m
a
p

W
M
,

9
7
,

1
9
,

(
f
i
r
s
t

\

x
y
l
i
m
i
t
s
)

\
l
e
q

(
s
e
c
o
n
d

\

x
y
l
i
m
i
t
s
)

W
M
,

1
2
4
,

2
4
,

U
n
d
e
f
i
n
e
d
\
n
o
t
i
n

w
i
n
d
o
w
s

W
M
,

1
2
6
,

2
4
,

w
i
n
d
o
w
s

=

\
d
o
m

c
o
n
t
e
n
t
s

W
M
,

1
2
8
,

2
4
,

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

\
c
u
p
\
{

U
n
d
e
f
i
n
e
d

\
}

W
M
,

1
4
1
,

2
5
,

m
a
p
s

=

c
o
n
t
e
n
t
s

\
c
o
m
p

W
M
,

1
4
2
,

2
5
,

(
\
l
a
m
b
d
a

I
n
f
o

@

m
a
p
)

W
M
,

1
4
4
,

2
5
,

a
r
e
a
s

=

c
o
n
t
e
n
t
s

\
c
o
m
p

W
M
,

1
4
5
,

2
5
,

(
\
l
a
m
b
d
a

I
n
f
o

@

a
r
e
a
)

W
M
,

1
4
7
,

2
5
,

\
d
i
s
j
o
i
n
t

a
r
e
a
s

W
M
,

1
4
9
,

2
5
,

\
b
i
g
c
u
p

(
\
r
a
n

a
r
e
a
s
)

\
s
u
b
s
e
t
e
q

\
d
o
m

b
a
c
k
g
r
o
u
n
d

W
M
,

1
5
1
,

2
5
,

s
c
r
e
e
n

=

b
a
c
k
g
r
o
u
n
d

\
o
p
l
u
s

\
b
i
g
c
u
p

(
\
r
a
n

m
a
p
s
)

W
M
,

1
5
6
,

2
6
,

M
a
x
W
i
n
d
o
w
s

=

2
0

W
M
,

1
6
1
,

2
7
,

\
s
h
a
r
p

w
i
n
d
o
w
s

\
l
e
q

M
a
x
W
i
n
d
o
w
s

W
M
,

1
7
2
,

2
9
,

\
f
o
r
a
l
l

w
,
w
'

:

W
I
N
D
O
W
S

|

w
'

=

a
d
j
u
s
t
(
w
)

@

\
\
\
t
2
\
s
h
a
r
p

w
'

=

\
s
h
a
r
p

w

\
l
a
n
d

\
\
\
t
2
w
'
\
c
o
m
p

W
M
,

1
7
3
,

2
9
,

(
\
l
a
m
b
d
a

I
n
f
o

@

\
T
h
e
t
a

C
o
n
t
r
o
l
)

=

w

\
c
o
m
p

(
\
l
a
m
b
d
a

I
n
f
o

@

\
T
h
e
t
a

C
o
n
t
r
o
l
)

W
M
,

1
7
6
,

3
0
,

W
M
'

W
M
,

1
7
8
,

3
0
,

w
i
n
d
o
w
s
'

=

\
e
m
p
t
y
s
e
t

W
M
,

1
8
0
,

3
0
,

c
u
r
r
e
n
t
'

=

u
n
d
e
f
i
n
e
d

W
M
,

1
8
5
,

3
1
,

\
D
e
l
t
a

I
n
f
o

W
M
,

1
8
7
,

3
1
,

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

W
M
,

1
8
9
,

3
1
,

c
u
r
r
e
n
t
'

=

c
u
r
r
e
n
t

W
M
,

1
9
1
,

3
1
,

\
T
h
e
t
a

I
n
f
o

=

c
o
n
t
e
n
t
s

(
c
u
r
r
e
n
t
)

W
M
,

1
9
3
,

3
1
,

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

c
o
n
t
e
n
t
s

\
b
i
g
o
p
l
u
s
\
{
c
u
r
r
e
n
t
\
m
a
p
s
t
o
\
T
h
e
t
a

I
n
f
o
'

\
}

) W
M
,

2
0
0
,

3
2
,

I
n
f
o

W
M
,

2
0
2
,

3
2
,

\
s
h
a
r
p

w
i
n
d
o
w
s

<

M
a
x
W
i
n
d
o
w
s

W
M
,

2
0
4
,

3
2
,

w
!

\
n
o
t
i
n

w
i
n
d
o
w
s

\
c
u
p
\
{

U
n
d
e
f
i
n
e
d
\
}

W
M
,

2
0
6
,

3
2
,

c
u
r
r
e
n
t
'

=

w
!

W
M
,

2
0
8
,

3
2
,

c
o
n
t
r
o
l

=

E
x
p
o
s
e

W
M
,

2
1
0
,

3
2
,

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

c
o
n
t
e
n
t
s

\
c
u
p
\
{

w
!

\
m
a
p
s
t
o
\
T
h
e
t
a

I
n
f
o

\
}

)

W
M
,

2
1
5
,

3
3
,

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

W
M
,

2
1
7
,

3
3
,

c
u
r
r
e
n
t
'

=

U
n
d
e
f
i
n
e
d

W
M
,

2
1
9
,

3
3
,

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

\
{
c
u
r
r
e
n
t
\
}
\
n
d
r
e
s

c
o
n
t
e
n
t
s

)

W
M
,

2
2
8
,

3
4
,

m
a
p
'

=

m
a
p

W
M
,

2
3
0
,

3
4
,

t
i
t
l
e
'

=

t
i
t
l
e

W
M
,

2
3
2
,

3
4
,

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

W
M
,

2
3
4
,

3
4
,

x
y
l
i
m
i
t
s
'

=

(
m
i
n
x
y
?
,

m
a
x
x
y
?
)

W
M
,

2
4
5
,

3
5
,

\
T
h
e
t
a

I
n
f
o
'

=

\
T
h
e
t
a

I
n
f
o

W
M
,

2
4
7
,

3
5
,

\
d
o
m

b
o
d
y

=

x
y
1

\
d
o
t
s

x
y
2

W
M
,

2
4
9
,

3
5
,

w
h
!

=

x
y
2

-

x
y
1

W
M
,

2
5
4
,

3
6
,

m
a
p
'

=

m
a
p

W
M
,

2
5
6
,

3
6
,

t
i
t
l
e
'

=

t
i
t
l
e

W
M
,

2
5
8
,

3
6
,

c
o
n
t
r
o
l
'

=

H
i
d
e

W
M
,

2
6
0
,

3
6
,

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

W
M
,

2
6
5
,

3
7
,

m
a
p
'

=

m
a
p

W
M
,

2
6
7
,

3
7
,

t
i
t
l
e
'

=

t
i
t
l
e

W
M
,

2
6
9
,

3
7
,

c
o
n
t
r
o
l
'

=

E
x
p
o
s
e

W
M
,

2
7
1
,

3
7
,

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

W
M
,

2
7
8
,

3
8
,

w
?

\
i
n

w
i
n
d
o
w
s

W
M
,

2
8
0
,

3
8
,

c
u
r
r
e
n
t
'

=

w
?

W
M
,

2
8
2
,

3
8
,

c
o
n
t
e
n
t
s
'

=

c
o
n
t
e
n
t
s

W
M
,

2
8
9
,

3
9
,

m
a
p
'

=

m
a
p

W
M
,

2
9
1
,

3
9
,

t
i
t
l
e
'

=

s
?

W
M
,

2
9
3
,

3
9
,

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

W
M
,

2
9
5
,

3
9
,

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

W
M
,

3
0
0
,

4
0
,

h
e
a
d
e
r
'

=

h
e
a
d
e
r

W
M
,

3
0
2
,

4
0
,

b
o
d
y
'

=

s
e
t
v
a
l

\

W
h
i
t
e

\

b
o
d
y

W
M
,

3
0
4
,

4
0
,

t
i
t
l
e
'

=

t
i
t
l
e

W
M
,

3
0
6
,

4
0
,

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

W
M
,

3
0
8
,

4
0
,

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

W
M
,

3
1
6
,

4
2
,

N
u
l
l

\
n
o
t
i
n

w
i
n
d
o
w
s

W
M
,

3
2
3
,

4
3
,

w
!

\
n
e
q

N
u
l
l

W
M
,

3
3
0
,

4
4
,

\
s
h
a
r
p

w
i
n
d
o
w
s

\
g
e
q

M
a
x
W
i
n
d
o
w
s

W
M
,

3
3
2
,

4
4
,

w
!

=

N
u
l
l

W
M
,

3
5
4
,

4
8
,

c
u
r
r
e
n
t

=

U
n
d
e
f
i
n
e
d

W
M
,

4
1
1
,

5
9
,

w
?

\
n
o
t
i
n

w
i
n
d
o
w
s

W
M
,

4
2
8
,

6
2
,

\
d
o
m

w
m
s

\
s
u
b
s
e
t
e
q

h
o
s
t
s

W
M
,

4
3
0
,

6
2
,

\
d
i
s
j
o
i
n
t

(

w
m
s

\
c
o
m
p

W
M
,

4
3
1
,

6
2
,

(

\
l
a
m
b
d
a

W
M

@

w
i
n
d
o
w
s

)

)

W
M
,

4
3
4
,

6
3
,

I
T
C
'

W
M
,

4
3
6
,

6
3
,

h
o
s
t
s
'

=

\
e
m
p
t
y
s
e
t

W
M
,

4
4
8
,

6
5
,

h
o
s
t
?

\
n
o
t
i
n

h
o
s
t
s

\
c
u
p

E
M
P
T
Y
S
T
R
I
N
G

W
M
,

4
5
0
,

6
5
,

h
o
s
t
s
'

=

h
o
s
t
s

\
c
u
p
\
{

h
o
s
t
?

\
}

W
M
,

4
5
2
,

6
5
,

w
m
s
'

=

w
m
s

W
M
,

4
5
9
,

6
6
,

h
o
s
t
?

i
n

h
o
s
t
s

W
M
,

4
6
1
,

6
6
,

h
o
s
t
s
'

=

h
o
s
t
s

\
s
e
t
m
i
n
u
s
\
{

h
o
s
t
?

\
}

W
M
,

4
6
3
,

6
6
,

w
m
s
'

=

w
m
s

W
M
,

4
7
0
,

6
7
,

h
o
s
t
s
'

=

h
o
s
t
s

W
M
,

4
7
2
,

6
7
,

l
o
c
a
l
h
o
s
t
s
\
i
n

h
o
s
t
s

W
M
,

4
7
9
,

6
8
,

l
o
c
a
l
h
o
s
t

\
n
o
t
i
n
\
d
o
m

w
m
s

W
M
,

4
8
1
,

6
8
,

w
m
s
'

=

w
m
s

\
c
u
p
\
{

l
o
c
a
l
h
o
s
t

\
m
a
p
s
t
o

i
n
i
t
w
m
\
}

W
M
,

4
8
6
,

6
9
,

l
o
c
a
l
h
o
s
t

\
i
n
\
d
o
m

w
m
s

W
M
,

4
8
8
,

6
9
,

w
m
s
'

=

\
{

l
o
c
a
l
h
o
s
t

\
}
\
n
d
r
e
s

w
m
s

W
M
,

4
9
7
,

7
0
,

\
T
h
e
t
a

W
M

=

w
m
s

\

h
o
s
t

W
M
,

4
9
9
,

7
0
,

\
T
h
e
t
a

W
M
'

=

w
m
s
'

\

h
o
s
t

W
M
,

5
0
2
,

7
1
,

N
e
w
W
i
n
d
o
w
1

W
M
,

5
0
8
,

7
1
,

h
o
s
t
?

=

E
M
P
T
Y
S
T
R
I
N
G

\
i
m
p

h
o
s
t

=

l
o
c
a
l
h
o
s
t

W
M
,

5
1
0
,

7
1
,

h
o
s
t
?

\
n
e
q

E
M
P
T
Y
S
T
R
I
N
G

\
i
m
p

h
o
s
t

=

h
o
s
t
?

W
M
,

5
1
5
,

7
3
,

D
e
l
e
t
e
W
i
n
d
o
w
1

L
i
s
t
i
n
g

(
V
e
r
t
e
x
/
S
R
N
-
B
l
o
c
k
,
T
y
p
e
)
:

2
/
1
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

4
/
1
/
3

X
s
i
z
e

:

\
n
a
t
_
1

5
/
1
/
5

\
\

6
/
1
/
3

Y
s
i
z
e

:

\
n
a
t
_
1

3
/
1
/
2

\
e
n
d
{
a
x
d
e
f
}

7
/
2
/
1

\
b
e
g
i
n
{
z
e
d
}

9
/
2
/
3

X
r
a
n
g
e

=
=

0

\
d
o
t
s

(

X
s
i
z
e

-

1

)

8
/
2
/
2

\
e
n
d
{
z
e
d
}

1
0
/
3
/
1

\
b
e
g
i
n
{
z
e
d
}

1
2
/
3
/
3

Y
r
a
n
g
e

=
=

0

\
d
o
t
s

(

Y
s
i
z
e

-

1

)

1
1
/
3
/
2

\
e
n
d
{
z
e
d
}

1
3
/
4
/
1

\
b
e
g
i
n
{
z
e
d
}

1
5
/
4
/
3

P
i
x
e
l

=
=

(

X
r
a
n
g
e
\
c
r
o
s
s

Y
r
a
n
g
e

)

1
4
/
4
/
2

\
e
n
d
{
z
e
d
}

1
6
/
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
P
i
x
e
l
P
a
i
r
}

1
8
/
5
/
3

p
i
x
_
1

:

P
i
x
e
l

1
9
/
5
/
5

\
\

2
0
/
5
/
3

p
i
x
_
2

:

P
i
x
e
l

2
1
/
5
/
5

\
\

2
2
/
5
/
3

x
_
1

:

X
r
a
n
g
e

2
3
/
5
/
5

\
\

2
4
/
5
/
3

x
_
2

:

X
r
a
n
g
e

Fig. A.58: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 5 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

244 A. Evaluation Measures
2
5
/
5
/
5

\
\

2
6
/
5
/
3

y
_
1

:

Y
r
a
n
g
e

2
7
/
5
/
5

\
\

2
8
/
5
/
3

y
_
2

:

Y
r
a
n
g
e

2
9
/
5
/
4

\
w
h
e
r
e

3
0
/
5
/
3

p
i
x
_
1

=

(
x
_
1
,

y
_
1
)

3
1
/
5
/
5

\
\

3
2
/
5
/
3

p
i
x
_
2

=

(
x
_
2
,

y
_
2
)

1
7
/
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
3
/
6
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

3
5
/
6
/
3

Z
s
i
z
e

:

\
n
a
t
_
1

3
4
/
6
/
2

\
e
n
d
{
a
x
d
e
f
}

3
6
/
7
/
1

\
b
e
g
i
n
{
z
e
d
}

3
8
/
7
/
3

C
l
e
a
r
V
a
l

=
=

0

3
7
/
7
/
2

\
e
n
d
{
z
e
d
}

3
9
/
8
/
1

\
b
e
g
i
n
{
z
e
d
}

4
1
/
8
/
3

S
e
t
V
a
l

=
=

1

4
0
/
8
/
2

\
e
n
d
{
z
e
d
}

4
2
/
9
/
1

\
b
e
g
i
n
{
z
e
d
}

4
4
/
9
/
3

B
i
t
V
a
l

=
=

\
{
C
l
e
a
r
V
a
l
,

S
e
t
V
a
l

\
}

4
3
/
9
/
2

\
e
n
d
{
z
e
d
}

4
5
/
1
0
/
1

\
b
e
g
i
n
{
z
e
d
}

4
7
/
1
0
/
3

Z
r
a
n
g
e

=
=

0

\
d
o
t
s

(

Z
s
i
z
e

-

1

)

4
6
/
1
0
/
2

\
e
n
d
{
z
e
d
}

4
8
/
1
1
/
1

\
b
e
g
i
n
{
z
e
d
}

5
0
/
1
1
/
3

V
a
l
u
e

=
=

(

Z
r
a
n
g
e

\
f
u
n

B
i
t
V
a
l

)

4
9
/
1
1
/
2

\
e
n
d
{
z
e
d
}

5
1
/
1
2
/
1

\
b
e
g
i
n
{
z
e
d
}

5
3
/
1
2
/
3

B
l
a
c
k

=
=

(

\
m
u

v
a
l

:

V
a
l
u
e

|

\
r
a
n

v
a
l

=

\
{

C
l
e
a
r
V
a
l
\
}

)

5
2
/
1
2
/
2

\
e
n
d
{
z
e
d
}

5
5
/
1
3
/
1

\
b
e
g
i
n
{
z
e
d
}

5
7
/
1
3
/
3

W
h
i
t
e

=
=

(

\
m
u

v
a
l

:

V
a
l
u
e

|

\
r
a
n

v
a
l

=

\
{

S
e
t
V
a
l
\
}

)

5
6
/
1
3
/
2

\
e
n
d
{
z
e
d
}

5
9
/
1
4
/
1

\
b
e
g
i
n
{
z
e
d
}

6
1
/
1
4
/
3

P
i
x
m
a
p

=
=

(

P
i
x
e
l

\
p
f
u
n

V
a
l
u
e

)

6
0
/
1
4
/
2

\
e
n
d
{
z
e
d
}

6
2
/
1
5
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

6
4
/
1
5
/
3

s
e
t
v
a
l

:

V

\
f
u
n

P

\
p
f
u
n

V

\
f
u
n

P

\
p
f
u
n

V

6
5
/
1
5
/
5

\
w
h
e
r
e

6
7
/
1
5
/
3

\
f
o
r
a
l
l

v

:

V
;

p

:

(

P

\
p
f
u
n

V
)

@

s
e
t
v
a
l

v

p

=

(
\
m
u

m

:

P

\
p
f
u
n

V

|

(
\
d
o
m

m

=

\
d
o
m

p

\
l
a
n
d
\
r
a
n

m

=
\
{

v

\
}
)
)

6
3
/
1
5
/
2

\
e
n
d
{
a
x
d
e
f
}

6
8
/
1
6
/
1

\
b
e
g
i
n
{
z
e
d
}

7
0
/
1
6
/
4

[

7
1
/
1
6
/
3

S
t
r
i
n
g

7
2
/
1
6
/
4

]

6
9
/
1
6
/
2

\
e
n
d
{
z
e
d
}

7
3
/
1
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
M
a
p
}

7
5
/
1
7
/
3

h
e
a
d
e
r

:

P
i
x
m
a
p

7
6
/
1
7
/
5

\
\

7
7
/
1
7
/
3

b
o
d
y

:

P
i
x
m
a
p

7
8
/
1
7
/
5

\
\

7
9
/
1
7
/
3

m
a
p

:

P
i
x
m
a
p

8
0
/
1
7
/
5

\
\

8
1
/
1
7
/
3

a
r
e
a

:

\
p
o
w
e
r

P
i
x
e
l

8
2
/
1
7
/
4

\
w
h
e
r
e

8
3
/
1
7
/
3

\
l
a
n
g
l
e

h
e
a
d
e
r
,

b
o
d
y

\
r
a
n
g
l
e

\
p
a
r
t
i
t
i
o
n

m
a
p

8
4
/
1
7
/
5

\
\

8
5
/
1
7
/
3

a
r
e
a

=

\
d
o
m

m
a
p

7
4
/
1
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

8
6
/
1
8
/
1

\
b
e
g
i
n
{
z
e
d
}

8
8
/
1
8
/
3

H
i
d
e
E
x
p
o
s
e

:
:
=

H
i
d
e

|

E
x
p
o
s
e

8
7
/
1
8
/
2

\
e
n
d
{
z
e
d
}

8
9
/
1
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
C
o
n
t
r
o
l
}

9
1
/
1
9
/
3

t
i
t
l
e

:

S
t
r
i
n
g

9
2
/
1
9
/
5

\
\

9
3
/
1
9
/
3

c
o
n
t
r
o
l

:

H
i
d
e
E
x
p
o
s
e

9
4
/
1
9
/
5

\
\

9
5
/
1
9
/
3

x
y
l
i
m
i
t
s

:

