
QBIX-G – A Transcoding Multimedia Proxy ∗

Peter Schojer, Laszlo Böszörmenyi, Hermann Hellwagner
Dept. of Information Technology, University Klagenfurt, Austria

{pschojer,laszlo,hellwagn}@itec.uni-klu.ac.at

ABSTRACT
Due to the increasing availability of audio/visual data on the
Internet, proxy caching is gaining on importance as a per-
formance factor. This increase is accompanied by a diversi-
fication in the end terminals, which calls for media gateways
and filters.

An adaptive proxy is presented which performs (1) caching,
(2) filtering and (3) media gateway functionality in one. The
proxy can perform media adaptation – using transcoding –
on its own. A cost model is presented which incorporates
user requirements, terminal capabilities and video variations
in one formula. Based on this model, the proxy acts as a
general broker of different user requirements and of different
video variations. This is a first step towards What You Need
is What You Get (WYNIWYG) video services, which deliver
videos to users in exactly that quality what they need and
what they want to pay for. The MPEG-7 and MPEG-21
standards enables this in an interoperable way. A detailed
evaluation based on a series of measurements is provided.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software; H.5.1 [Information Systems]: Multimedia
Information Systems

Keywords
Video proxy, video caching, media gateway, media adapta-
tion, MPEG-4, MPEG-21, cache replacement strategies

1. INTRODUCTION
It is well-known that client-side proxies can give substantial
support for video delivery over the Internet. Traditionally,
such proxies provide two basic functionalities: they serve (1)
as a firewall and (2) as a cache.

∗This project was funded in part by FWF (Fonds zur
Förderung der wissenschaftlichen Forschung) P14788 and by
KWF (Kärntner Wirtschaftsförderungsfonds).

These basic functionalities can be considerably extended if
we take into consideration that video delivery is getting ever
more challenging, partly due to the heterogeneity in user re-
quirements, partly also due to greatly diverse equipment,
characterized by (1) different connectivity (ranging from
high speed LANs over UMTS to slow connections over mo-
dem or GSM) and (2) different computational power (rang-
ing from workstations over PDAs to cell phones). In such a
heterogeneous environment, the proxy can take over a much
more general role than usual by serving different user and
terminal classes by different video quality classes. It can act
as a kind of media broker that (1) understands the prefer-
ences and capabilities of the user and (2) can handle different
variants of the same video. Based on these inputs, it can
perform an optimal match between the needs of the user and
the possibilities of the provider. It can further detect when
a request cannot be fulfilled and acts in this case as a request
filter that protects both server and client from videos that
the client ought to abort due to a quality mismatch.

The MPEG-7 standard provides tools to describe different
variants of a video and the emerging MPEG-21 standard
provides tools to describe user preferences, terminal and net-
work capabilities in an interoperable way. This enables us
to build What You Need is What You Get (WYNIWYG)
video services. The users do not get just the available qual-
ity nor the best possible quality, but exactly that quality
which they need and which they are ready to pay for.

This paper introduces a novel concept for such a brokering
proxy. The proxy may cache videos in different quality vari-
ants. If a video is getting popular for users both with high
and with low capabilities then it caches both corresponding
variants. Thus, it acts not only as a cache but also as a
media gateway.

Lower quality variants may be available in a very efficient
way due to layered encoding. In the MPEG standardization
group, great efforts are in progress to define an efficient lay-
ered video coding scheme. Currently, however, layered cod-
ing (as defined in MPEG-4) is not supported by virtually any
codec. If the video is not available in layered coding, then
the proxy can perform transcoding on its own. Transcoding
may be of course a time consuming process, therefore the
proxy has to consider its costs.

We introduce a cost model that controls the decisions of the
proxy. To our knowledge this is the first work on a quality

aware video cache that combines partial caching in the qual-
ity domain with a differentiated model of user preferences, of
video variations and of the caching costs. A nice feature of
this approach is that we get the gateway and a basic filtering
functionality dynamically and for free as a ”side effect”.

The paper presents the simulation results of the brokering
proxy. Based on these, the algorithms are currently inte-
grated into our Quality Based Intelligent Proxy [5].

2. BASIC NOTIONS

2.1 Client-Side Proxy Cache
A proxy cache is a computer residing between client and
server and caching data which the client is requesting from
the server. A client-side proxy (from now just proxy) has
normally a faster connection to its clients then to its servers.
Clients send their requests to the proxy, which tries to fulfill
the requests from its local cache, if possible. Otherwise it
forwards the requests to the server and stores a local copy
of the data on its disk. Ideally, a client-side proxy reduces
load and network traffic on the server side and gives clients
a reduced startup delay.

2.2 Media Gateway
A media gateway is similar to a proxy in inspecting the data
flows between server and client but it may also modify them
according to some transcoding rules. The transcoding itself
can be hinted by meta-data, such as user preferences or ter-
minal capabilities or it can be hard coded. A media gateway
node transcodes videos to some specific quality characteris-
tics, such as a given dimension, bitrate, color etc.