P
i
x
e
l

\
c
r
o
s
s

P
i
x
e
l

9
6
/
1
9
/
4

\
w
h
e
r
e

9
7
/
1
9
/
3

(
f
i
r
s
t

\

x
y
l
i
m
i
t
s
)

\
l
e
q

(
s
e
c
o
n
d

\

x
y
l
i
m
i
t
s
)

9
0
/
1
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

9
8
/
2
0
/
1

\
b
e
g
i
n
{
z
e
d
}

1
0
0
/
2
0
/
3

I
n
f
o

1
0
1
/
2
0
/
4

=
=

1
0
2
/
2
1
/
3

M
a
p

1
0
3
/
2
1
/
5

\
l
a
n
d

1
0
4
/
2
1
/
3

C
o
n
t
r
o
l

9
9
/
2
0
/
2

\
e
n
d
{
z
e
d
}

1
0
8
/
2
2
/
1

\
b
e
g
i
n
{
z
e
d
}

1
1
0
/
2
2
/
4

[

1
1
1
/
2
2
/
3

W
i
n
d
o
w

1
1
2
/
2
2
/
4

]

1
0
9
/
2
2
/
2

\
e
n
d
{
z
e
d
}

1
1
3
/
2
3
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

1
1
5
/
2
3
/
3

U
n
d
e
f
i
n
e
d

:

W
i
n
d
o
w

1
1
4
/
2
3
/
2

\
e
n
d
{
a
x
d
e
f
}

1
1
6
/
2
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
W
M
Z
e
r
o
}

1
1
8
/
2
4
/
3

w
i
n
d
o
w
s

:

\
f
i
n
s
e
t

W
i
n
d
o
w

1
1
9
/
2
4
/
5

\
\

1
2
0
/
2
4
/
3

c
u
r
r
e
n
t

:

W
i
n
d
o
w

1
2
1
/
2
4
/
5

\
\

1
2
2
/
2
4
/
3

c
o
n
t
e
n
t
s

:

W
i
n
d
o
w

\
p
f
u
n

I
n
f
o

1
2
3
/
2
4
/
4

\
w
h
e
r
e

1
2
4
/
2
4
/
3

U
n
d
e
f
i
n
e
d

\
n
o
t
i
n

w
i
n
d
o
w
s

1
2
5
/
2
4
/
5

\
\

1
2
6
/
2
4
/
3

w
i
n
d
o
w
s

=

\
d
o
m

c
o
n
t
e
n
t
s

1
2
7
/
2
4
/
5

\
\

1
2
8
/
2
4
/
3

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

\
c
u
p
\
{

U
n
d
e
f
i
n
e
d

\
}

1
1
7
/
2
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
2
9
/
2
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
W
M
O
n
e
}

1
3
1
/
2
5
/
3

W
M
Z
e
r
o

1
3
2
/
2
5
/
5

\
\

1
3
3
/
2
5
/
3

m
a
p
s

:

W
i
n
d
o
w

\
p
f
u
n

P
i
x
m
a
p

1
3
4
/
2
5
/
5

\
\

1
3
5
/
2
5
/
3

a
r
e
a
s

:

W
i
n
d
o
w

\
p
f
u
n

(
\
p
o
w
e
r

P
i
x
e
l
)

1
3
6
/
2
5
/
5

\
\

1
3
7
/
2
5
/
3

s
c
r
e
e
n

:

P
i
x
m
a
p

1
3
8
/
2
5
/
5

\
\

1
3
9
/
2
5
/
3

b
a
c
k
g
r
o
u
n
d

:

P
i
x
m
a
p

1
4
0
/
2
5
/
4

\
w
h
e
r
e

1
4
1
/
2
5
/
3

m
a
p
s

=

c
o
n
t
e
n
t
s

\
c
o
m
p

1
4
2
/
2
5
/
3

(
\
l
a
m
b
d
a

I
n
f
o

@

m
a
p
)

1
4
3
/
2
5
/
5

\
\

1
4
4
/
2
5
/
3

a
r
e
a
s

=

c
o
n
t
e
n
t
s

\
c
o
m
p

1
4
5
/
2
5
/
3

(
\
l
a
m
b
d
a

I
n
f
o

@

a
r
e
a
)

1
4
6
/
2
5
/
5

\
\

1
4
7
/
2
5
/
3

\
d
i
s
j
o
i
n
t

a
r
e
a
s

1
4
8
/
2
5
/
5

\
\

1
4
9
/
2
5
/
3

\
b
i
g
c
u
p

(
\
r
a
n

a
r
e
a
s
)

\
s
u
b
s
e
t
e
q
\
d
o
m

b
a
c
k
g
r
o
u
n
d

1
5
0
/
2
5
/
5

\
\

1
5
1
/
2
5
/
3

s
c
r
e
e
n

=

b
a
c
k
g
r
o
u
n
d

\
o
p
l
u
s
\
b
i
g
c
u
p

(
\
r
a
n

m
a
p
s
)

1
3
0
/
2
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
5
2
/
2
6
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

1
5
4
/
2
6
/
3

M
a
x
W
i
n
d
o
w
s

:

\
n
a
t

1
5
5
/
2
6
/
5

\
w
h
e
r
e

1
5
6
/
2
6
/
3

M
a
x
W
i
n
d
o
w
s

=

2
0

1
5
3
/
2
6
/
2

\
e
n
d
{
a
x
d
e
f
}

1
5
7
/
2
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
W
M
T
w
o
}

1
5
9
/
2
7
/
3

W
M
O
n
e

1
6
0
/
2
7
/
4

\
w
h
e
r
e

1
6
1
/
2
7
/
3

\
s
h
a
r
p

w
i
n
d
o
w
s

\
l
e
q

M
a
x
W
i
n
d
o
w
s

1
5
8
/
2
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
6
2
/
2
8
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

1
6
4
/
2
8
/
3

W
I
N
D
O
W
S

:

W
i
n
d
o
w

\
p
f
u
n

I
n
f
o

1
6
3
/
2
8
/
2

\
e
n
d
{
a
x
d
e
f
}

1
6
5
/
2
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
W
M
}

1
6
7
/
2
9
/
3

W
M
T
w
o

1
6
8
/
2
9
/
5

\
\

1
6
9
/
2
9
/
3

a
d
j
u
s
t

:

W
I
N
D
O
W
S

\
f
u
n

W
I
N
D
O
W
S

1
7
0
/
2
9
/
4

\
w
h
e
r
e

1
7
2
/
2
9
/
3

\
f
o
r
a
l
l

w
,
w
'

:

W
I
N
D
O
W
S

|

w
'

=

a
d
j
u
s
t
(
w
)

@
\
\
\
t
2
\
s
h
a
r
p

w
'

=

\
s
h
a
r
p

w

\
l
a
n
d
\
\
\
t
2
w
'
\
c
o
m
p

1
7
3
/
2
9
/
3

(
\
l
a
m
b
d
a

I
n
f
o

@

\
T
h
e
t
a

C
o
n
t
r
o
l
)

=

w

\
c
o
m
p

(
\
l
a
m
b
d
a

I
n
f
o

@

\
T
h
e
t
a

C
o
n
t
r
o
l
)

1
6
6
/
2
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
7
4
/
3
0
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
i
t
W
M
}

1
7
6
/
3
0
/
3

W
M
'

1
7
7
/
3
0
/
4

\
w
h
e
r
e

1
7
8
/
3
0
/
3

w
i
n
d
o
w
s
'

=

\
e
m
p
t
y
s
e
t

1
7
9
/
3
0
/
5

\
\

Fig. A.59: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 6 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

A.5. Points of Interest and Response Variables 245

1
8
0
/
3
0
/
3

c
u
r
r
e
n
t
'

=

u
n
d
e
f
i
n
e
d

1
7
5
/
3
0
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
8
1
/
3
1
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
P
h
i
C
u
r
r
e
n
t
}

1
8
3
/
3
1
/
3

\
D
e
l
t
a

W
M

1
8
4
/
3
1
/
5

\
\

1
8
5
/
3
1
/
3

\
D
e
l
t
a

I
n
f
o

1
8
6
/
3
1
/
4

\
w
h
e
r
e

1
8
7
/
3
1
/
3

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

1
8
8
/
3
1
/
5

\
\

1
8
9
/
3
1
/
3

c
u
r
r
e
n
t
'

=

c
u
r
r
e
n
t

1
9
0
/
3
1
/
5

\
\

1
9
1
/
3
1
/
3

\
T
h
e
t
a

I
n
f
o

=

c
o
n
t
e
n
t
s

(
c
u
r
r
e
n
t
)

1
9
2
/
3
1
/
5

\
\

1
9
3
/
3
1
/
3

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

c
o
n
t
e
n
t
s

\
b
i
g
o
p
l
u
s

\
{
c
u
r
r
e
n
t
\
m
a
p
s
t
o
\
T
h
e
t
a

I
n
f
o
'

\
}

)

1
8
2
/
3
1
/
2

\
e
n
d
{
s
c
h
e
m
a
}

1
9
4
/
3
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
N
e
w
W
i
n
d
o
w
}

1
9
6
/
3
2
/
3

\
D
e
l
t
a

W
M

1
9
7
/
3
2
/
5

\
\

1
9
8
/
3
2
/
3

w
!

:

W
i
n
d
o
w

1
9
9
/
3
2
/
5

\
\

2
0
0
/
3
2
/
3

I
n
f
o

2
0
1
/
3
2
/
4

\
w
h
e
r
e

2
0
2
/
3
2
/
3

\
s
h
a
r
p

w
i
n
d
o
w
s

<

M
a
x
W
i
n
d
o
w
s

2
0
3
/
3
2
/
5

\
\

2
0
4
/
3
2
/
3

w
!

\
n
o
t
i
n

w
i
n
d
o
w
s

\
c
u
p
\
{

U
n
d
e
f
i
n
e
d

\
}

2
0
5
/
3
2
/
5

\
\

2
0
6
/
3
2
/
3

c
u
r
r
e
n
t
'

=

w
!

2
0
7
/
3
2
/
5

\
\

2
0
8
/
3
2
/
3

c
o
n
t
r
o
l

=

E
x
p
o
s
e

2
0
9
/
3
2
/
5

\
\

2
1
0
/
3
2
/
3

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

c
o
n
t
e
n
t
s

\
c
u
p
\
{

w
!

\
m
a
p
s
t
o
\
T
h
e
t
a

I
n
f
o

\
}

)

1
9
5
/
3
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
1
1
/
3
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
D
e
l
e
t
e
W
i
n
d
o
w
}

2
1
3
/
3
3
/
3

\
D
e
l
t
a

W
M

2
1
4
/
3
3
/
4

\
w
h
e
r
e

2
1
5
/
3
3
/
3

c
u
r
r
e
n
t

\
i
n

w
i
n
d
o
w
s

2
1
6
/
3
3
/
5

\
\

2
1
7
/
3
3
/
3

c
u
r
r
e
n
t
'

=

U
n
d
e
f
i
n
e
d

2
1
8
/
3
3
/
5

\
\

2
1
9
/
3
3
/
3

c
o
n
t
e
n
t
s
'

=

a
d
j
u
s
t

(

\
{
c
u
r
r
e
n
t
\
}
\
n
d
r
e
s

c
o
n
t
e
n
t
s

)

2
1
2
/
3
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
2
0
/
3
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
S
e
t
D
i
m
e
n
s
i
o
n
s
}

2
2
2
/
3
4
/
3

P
h
i
C
u
r
r
e
n
t

2
2
3
/
3
4
/
5

\
\

2
2
4
/
3
4
/
3

m
i
n
x
y
?

:

P
i
x
e
l

2
2
5
/
3
4
/
5

\
\

2
2
6
/
3
4
/
3

m
a
x
x
y
?

:

P
i
x
e
l

2
2
7
/
3
4
/
4

\
w
h
e
r
e

2
2
8
/
3
4
/
3

m
a
p
'

=

m
a
p

2
2
9
/
3
4
/
5

\
\

2
3
0
/
3
4
/
3

t
i
t
l
e
'

=

t
i
t
l
e

2
3
1
/
3
4
/
5

\
\

2
3
2
/
3
4
/
3

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

2
3
3
/
3
4
/
5

\
\

2
3
4
/
3
4
/
3

x
y
l
i
m
i
t
s
'

=

(
m
i
n
x
y
?
,

m
a
x
x
y
?
)

2
2
1
/
3
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
3
5
/
3
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
G
e
t
D
i
m
e
n
s
i
o
n
s
}

2
3
7
/
3
5
/
3

P
h
i
C
u
r
r
e
n
t

2
3
8
/
3
5
/
5

\
\

2
3
9
/
3
5
/
3

w
h
!

:

P
i
x
e
l

2
4
0
/
3
5
/
5

\
\

2
4
1
/
3
5
/
3

x
y
1

:

P
i
x
e
l

2
4
2
/
3
5
/
5

\
\

2
4
3
/
3
5
/
3

x
y
2

:

P
i
x
e
l

2
4
4
/
3
5
/
4

\
w
h
e
r
e

2
4
5
/
3
5
/
3

\
T
h
e
t
a

I
n
f
o
'

=

\
T
h
e
t
a

I
n
f
o

2
4
6
/
3
5
/
5

\
\

2
4
7
/
3
5
/
3

\
d
o
m

b
o
d
y

=

x
y
1

\
d
o
t
s

x
y
2

2
4
8
/
3
5
/
5

\
\

2
4
9
/
3
5
/
3

w
h
!

=

x
y
2

-

x
y
1

2
3
6
/
3
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
5
0
/
3
6
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
H
i
d
e
M
e
}

2
5
2
/
3
6
/
3

P
h
i
C
u
r
r
e
n
t

2
5
3
/
3
6
/
4

\
w
h
e
r
e

2
5
4
/
3
6
/
3

m
a
p
'

=

m
a
p

2
5
5
/
3
6
/
5

\
\

2
5
6
/
3
6
/
3

t
i
t
l
e
'

=

t
i
t
l
e

2
5
7
/
3
6
/
5

\
\

2
5
8
/
3
6
/
3

c
o
n
t
r
o
l
'

=

H
i
d
e

2
5
9
/
3
6
/
5

\
\

2
6
0
/
3
6
/
3

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

2
5
1
/
3
6
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
6
1
/
3
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
E
x
p
o
s
e
M
e
}

2
6
3
/
3
7
/
3

P
h
i
C
u
r
r
e
n
t

2
6
4
/
3
7
/
4

\
w
h
e
r
e

2
6
5
/
3
7
/
3

m
a
p
'

=

m
a
p

2
6
6
/
3
7
/
5

\
\

2
6
7
/
3
7
/
3

t
i
t
l
e
'

=

t
i
t
l
e

2
6
8
/
3
7
/
5

\
\

2
6
9
/
3
7
/
3

c
o
n
t
r
o
l
'

=

E
x
p
o
s
e

2
7
0
/
3
7
/
5

\
\

2
7
1
/
3
7
/
3

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

2
6
2
/
3
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
7
2
/
3
8
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
S
e
l
e
c
t
W
i
n
d
o
w
}

2
7
4
/
3
8
/
3

\
D
e
l
t
a

W
M

2
7
5
/
3
8
/
5

\
\

2
7
6
/
3
8
/
3

w
?

:

W
i
n
d
o
w

2
7
7
/
3
8
/
4

\
w
h
e
r
e

2
7
8
/
3
8
/
3

w
?

\
i
n

w
i
n
d
o
w
s

2
7
9
/
3
8
/
5

\
\

2
8
0
/
3
8
/
3

c
u
r
r
e
n
t
'

=

w
?

2
8
1
/
3
8
/
5

\
\

2
8
2
/
3
8
/
3

c
o
n
t
e
n
t
s
'

=

c
o
n
t
e
n
t
s

2
7
3
/
3
8
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
8
3
/
3
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
S
e
t
T
i
t
l
e
}

2
8
5
/
3
9
/
3

P
h
i
C
u
r
r
e
n
t

2
8
6
/
3
9
/
5

\
\

2
8
7
/
3
9
/
3

s
?

:

S
t
r
i
n
g

2
8
8
/
3
9
/
4

\
w
h
e
r
e

2
8
9
/
3
9
/
3

m
a
p
'

=

m
a
p

2
9
0
/
3
9
/
5

\
\

2
9
1
/
3
9
/
3

t
i
t
l
e
'

=

s
?

2
9
2
/
3
9
/
5

\
\

2
9
3
/
3
9
/
3

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

2
9
4
/
3
9
/
5

\
\

2
9
5
/
3
9
/
3

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

2
8
4
/
3
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

2
9
6
/
4
0
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
C
l
e
a
r
W
i
n
d
o
w
}

2
9
8
/
4
0
/
3

\
D
e
l
t
a

P
h
i
C
u
r
r
e
n
t

2
9
9
/
4
0
/
4

\
w
h
e
r
e

3
0
0
/
4
0
/
3

h
e
a
d
e
r
'

=

h
e
a
d
e
r

3
0
1
/
4
0
/
5

\
\

3
0
2
/
4
0
/
3

b
o
d
y
'

=

s
e
t
v
a
l

\

W
h
i
t
e

\

b
o
d
y

3
0
3
/
4
0
/
5

\
\

3
0
4
/
4
0
/
3

t
i
t
l
e
'

=

t
i
t
l
e

3
0
5
/
4
0
/
5

\
\

3
0
6
/
4
0
/
3

c
o
n
t
r
o
l
'

=

c
o
n
t
r
o
l

3
0
7
/
4
0
/
5

\
\

3
0
8
/
4
0
/
3

x
y
l
i
m
i
t
s
'

=

x
y
l
i
m
i
t
s

2
9
7
/
4
0
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
0
9
/
4
1
/
1

\
b
e
g
i
n
{
a
x
d
e
f
}

3
1
1
/
4
1
/
3

N
u
l
l

:

W
i
n
d
o
w

3
1
0
/
4
1
/
2

\
e
n
d
{
a
x
d
e
f
}

3
1
2
/
4
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
W
M
E
r
r
}

3
1
4
/
4
2
/
3

W
M

3
1
5
/
4
2
/
4

\
w
h
e
r
e

3
1
6
/
4
2
/
3

N
u
l
l

\
n
o
t
i
n

w
i
n
d
o
w
s

3
1
3
/
4
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
1
7
/
4
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
S
u
c
c
e
s
s
W
M
}

3
1
9
/
4
3
/
3

\
D
e
l
t
a

W
M
E
r
r

3
2
0
/
4
3
/
5

\
\

3
2
1
/
4
3
/
3

w
!

:

W
i
n
d
o
w

3
2
2
/
4
3
/
4

\
w
h
e
r
e

3
2
3
/
4
3
/
3

w
!

\
n
e
q

N
u
l
l

3
1
8
/
4
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
2
4
/
4
4
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
T
o
o
M
a
n
y
W
i
n
d
o
w
s
}

3
2
6
/
4
4
/
3

\
X
i

W
M
E
r
r

3
2
7
/
4
4
/
5

\
\

3
2
8
/
4
4
/
3

w
!

:

W
i
n
d
o
w

3
2
9
/
4
4
/
4

\
w
h
e
r
e

3
3
0
/
4
4
/
3

\
s
h
a
r
p

w
i
n
d
o
w
s

\
g
e
q

M
a
x
W
i
n
d
o
w
s

3
3
1
/
4
4
/
5

\
\

3
3
2
/
4
4
/
3

w
!