2.3 Media Adaptation
In the context of video transmission, media adaptation means
the transformation of an already compressed video stream.
Media adaptation can be classified into three major cate-
gories: (1) bitrate conversion or scaling (including frame
dropping, i.e., temporal conversion), (2) resolution or spa-
tial conversion, and (3) syntax conversion. Bitrate scaling
can adapt to shortages in available bandwidth. Resolution
conversion can adapt to bandwidth limitations, but it can
also accommodate for known limitations in the user device
in processing power, memory, or display size. Syntax conver-
sion is used in hybrid networks to match server and client
compression protocols. If we need to decompress and re-
encode a video for adaptation, we speak about adaptation
in the decompressed domain, a slow and resource-intensive
task. More lightweight adaptation in the compressed domain
is therefore preferable.

2.3.1 Adaptation and Cache Replacement
Cache replacement strategies in the area of video caching are
divided into two categories: full caching and partial caching.

With full caching videos are handled like normal Web ob-
jects, with the disadvantage that videos are huge and only
a small number of videos can be cached at one node; thus,
hit rate is low. With partial caching, only a selected part of
a video is cached, e.g., only a prefix [10], or bursty parts of
a video [12], hotspot segments [2] etc.

In this paper we concentrate on partial caching in the qual-
ity domain only. Related work in this area mostly relies on
layered coded videos, which reduces adaptation to the sim-
ple case of deleting the highest available enhancement layer.
Examples are periodic caching of layered coded videos [3],
combination of replacement strategies and layered coded
videos [6], quality adjusted caching of GoPs (group of pic-
tures) [9], adaptive caching of layered coded videos in com-
bination with congestion control [8] or simple replacement
strategies (patterns) for videos consisting of different qual-
ity steps [7]. Most of these proposals rely on simulation to
evaluate the performance of the caching techniques.

None of these proposals considers user preferences or reload
behavior due to quality mismatches.

2.3.2 Codecs and Adaptation
Most codecs do not support layered encoding, although this
is a requirement for fast and efficient adaptation. One of
the first widely used standards with rudimentary adaptation
support was MPEG-2, which allowed the definition of one
single enhancement layer. This feature was pretty much
ignored by content providers.

MPEG-4 is actually the first standard that offers extensive
adaptation options, i.e., temporal, spatial and bitrate scal-
ability through the means of layered encoding. Most im-
plementations of the standard in software/hardware do not
(yet) support this feature, but restrict themselves to the
simple profile part of MPEG-4, which does not even sup-
port B-frames.

2.3.3 Adaptation and Media Gateways
Using adaptation in media gateways on content that does
not support layered encoding creates several problems. The
first problem is the high burden on the CPU created by
resource intensive decoding and encoding operations. For
example a 1.4 GHz Pentium IV processor is capable of per-
forming bitrate transcoding on only three CIF(352x288) streams
in parallel (measured with XviD) [5].

Another problem is the reduced hit rate in the cache. It is
a common assumption that request patterns follow the Zipf
distribution. The higher the Zipf α value, the higher is the
hit rate in the proxy1. Without layered encoding the proxy
stores n variations of one and the same video in the cache.
Due to differing user preferences, the requests now do not
accumulate on one single object but are distributed over n
variants. This ”scattering” disturbs the original Zipf dis-
tribution and has the effect as if the α value were reduced.
The number of one-timers (videos that are requested only
once) increases and even a class of zero-timers is introduced.
Zero-timers are videos that are used only as transcoding
source but are never explicitly requested by any client. As
we have to lock these videos when using them as a transcod-
ing source, they may remain in the cache for a fairly long
time.

Moreover, the size of these n variants is in total greater than
the size of the stream in layered encoding format. Thus, a

1Higher α means more skewed popularity distribution.

media gateway can store more video objects than a Web
proxy but less different videos.

The advantage of the gateway functionality is that reload-
ing of a video due to quality mismatches happens signifi-
cantly less frequently and that costumer satisfaction should
be considerably higher. Costumer satisfaction is of course
generally hard to measure – that is the reason why we take
user preferences and costs into consideration.

2.4 User Preferences
There are currently two major standards available for com-
municating user preferences to a server. The first one is
CC/PP (Composite Capability/Preference Profiles) [11] which
is a standardized framework developed by the W3C as an
extension to the HTTP 1.1 standard. It is a collection of the
capabilities and preferences associated with a user and the
configuration of hardware, software and applications used
by the user to access the World Wide Web. The disadvan-
tage of this protocol is that it fails to allow users to specify
priorities for features, e.g. to prefer bitrate over dimension.

The other major standard is MPEG-21 [1], specifically the
Digital Item Adaptation (DIA) part, which will become in-
ternational standard in 2004. The advantage of MPEG-21
DIA is that it was designed with content adaptation in mind.

3. QBIX-G
QBIX-G (Quality Based Intelligent proXy Gateway) realizes
the combined media gateway/proxy cache functionality. It
features standard-compliant RTSP, with extensions that al-
low clients to transmit their user preferences to the proxy,
it allows real-time transcoding of avi, MPEG-1/-2/-4 videos
to the MPEG-4 format.