=

N
u
l
l

3
2
5
/
4
4
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
3
3
/
4
5
/
1

\
b
e
g
i
n
{
z
e
d
}

3
3
5
/
4
5
/
3

N
e
w
W
i
n
d
o
w
1

3
3
6
/
4
5
/
4

=
=

3
3
7
/
4
6
/
7

(

3
3
8
/
4
6
/
3

N
e
w
W
i
n
d
o
w

3
3
9
/
4
6
/
5

\
l
a
n
d

3
4
0
/
4
6
/
3

S
u
c
c
e
s
s
W
M

3
4
3
/
4
6
/
8

)

3
4
4
/
4
7
/
5

\
l
o
r

3
4
5
/
4
7
/
3

T
o
o
M
a
n
y
W
i
n
d
o
w
s

3
3
4
/
4
5
/
2

\
e
n
d
{
z
e
d
}

Fig. A.60: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 7 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

246 A. Evaluation Measures

3
5
0
/
4
8
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
N
o
C
u
r
r
e
n
t
W
i
n
d
o
w
}

3
5
2
/
4
8
/
3

\
X
i

W
M
E
r
r

3
5
3
/
4
8
/
4

\
w
h
e
r
e

3
5
4
/
4
8
/
3

c
u
r
r
e
n
t

=

U
n
d
e
f
i
n
e
d

3
5
1
/
4
8
/
2

\
e
n
d
{
s
c
h
e
m
a
}

3
5
5
/
4
9
/
1

\
b
e
g
i
n
{
z
e
d
}

3
5
7
/
4
9
/
3

D
e
l
e
t
e
W
i
n
d
o
w
1

3
5
8
/
4
9
/
4

=
=

3
5
9
/
5
0
/
3

D
e
l
e
t
e
W
i
n
d
o
w

3
6
0
/
5
0
/
5

\
l
o
r

3
6
1
/
5
0
/
3

N
o
C
u
r
r
e
n
t
W
i
n
d
o
w

3
5
6
/
4
9
/
2

\
e
n
d
{
z
e
d
}

3
6
5
/
5
1
/
1

\
b
e
g
i
n
{
z
e
d
}

3
6
7
/
5
1
/
3

S
e
t
D
i
m
e
n
s
i
o
n
s
1

3
6
8
/
5
1
/
4

=
=

3
6
9
/
5
2
/
3

S
e
t
D
i
m
e
n
s
i
o
n
s

3
7
0
/
5
2
/
5

\
l
o
r

3
7
1
/
5
2
/
3

N
o
C
u
r
r
e
n
t
W
i
n
d
o
w

3
6
6
/
5
1
/
2

\
e
n
d
{
z
e
d
}

3
7
5
/
5
3
/
1

\
b
e
g
i
n
{
z
e
d
}

3
7
7
/
5
3
/
3

G
e
t
D
i
m
e
n
s
i
o
n
s
1

3
7
8
/
5
3
/
4

=
=

3
7
9
/
5
4
/
3

G
e
t
D
i
m
e
n
s
i
o
n
s

3
8
0
/
5
4
/
5

\
l
o
r

3
8
1
/
5
4
/
3

N
o
C
u
r
r
e
n
t
W
i
n
d
o
w

3
7
6
/
5
3
/
2

\
e
n
d
{
z
e
d
}

3
8
5
/
5
5
/
1

\
b
e
g
i
n
{
z
e
d
}

3
8
7
/
5
5
/
3

S
e
t
T
i
t
l
e
1

3
8
8
/
5
5
/
4

=
=

3
8
9
/
5
6
/
3

S
e
t
T
i
t
l
e

3
9
0
/
5
6
/
5

\
l
o
r

3
9
1
/
5
6
/
3

N
o
C
u
r
r
e
n
t
W
i
n
d
o
w

3
8
6
/
5
5
/
2

\
e
n
d
{
z
e
d
}

3
9
5
/
5
7
/
1

\
b
e
g
i
n
{
z
e
d
}

3
9
7
/
5
7
/
3

C
l
e
a
r
W
i
n
d
o
w
1

3
9
8
/
5
7
/
4

=
=

3
9
9
/
5
8
/
3

C
l
e
a
r
W
i
n
d
o
w

4
0
0
/
5
8
/
5

\
l
o
r

4
0
1
/
5
8
/
3

N
o
C
u
r
r
e
n
t
W
i
n
d
o
w

3
9
6
/
5
7
/
2

\
e
n
d
{
z
e
d
}

4
0
5
/
5
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
v
a
l
i
d
W
i
n
d
o
w
}

4
0
7
/
5
9
/
3

\
X
i

W
M
E
r
r

4
0
8
/
5
9
/
5

\
\

4
0
9
/
5
9
/
3

w
?

:

W
i
n
d
o
w

4
1
0
/
5
9
/
4

\
w
h
e
r
e

4
1
1
/
5
9
/
3

w
?

\
n
o
t
i
n

w
i
n
d
o
w
s

4
0
6
/
5
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
1
2
/
6
0
/
1

\
b
e
g
i
n
{
z
e
d
}

4
1
4
/
6
0
/
3

S
e
l
e
c
t
W
i
n
d
o
w
1

4
1
5
/
6
0
/
4

=
=

4
1
6
/
6
1
/
3

S
e
l
e
c
t
W
i
n
d
o
w

4
1
7
/
6
1
/
5

\
l
o
r

4
1
8
/
6
1
/
3

I
n
v
a
l
i
d
W
i
n
d
o
w

4
1
3
/
6
0
/
2

\
e
n
d
{
z
e
d
}

4
2
2
/
6
2
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
T
C
}

4
2
4
/
6
2
/
3

h
o
s
t
s

:

\
p
o
w
e
r

S
t
r
i
n
g

4
2
5
/
6
2
/
5

\
\

4
2
6
/
6
2
/
3

w
m
s

:

S
t
r
i
n
g

\
p
f
u
n

W
M

4
2
7
/
6
2
/
4

\
w
h
e
r
e

4
2
8
/
6
2
/
3

\
d
o
m

w
m
s

\
s
u
b
s
e
t
e
q

h
o
s
t
s

4
2
9
/
6
2
/
5

\
\

4
3
0
/
6
2
/
3

\
d
i
s
j
o
i
n
t

(

w
m
s

\
c
o
m
p

4
3
1
/
6
2
/
3

(

\
l
a
m
b
d
a

W
M

@

w
i
n
d
o
w
s

)

)

4
2
3
/
6
2
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
3
2
/
6
3
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
I
n
i
t
I
T
C
}

4
3
4
/
6
3
/
3

I
T
C
'

4
3
5
/
6
3
/
4

\
w
h
e
r
e

4
3
6
/
6
3
/
3

h
o
s
t
s
'

=

\
e
m
p
t
y
s
e
t

4
3
3
/
6
3
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
3
7
/
6
4
/
1

\
b
e
g
i
n
{
z
e
d
}

4
3
9
/
6
4
/
4

[

4
4
0
/
6
4
/
3

E
M
P
T
Y
S
T
R
I
N
G

4
4
1
/
6
4
/
4

]

4
3
8
/
6
4
/
2

\
e
n
d
{
z
e
d
}

4
4
2
/
6
5
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
A
d
d
H
o
s
t
}

4
4
4
/
6
5
/
3

\
D
e
l
t
a

I
T
C

4
4
5
/
6
5
/
5

\
\

4
4
6
/
6
5
/
3

h
o
s
t
?

:

S
t
r
i
n
g

4
4
7
/
6
5
/
4

\
w
h
e
r
e

4
4
8
/
6
5
/
3

h
o
s
t
?
\
n
o
t
i
n

h
o
s
t
s

\
c
u
p

E
M
P
T
Y
S
T
R
I
N
G

4
4
9
/
6
5
/
5

\
\

4
5
0
/
6
5
/
3

h
o
s
t
s
'

=

h
o
s
t
s

\
c
u
p
\
{

h
o
s
t
?

\
}

4
5
1
/
6
5
/
5

\
\

4
5
2
/
6
5
/
3

w
m
s
'

=

w
m
s

4
4
3
/
6
5
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
5
3
/
6
6
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
R
e
m
o
v
e
H
o
s
t
}

4
5
5
/
6
6
/
3

\
D
e
l
t
a

I
T
C

4
5
6
/
6
6
/
5

\
\

4
5
7
/
6
6
/
3

h
o
s
t
?

:

S
t
r
i
n
g

4
5
8
/
6
6
/
4

\
w
h
e
r
e

4
5
9
/
6
6
/
3

h
o
s
t
?

i
n

h
o
s
t
s

4
6
0
/
6
6
/
5

\
\

4
6
1
/
6
6
/
3

h
o
s
t
s
'

=

h
o
s
t
s

\
s
e
t
m
i
n
u
s
\
{

h
o
s
t
?

\
}

4
6
2
/
6
6
/
5

\
\

4
6
3
/
6
6
/
3

w
m
s
'

=

w
m
s

4
5
4
/
6
6
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
6
4
/
6
7
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
P
h
i
H
o
s
t
}

4
6
6
/
6
7
/
3

\
D
e
l
t
a

I
T
C

4
6
7
/
6
7
/
5

\
\

4
6
8
/
6
7
/
3

l
o
c
a
l
h
o
s
t

:

S
t
r
i
n
g

4
6
9
/
6
7
/
4

\
w
h
e
r
e

4
7
0
/
6
7
/
3

h
o
s
t
s
'

=

h
o
s
t
s

4
7
1
/
6
7
/
5

\
\

4
7
2
/
6
7
/
3

l
o
c
a
l
h
o
s
t
s

\
i
n

h
o
s
t
s

4
6
5
/
6
7
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
7
3
/
6
8
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
E
x
e
c
W
M
}

4
7
5
/
6
8
/
3

P
h
i
H
o
s
t

4
7
6
/
6
8
/
5

\
\

4
7
7
/
6
8
/
3

i
n
i
t
w
m

:

W
M

4
7
8
/
6
8
/
4

\
w
h
e
r
e

4
7
9
/
6
8
/
3

l
o
c
a
l
h
o
s
t

\
n
o
t
i
n
\
d
o
m

w
m
s

4
8
0
/
6
8
/
5

\
\

4
8
1
/
6
8
/
3

w
m
s
'

=

w
m
s

\
c
u
p
\
{

l
o
c
a
l
h
o
s
t

\
m
a
p
s
t
o

i
n
i
t
w
m
\
}

4
7
4
/
6
8
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
8
2
/
6
9
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
K
i
l
l
W
M
}

4
8
4
/
6
9
/
3

P
h
i
H
o
s
t

4
8
5
/
6
9
/
4

\
w
h
e
r
e

4
8
6
/
6
9
/
3

l
o
c
a
l
h
o
s
t

\
i
n
\
d
o
m

w
m
s

4
8
7
/
6
9
/
5

\
\

4
8
8
/
6
9
/
3

w
m
s
'

=

\
{

l
o
c
a
l
h
o
s
t

\
}
\
n
d
r
e
s

w
m
s

4
8
3
/
6
9
/
2

\
e
n
d
{
s
c
h
e
m
a
}

4
8
9
/
7
0
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
P
h
i
W
M
}

4
9
1
/
7
0
/
3

P
h
i
H
o
s
t

4
9
2
/
7
0
/
5

\
\

4
9
3
/
7
0
/
3

\
D
e
l
t
a

W
M

4
9
4
/
7
0
/
5

\
\

4
9
5
/
7
0
/
3

h
o
s
t

:

S
t
r
i
n
g

4
9
6
/
7
0
/
4

\
w
h
e
r
e

4
9
7
/
7
0
/
3

\
T
h
e
t
a

W
M

=

w
m
s

\

h
o
s
t

4
9
8
/
7
0
/
5

\
\

4
9
9
/
7
0
/
3

\
T
h
e
t
a

W
M
'

=

w
m
s
'

\

h
o
s
t

4
9
0
/
7
0
/
2

\
e
n
d
{
s
c
h
e
m
a
}

5
0
0
/
7
1
/
1

\
b
e
g
i
n
{
s
c
h
e
m
a
}
{
N
e
w
W
i
n
d
o
w
I
T
C
}

5
0
2
/
7
1
/
3

N
e
w
W
i
n
d
o
w
1

5
0
3
/
7
1
/
5

\
\

5
0
4
/
7
1
/
3

P
h
i
W
M

5
0
5
/
7
1
/
5

\
\

5
0
6
/
7
1
/
3

h
o
s
t
?

:

S
t
r
i
n
g

5
0
7
/
7
1
/
4

\
w
h
e
r
e

5
0
8
/
7
1
/
3

h
o
s
t
?

=

E
M
P
T
Y
S
T
R
I
N
G

\
i
m
p

h
o
s
t

=

l
o
c
a
l
h
o
s
t

5
0
9
/
7
1
/
5

\
\

5
1
0
/
7
1
/
3

h
o
s
t
?

\
n
e
q

E
M
P
T
Y
S
T
R
I
N
G

\
i
m
p

h
o
s
t

=

h
o
s
t
?

5
0
1
/
7
1
/
2

\
e
n
d
{
s
c
h
e
m
a
}

5
1
1
/
7
2
/
1

\
b
e
g
i
n
{
z
e
d
}

5
1
3
/
7
2
/
3

D
e
l
e
t
e
W
i
n
d
o
w
I
T
C

5
1
4
/
7
2
/
4

=
=

5
1
5
/
7
3
/
3

D
e
l
e
t
e
W
i
n
d
o
w
1

5
1
6
/
7
3
/
5

\
l
a
n
d

5
1
7
/
7
3
/
3

P
h
i
W
M

5
1
2
/
7
2
/
2

\
e
n
d
{
z
e
d
}

Fig. A.61: Detailed list of all points of interest for the BB -, Petrol -, Elevator - and WM -
specification (part 8 of 8). The figure contains the list of points of interest and
the annotated listing of the specification.

A.5. Points of Interest and Response Variables 247

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

BB Total 72 267 11 27 24 4 10 4

BB SCD 18 54 190 8 20 17 4 7 4

BB SCD 23 26 43 3 4 4 1 1 0

BB SCD 32 38 97 6 9 7 1 1 0

BB SCD 34 54 190 8 20 17 4 7 4

BB SCD 41 38 95 6 9 7 1 1 0

BB SCD 43 54 190 8 20 17 4 7 4

BB SCD 48 66 232 10 25 22 4 10 4

Mean 47,143 148,143 7,000 15,286 13,000 2,714 4,857 2,286

BB SD 18 50 168 8 18 15 2 3 4

BB SD 23 24 43 3 4 4 1 1 0

BB SD 32 37 97 6 9 7 1 1 0

BB SD 34 49 155 8 16 13 1 1 2

BB SD 41 38 95 6 9 7 1 1 0

BB SD 43 50 157 8 16 13 1 1 2

BB SD 48 37 87 6 9 6 1 1 0

Mean 40,714 114,571 6,429 11,571 9,286 1,143 1,286 1,143

BB SC 18 14 44 2 5 5 1 1 0

BB SC 23 16 43 3 4 4 1 1 0

BB SC 32 31 91 6 9 7 1 1 0

BB SC 34 52 175 8 19 16 4 4 1

BB SC 41 37 93 6 9 7 1 1 0

BB SC 43 52 171 8 18 15 4 4 1

BB SC 48 63 202 10 22 19 4 4 0

Mean 37,857 117,000 6,143 12,286 10,429 2,286 2,286 0,286

Petrol Total 134 674 15 57 53 10 28 131

Petrol SCD 17 105 536 11 46 44 10 28 110

Petrol SCD 19 105 536 11 46 44 10 28 110

Petrol SCD 28 114 575 13 50 47 10 28 115

Petrol SCD 30 115 577 13 50 47 10 28 115

Petrol SCD 32 116 579 13 50 47 10 28 115

Petrol SCD 41 107 536 11 46 44 10 28 110

Petrol SCD 43 107 536 11 46 44 10 28 110

Petrol SCD 45 107 536 11 46 44 10 28 110

Petrol SCD 49 107 536 11 46 44 10 28 110

Petrol SCD 51 107 536 11 46 44 10 28 110

Petrol SCD 53 107 536 11 46 44 10 28 110

Petrol SCD 56 33 25 1 1 1 1 1 0

Petrol SCD 62 107 536 11 46 44 10 28 110

Petrol SCD 64 107 536 11 46 44 10 28 110

Petrol SCD 66 107 536 11 46 44 10 28 110

Petrol SCD 70 107 536 11 46 44 10 28 110

Petrol SCD 72 107 536 11 46 44 10 28 110

Petrol SCD 74 107 536 11 46 44 10 28 110

Petrol SCD 77 32 5 1 1 1 1 1 0

Petrol SCD 125 43 38 3 4 2 1 1 0

Petrol SCD 127 48 51 4 5 3 1 1 0

Mean 95,000 445,429 9,619 38,333 36,381 8,286 22,857 89,762

Petrol SD 17 89 410 11 38 36 2 4 73

Petrol SD 19 90 412 11 38 36 2 4 73

Petrol SD 28 98 437 13 41 38 1 1 73

Petrol SD 30 99 439 13 41 38 1 1 73

Petrol SD 32 100 441 13 41 38 1 1 73

Petrol SD 41 92 413 11 38 36 2 4 73

Petrol SD 43 93 415 11 38 36 2 4 73

Petrol SD 45 95 419 11 38 36 2 4 73

Petrol SD 49 94 404 11 37 35 1 1 68

Petrol SD 51 94 404 11 37 35 1 1 68

Petrol SD 53 94 404 11 37 35 1 1 68

Petrol SD 56 30 19 1 1 1 1 1 0

Petrol SD 62 96 420 11 38 36 2 4 73

Petrol SD 64 97 424 11 38 36 2 4 75

Fig. A.62: Detailed list of response variables for all points of interest (part 1 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

248 A. Evaluation Measures

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Petrol SD 66 99 426 11 38 36 2 4 73

Petrol SD 70 98 412 11 37 35 1 1 68

Petrol SD 72 98 412 11 37 35 1 1 68

Petrol SD 74 98 412 11 37 35 1 1 68

Petrol SD 77 32 5 1 1 1 1 1 0

Petrol SD 125 43 38 3 4 2 1 1 0

Petrol SD 127 48 51 4 5 3 1 1 0

Mean 84,619 343,667 9,619 31,429 29,476 1,381 2,143 57,762

Petrol SC 17 14 44 2 5 5 1 1 0

Petrol SC 19 16 48 2 5 5 1 1 0

Petrol SC 28 26 75 5 7 6 1 1 0

Petrol SC 30 28 83 5 8 7 1 1 0

Petrol SC 32 29 85 5 8 7 1 1 0

Petrol SC 41 31 93 4 10 10 1 1 0

Petrol SC 43 33 101 4 11 11 1 1 0

Petrol SC 45 31 80 4 7 7 1 1 0

Petrol SC 49 39 134 4 14 14 4 4 2

Petrol SC 51 40 133 4 14 14 4 4 1

Petrol SC 53 41 136 4 14 14 4 4 2

Petrol SC 56 18 9 1 1 1 1 1 0

Petrol SC 62 34 75 3 8 8 1 1 0

Petrol SC 64 32 59 3 5 5 1 1 0

Petrol SC 66 34 63 3 5 5 1 1 0

Petrol SC 70 43 116 3 13 13 5 5 2

Petrol SC 72 44 119 3 13 13 5 5 1

Petrol SC 74 45 121 3 13 13 5 5 3

Petrol SC 77 25 5 1 1 1 1 1 0

Petrol SC 125 36 38 3 4 2 1 1 0

Petrol SC 127 41 51 4 5 3 1 1 0

Mean 32,381 79,429 3,333 8,143 7,810 2,000 2,000 0,524

WM Total 520 2633 73 233 213 39 544 215

WM SCD 30 16 42 4 7 7 1 1 0

WM SCD 32 17 44 4 7 7 1 1 0

WM SCD 83 21 63 4 8 7 1 1 0

WM SCD 85 25 66 5 8 7 1 1 0

WM SCD 97 22 49 4 6 5 1 1 0

WM SCD 124 19 35 3 4 4 1 1 0

WM SCD 126 284 1271 48 112 103 28 232 103

WM SCD 128 284 1271 48 112 103 28 232 103

WM SCD 141 284 1271 48 112 103 28 232 103

WM SCD 142 49 25 1 1 1 1 1 0

WM SCD 144 284 1271 48 112 103 28 232 103

WM SCD 145 49 25 1 1 1 1 1 0

WM SCD 147 58 50 3 4 4 1 1 0

WM SCD 149 62 61 4 6 6 1 1 0

WM SCD 151 60 62 3 6 6 1 1 0

WM SCD 156 50 11 1 2 2 1 1 0

WM SCD 161 68 72 5 7 7 2 2 1

WM SCD 172 50 9 1 1 1 1 1 0

WM SCD 173 50 9 1 1 1 1 1 0

WM SCD 176 50 11 1 1 1 1 1 0

WM SCD 178 60 48 3 4 4 2 2 0

WM SCD 180 60 48 3 4 4 2 2 0

WM SCD 185 285 1273 48 112 103 28 232 103

WM SCD 187 285 1273 48 112 103 28 232 103

WM SCD 189 285 1273 48 112 103 28 232 103

WM SCD 191 285 1273 48 112 103 28 232 103

WM SCD 193 285 1273 48 112 103 28 232 103

WM SCD 200 285 1273 48 112 103 28 232 103

WM SCD 202 79 122 8 11 9 2 2 1

WM SCD 204 288 1304 48 113 104 28 250 104

WM SCD 206 287 1277 48 112 103 28 232 103

WM SCD 208 287 1277 48 112 103 28 232 103

Fig. A.63: Detailed list of response variables for all points of interest (part 2 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

A.5. Points of Interest and Response Variables 249

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

WM SCD 210 287 1277 48 112 103 28 232 103

WM SCD 215 287 1277 48 112 103 28 232 103

WM SCD 217 287 1277 48 112 103 28 232 103

WM SCD 219 287 1277 48 112 103 28 232 103

WM SCD 228 292 1350 48 117 108 28 268 115

WM SCD 230 310 1418 49 120 111 28 286 119

WM SCD 232 298 1299 48 112 103 28 232 103

WM SCD 234 304 1343 48 116 107 28 250 103

WM SCD 245 300 1303 48 112 103 28 232 103

WM SCD 247 300 1303 48 112 103 28 232 103

WM SCD 249 304 1338 48 114 105 28 251 103

WM SCD 254 307 1380 48 117 108 28 268 115

WM SCD 256 314 1426 49 120 111 28 286 119

WM SCD 258 82 63 5 6 5 1 1 0

WM SCD 260 314 1427 48 120 111 28 286 119

WM SCD 265 311 1388 48 117 108 28 268 115

WM SCD 267 318 1434 49 120 111 28 286 119

WM SCD 269 86 65 5 6 5 1 1 0

WM SCD 271 314 1427 48 120 111 28 286 119

WM SCD 278 95 105 6 10 9 2 2 1

WM SCD 280 306 1315 48 112 103 28 232 103

WM SCD 282 306 1315 48 112 103 28 232 103

WM SCD 289 311 1388 48 117 108 28 268 115

WM SCD 291 314 1362 49 116 107 28 250 103

WM SCD 293 306 1315 48 112 103 28 232 103

WM SCD 295 314 1427 48 120 111 28 286 119

WM SCD 300 309 1345 48 114 105 28 250 103

WM SCD 302 307 1317 48 112 103 28 232 103

WM SCD 304 319 1436 49 120 111 28 286 119

WM SCD 306 307 1317 48 112 103 28 232 103

WM SCD 308 315 1429 48 120 111 28 286 119

WM SCD 316 90 71 5 7 7 2 2 1

WM SCD 323 314 1360 49 115 106 28 250 103

WM SCD 330 99 101 7 10 9 2 2 1

WM SCD 332 312 1352 48 114 105 28 250 103

WM SCD 354 310 1323 48 112 103 28 232 103

WM SCD 411 99 101 6 10 9 2 2 1

WM SCD 428 400 1746 60 150 140 39 277 170

WM SCD 430 400 1746 60 150 140 39 277 170

WM SCD 431 90 13 1 1 1 1 1 0

WM SCD 434 90 9 1 1 1 1 1 0

WM SCD 436 100 42 3 4 4 2 2 0

WM SCD 448 400 1746 60 150 140 39 277 170

WM SCD 450 400 1746 60 150 140 39 277 170

WM SCD 452 400 1746 60 150 140 39 277 170

WM SCD 459 400 1746 60 150 140 39 277 170

WM SCD 461 400 1746 60 150 140 39 277 170

WM SCD 463 400 1746 60 150 140 39 277 170

WM SCD 470 400 1746 60 150 140 39 277 170

WM SCD 472 400 1746 60 150 140 39 277 170

WM SCD 479 400 1746 60 150 140 39 277 170

WM SCD 481 400 1746 60 150 140 39 277 170

WM SCD 486 400 1746 60 150 140 39 277 170

WM SCD 488 400 1746 60 150 140 39 277 170

WM SCD 497 400 1746 60 150 140 39 277 170

WM SCD 499 400 1746 60 150 140 39 277 170

WM SCD 502 94 20 2 2 2 1 1 0

WM SCD 508 120 109 7 10 9 1 1 0

WM SCD 510 117 96 6 9 8 1 1 0

WM SCD 515 101 36 3 4 3 1 1 0

Mean 236,087 958,087 34,717 82,598 76,413 20,620 167,217 80,815

WM SD 30 16 42 4 7 7 1 1 0

WM SD 32 17 44 4 7 7 1 1 0

Fig. A.64: Detailed list of response variables for all points of interest (part 3 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

250 A. Evaluation Measures

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

WM SD 83 21 63 4 8 7 1 1 0

WM SD 85 25 66 5 8 7 1 1 0

WM SD 97 22 49 4 6 5 1 1 0

WM SD 124 19 35 3 4 4 1 1 0

WM SD 126 110 382 21 38 33 2 10 36

WM SD 128 83 246 15 26 22 2 5 8

WM SD 141 119 403 23 40 35 2 10 36

WM SD 142 21 11 1 1 1 1 1 0

WM SD 144 121 407 23 40 35 2 10 36

WM SD 145 23 15 1 1 1 1 1 0

WM SD 147 33 42 3 4 4 1 1 0

WM SD 149 38 55 4 6 6 1 1 0

WM SD 151 39 62 3 6 6 1 1 0

WM SD 156 29 11 1 2 2 1 1 0

WM SD 161 47 67 5 6 6 1 1 1

WM SD 172 30 9 1 1 1 1 1 0

WM SD 173 30 9 1 1 1 1 1 0

WM SD 176 30 11 1 1 1 1 1 0

WM SD 178 39 43 3 3 3 1 1 0

WM SD 180 39 43 3 3 3 1 1 0

WM SD 185 121 374 21 37 32 2 4 34

WM SD 187 96 256 15 27 23 2 2 10

WM SD 189 93 232 15 24 20 1 1 4

WM SD 191 124 391 21 37 32 2 4 42

WM SD 193 123 370 21 36 31 1 1 32

WM SD 200 125 381 21 37 32 2 3 34

WM SD 202 63 111 8 10 8 1 1 1

WM SD 204 66 120 8 11 9 1 1 1

WM SD 206 59 100 6 9 7 1 1 0

WM SD 208 110 259 19 24 18 1 1 17

WM SD 210 129 380 21 36 31 1 1 32

WM SD 215 105 272 15 27 23 2 2 10

WM SD 217 62 84 6 8 7 1 1 0

WM SD 219 130 382 21 36 31 1 1 32

WM SD 228 84 158 12 15 12 1 1 12

WM SD 230 109 227 15 20 16 1 1 16

WM SD 232 106 211 15 19 15 1 1 12

WM SD 234 78 105 7 11 9 1 1 0

WM SD 245 142 382 21 36 31 1 1 32

WM SD 247 102 164 13 18 15 1 1 1

WM SD 249 72 67 4 8 7 1 1 0

WM SD 254 101 178 12 15 12 1 1 12

WM SD 256 116 233 15 20 16 1 1 16

WM SD 258 73 63 5 6 5 1 1 0

WM SD 260 119 239 15 21 17 1 1 16

WM SD 265 105 184 12 15 12 1 1 12

WM SD 267 120 241 15 20 16 1 1 16

WM SD 269 77 65 5 6 5 1 1 0

WM SD 271 119 239 15 21 17 1 1 16

WM SD 278 86 98 6 9 8 1 1 1

WM SD 280 82 85 5 8 7 1 1 0

WM SD 282 152 392 21 36 31 1 1 32

WM SD 289 106 184 12 15 12 1 1 12

WM SD 291 89 105 7 10 8 1 1 0

WM SD 293 118 225 15 19 15 1 1 12

WM SD 295 120 239 15 21 17 1 1 16

WM SD 300 87 97 7 9 7 1 1 0

WM SD 302 93 109 9 11 9 1 1 0

WM SD 304 122 243 15 20 16 1 1 16

WM SD 306 119 227 15 19 15 1 1 12

WM SD 308 121 241 15 21 17 1 1 16

WM SD 316 81 66 5 6 6 1 1 1

WM SD 323 85 77 6 8 6 1 1 0

WM SD 330 91 96 7 9 8 1 1 1

Fig. A.65: Detailed list of response variables for all points of interest (part 4 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

A.5. Points of Interest and Response Variables 251

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

WM SD 332 85 68 5 7 6 1 1 0

WM SD 354 172 402 24 39 31 2 3 9

WM SD 411 98 96 6 9 8 1 1 1

WM SD 428 138 260 11 27 26 2 3 35

WM SD 430 128 198 10 19 18 2 2 23

WM SD 431 83 13 1 1 1 1 1 0

WM SD 434 83 9 1 1 1 1 1 0

WM SD 436 92 37 3 3 3 1 1 0

WM SD 448 116 144 7 13 13 2 2 13

WM SD 450 110 118 6 11 11 1 1 9

WM SD 452 128 189 10 18 17 1 1 18

WM SD 459 112 132 6 12 12 2 2 13

WM SD 461 111 120 6 11 11 1 1 9

WM SD 463 129 191 10 18 17 1 1 18

WM SD 470 111 120 6 11 11 1 1 9

WM SD 472 113 133 6 12 12 2 2 13

WM SD 479 132 208 10 19 18 2 2 23

WM SD 481 131 195 10 18 17 1 1 18

WM SD 486 133 210 10 19 18 2 2 23

WM SD 488 132 197 10 18 17 1 1 18

WM SD 497 134 212 10 19 18 2 2 23

WM SD 499 108 78 5 8 7 1 1 1

WM SD 502 93 20 2 2 2 1 1 0

WM SD 508 119 107 7 10 9 1 1 0

WM SD 510 116 94 6 9 8 1 1 0

WM SD 515 101 36 3 4 3 1 1 0

91,739 159,283 9,598 15,087 13,076 1,196 1,565 10,022

WM SC 30 16 42 4 7 7 1 1 0

WM SC 32 17 44 4 7 7 1 1 0

WM SC 83 21 63 4 8 7 1 1 0

WM SC 85 25 66 5 8 7 1 1 0

WM SC 97 22 49 4 6 5 1 1 0

WM SC 124 19 35 3 4 4 1 1 0

WM SC 126 22 47 3 5 5 1 1 0

WM SC 128 24 49 3 5 5 1 1 0

WM SC 141 33 72 5 7 7 1 1 0

WM SC 142 15 11 1 1 1 1 1 0

WM SC 144 35 76 5 7 7 1 1 0

WM SC 145 17 15 1 1 1 1 1 0

WM SC 147 27 42 3 4 4 1 1 0

WM SC 149 32 55 4 6 6 1 1 0

WM SC 151 33 62 3 6 6 1 1 0

WM SC 156 23 11 1 2 2 1 1 0

WM SC 161 36 54 4 5 5 1 1 0

WM SC 172 23 9 1 1 1 1 1 0

WM SC 173 23 9 1 1 1 1 1 0

WM SC 176 23 9 1 1 1 1 1 0

WM SC 178 33 46 3 4 4 2 2 0

WM SC 180 34 48 3 4 4 2 2 0

WM SC 185 28 20 2 2 2 1 1 0

WM SC 187 36 54 3 5 5 1 1 0

WM SC 189 156 522 27 60 54 20 20 4

WM SC 191 44 70 4 6 6 1 1 0

WM SC 193 161 542 28 62 56 20 20 7

WM SC 200 47 60 5 6 4 1 1 0

WM SC 202 56 94 7 9 7 1 1 0

WM SC 204 133 402 20 48 45 19 19 0

WM SC 206 135 406 20 48 45 19 19 1

WM SC 208 65 109 8 10 7 1 1 0

WM SC 210 140 424 21 50 47 19 19 3

WM SC 215 60 81 5 8 7 1 1 0

WM SC 217 153 443 24 52 47 17 17 3

WM SC 219 158 458 25 54 49 17 17 3

Fig. A.66: Detailed list of response variables for all points of interest (part 5 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

252 A. Evaluation Measures

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

WM SC 228 168 503 27 57 51 19 19 0

WM SC 230 175 514 28 58 52 19 19 0

WM SC 232 174 508 28 58 52 19 19 0

WM SC 234 175 519 27 59 53 19 19 0

WM SC 245 177 528 27 60 54 20 20 3

WM SC 247 78 112 8 12 10 1 1 0

WM SC 249 180 536 27 61 55 20 20 0

WM SC 254 67 62 5 6 5 1 1 0

WM SC 256 70 68 5 6 5 1 1 0

WM SC 258 69 63 5 6 5 1 1 0

WM SC 260 70 64 5 6 5 1 1 0

WM SC 265 70 62 5 6 5 1 1 0

WM SC 267 73 68 5 6 5 1 1 0

WM SC 269 72 63 5 6 5 1 1 0

WM SC 271 73 64 5 6 5 1 1 0

WM SC 278 78 81 5 8 7 1 1 0

WM SC 280 143 345 16 42 41 17 17 1

WM SC 282 144 348 16 42 41 17 17 3

WM SC 289 188 505 27 57 51 19 19 0

WM SC 291 195 522 28 59 53 19 19 0

WM SC 293 193 510 28 58 52 19 19 0

WM SC 295 191 507 27 57 51 19 19 0

WM SC 300 192 507 27 57 51 19 19 0

WM SC 302 199 521 29 59 53 19 19 0

WM SC 304 199 520 28 58 52 19 19 0

WM SC 306 198 514 28 58 52 19 19 0

WM SC 308 196 511 27 57 51 19 19 0

WM SC 316 85 53 4 5 5 1 1 0

WM SC 323 173 422 21 49 46 19 19 0

WM SC 330 94 83 6 8 7 1 1 0

WM SC 332 171 414 20 48 45 19 19 0

WM SC 354 128 198 14 20 15 1 1 0

WM SC 411 94 83 5 8 7 1 1 0

WM SC 428 83 36 2 4 4 1 1 0

WM SC 430 83 32 2 3 3 1 1 0

WM SC 431 77 13 1 1 1 1 1 0

WM SC 434 77 9 1 1 1 1 1 0

WM SC 436 87 42 3 4 4 2 2 0

WM SC 448 94 65 4 6 6 1 1 0

WM SC 450 96 76 4 7 7 2 2 1

WM SC 452 98 81 4 8 8 2 2 0

WM SC 459 92 51 3 5 5 1 1 0

WM SC 461 94 62 3 6 6 2 2 1

WM SC 463 96 67 3 7 7 2 2 0

WM SC 470 174 369 17 45 44 20 20 2

WM SC 472 95 45 3 4 4 1 1 0

WM SC 479 100 58 4 5 5 1 1 0

WM SC 481 104 76 4 7 7 2 2 1

WM SC 486 102 58 4 5 5 1 1 0

WM SC 488 104 69 4 6 6 2 2 1

WM SC 497 108 77 5 8 7 1 1 0

WM SC 499 179 376 17 45 44 20 20 4

WM SC 502 94 20 2 2 2 1 1 0

WM SC 508 120 109 7 10 9 1 1 0

WM SC 510 117 96 6 9 8 1 1 0

WM SC 515 101 36 3 4 3 1 1 0

96,217 183,696 10,207 20,489 18,707 6,554 6,554 0,413

Elevator Total 349 3668 32 159 144 32 1069 1212

Elevator SCD 21 289 2966 28 130 117 32 895 969

Elevator SCD 23 289 2966 28 130 117 32 895 969

Elevator SCD 25 289 2966 28 130 117 32 895 969

Elevator SCD 27 289 2966 28 130 117 32 895 969

Elevator SCD 32 294 3002 29 132 119 32 895 989

Fig. A.67: Detailed list of response variables for all points of interest (part 6 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

A.5. Points of Interest and Response Variables 253

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Elevator SCD 34 295 2994 29 132 119 32 895 979

Elevator SCD 36 296 2997 29 132 119 32 895 980

Elevator SCD 38 297 2999 29 132 119 32 895 980

Elevator SCD 40 298 3001 29 132 119 32 895 979

Elevator SCD 42 322 3341 29 144 131 32 1069 1051

Elevator SCD 47 314 3055 30 134 120 32 895 999

Elevator SCD 54 119 63 4 6 5 1 1 0

Elevator SCD 56 305 2988 28 130 117 32 895 969

Elevator SCD 58 305 2988 28 130 117 32 895 969

Elevator SCD 60 305 2988 28 130 117 32 895 969

Elevator SCD 62 305 2988 28 130 117 32 895 969

Elevator SCD 64 305 2988 28 130 117 32 895 969

Elevator SCD 66 317 3304 28 142 129 32 1069 1041

Elevator SCD 75 119 65 4 6 5 1 1 0

Elevator SCD 77 305 2988 28 130 117 32 895 969

Elevator SCD 79 305 2988 28 130 117 32 895 969

Elevator SCD 81 305 2988 28 130 117 32 895 969

Elevator SCD 83 305 2988 28 130 117 32 895 969

Elevator SCD 85 305 2988 28 130 117 32 895 969

Elevator SCD 87 317 3304 28 142 129 32 1069 1041

Elevator SCD 102 305 2988 28 130 117 32 895 969

Elevator SCD 104 305 2988 28 130 117 32 895 969

Elevator SCD 106 305 2988 28 130 117 32 895 969

Elevator SCD 108 305 2988 28 130 117 32 895 969

Elevator SCD 111 305 2988 28 130 117 32 895 969

Elevator SCD 113 305 2988 28 130 117 32 895 969

Elevator SCD 115 305 2988 28 130 117 32 895 969

Elevator SCD 117 305 2988 28 130 117 32 895 969

Elevator SCD 119 317 3304 28 142 129 32 1069 1041

Elevator SCD 124 305 2988 28 130 117 32 895 969

Elevator SCD 126 305 2988 28 130 117 32 895 969

Elevator SCD 128 305 2988 28 130 117 32 895 969

Elevator SCD 130 305 2988 28 130 117 32 895 969

Elevator SCD 133 305 2988 28 130 117 32 895 969

Elevator SCD 135 305 2988 28 130 117 32 895 969

Elevator SCD 137 305 2988 28 130 117 32 895 969

Elevator SCD 139 305 2988 28 130 117 32 895 969

Elevator SCD 141 317 3304 28 142 129 32 1069 1041

Elevator SCD 146 305 2988 28 130 117 32 895 969

Elevator SCD 148 305 2988 28 130 117 32 895 969

Elevator SCD 150 305 2988 28 130 117 32 895 969

Elevator SCD 152 305 2988 28 130 117 32 895 969

Elevator SCD 154 305 2988 28 130 117 32 895 969

Elevator SCD 156 305 2988 28 130 117 32 895 969

Elevator SCD 158 305 2988 28 130 117 32 895 969

Elevator SCD 160 305 2988 28 130 117 32 895 969

Elevator SCD 162 317 3304 28 142 129 32 1069 1041

Elevator SCD 167 305 2988 28 130 117 32 895 969

Elevator SCD 169 305 2988 28 130 117 32 895 969

Elevator SCD 171 305 2988 28 130 117 32 895 969

Elevator SCD 173 305 2988 28 130 117 32 895 969

Elevator SCD 175 305 2988 28 130 117 32 895 969

Elevator SCD 177 305 2988 28 130 117 32 895 969

Elevator SCD 179 305 2988 28 130 117 32 895 969

Elevator SCD 181 305 2988 28 130 117 32 895 969

Elevator SCD 183 317 3304 28 142 129 32 1069 1041

Elevator SCD 188 305 2988 28 130 117 32 895 969

Elevator SCD 190 305 2988 28 130 117 32 895 969

Elevator SCD 192 305 2988 28 130 117 32 895 969

Elevator SCD 194 305 2988 28 130 117 32 895 969

Elevator SCD 196 305 2988 28 130 117 32 895 969

Elevator SCD 198 305 2988 28 130 117 32 895 969

Elevator SCD 200 305 2988 28 130 117 32 895 969

Elevator SCD 202 305 2988 28 130 117 32 895 969

Fig. A.68: Detailed list of response variables for all points of interest (part 7 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

254 A. Evaluation Measures

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Elevator SCD 204 305 2988 28 130 117 32 895 969

Elevator SCD 206 305 2988 28 130 117 32 895 969

Elevator SCD 208 317 3304 28 142 129 32 1069 1041

Elevator SCD 213 305 2988 28 130 117 32 895 969

Elevator SCD 215 305 2988 28 130 117 32 895 969

Elevator SCD 217 305 2988 28 130 117 32 895 969

Elevator SCD 219 305 2988 28 130 117 32 895 969

Elevator SCD 221 305 2988 28 130 117 32 895 969

Elevator SCD 223 305 2988 28 130 117 32 895 969

Elevator SCD 225 305 2988 28 130 117 32 895 969

Elevator SCD 227 305 2988 28 130 117 32 895 969

Elevator SCD 229 305 2988 28 130 117 32 895 969

Elevator SCD 231 317 3304 28 142 129 32 1069 1041

Elevator SCD 266 305 2988 28 130 117 32 895 969

Elevator SCD 268 305 2988 28 130 117 32 895 969

Elevator SCD 270 305 2988 28 130 117 32 895 969

Elevator SCD 272 305 2988 28 130 117 32 895 969

Elevator SCD 274 305 2988 28 130 117 32 895 969

Elevator SCD 276 308 3012 28 133 120 32 904 969

Elevator SCD 281 305 2988 28 130 117 32 895 969

Elevator SCD 283 305 2988 28 130 117 32 895 969

Elevator SCD 285 305 2988 28 130 117 32 895 969

Elevator SCD 287 305 2988 28 130 117 32 895 969

Elevator SCD 289 305 2988 28 130 117 32 895 969

Elevator SCD 291 305 2988 28 130 117 32 895 969

Elevator SCD 293 308 3012 28 133 120 32 904 969

Elevator SCD 300 131 104 7 10 5 1 1 0

Elevator SCD 304 128 93 6 9 5 1 1 0

Elevator SCD 310 128 95 6 9 5 1 1 0

Elevator SCD 325 122 73 4 7 5 1 1 0

Elevator SCD 335 116 50 2 5 4 1 1 0

Elevator SCD 342 120 58 3 6 5 1 1 0

Elevator SCD 344 117 50 2 5 4 1 1 0

Mean 289,059 2759,765 25,980 120,422 108,363 29,265 831,647 890,853

Elevator SD 21 197 1237 26 87 76 2 42 468

Elevator SD 23 162 615 26 51 40 2 11 100

Elevator SD 25 176 836 26 64 53 2 21 229

Elevator SD 27 177 838 26 64 53 2 21 229

Elevator SD 32 203 1209 27 87 76 1 1 468

Elevator SD 34 166 616 26 51 40 1 1 100

Elevator SD 36 182 829 27 64 53 1 1 229

Elevator SD 38 183 831 27 64 53 1 1 229

Elevator SD 40 181 590 27 50 39 1 1 46

Elevator SD 42 193 646 27 50 39 1 1 82

Elevator SD 47 223 1072 28 78 66 1 1 338

Elevator SD 54 89 63 4 6 5 1 1 0

Elevator SD 56 226 1219 26 85 74 1 1 448

Elevator SD 58 188 634 25 49 38 1 1 90

Elevator SD 60 203 844 26 62 51 1 1 218

Elevator SD 62 203 844 26 62 51 1 1 218

Elevator SD 64 189 579 26 48 37 1 1 36

Elevator SD 66 189 611 26 48 37 1 1 72

Elevator SD 75 90 65 4 6 5 1 1 0

Elevator SD 77 227 1221 26 85 74 1 1 448

Elevator SD 79 204 846 26 62 51 1 1 218

Elevator SD 81 204 846 26 62 51 1 1 218

Elevator SD 83 189 636 25 49 38 1 1 90

Elevator SD 85 190 581 26 48 37 1 1 36

Elevator SD 87 190 613 26 48 37 1 1 72

Elevator SD 102 191 604 26 49 38 2 7 46

Elevator SD 104 218 1057 26 75 64 2 19 329

Elevator SD 106 231 1295 26 86 75 2 26 483

Elevator SD 108 106 128 8 10 5 1 1 0

Fig. A.69: Detailed list of response variables for all points of interest (part 8 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

A.5. Points of Interest and Response Variables 255

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Elevator SD 111 192 642 25 49 38 1 1 90

Elevator SD 113 207 852 26 62 51 1 1 218

Elevator SD 115 207 852 26 62 51 1 1 218

Elevator SD 117 109 135 9 11 6 1 1 0

Elevator SD 119 193 619 26 48 37 1 1 72

Elevator SD 124 194 610 26 49 38 2 7 46

Elevator SD 126 221 1063 26 75 64 2 19 329

Elevator SD 128 234 1300 26 86 75 2 26 482

Elevator SD 130 109 128 8 10 5 1 1 0

Elevator SD 133 195 648 25 49 38 1 1 90

Elevator SD 135 210 858 26 62 51 1 1 218

Elevator SD 137 210 858 26 62 51 1 1 218

Elevator SD 139 112 135 9 11 6 1 1 0

Elevator SD 141 196 625 26 48 37 1 1 72

Elevator SD 146 197 616 26 49 38 2 7 46

Elevator SD 148 235 1303 26 86 75 2 26 483

Elevator SD 150 226 1073 26 75 64 2 19 329

Elevator SD 152 226 1056 26 75 64 1 1 329

Elevator SD 154 198 654 25 49 38 1 1 90

Elevator SD 156 213 864 26 62 51 1 1 218

Elevator SD 158 213 864 26 62 51 1 1 218

Elevator SD 160 112 126 8 10 6 1 1 0

Elevator SD 162 199 631 26 48 37 1 1 72

Elevator SD 167 200 622 26 49 38 2 7 46

Elevator SD 169 238 1308 26 86 75 2 26 482

Elevator SD 171 229 1079 26 75 64 2 19 329

Elevator SD 173 229 1062 26 75 64 1 1 329

Elevator SD 175 201 660 25 49 38 1 1 90

Elevator SD 177 216 870 26 62 51 1 1 218

Elevator SD 179 216 870 26 62 51 1 1 218

Elevator SD 181 112 115 7 9 6 1 1 0

Elevator SD 183 202 637 26 48 37 1 1 72

Elevator SD 188 203 628 26 49 38 2 7 46

Elevator SD 190 218 901 26 63 52 2 13 229

Elevator SD 192 242 1310 26 86 75 2 26 477

Elevator SD 194 233 1087 26 75 64 2 19 329

Elevator SD 196 221 896 26 63 52 1 1 229

Elevator SD 198 205 668 25 49 38 1 1 90

Elevator SD 200 220 878 26 62 51 1 1 218

Elevator SD 202 110 101 5 7 5 1 1 0

Elevator SD 204 220 878 26 62 51 1 1 218

Elevator SD 206 113 108 6 8 6 1 1 0

Elevator SD 208 206 645 26 48 37 1 1 72

Elevator SD 213 207 636 26 49 38 2 7 46

Elevator SD 215 222 909 26 63 52 2 13 229

Elevator SD 217 246 1317 26 86 75 2 26 476

Elevator SD 219 237 1095 26 75 64 2 19 329

Elevator SD 221 225 904 26 63 52 1 1 229

Elevator SD 223 209 676 25 49 38 1 1 90

Elevator SD 225 224 886 26 62 51 1 1 218

Elevator SD 227 224 886 26 62 51 1 1 218

Elevator SD 229 114 95 5 7 6 1 1 0

Elevator SD 231 210 653 26 48 37 1 1 72

Elevator SD 266 247 1261 26 85 74 1 1 448

Elevator SD 268 209 676 25 49 38 1 1 90

Elevator SD 270 224 886 26 62 51 1 1 218

Elevator SD 272 224 886 26 62 51 1 1 218

Elevator SD 274 210 621 26 48 37 1 1 36

Elevator SD 276 121 120 6 10 8 1 1 0

Elevator SD 281 238 1095 26 75 64 2 7 338

Elevator SD 283 248 1263 26 85 74 1 1 448

Elevator SD 285 210 678 25 49 38 1 1 90

Elevator SD 287 225 888 26 62 51 1 1 218

Elevator SD 289 225 888 26 62 51 1 1 218

Fig. A.70: Detailed list of response variables for all points of interest (part 9 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

256 A. Evaluation Measures

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Elevator SD 291 211 623 26 48 37 1 1 36

Elevator SD 293 131 149 9 13 8 1 1 0

Elevator SD 300 124 98 7 10 5 1 1 0

Elevator SD 304 122 89 6 9 5 1 1 0

Elevator SD 310 125 93 6 9 5 1 1 0

Elevator SD 325 122 73 4 7 5 1 1 0

Elevator SD 335 116 50 2 5 4 1 1 0

Elevator SD 342 120 58 3 6 5 1 1 0

Elevator SD 344 117 50 2 5 4 1 1 0

Mean 191,167 710,216 22,029 51,588 42,157 1,245 5,069 169,951

Elevator SC 21 8 20 2 3 3 1 1 0

Elevator SC 23 10 24 2 3 3 1 1 0

Elevator SC 25 12 28 2 3 3 1 1 0

Elevator SC 27 14 32 2 3 3 1 1 0

Elevator SC 32 15 37 2 3 3 1 1 0

Elevator SC 34 16 39 2 3 3 1 1 0

Elevator SC 36 17 41 2 3 3 1 1 0

Elevator SC 38 18 43 2 3 3 1 1 0

Elevator SC 40 23 54 3 4 4 1 1 0

Elevator SC 42 25 58 3 4 4 1 1 0

Elevator SC 47 36 102 4 10 9 1 1 0

Elevator SC 54 29 47 4 6 5 1 1 0

Elevator SC 56 51 154 6 19 18 7 7 1

Elevator SC 58 52 157 6 19 18 7 7 1

Elevator SC 60 53 158 6 19 18 7 7 1

Elevator SC 62 54 160 6 19 18 7 7 1

Elevator SC 64 57 169 6 21 20 7 7 0

Elevator SC 66 58 171 6 21 20 7 7 0

Elevator SC 75 37 49 4 6 5 1 1 0

Elevator SC 77 58 168 6 19 18 7 7 1

Elevator SC 79 62 185 6 21 20 7 7 2

Elevator SC 81 63 187 6 21 20 7 7 2

Elevator SC 83 62 176 6 19 18 7 7 1

Elevator SC 85 65 185 6 21 20 7 7 0

Elevator SC 87 66 187 6 21 20 7 7 0

Elevator SC 102 61 111 9 11 6 1 1 0

Elevator SC 104 60 111 8 11 6 1 1 0

Elevator SC 106 62 118 8 12 7 1 1 0

Elevator SC 108 135 451 14 50 45 25 25 7

Elevator SC 111 135 459 14 50 45 25 25 14

Elevator SC 113 136 454 14 50 45 25 25 8

Elevator SC 115 137 461 14 50 45 25 25 12

Elevator SC 117 138 457 14 50 45 25 25 6

Elevator SC 119 141 460 14 52 47 25 25 0

Elevator SC 124 85 125 9 11 6 1 1 0

Elevator SC 126 83 123 8 11 6 1 1 0

Elevator SC 128 84 128 8 12 7 1 1 0

Elevator SC 130 140 461 14 50 45 25 25 7

Elevator SC 133 140 469 14 50 45 25 25 14

Elevator SC 135 141 469 14 50 45 25 25 12

Elevator SC 137 142 466 14 50 45 25 25 8

Elevator SC 139 143 467 14 50 45 25 25 6

Elevator SC 141 146 470 14 52 47 25 25 0

Elevator SC 146 87 114 8 10 6 1 1 0

Elevator SC 148 86 117 7 11 7 1 1 0

Elevator SC 150 85 112 7 10 6 1 1 0

Elevator SC 152 145 473 14 50 45 25 25 7

Elevator SC 154 146 481 14 50 45 25 25 14

Elevator SC 156 147 476 14 50 45 25 25 8

Elevator SC 158 148 483 14 50 45 25 25 12

Elevator SC 160 149 479 14 50 45 25 25 6

Elevator SC 162 152 482 14 52 47 25 25 0

Elevator SC 167 90 103 7 9 6 1 1 0

Fig. A.71: Detailed list of response variables for all points of interest (part 10 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

A.5. Points of Interest and Response Variables 257

Spec. Deps. V-ID V A S/E P CC v'(l) v'(u) DU

Elevator SC 169 89 106 6 10 7 1 1 0

Elevator SC 171 88 101 6 9 6 1 1 0

Elevator SC 173 151 485 14 50 45 25 25 7

Elevator SC 175 152 493 14 50 45 25 25 14

Elevator SC 177 153 493 14 50 45 25 25 12

Elevator SC 179 154 490 14 50 45 25 25 8

Elevator SC 181 155 491 14 50 45 25 25 6

Elevator SC 183 158 494 14 52 47 25 25 0

Elevator SC 188 93 94 6 8 6 1 1 0

Elevator SC 190 90 87 5 7 5 1 1 0

Elevator SC 192 91 92 5 8 6 1 1 0

Elevator SC 194 91 92 5 8 6 1 1 0

Elevator SC 196 157 496 14 50 45 25 25 7

Elevator SC 198 158 501 14 50 45 25 25 11

Elevator SC 200 159 500 14 50 45 25 25 8

Elevator SC 202 160 501 14 50 45 25 25 7

Elevator SC 204 161 504 14 50 45 25 25 8

Elevator SC 206 162 505 14 50 45 25 25 6

Elevator SC 208 165 508 14 52 47 25 25 0

Elevator SC 213 97 83 5 7 6 1 1 0

Elevator SC 215 94 76 4 6 5 1 1 0

Elevator SC 217 95 81 4 7 6 1 1 0

Elevator SC 219 95 81 4 7 6 1 1 0

Elevator SC 221 164 510 14 50 45 25 25 7

Elevator SC 223 165 515 14 50 45 25 25 11

Elevator SC 225 166 514 14 50 45 25 25 8

Elevator SC 227 167 521 14 50 45 25 25 12

Elevator SC 229 168 517 14 50 45 25 25 6

Elevator SC 231 171 520 14 52 47 25 25 0

Elevator SC 266 159 276 14 31 24 10 10 1

Elevator SC 268 160 279 14 31 24 10 10 2

Elevator SC 270 161 281 14 31 24 10 10 2

Elevator SC 272 162 283 14 31 24 10 10 2

Elevator SC 274 165 291 14 33 26 10 10 0

Elevator SC 276 166 294 14 33 26 10 10 0

Elevator SC 281 132 148 8 14 9 1 1 0

Elevator SC 283 160 261 13 29 22 10 10 1

Elevator SC 285 161 264 13 29 22 10 10 2

Elevator SC 287 162 266 13 29 22 10 10 2

Elevator SC 289 163 268 13 29 22 10 10 2

Elevator SC 291 166 276 13 31 24 10 10 0

Elevator SC 293 167 279 13 31 24 10 10 0

Elevator SC 300 131 104 7 10 5 1 1 0

Elevator SC 304 128 93 6 9 5 1 1 0

Elevator SC 310 128 95 6 9 5 1 1 0

Elevator SC 325 122 73 4 7 5 1 1 0

Elevator SC 335 116 50 2 5 4 1 1 0

Elevator SC 342 120 58 3 6 5 1 1 0

Elevator SC 344 117 50 2 5 4 1 1 0

110,000 261,284 9,343 27,196 23,569 11,471 11,471 2,971

Fig. A.72: Detailed list of response variables for all points of interest (part 11 of 11). The
figure provides the specification name, the abstraction criterion, the unique
vertex ID and the full list of ASRN and specification measures.

258 A. Evaluation Measures

B. FURTHER READINGS

B.1 Complexity of Specifications

• Introduction to Formal Methods. There are several books introducing formal
methods. One can gain a good overview of different formal notations in Ala-
gar’s and Periyasamy’s book (Specification of Software Systems) [AP98]. The
book covers logic and algebraic specifications as well as Z, VDM and Larch. A
good motivation for using formal methods can be found in Jonathan Jacky’s
book (The Way of Z) [Jac96] - nevertheless, one of the best books introducing
Z is that of Anthony Diller (Z – An Introduction to Formal Methods) [Dil99]
and an article from Spivey (An introduction to Z and formal specifications)
[Spi89a]. More insight into refinement and proof can be found in Jim Wook-
cock’s and Jim Davis’ book (Using Z) [WD96] and in the book of Cliff Jones
(Systematic Software Development using VDM) [Jon90]. The Formal Methods
Group in Europe (FME) provides a home-page1 with a list of several books
and articles – a starting point for the interested reader might be the technical
report of Edmund Clarke and Jeannette Wing [CW96].

• Arguments for using Formal Methods. All the books mentioned above provide
some kind of motivation chapters. There is much data about the quoted CDIS
project, and an article of Pfleeger and Hatton [PH97] summarizes the lessons
learned during that project. Once again, there are many articles that are cited
on the FME home-page. One notable article from Hamilton, Covington and
Kelly [HCK+95] summarizes trial projects conducted together with the NASA.

• Controversy. Probably the most-widely known article dealing with controver-
sial aspects of formal methods is that of Anthony Hall (Seven Myths of Formal
Methods) [Hal90]. His arguments are extended by Bowen and Hinchey in 1995
(Seven More Myths of Formal Methods) [BH95] - especially the lack of suitable
tools and missing connections to other representational forms are elaborated.
A thorough collection of articles dealing with the question whether and when
formal methods pay-off can be found in the April 1996 edition of IEEE Com-
puter [HDR+96]. Anthony Hall, David Dill, Michael Holloway, Ricky Butler

1 http://www.fmeurope.org (last visited: September 2003)

260 B. Further Readings

and Pamela Zave provide an insight (and lessons learned) into the use of formal
methods in projects conducted at Praxis, SRI International, NASA Langley
Research Center and AT&T.

• Quality and complexity. A sound introduction to the field of software met-
rics can be found in the Software Engineering Institute Curriculum Module
SEI-CM-12-1.1 [Mil88]. It summarizes different product metrics for size and
complexity and also discusses process metrics. It furthermore provides a richly
annotated list of relevant bibliography. A more philosophical view on the mea-
sure of complexity can be found in the PhD thesis of Bruce Edmonds [Edm99].
As there are different formulations of complexity across different fields of study,
this imprecision is sorted out and a theoretical framework for the formaliza-
tions of complexity is provided. A more recent status report on Software
Measurement (and a more controversial view) can be found in the article of
Pfleeger, Jeffery, Curtis and Kitchenham in the March/April 1997 edition of
IEEE Software [PJCK97].

B.2 Specification Abstractions

• State-of-the-Art. In general specification languages are not executable. This
means that there are no compilers, linkers or tools which one would expect
from programming languages. However, approaches have been developed in
order to animate and execute at least subsets of specifications. Diller [Dil99,
p.271ff] describes how to convert Z specifications to Miranda, a functional
programming language designed by David Turner [Tur86]. Diller describes
the steps necessary to transform a Z specification to a Miranda animation by
writing a simple interactive program. The VDM toolkit environment provides
a wide range of tools for animation and automatic transformation to another
programming language (C++ or Java) [LL91, FL96]. A compact overview can
be found in the technical paper of Hazel, Strooper and Traynor [HST98].

• Components of Specifications. There are not many articles dealing with the
identification of components of specifications. The article of Chang and Richard-
son [CR94] presents an approach for the identification of static and dynamic
specification slices. However, a dynamic slice is nothing else than an static slice
which is applied after eliminating specific operation schemata (those which are
not needed during the “execution” of the specification). Modules are identified
in the paper of Carrington et.al [CDHW93] by looking both at a cross-reference
table and at the use of state variables in different operation schemata. Up to
now there are no clustering algorithms for specification. However, a thorough
introduction to clustering can be found in the paper of Wiggerts [Wig97]. He

B.3. Specification’s Complexity 261

defines similarity measures between abstract entities and provides four clus-
tering algorithms.

B.3 Specification’s Complexity

• Measuring Complexity. There are quite a lot of articles which are concerned
with various types of measures. A rigorous and practical approach is described
in the book of Fenton and Pfleeger [FP97]. Jones discusses the unit-of-measure
situation in his 1978 article [Jon78] which is based on the LOC approach. He
explains how to examine program quality and presents rules of the thumb
for cost and effort estimation. An excellent article of McCabe and Butler
[McC89] introduces McCabes metrics for programs and for design documents
based on flow-graphs. There is an excellent article published at the SEI in 1988
by Everald E. Mills [Mil88]. He introduces software metrics and provides an
annotated list of over 70 references to the most important articles. The topic of
cohesion is thoroughly introduced by Arun Lakhotia [Lak97]. He provides an
introduction to the topic of cohesion, presents some case studies and compares
the result to other approaches to be found in literature.

262 B. Further Readings

C. SPECIFICATIONS IN USE

C.1 Birthday Book

The birthday book specification [Spi89b] is used in this work extensively. In the
subsequent section the Z specification of the birthday book and the transformation
to the eSRN are presented. The transformation rules are presented in Chap. 5.3.3.

C.1.1 Birthday Book Specification

The birthday book (BB for short) describes a simple system for administrating
names and birthday dates.

First names and dates are introduced as global sets. In order to indicate the
success or failure of an operation, a global type Success is introduced.

[NAME ,DATE]
REPORT ::= OK | NOK

The state space consists of the set of all known names, and the “database”
entries for the birthday dates. The predicate ensures that only known names are in
the database.

BB
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

At the beginning the database is empty.

InitBB
BB

known = ∅

264 C. Specifications in Use

There are several operations for working with the database. It is possible to Add
a pair (name, date) to the database, and it is possible to Delete an entry from the
database.

Add
∆BB
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

Delete
∆BB
name? : NAME

name? ∈ known
birthday ′ = birthday \ {name? 7→ birthday(name?)}

To indicate the success of an operation the result OK is returned.

Success
result ! : REPORT

result ! = OK

With the above operation schemata the functioning system consists of success-
fully performed add or delete operations.

FunctioningDB ==
(Add ∧ Success) ∨ (Delete ∧ Success)

C.1.2 Birthday Book eSRN Transformation

The following two figures demonstrate the mapping between specification primes
and vertices in the eSRN representation.

C.1. Birthday Book 265

Fig. C.1: Transformation of the first part of the birthday book specification to the eSRN.
Prime and structural vertices are labelled by rounded boxes to ease mapping
between the specification source and the net.

266 C. Specifications in Use

Fig. C.2: Transformation of the second part of the birthday book specification to an eSRN.
Prime and structural vertices are labelled by rounded boxes to ease mapping
between the specification source and the net.

C.2. Petrol Station 267

C.2 Petrol Station

This specification is a simple solution to the petrol station problem. It is a small
system to be written by students during the practical classes of a lecture called
“Specification and Verification” at the University of Klagenfurt.

The system consists of several pump stations (GS) and vehicles (VH).

[GS ,VH]

The state space consists of a set of pump stations. Every pump station has its
own queue of vehicles and an operating position.

PetrolStation
petrol : PGS
waiting : GS 7½ seqVH
operation : GS 7½ VH

domwaiting ⊆ petrol
dom operation ⊆ petrol

∀ z1, z2 : GS | z1 ∈ petrol ∧ z2 ∈ petrol ∧ z1 6= z2 •
ran(waiting z1) ∩ ran(waiting z2) = 〈 〉 ∧
operation z1 6= operation z2

∀ fz : VH ; z : GS | z ∈ petrol ∧ fz ∈ ran operation •
fz 6∈ ran(waiting z)

At the beginning there are no pump stations; thus, no vehicles are waiting for
refuelling. (Please note that operations for adding pump stations to the petrol
station are missing. For the scope of the practical class these operations have been
neglected.)

InitPetrolStation
PetrolStation

petrol = ∅
waiting = ∅
operation = ∅

268 C. Specifications in Use

It is possible that there is no vehicle in the queue; thus, one can arrive and start
refuelling.

ArrivalAndRefuel
∆PetrolStation
fz? : VH
z? : GS

z? ∈ petrol
z? 6∈ dom operation
fz? 6∈ ran operation

∀GS : GS | GS ∈ petrol • fz? 6∈ ran(waiting GS)

operation ′ = operation ⊕ {z? 7→ fz?}
waiting ′ = waiting
petrol ′ = petrol

On the other hand if there are vehicles in the queue, one has to wait.

ArriveAndWait
∆Tankstelle
fz? : VH
z? : GS

z? ∈ petrol
#(ran operation) = #petrol
fz? 6∈ ran operation

∀GS : GS | GS ∈ petrol • fz? 6∈ ran(waiting GS)

operation ′ = operation

waiting ′ = waiting ⊕ {z? 7→ (waiting z?) a 〈fz?〉}
petrol ′ = petrol

There are two possibilities when arriving: the queue is either empty and there is
no need for waiting or there are vehicles in the queue, and one has to wait.

Arrival =̂ ArriveAndFuel ∨ ArriveAndWait

C.2. Petrol Station 269

After refuelling the vehicle should leave the petrol station. If there is another
vehicle in the queue it can move up. Otherwise the vehicle leaves the petrol station
and the queue stays empty.

LeaveEmptyQueue
∆PetrolStation
fz? : VH
z : GS

∃1 z : GS | operation z = fz? ∧ waiting z = 〈 〉 •
operation ′ = operation \ {z 7→ fz?} ∧
waiting ′ = waiting ∧
petrol ′ = petrol

LeaveNonEmptyQueue
∆PetrolStation
fz? : VH
z : GS

∃1 z : GS | operation z = fz? ∧ waiting z 6= 〈 〉 •
operation ′ = operation ⊕ {z 7→ head(waiting z)} ∧
waiting ′ = waiting ⊕ {z 7→ tail(waiting z)} ∧
petrol ′ = petrol

It is also possible that a vehicle leaves the petrol station without refuelling.

LeaveWithoutFuel
∆PetrolStation
fz? : VH

∃ z : GS ; i : Z | z ∈ petrol ∧ (i 7→ fz?) ∈ waiting z •
waiting ′ = waiting ⊕ {z 7→ squash((waiting z) \ {i 7→ fz?}) } ∧
operation ′ = operation ∧
petrol ′ = petrol

Leave =̂
LeaveEmptyQueue ∨ LeaveNonEmptyQueue ∨ LeaveWithoutFuel

PetrolStation =̂ InitPetrolStation ∧ (Arrive ∨ Leave)

270 C. Specifications in Use

C.3 Elevator Specification

The Elevator specification [CR94] describes a simple system consisting of one ele-
vator. The elevator reacts to button presses corresponding to calls for the elevator.
The call for the elevator is made on a floor. Additionally a request to stop at a
specific floor can be made inside the elevator.

There are 10 floors in the system. The Elevator can move up or down and its
door can be open or closed.

MaxFloor == 10
Direction ::= up | down
DoorState ::= open | closed

The state space consists of the current floor, a set of pending requests, pending
up- and down-calls, the current state of the movement and the door.

Elevator
CurrentFloor : N1

Requests : PN1

UpCalls : PN1

DownCalls : PN1

Dir : Direction
Door : DoorState

CurrentFloor ≤ MaxFloor
max Requests ≤ MaxFloor
max UpCalls ≤ MaxFloor
max DownCalls ≤ MaxFloor

Initially, the elevator is at the first floor, and the door is open. There are no
pending requests and calls.

InitElevator
Elevator

CurrentFloor = 1
Requests = ∅
UpCalls = ∅
DownCalls = ∅
Dir = up
Door = open

C.3. Elevator Specification 271

There are two passenger events that are to be handled. Firstly, a passen-
ger might request to stop the elevator at a specific floor from inside the elevator
(ElevatorButtonEvent). Secondly, a passenger calls for the elevator (FloorButtonEvent).

ElevatorButtonEvent
∆Elevator
Floor? : N1

Floor? ≤ MaxFloor
CurrentFloor ′ = CurrentFloor
Requests ′ = Requests ∪ {Floor?}
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls
Dir ′ = Dir
Door ′ = Door

FloorButtonEvent
∆Elevator
Floor? : N1

CallDir? : Direction

Floor? ≤ MaxFloor
CurrentFloor ′ = CurrentFloor
(CallDir? = down) ⇒ (UpCalls ′ = UpCalls) ∧

(DownCalls ′ = DownCalls ∪ {Floor?})
(CallDir? = up) ⇒ (DownCalls ′ = DownCalls) ∧

(UpCalls ′ = UpCalls ∪ {Floor?})
Requests ′ = Requests
Dir ′ = Dir
Door ′ = Door

PassengerEvent == ElevatorButtonEvent
∨ FloorButtonEvent

272 C. Specifications in Use

The movement of the elevator is complex. An elevator might move up or down
(BasicMoveUp or BasicMoveDown) when it is servicing requests or calls.

BasicMoveUp
∆Elevator

Dir = up
Requests ∪ UpCalls 6= ∅
CurrentFloor ≤ max (Requests ∪ UpCalls)
CurrentFloor ′ = min {x : N1 | x ∈

(Requests ∪ UpCalls)
∧ x > CurrentFloor}

Requests ′ = Requests \ {CurrentFloor ′}
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls \ {CurrentFloor ′}
Dir ′ = up
Door ′ = Door

BasicMoveDown
∆Elevator

Dir = down
Requests ∪ DownCalls 6= ∅
CurrentFloor ≤ min (Requests ∪ DownCalls)
CurrentFloor ′ = max {x : N1 | x ∈

(Requests ∪ DownCalls)
∧ x < CurrentFloor}

Requests ′ = Requests \ {CurrentFloor ′}
UpCalls ′ = UpCalls \ {CurrentFloor ′}
DownCalls ′ = DownCalls
Dir ′ = down
Door ′ = Door

C.3. Elevator Specification 273

However, when all up-calls and requests above the current floor have been ser-
viced and there are still pending calls and requests, the elevator has to start moving
downwards (ChangeUpToDown). When all down-calls and requests below the cur-
rent floor have been serviced and there are still pending calls and requests, the
elevator has to start moving up (ChangeDownToUp).

ChangeUpToDown
∆Elevator

Dir = up
(Requests ∪ UpCalls 6= ∅ ∧
CurrentFloor > max (Requests ∪ UpCalls)) ∨
Requests ∪ UpCalls = ∅
Requests ∪ DownCalls 6= ∅
CurrentFloor ′ = max (Requests ∪ DownCalls)
Requests ′ = Requests \ {CurrentFloor ′}
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls \ {CurrentFloor ′}
Dir ′ = down
Door ′ = Door

ChangeDownToUp
∆Elevator

Dir = down
(Requests ∪ DownCalls 6= ∅ ∧
CurrentFloor <

min (Requests ∪ DownCalls)) ∨
Requests ∪ DownCalls = ∅
Requests ∪ UpCalls 6= ∅
CurrentFloor ′ = min (Requests ∪ UpCalls)
Requests ′ = Requests \ {CurrentFloor ′}
UpCalls ′ = UpCalls \ {CurrentFloor ′}
DownCalls ′ = DownCalls
Dir ′ = up
Door ′ = Door

274 C. Specifications in Use

When all requests and calls have been serviced the elevator checks if there are
new calls. If there are up-calls then it restarts moving upward (RestartMovingUp).
If there are down-calls then it restarts moving down (RestartMovingDown).

RestartMovingUp
∆Elevator

Dir = up
UpCalls 6= ∅
CurrentFloor > max UpCalls
DownCalls ∪ Requests = ∅
CurrentFloor ′ = min UpCalls
Requests ′ = Requests
UpCalls ′ = UpCalls \ {CurrentFloor ′}
DownCalls ′ = DownCalls
Dir ′ = up
Door ′ = Door

RestartMovingDown
∆Elevator

Dir = down
DownCalls 6= ∅
CurrentFloor < min DownCalls
UpCalls ∪ Requests = ∅
CurrentFloor ′ = max DownCalls
Requests ′ = Requests
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls \ {CurrentFloor ′}
Dir ′ = down
Door ′ = Door

Move == BasicMoveUp ∨ BasicMoveDown ∨ ChangeUpToDown
∨ ChangeDownToUp ∨ RestartMovingUp
∨ RestartMovingDown

C.3. Elevator Specification 275

The state of the door is important, too. It can be opened, and in case of an
request or call, it is closed.

OpenDoor
∆Elevator

CurrentFloor ′ = CurrentFloor
Requests ′ = Requests
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls
Dir ′ = Dir
Door ′ = open

CloseDoor
∆Elevator

Requests ∪ DownCalls ∪ UpCalls 6= ∅
CurrentFloor ′ = CurrentFloor
Requests ′ = Requests
UpCalls ′ = UpCalls
DownCalls ′ = DownCalls
Dir ′ = Dir
Door ′ = closed

When there are no requests the elevator stays at the current floor.

NoRequestsOrCalls
ΞElevator

Requests ∪ UpCalls ∪ DownCalls = ∅

The elevator repeatedly closes the door, moves, and opens the door. Between
two events it may receive passenger events.

MoveCycle == (CloseDoor o
9 PassengerEvent o

9 Move o
9 (PassengerEvent)o

9

OpenDoor o
9 PassengerEvent)∗

ElevatorCycle == (MoveCycle ∨ NoRequestsOrCalls)∗

FunctioningElevator == (PassengerEvent o
9 ElevatorCycle)∗

276 C. Specifications in Use

C.4 ITC Window Manager

The “ITC Window Manager”-specification describes one part of the “Andrew” dis-
tributed system which is a window manager developed at the Information Technol-
ogy Center (ITC) at Carnegie-Mellon University (CMU). In the following there is
a shortened description of the specification. It follows the description provided in
[Bow96, p.169ff].

The display is made up of a set of pixels with positions defined in XY coordinate
space. The display is a fixed size bounded rectangle in the XY plane.

Xsize : N1

Ysize : N1

Xrange == 0 . . . (Xsize − 1)

Yrange == 0 . . . (Ysize − 1)

Pixel == (Xrange × Yrange)

Many operations are applied to pairs of pixels.

PixelPair
pix1 : Pixel
pix2 : Pixel
x1 : Xrange
x2 : Xrange
y1 : Yrange
y2 : Yrange

pix1 = (x1, y1)
pix2 = (x2, y2)

A display contains a number of bit-planes. This may be considered as the Z
direction of the display.

Zsize : N1

There is one of two values (cleared or set) for each bit in a bit-plane.

ClearVal == 0

C.4. ITC Window Manager 277

SetVal == 1

BitVal == {ClearVal , SetVal}

The value of a pixel at a particular position is modelled as a function from a
bit-plane number to a bit value.

Zrange == 0 . . . (Zsize − 1)

Value == (Zrange → BitVal)

If all the bits are clear the “Value” is considered “Black”. If all the bits are set
it is considered “White”.

Black == (µ val : Value | ran val = {ClearVal})

White == (µ val : Value | ran val = {SetVal})

A pixel map consists of a (partial) function from pixel positions to the value of
the pixel contents. This is used to describe part of a display, such as a window.

Pixmap == (Pixel 7→ Value)

In order to set all the range of a pixel map to a particular value, a function to
set the range of a relation to a particular value is provided.

setval : V → P 7→ V → P 7→ V

∀ v : V ; p : (P 7→ V) • setval v p =
(µm : P 7→ V | (domm = dom p ∧ ranm = {v}))

A window might contain text fields. This text, which can also be empty, is
denoted as “String”.

[String]

Each window has a number of pieces of information associated with it. A header
area is used for titles and other information, a separate body area holds the actual
contents of the window. These do not overlap and together they make up the pixel
map of the displayed window.

278 C. Specifications in Use

Map
header : Pixmap
body : Pixmap
map : Pixmap
area : PPixel

〈header , body〉 partitionmap
area = dommap

The user can request a window to lie within a specified range of dimensions and
can also explicitly ask for a window body to be hidden from view or exposed on the
screen. Each window has a title which can be set by the user. This information is
used by the window manager to lay out the window on the screen.

HideExpose ::= Hide | Expose

Control
title : String
control : HideExpose
xylimits : Pixel × Pixel

(first xylimits) ≤ (second xylimits)

Map and Control make up the description of the particular window.

Info == Map ∧ Control

There are a finite number of windows on a particular screen. One of these is
considered to be the currently selected window. It might be undefined, too. Most
WM library functions take effect on the currently selected window. Each window
has information, including a pixel map, associated with it.

[Window]

Undefined : Window

C.4. ITC Window Manager 279

WMZero
windows : FWindow
current : Window
contents : Window 7→ Info

Undefined 6∈ windows
windows = dom contents
current ∈ windows ∪ {Undefined}

The display screen consists of the background overlaid with windows. The win-
dow pixel maps do not overlap. All windows are contained within the background
area.

WMOne
WMZero
maps : Window 7→ Pixmap
areas : Window 7→ (PPixel)
screen : Pixmap
background : Pixmap

maps = contents o
9 (λ Info • map)

areas = contents o
9 (λ Info • area)

disjoint areas⋃
(ran areas) ⊆ dom background

screen = background ⊕⋃
(ranmaps)

The WM process can handle at most 20 windows, including hidden windows and
windows requested by other programs, at one time.

MaxWindows : N

MaxWindows = 20

This limitation is included in the model of the state.

WMTwo
WMOne

]windows ≤ MaxWindows

280 C. Specifications in Use

The size of a window on the users display is one of the resources that the Window
Manager allocates. A program can request a given size, and WM will take the
requested size into account when making decisions, but it does not guarantee a
particular size. This process is modelled as a function of the system. The number of
windows is not changed by this function. Additionally, control information supplied
by the user is left unchanged.

WINDOWS : Window 7→ Info

WM
WMTwo
adjust : WINDOWS → WINDOWS

∀w ,w ′ : WINDOWS | w ′ = adjust(w) •
]w ′ =]w ∧
w ′ o

9 (λ Info • ΘControl) = w o
9 (λ Info • ΘControl)

Initially there are no windows and the current window is undefined.

InitWM
WM ′

windows ′ = ∅
current ′ = undefined

Many operations are concerned with the current window. Hence a schema giving
a partial specification covering all common aspects of such operations is provided.
It is used to reduce repetition. A Phi is put first to the names to distinguish these
from actual operations.

PhiCurrent
∆WM
∆Info

current ∈ windows
current ′ = current
ΘInfo = contents(current)
contents ′ = adjust(contents

⊕{current 7→ ΘInfo ′})

C.4. ITC Window Manager 281

When a window is created, the system adjusts all the windows in the system
appropriately. The window body is exposed when it is created.

NewWindow
∆WM
w ! : Window
Info

]windows < MaxWindows
w ! 6∈ windows ∪ {Undefined}
current ′ = w !
control = Expose
contents ′ = adjust(contents ∪ {w ! 7→ ΘInfo})

The currently selected window can also be deleted.

DeleteWindow
∆WM

current ∈ windows
current ′ = Undefined
contents ′ = adjust({current} −C contents)

A program can request a given size range, and WM will take the requested size
into account when making decisions, but it does not guarantee a particular size.
The rest of the window information is unaffected. The windows will be adjusted by
the system as necessary.

SetDimensions
PhiCurrent
minxy? : Pixel
maxxy? : Pixel

map ′ = map
title ′ = title
control ′ = control
xylimits ′ = (minxy?,maxxy?)

The size of the body of the currently selected window can be returned. If the
window is actually hidden (i.e., WM has adjusted the window to display the header
only), then the returned size is empty.

282 C. Specifications in Use

GetDimensions
PhiCurrent
wh! : Pixel
xy1 : Pixel
xy2 : Pixel

ΘInfo ′ = ΘInfo
dom body = xy1 . . . xy2
wh! = xy2− xy1

A window is considered “visible” when both its header and its body are displayed
and “hidden” when only its header is displayed. A visible window may be hidden,
exposed or selected.

HideMe
PhiCurrent

map ′ = map
title ′ = title
control ′ = Hide
xylimits ′ = xylimits

ExposeMe
PhiCurrent

map ′ = map
title ′ = title
control ′ = Expose
xylimits ′ = xylimits

SelectWindow
∆WM
w? : Window

w? ∈ windows
current ′ = w?
contents ′ = contents

C.4. ITC Window Manager 283

The title of a window may be set. This involves placing a text string in the
header section of the window contents.

SetTitle
PhiCurrent
s? : String

map ′ = map
title ′ = s?
control ′ = control
xylimits ′ = xylimits

The body of the currently selected window may be set to white.

ClearWindow
∆PhiCurrent

header ′ = header
body ′ = setval White body
title ′ = title
control ′ = control
xylimits ′ = xylimits

There is a Null window identifier which is never a valid window.

Null : Window

WMErr
WM

Null 6∈ windows

Some operations return a window identifier. If this is non-null then the operation
is successful.

SuccessWM
∆WMErr
w ! : Window

w ! 6= Null

284 C. Specifications in Use

Alternatively a error may occur. There is a limit on the number of windows
which WM can handle. This could cause an error when creating a new window.

TooManyWindows
ΞWMErr
w ! : Window

]windows ≥ MaxWindows
w ! = Null

The operation to create a new window is now made total.

NewWindow1 == (NewWindow ∧ SuccessWM) ∨ TooManyWindows

There are several operations returning an error.

NoCurrentWindow
ΞWMErr

current = Undefined

DeleteWindow1 == DeleteWindow ∨ NoCurrentWindow

SetDimensions1 == SetDimensions ∨ NoCurrentWindow

GetDimensions1 == GetDimensions ∨ NoCurrentWindow

SetTitle1 == SetTitle ∨ NoCurrentWindow

ClearWindow1 == ClearWindow ∨ NoCurrentWindow

InvalidWindow
ΞWMErr
w? : Window

w? 6∈ windows

C.4. ITC Window Manager 285

SelectWindow1 == SelectWindow ∨ InvalidWindow

In the Andrew system there are many window managers, each running on a host
workstation on a large network. Some hosts are running WM. All workstations have
unique host names and all windows have unique identifiers across the network.

ITC
hosts : P String
wms : String 7→ WM

domwms ⊆ hosts
disjoint(wms o

9 (λWM • windows))

InitITC
ITC ′

hosts ′ = ∅

Hosts can be added or removed. The name cannot be the empty string.

[EMPTYSTRING]

AddHost
∆ITC
host? : String

host? 6∈ hosts ∪ EMPTYSTRING
hosts ′ = hosts ∪ {host?}
wms ′ = wms

RemoveHost
∆ITC
host? : String

host?inhosts
hosts ′ = hosts \ {host?}
wms ′ = wms

286 C. Specifications in Use

Operations can be initiated on a particular “local” host. These do not affect the
host names on the network.

PhiHost
∆ITC
localhost : String

hosts ′ = hosts
localhosts ∈ hosts

For example, WM may be executed on a host, and may be subsequently killed.

ExecWM
PhiHost
initwm : WM

localhost 6∈ domwms
wms ′ = wms ∪ {localhost 7→ initwm}

KillWM
PhiHost

localhost ∈ domwms
wms ′ = {localhost} −C wms

WM operations can be modelled in the global context of the network by updating
the state of WM on a particular local host which is already running WM.

PhiWM
PhiHost
∆WM
host : String

ΘWM = wms host
ΘWM ′ = wms ′ host

C.4. ITC Window Manager 287

The Window Manager on the local host can be requested to create new windows
on any machine on the ITC network that is running a WM process by supplying the
appropriate host name. Alternatively, specifying a null host parameter results in a
request for a window on the local machine. This is the normal mode of operation.

NewWindowITC
NewWindow1
PhiWM
host? : String

host? = EMPTYSTRING ⇒ host = localhost
host? 6= EMPTYSTRING ⇒ host = host?

Finally an ITC window can be deleted.

DeleteWindowITC == DeleteWindow1 ∧ PhiWM

There are several simplifications in this specification. However, the interested
reader is referred to [BH95] for other specifications describing window manager sys-
tems.

288 C. Specifications in Use

D. GLOSSARY

CC - Conceptual Complexity

The conceptual complexity CC represents one factor contributing to the overall
complexity of specifications. CC is identified by counting the number of primes
in the specifcation.

Chunk

Following the definitions in program comprehension [You96a], chunks are syn-
tactic or semantic abstractions of text structures within the source code. Those
chunks can be collected and abstracted further, in order to build higher level
chunks.

1. Program Chunk. According to [BRS+97] a chunk is a (a) sequence of
software instructions that achieves a coherent purpose and that can be
understood outside of the context in which it is used. In the same paper
a second definition is given: (b) A chunk is either a prime, including all
primes contained within it, or a sequence of primes that exist within the
same programming scope, where for each pair of primes either one prime
is data dependent on the other or both primes are data dependent on a
third prime within the sequence. A prime is a fundamental unit, from
which structured programs can be built.

2. Specification Chunk. A specification chunk is a specification fragment
that achieves a coherent purpose and that can be understood outside
of the context in which it is used. A specification chunk is (i) a prime
including all primes contained within it or, (ii) a set of primes that exists
within the same specification scope. For each pair of primes within the
set of primes either one prime is data-dependent on the other or both
primes are data-dependent on a third prime (within the set of primes).

Cluster

According to the American Heritage Dictionary of the English Language, a
cluster is a group of the same or similar elements gathered or occurring closely
together.

290 D. Glossary

Comprehension

According to the American Heritage Dictionary of the English Language, com-
prehension is the act or fact of grasping the meaning, nature or importance of
something.

1. Program Comprehension. It is this the process of acquiring knowledge
about a software system.

2. Specification Comprehension. Specification comprehension is the process
of comprehending specifications - potentially using visualization tech-
niques.

Cliché

1. Program Cliché. According to [BF99] a program cliché is a basic knowl-
edge unit used by programmers to build and recognize code. Clichés are
commonly-used computational structures. Examples are data-structure
clichés such as stacks, queues and hash tables and algorithmic clichés
such as sorting or binary search. Clichés can include fragments of code
and further clichés.

2. Specification Cliché. A specification cliché is a basic knowledge unit used
to build and recognize specification text. Specification clichés can consist
of both fragments of specification code and intermediate specification
clichés (from which further specification clichés may be inferred).

Fragment

According to the American Heritage Dictionary of the English Language it is
a small part broken off or detached.

1. A program fragment is an incomplete or isolated portion of code.

2. Specification Fragment A specification fragment is an incomplete or iso-
lated portion of specification code. It consists of several prime objects,
but does not necessarily constitute a complete specification. It is a com-
position of several primes which are isolated from their surrounding con-
text.

Mapping

In mathematics a mapping is a rule of correspondence established between sets
that associates each element of a set with an element in the same or another
set.

291

Partial Specification

A partial specification is specification fragment, representing a state space and
a set of operations.

Partition

A partition is a part or section into which something (a program, a specifica-
tion, ...) has been divided - it is the decomposition of a set into a family of
disjoint sets.

Prime Object

A specification prime object represents the basic entity of a specification – it is
built out of specification literals and forms logical, syntactic or semantic units.

In specification languages these prime objects can be expressions or predicates,
but they can also be generic type or schema type definitions. Prime objects
are not only restricted to simple expressions. As they form logical units, prime
objects can be combined together in order to form so-called higher-level primes.

Program Plan

Plans (sometimes called schematas) describe relevant actions or goals of pieces
of programs. According to [BRS+97], plans are closely related to chunks,
representing stereotypical programming sequences within a framework of task-
related goals. According to [You96b], there is no real difference between the
term plan and cliché, as both of them are representing generic knowledge
structures that guide the comprehender’s interpretation.

Slice

According to the Webster’s Encyclopedic Unabridged Dictionary, a slice is a
thin, broad, flat piece cut from something ... a part; portion.

1. Program Slice. The original concept goes back to the PhD thesis from M.
Weiser 1979 [Wei79]: He defined a program slice S as a reduced, executable
program obtained from a program P by removing statements, such that S
replicates parts of the behavior of P. Nowadays the definition seams to be
weakened a little bit. Nevertheless, in this work the original definition
is used, which means, that a slice always has to be (in the context of a
programming or specification language) syntactically correct.

2. Specification Slice. (a) According to [CR94], a specification slice is a
specification fragment, that is syntactically and semantically correct. (b)
In this work the definition of a specification slice is refined: A specification

292 D. Glossary

slice is a syntactically and semantically correct specification which is the
result of adding those primes to an (initially empty) specification which
are directly or indirectly contributing to the point of interest.

Specification Text

Specification text (sometimes also called specification code) denotes the literals
the specification is written in. For Z or VDM, specifications are usually type-
set by using LATEX.

Transformation

A transformation is a mapping of one space onto another or onto itself. There
is a lot of different types of transformations (Laplace transformation, viewing
transformation, projective transformation, denotational transformation, ...).
If not otherwise stated the term transformation signifies the change of repre-
sentation of (parts of) specifications.

Specification View

A specification view is defining states and operations. According to [Jac95a], a
specification view is a ... partial specification of a program. A full specification
is then obtained by composing several views, linking them through their states
... and their operations. The important aspect is, that views can be composed
more freely (compared to modules), and operation may appear in more than
one view.

Visualization

The term visualization is often misunderstood in literature as it contains the
root word ”visual” (Latin for ”sight”). But visualization is not necessarily re-
lated to the visual fields. According to the Webster’s Encyclopedic Unabridged
Dictionary (as well as the Oxford English Dictionary) visualization suggests
the formation of a mental image. If not otherwise stated, this definition is
used in this work.

1. Software Visualization. According to [SDB+98], software visualization
is the use of the crafts of typography, graphic design, animation and
cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effec-
tive use of computer software.

2. Specification Visualization. This term denotes the visualization of specifi-
cation code and/or specification dependencies in either static or dynamic
form.

BIBLIOGRAPHY

[ABL96] J.R. Abrial, E. Borger, and H. Langmaack, editors. Formal Methods for
Industrial Applications. Lecture Notes in Computer Science, volume
1165. Springer Prublications, 1996.

[Alb79] A. J. Albrecht. Measuring application development productivity. In
Proceedings of the IBM Joint SHARE/GUIDE Symposium, pages 83–
92, 1979.

[AP98] V.S. Alagar and K. Periyasamy. Specification of Software Systems.
Springer, 1998.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffry D. Ullman. Compilers Principles,
Techniques, and Tools. Addison - Wesley, 1986.

[Bal01] Helmut Balzert. Lehrbuch der Software-Technik. Software-
Management, Software Qualitätssicherung, Unternehmensmodel-
lierung. Spektrum Akademischer Verlag, 2001.

[Bas80] Victor R. Basili. Quantitative software complexity models: A panel
summary. In Victor R. Basili, editor, Tutorial on Models and Methods
for Software Management and Engineering. IEEE Computer Society
Press, Los Alamitos, CA, 1980.

[BB95] Peter T. Breuer and Jonathan P. Bowen. A concrete z grammar. Tech-
nical Report PRG-TR-22-95, Programming Research Group, Oxford
University Computing Laboratory, Wolfson Building, Parks Road, Ox-
ford OX1 3QD, UK, 1995.

[BC85] J.-F. Bergeretti and B. Carré. Information-flow and data-flow analysis
of while programs. ACM Transactions on Programming Languages and
Systems, 7(1):37–61, 1985.

[BDS98] Rajiv D. Banker, Gordon B. Davis, and Sandra A. Slaughter. Software
development practices, software complexity, and software maintenance
performance: A field study. In Management Science, volume 44, pages

294 Bibliography

433–450. Institute for Operations Research and the Management Sci-
ences, April 1998.

[Bei95] Boris Beizer. Black-Box Testing: Techniques for Functional Testing of
Software Systems. John Wiley & Sons, Inc., 1995.

[BF99] Andrew Broad and Nick Filer. Applying case-based reasoning to code
understanding and generation. In Proceedings of the Fourth United
Kingdom Case-Based Reasoning Workshop (UKCBR4), pages 35–48,
University of Salford, Salford, England, September 1999.

[BG94] Jonathan P. Bowen and Michael J. C. Gordon. Z and hol. In
J. P. Bowen and J. A. Hall, editors, 8th Z Users Workshop (ZUM),
Cambridge 1994, Workshops in Computing, pages 141–167. Springer-
Verlag, 1994.

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of
formal methods. IEEE Software, 12(4):34–41, July 1995.

[BH97] Jonathan P. Bowen and Michael G. Hinchey. Formal models and the
specification process. In JR. Allen B. Tucker, editor, Computer Science
and Engineering Handbook, pages 2302–2322. CRC Press, 1997.

[BH98] Marc H. Brown and John Hershberger. Software Visualization – Pro-
gramming as a Multimedia Experience, chapter Software Auralization.
MIT Press, 1998.

[BKP98a] B. Balzer, T. Katayama, and D. Perry, editors. Proc. International
Workshop on Principles of Software Evolution (IW-PSE98), 1998.

[BKP98b] B. Balzer, T. Katayama, and D. Perry, editors. Proc. International
Workshop on Principles of Software Evolution (IW-PSE98), 1998.

[BM03] Andreas Bollin and Roland R. Mittermeir. Specification fragments
with defined semantics to support sw-evolution. In ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA’03). IEEE ArAb Computer Society, 2003.

[Boe80] Barry Boehm. Developing small scale application software projects:
Some experimental results. In B. Boehm, editor, Proceedings, IFIP
8th World Computer Congress, 1980.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall,
Englewood Cliffs NJ, USA, 1981.

Bibliography 295

[Bol02] Andreas Bollin. Specification transformation as a basis for specification
comprehension. In Proceedings of Applied Informatics 02. AACE, 2002.

[Boo96] Gramercy Books, editor. Webster’s Encyclopedic Unabridged Dictio-
nary. Random House, 1996.

[Bow96] Jonathan Bowen. Formal Specification and Documentation using Z:
A Case Study Approach. International Thomson Computer Press
(ITCP), 1996.

[Bow00] Jonathan Bowen. The Z Notation. http:// archive.comlab.ox.ac.uk/
z.html, December 2000.

[Bro78] Ruven Brooks. Using a behavioral theory of program comprehension in
software engineering. In Proceedings of the 3rd international conference
on Software engineering, pages 196–201, 1978.

[BRS+97] Ilene Burnstein, Katherine Roberson, Floyd Saner, Abdul Mirza, and
Abdallah Tubaishat. A role for chunking and fuzzy reasoning in a pro-
gram comprehension and debugging tool. In TAI-97, 9th International
Conference on Tools with Artificial Intelligence. IEEE press, November
1997.

[BS00] Barry W. Boehm and Kevin J. Sullivan. Software economics: A
roadmap. In The Future of Software Engineering, 22nd International
Conference on Software Engineering, pages 319–344, 2000.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[CC99] Patrick Cousot and Radhia Cousot. Refining model checking by ab-
stract interpretation. Automated Software Engineering: An Interna-
tional Journal. Kluwer Academic Publishers, 6(1):69–95, January 1999.

[CDHW93] David Carrington, David Duke, Ian Hayes, and Jim Welsh. Deriv-
ing modular designs from formal specifications. In ACM SIGSOFT
Software Engineering Notes, volume 18, pages 89–98. ACM, December
1993.

296 Bibliography

[CNS91] B. P. Collins, J. E. Nicholls, and I. H. Sorensen. Introducing formal
methods: the cisc experience with z. In Mathematical Structures for
Software Engineering, pages 153–164. Clarendon Press Oxford, 1991.

[Coo82] M.L. Cook. Software metrics: An introduction and annotated bibliog-
raphy. ACM SIGSOFT Software Engineering Notes, 8:41–60, 1982.

[CR94] Juei Chang and Debra J. Richardson. Static and Dynamic Specification
Slicing. Technical report, Department of Information and Computer
Science, University of California, 1994.

[CSM+79] B. Curtis, S.B. Sheppard, P. Milliman, M.A. Borst, and T. Love. Mea-
suring the psycological complexity of software maintenance tasks with
the halstead and mccabe metrics. IEEE Transactions on Software En-
gineering, 5:96–104, 1979.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State
of the art and future directions, cmu computer science technical report
cmu-cs-96-178. Technical report, Carnegie Mellon University, August
1996.

[dA00] Luca del Alfaro. Mocha homepage. http:// www-
cad.eecs.berkeley.edu/ ∼mocha/, December 2000.

[Dav97] Alan M. Davis. Software Engineering Project Management, chapter
Software Life Cycle Models, pages 105–113. IEEE Computer Society,
1997.

[DDZ96] J. Dautermann, E. Dubinsky, and R. Zazkis. Coordinating visual and
analytical strategies: A study of students’ understanding iof the group
d4. Journal for Research in Mathematics Education, 27(4):435–457,
1996.

[Dil99] Antoni Diller. Z - An Introduction to Formal Methods. John Wiley
and Sons, 1999.

[Edm99] Bruce Edmonds. Syntactic Measures of Complexity. PhD thesis, Uni-
versity of Manchester, 1999.

[FF96] Kate Finney and Norman Fenton. Evaluating the effectiveness of z:
The claims made about cics and where we go from here. Journal of
Systems and Software, 35(3):209–216, 1996.

Bibliography 297

[FK89] N.E. Fenton and A.A. Kaposi. An engineering theory of structure
and measurement. In B.A. Kitchenham and B. Littlewood, editors,
Software Metrics. Measurement for Software Control and Assurance,
pages 27–62. Elsevier, 1989.

[FL96] Brigitte Froehlich and Peter Gorm Larsen. Combining vdm-sl specifi-
cations with c++ code. In Marie-Claude Gaudel and Jim Woodcock,
editors, FME ’96: Industrial Benefit and Advances in Formal Meth-
ods, Third International Symposium of Formal Methods Europe, Co-
Sponsored by IFIP WG 14.3, Oxford, UK, March 18-22, 1996, Pro-
ceedings, volume 1051 of Lecture Notes in Computer Science, pages
179–194, 1996.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics. A
Rigorouse & Practical Approach. PWS Publishing Company, 1997.

[FPB95] Jr. Frederick Philips Brooks. The mythical man-month: essays on
software engineering - Anniversary edition. Addison Wesley, 1995.

[GH83] John V. Guttag and James J. Horning. An introduction to the larch
shared language. In R. E. A. Mason, editor, Information Processing 83,
Proceedings of the IFIP 9th World Computer Congress, pages 809–814.
North-Holland/IFIP, September 19–23 1983.

[Gla03] Robert L. Glass. Facts and Fallacies of Software Engineering. Addison-
Wesley, 2003.

[GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The La-
TeX Companion. Addison Wesley Professional, 1994.

[GWM+93] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi,
and Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen,
editor, Applications of Algebraic Specification using OBJ. Cambridge,
1993.

[GZ99] Narasimhaiah Gorla and Kang Zhang. Deriving program physical
structures using bond energy algorithm. In Proceedings of the Sixth
Asia Pacific Software Engineering Conference. IEEE, December 1999.

298 Bibliography

[Hal77] M.H. Halstead. Elements of Software Science. Elsevier North-Holland,
New York, 1977.

[Hal90] A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–19,
Sept. 1990.

[Hal96] J. Anthony Hall. Using formal methods to develop an atc information
system. IEEE Software, pages 66–76, March 1996.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[HCK+95] D. Hamilton, R. Covington, J. Kelly, C. Kirkwood, M. Thomas, A.R.
Flora-Holmquist, M.G. Staskauskas, S.P. Miller, M. Srivas, G. Cleland,
and D. MacKenzie. Experiences in applying formal methods to the
analysis of software and system requirements. In 1st Workshop on
Industrial-Strength Formal Specification Techniques. IEEE, 1995.

[HDR+96] Anthony Hall, David L. Dill, John Rushby, C. Michael Holloway,
Ricky W. Butler, and Pamela Zave. Industrial practice - impediments
to industrial use of formal methods. IEEE Computer, 29(4):22–27,
April 1996.

[HK81] S. Henry and D. Kafura. Software structure metrics based on informa-
tion flow. IEEE Transactions on Software Engineering, 7(5):510–518,
1981.

[Hoa85] C.A.R Hoare. Communicating Sequential Processes. Prentice Hall
International, 1985.

[HST97] Daniel Hazel, Paul Strooper, and Owen Traynor. Possum: An Ani-
mator for the SUM Specification Language. Technical Report 97-10,
University of Queensland, February 1997.

[HST98] Daniel Hazel, Paul Strooper, and Owen Traynor. Requirements En-
gineering and Verification using Specification Animation. Technical
Report 99-26, University of Queensland, June 1998.

[Hum89] Watts Humphrey. Managing the Software Process. Addison-Wesley,
Reading, Mass., 1989.

[IEE91] IEEE Software Engineering Standards Collection. In IEEE standard
glossary of software engineering terminology. Elsevier Applied Science,
1991.

Bibliography 299

[Ins90] Institute of Electrical and Electronics Engineers, New York, NY. IEEE
Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries, 1990.

[Jac95a] Daniel Jackson. Structuring Z Specifications with Views. ACM Trans.
on Software Engineering and Methodology, 4(4), October 1995.

[Jac95b] Michael Jackson. The world and the machine. In Proc. 17th Interna-
tional Conference on Software Engineering, pages 283–292. IEEE-CS
Press, 1995.

[Jac96] Jonathan Jacky. The way of Z. Cambridge University Press, 1996.

[JDM01] Lamia Labed Jilani, Jules Desharnais, and Ali Mili. Defining and ap-
plying measures of distance between specifications. IEEE Transactions
on Software Engineering (TSE), 27(8):673–703, August 2001.

[Jen97] Kurt Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods
and Practical Use - Volume 1. Springer Verlag, 2nd edition, 1997.

[Jon78] T. C. Jones. Measuring programming quality and productivity. IBM
Systems Journal, 17(1):39–63, 1978.

[Jon86] C. Jones. Programming Productivity. McGraw–Hill, 1986.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM. Prentice
Hall International, second edition, 1990.

[Jun02] Stefan Jungmayr. Identifying test-critical dependencies. In Proceedings
of the International Conference on Software Maintenance (ICSM’02).
IEEE Press, 2002.

[Kad02] Gert Kadunz. Visualisierung. die verwendung von bildern beim ler-
nen von mathematik. habilitationsschrift. (in german). Abteilung fr
Didaktik der Mathematik, Institut fr Mathematik, Universitt Klagen-
furt, Klagenfurt, 2002.

[KM99] Claire Knight and Malcolm Munro. Visualising software - a key re-
search area. In International Conference on Software Maintenance
1999 (ICSM’99), August 1999.

[KMW98] Olaf Kummer, Daniel Moldt, and Frank Wienberg. A framework for
interacting design/cpn- and java-processes. Technical report, Univer-
sit”at Hamburg, Fachbereich Informatik, 1998.

300 Bibliography

[KPB98] Peter Kokol, Vili Podgorelec, and Janez Brest. A wishful complex-
ity metric. In Proceedings of The European Software Measurement
Conference FESMA98 - Business Improvement through Software Mea-
surement, pages 235–242, 1998.

[KPHR99] Peter Kokol, Vili Podgorelec, Henri Habrias, and Nassim Hadj Rabia.
The complexity of formal specifications - assessments by alpha - metric.
ACM SIGPLAN Notices, 6:84–88, 1999.

[KST+85] Joseph K. Kearney, Robert L. Sedlmeyer, William B. Thompson,
Michael A. Adler, and Michael A. Gray. Problems with software com-
plexity measurement. In Proceedings of the 1985 ACM Computer Sci-
ence Conference, pages 340–347, March 1985.

[KSW96] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding
of z in isabelle/hol. In Theorem Proving in Higher Order Logics - 9th
International Conference. Springer Verlag, 1996.

[Lak97] Arun Lakhotia. Rule-based approach to computing module cohesion.
In Proceedings of the 15th International Conference on Software Engi-
neering, pages 35–44. IEEE Computer Society Press, 1997.

[Lev91] Nancy G. Leveson. Software safety in embedded systems. Communi-
cations of the ACM, 34(2):35–46, 1991.

[LJK+01] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun Jang, and
Dong Han Ham. Component identification method with coupling and
cohesion. In Proceedings of the Eight Asia-Pacific Software Engineering
Conference (APSEC’01), 2001.

[LL91] Peter Gorm Larsen and P.B. Lassen. An executable subset of meta-
iv with loose specification. in vdm’91: Formal software development
methods. Lecture Notes in Computer Science, 551, 1991.

[LvH85] D. C. Luckham and F. von Henke. An overview of anna, a specification
language for ada. IEEE Software, 2:9–23, March 1985.

[LW98] Bo Lindstrom and Lisa Wells. Simulation based performance analysis
in design/cpn. Technical report, Department of Computer Science,
University of Aarhus, DK-8000 Aarhus C, Denmark, 1998.

[MB03] Roland T. Mittermeir and Andreas Bollin. Demand-driven specifica-
tion partitioning. In Proceedings of the 5th Joint Modular Languages
Conference, JMLC’03, Ausgust 2003.

Bibliography 301

[MBPRR01] Roland T. Mittermeir, Andreas Bollin, Heinz Pozewaunig, and Do-
minik Rauner-Reithmayer. Goal-driven combination of software
comprehension approaches for component based development. In
23rd International Conference on Software Engineering (ICSE 2001),
Toronto, May 2001. IEEE.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308–320, 1976.

[McC89] Thomas J. McCabe. Design complexity measurement and testing.
Communications of the ACM, 32(12):1415–1425, 1989.

[Mil88] Everald E. Mills. Software Metrics, SEI Curriculum Module SEI-CM-
12-1.1. Carnegie Mellon University, December 1988.

[Mil89] Robin Milner. Communicating and Concurrency. International Series
in Computer Science. Prentice-Hall International, London, 1989.

[Mil98] Everald E. Mills. Metrics in the software engineering curriculum. An-
nals of Software Engineering 6, pages 181–200, 1998.

[Mit00] R. Mittermeir. Comprehending by varying focal distance. International
Conference on Software Engineeting, ICSE-IWPC2002, June 2000.

[ML87] Michael Marcotty and Henry Ledgard. The World of Programming
Languages. Springer Books on Professional Computing. Springer Ver-
lag, 1987.

[MRW77] J.A. McCall, P.K. Richards, and G.F. Walters. Factors in software
quality. Technical report, Rome Air Development Center, 1977.

[MTO+92] H.A. Müller, S.R. Tilley, M.A. Orgun, B.D. Corrie, and N.H. Mad-
havji. A Reverse Engineering Environment Based on Spatial and Vi-
sual Software Interconnection Models. In SIGSOFT’92: Proceedings
of the Fifth ACM SIGSOFT Symposium on Software Development En-
vironments, volume 17 of 5, pages 88–98. ACM Software Engineering
Notes, December 1992.

[Mye77] G.J Myers. An extension to the cyclomatic measure of program com-
plexity. ACM Sigplan Notices, 12(10):61–64, 1977.

[Mye97] Brad A. Myers. The Computer Science and Engineering Handbook,
chapter 72, pages 1571–1595. CRC Press, ACM, 1997.

302 Bibliography

[NLBN00] Juan C. Nogueira, Luqi, Valdis Berzins, and Nader Nada. A formal
risk assessment model for software evolution. In Proceedings of the 2nd
International Workshop on Economics-Driven Software Engineering
Research (EDSER-2), 2000.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Merkus Wenzel. Is-
abelle/HOL – A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer Verlag, 2002.

[OA93] Tomohiro Oda and Keijiri Araki. Specification slicing in a formal meth-
ods software development. In Seventeenth Annual International Com-
puter Software and Applications Conference, IEEE Computer Socienty
Press, pages 313–319, November 1993.

[OJP99] A. Jefferson Offutt, Zhenyi Jin, and Jie Pan. The dynamic Domain
Reduction Procedure for Test Data Generation. Software – Practice
and Experience, 29(2):167–193, February 1999.

[O’N93] Micheal B. O’Neal. An empirical study of three common software
complexity measures. In Symposium on Applied Computing (SAC-93),
pages 203–207, 1993.

[OO84] K. Ottenstein and I. Ottenstein. The program dependence graph in
a software development environment. In ACM SIGSOFT/SIGPLAN,
volume 19 of Software Engineering Symposium on Practical Software
Development Environments, pages 177–184. ACM, 1984.

[OT89] Linda M. Ott and Jeffrey J. Thus. The relationship between slices
and module cohesion. In 11th International Conference on Software
Engineering, pages 198–204, 1989.

[OWE94] M.B O’Neal and Jr. W.R. Edwards. Complexity measures for rule-
based programs. IEEE Transactions on Knowledge and Data Engi-
neering, 6(5):669–680, 1994.

[Ped00] Jan Storbank Pedersen. Raise homepage. http:// spd-web.terma.com/
Projects/ RAISE/, December 2000.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Tech-
nische Hochschule Darmstadt, 1962.

[PH97] Shari Lawrence Pfleeger and Les Hatton. Investigating the influence
of formal methods. IEEE Computer, 30(2):33–43, Feb. 1997.

Bibliography 303

[PJCK97] Shari Lawrence Pfleeger, Ross Jeffery, Bill Curtis, and Barbara
Kitchenham. Status report on software measurement. IEEE Software,
14(2):33–43, March/April 1997.

[PMRR98] H. Pirker, R.T. Mittermeir, and D. Rauner-Reithmayer. Service chan-
nels - purpose and tradeoffs. In Proceedings of the 22nd International
Computer Software and Application Conference, pages 204–211. IEEE,
1998.

[RB87] H.D. Rombach and V.R. Basili. Quantitative software-
qualitätssicherung. Informatik-Spektrum, 10:145–158, 1987.

[Rei85] W. Reisig. Petri-nets: An Introduction. Springer Verlag, 1985.

[Rug95] Spencer Rugaber. Program comprehension. In Marcel Dekker, editor,
Encyclopedia of Computer Science and Technology, volume 35 of 20,
pages 341–368. Inc:New York, 1995.

[RW90] Charles Rich and Linda M. Wills. Recognizing a program’s design: A
graph-parsing approach. IEEE Software, 7(1):82–89, January 1990.

[RW02] Václav Rajlich and Norman Wilde. The role of concepts in program
comprehension. In 10th International Workshop on Program Compre-
hension (IWPC’02), June 2002.

[SBE83] Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. Cognitive strategies
and looping constructs: An empirical study. Communications of the
ACM, 26(11):853–860, November 1983.

[SC02] Ann E. Kelley Sobel and Michael R. Clarkson. Formal methods appli-
cation: An empirical tale of software development. IEEE Transaction
on Software Engineering, 28(3):308–320, March 2002.

[SDB+98] John Stasko, John Domingue, Mark H. Brown, Blaine A. Price, et al.
Software Visualization Programming as a Multimedia Experience. MIT
Press, 1998.

[SFM99] M.-A.D. Storey, F.D. Fracchia, and H.A. Müller. Cognitive Design El-
ements to support the Construction of a mental model during Software
Visualization. Journal of Software Systems, special issue on Program
Comprehension, 44:171–185, 1999.

[She93] Martin Shepperd. Software Engineering Metrics, volume 1. McGraw-
Hill, 1993.

304 Bibliography

[SM96] Margaret-Anne D. Storey and H.A. Müller. Software Visualization,
chapter Manipulating And Documenting Software Structures, pages
244–263. World Scientific Publishing Co., 1996.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, 1974.

[SND87] W.B. Samson, D.G. Nevill, and P.I. Dugard. Predictive software met-
rics based on a formal specification. In Information and Software Tech-
nology, volume 29 of 5, pages 242–248, June 1987.

[Spi89a] J.M. Spivey. An introduction to z and formal specifications. Software
Engineering Journal, 4(1):40–50, January 1989.

[Spi89b] J.M. Spivey. The Z Notation. C.A.R. Hoare Series. Prentice Hall, 1989.

[SW93] J. Stasko and J Wehrli. Three-dimensional computation visualization.
In Proceedings of the 1993 IEEE Symposium on Visual Languages,
pages 258–264, 1993.

[SWF+96] M.-A.D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, and H.A.
Müller. On Designing an Experiment to Evaluate a Reverse Engineer-
ing Tool. In Proceedings of the 3rd Working Conference on Reverse
Engineering (WCRE96), pages 31–40, November 1996.

[SWH98] M.-A.D. Storey, K. Wong, and H.A.Müller. How Do Program Un-
derstanding Tools Affect How Programmers Understand Programs?
Technical report, School of Computing Science, Simon Fraser Univer-
sity, 1998.

[Tai84] Kuo-Chung Tai. A program complexity metric based on data flow
information in control graphs. Proceedings of the 7th International
Conference on Software Engineering, pages 239–248, 1984.

[Til95] Scott R. Tilley. Domain-retargetable reverse engineering iii: Layered
modeling. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1995.

[Tip94] Frank Tip. A Survey of Program Slicing Techniques. Technical report,
CWI Netherlands, 1994.

[TMO92] Scott R. Tilley, Hausi A. Müller, and Mehmet A. Orgun. Documenting
software systems with views. In SIGDOC’92: Proceedings of the 10th
International Conference on Systems Documentation, pages 211–219.
ACM, October 1992.

Bibliography 305

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton.
N degrees of separation: Multi-dimensional separation of concerns. In
Proc. 22nd Internat. Conference on Software Engineering, pages 107 –
119. ACM and IEEE press, May 1999.

[Tuc96] Allen B. Tucker. The Computer Science and Engineering Handbook.
CRC Press, 1996.

[Tur86] David A. Turner. An overview of miranda. ACM SIGPLAN Notices,
21:158–166, 1986.

[Uht91] Augustus K. Uht. A theory of reduced and minimal procedural de-
pendencies. IEEE Transactions on Computers, 40(6):681–692, June
1991.

[URN02] Mark Utting, Peter Robinson, and Ray Nickson. Ergo 6: a generic
proof engine that uses prolog proof technology. LMS Journal of Com-
putation and Mathematics, 5:194–219, November 2002.

[Utt94] Mark Utting. Animating Z: Interactivity, Transparency and Equiva-
lence. Technical report, University of Queensland, 1994.

[Utt00] Mark Utting. Formal Methods Links. http:// www.cs.waikato.ac.nz/
∼marku/ formalmethods.html, December 2000.

[VLK98] Rick Vinter, Martin Loomes, and Diana Kornbrot. Applying software
metrics to formal specifications: A cognitive approach. In 5th Inter-
national Symposium on Software Metrics, pages 216–223, Bethesda,
Maryland, 1998. IEEE Computer Society.

[vMV94] A. von Mayrhauser and A. M. Vans. Program Understanding - A
Survey. Technical Report CS-94-120, Colorado State University, 1994.

[vV93] Hans van Vliet. Software Engineering Principles and Practice. John
Wiley & Sons, 1993.

[Wat01] Geoffry Norman Watson. A Generic Proof Checker. PhD thesis, The
School of Computer Science. The University of Queensland, 2001.

[WC03] Laurie Williams and Alistair Cockburn. Agile software development:
It’s about feedback and change. IEEE Computer, pages 39–43, June
2003.

[WD96] Jim Woodcock and Jim Davis. Using Z - Specification, Refinement,
and Proof. C.A.R. Hoare Series. Prentice Hall International, 1996.

306 Bibliography

[Wei79] M. Weiser. Program slices: formal, psychological, and practical in-
vestigations of an automatic program abstraction method. PhD thesis,
University of Michigan, 1979.

[WHH79] M. R. Woodward, M. A. Henell, and D. Hedley. A measure of con-
trol flow complexity in program text. IEEE Transaction on Software
Engineering, 5(1):45–50, 1979.

[Wig97] T.A. Wiggerts. Using clustering algorithms in legacy system remodu-
larization. In Proceedings of the 4th Working Conference on Reverse
Engineering (WCRE’97). IEEE Press, 1997.

[WM87] Michael W.Evans and John Marciniak. Software Quality Assurance
and Management. John Wiley & Sons, Inc., New York, NY, 1987.

[Won98] Kenny Wong. Rigi User’s Manual. Department of Computer Science
University of Victoria, June 1998.

[YM98] Peter Young and Malcom Munro. Visual software in virtual reality.
In International Workshop on Program Comprehension 1998. IEEE,
1998.

[You96a] Peter Young. Program comprehension. Visualisation Research Group.
http:// vrg.dur.ac.uk/ misc/ PeterYoung/ pages/ work/ documents/
lit-survey/ prog-comp, May 1996.

[You96b] Peter Young. Software Visualization. Technical report, Centre for
Software Maintenance, University of Durham, June 1996.

[ZCU96] Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima. Program depen-
dence analysis of concurrent logic programs and its applications. In
Proceedings of 1996 International Conference on Parallel and Dis-
tributed Systems, pages 282–291. IEEE Computer Society Press, June
1996.

[ZCU97] Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima. Slicing concurrent
logic programs. In T. Ida, A. Ohori, and M. Takeichi, editors, Second
Fuji International Workshop on Functional and Logic Programming,
pages 143–162. World Scientific, 1997.

[Zha96] Jianjun Zhao. Program Dependence Analysis of Concurrent Logic Pro-
grams and Its Application. PhD thesis, Kyushu University, December
1996.

Bibliography 307

[Zha99] Jianjun Zhao. Extracting reusable software architectures: A slicing-
based approach. In ESEC/FSE’99 Workshop on Object-Oriented
Reengineering Toulouse (France), September 1999.

308 Bibliography

INDEX

ASRN
definition, 121
eSRN augmentation, 123

Birthday book specification, 263

CC
conceptual complexity, 289
definition, 164

Chunk
Burnstein, 28
definition, 28, 289
specification, 47

Cliché
definition, 290
program, 290
Rich and Wills, 28
specification, 50

Cluster
definition, 289

Cognition models, 24
Complexity

algorithmic, 147
conceptual, 147, 163
cyclomatic, 166
definition, 14, 146
extended cyclomatic, 166
measuring, 146
specifications, 156
types of, 15

Comprehension
definition, 290
models, 24
program comprehension, 290
strategies, 26, 34

Cyclomatic Complexity, 165

Definition before use, 63
Dependencies

in Z, 126
types of, 54

DU count, 166

Elevator specification, 270
eSRN

definition, 98
transformation, 106

Evaluation
hypotheses, 185
settings, 180
treatment, 181

Formal methods, 1
Formal specification

chunk, 47
classes, 2
cliché, 50
clusters, 53
complexity, 156
controversy, 8
definition, 1
fragments, 45
literals, 44
metrics, 13
model-oriented, 2
modules, 53
motivation, 7
partiality, 40
partitions, 52
primes, 44
process algebras, 2

309

310 Index

property-oriented, 2
scope, 46
slice, 49
slicing criterion, 49
state-machine-oriented, 2
sub-specification, 52
views, 41

Fragment
program, 290
specification, 45

Hyperslices, 42

Mapping
definition, 290

Metrics
v ′ of Z, 165
classes, 148
conceptual complexity of Z, 164
cyclomatic complexity, 166
DU count of Z, 166
extended cyclomatic complexity, 166
general, 11
quantity/size-based, 149
semantic-based, 154
structure-based, 152

Partial specification, 40
Partition

definition, 291
Petrol station specification, 267
Primes

control dependency, 64
data dependency, 79
definition, 44, 291
detection in Z, 99
general dependencies, 56
post-condition, 62
pre-condition, 62
scope in Z, 119
syntactical dependency, 64

Program comprehension

definition, 23
design recovery, 23
reengineering, 23
restructuring, 23
reverse engineering, 23
tool classes, 30

Program dependency
control, 55
data, 56
syntactic, 55

Program Plan
definition, 291

Quality
definition, 12

Scope rules
definition, 92
SRN, 94

Slice
program, 291
specification, 48, 291
Weiser, 27

SliZe Prototype, 172
Specification

chunk, 289
cliché, 290
comprehension, 31
fragment, 290
partial, 291
slice, 291
specification comprehension, 290
text (code), 292
view, 292
visualization, 38, 292

Specification transformation
general, 84

SRN
definition, 88
scope, 94
SRN block, 91

Index 311

Syntactical approximation, 60

Transformation
definition, 292
eSRN generation, 106

Visualization
definition, 29, 292
software, 292

Window manager specification, 276

Z
abstraction criterion, 132
chunking criterion, 132
control dependency, 129
data dependency, 130
declarational dependency, 127
full static chunk, 135
full static slice, 138
static Burnstein chunk, 133
static slice, 137

Z-schema
(bi)-implication, 73
composition, 77
conjunction, 71
control dependency, 65
disjunction, 69
negated schema, 68
piping, 77
projection, 73