3.1 Scenarios
The client sends an RTSP DESCRIBE request, which con-
tains the URL of the requested video and the user prefer-
ences of the client.

The proxy checks in its cache, whether it can find a version
that matches the user preferences. Four different scenarios
can now occur:

1. Object miss with quality miss : A full miss is given when
the proxy either finds a version with too low a quality
or it does not find any entry for the given URL. In
this case, the proxy has to forward the request to the
server. If the server does not support transcoding,
the proxy has to remove the user preferences from the
DESCRIBE field. The video stream received from the
server is then adapted on the proxy according to the
user preferences as specified by the client.

2. Object miss with quality hit : This situation is similar to
the one above, except that the video coming from the
server matches the user requirements, either because
the server did the transcoding, or because the original
version happens to have the required properties.

3. Object hit with quality miss : The proxy finds a cached
version of the video but the quality of the object is too
high and transcoding is needed.

4. Object hit with quality hit : The proxy finds a cached
version where quality is within the ranges specified in
the user preferences.

The proxy forwards the created/found version of the video
to the client when receiving the RTSP SETUP and PLAY
requests and depending on the hit/miss scenario it tries to
cache the original/transcoded version (if not yet cached).

3.2 Cost Function
QBIX-G uses internally a cost function to decide which ver-
sion of a video should be sent or created.

3.2.1 Requirements
The cost function should fulfill the following requirements:

• The higher the actual load of a resource, the more
expensive it should be to use that resource.

• Cache hits should be preferred over cache misses.

• It should be possible to assign weights to resources,
according to their importance.

• Clients requesting transcoding and not paying enough
should be rejected (commercial scenario only).

• It should try to maximize quality if enough resources
are available.

3.2.2 Input
Let V be the set of videos cached at the proxy, let S be the
set of videos requested by all clients, V ⊆ S. Each video
v ∈ S is described by a feature set fv. For visual streams,
the feature set is declared as follows:

fv = {dimX, avgBitRate, color, frameRate}.

Each video v is uniquely identified by a URL and the asso-
ciated features fv. The feature set specifies all parameters
that a client is allowed to change. In addition, the aspect ra-
tio of a video, which is used to calculate dimY , is known but
is treated as an invariant, which is not changeable neither
by the proxy nor the client. A single request r consists of
the URL of the video v and, for each single feature f ∈ fv,
an acceptance range [min, best, max] and an associated im-
portance value. All importance values must sum up to 1.

The client also specifies the maximum delay she is willing to
wait for the service in milliseconds. For commercial scenar-
ios a client must also specify an upper limit of money she is
willing to pay for the proxy service.

3.2.3 Quality
Quality(valf , rangef , importancef) for a feature f is de-
fined as a ”distance” of the corresponding feature value val
of the video from the best value.

As shown in figure 1, quality is zero if val < min or val >
max. If val = best, then we achieve the maximum possible
quality for this feature, which is equal to importance. We
defined the edge points of the acceptance range (min, max)

0

border*

importance

importance
best

min max

Quality

val
0

Figure 1: Simple Quality Function

to have some minimum border quality (0 < border < 1):
border ∗ importance.

For simplicity, we assumed that quality degrades linearly in
the ranges [min, best] and [best, max].

Overall quality of a video v for a request r is defined as

Quality(r) =

|fv |∑
i=1

Quality(vali, rangei, importancei)

or zero, if only a single feature with an importance value
greater zero returns 0. The maximum possible quality value
is 1, which means that a perfect hit was found.

By specifying such ranges, the client explicitly states that
she will not reject the video due to a quality mismatch2.
If no user preferences are specified, it is assumed that the
client requests the video with the highest quality.

3.2.4 Costs
We calculate costs for the resources network, CPU and hard
disk. Each resource is described by an upper limit and a
current load. For network, NET specifies the actual load,
for hard disk HD, and for the processor CPU .

Costs depend directly on the amount of resources currently
available and the price for each resource, namely pnet, pcpu

and phd. In the first step the proxy calculates for a request
r the resource usage in percent of the maximum of each re-
source: netr for network, cpur for CPU, and hdr for disk
access. For example, if we encounter a cache miss to a file
with a source bitrate of 1 MBbit/sec, which should be sent
out with 0.5 Mbit/sec – after corresponding transcoding –
and the proxy has only one single network card with a con-
nection speed to the Internet of 10 Mbit/sec, we calculate
netr = (1+0.5)/10 = 0.15. Calculating costs for disk access
is similar.

CPU costs for transcoding are currently simplified to two
cases. The first is temporal adaptation where B-frames are
dropped in the compressed domain and thus transcoding
costs are virtually zero. The second case is adaptation in the

2She might still reject the video due to its content.

decompressed domain, which is simplified to decoding and
encoding, which are the dominant factors. The costs for the
down-scaling or grey-scaling operations proper can be ne-
glected. We measured on MPEG-4 videos that at encoding
and decoding, the costs depend directly on the amount of
pixels processed per second, and that encoding is about four
times more expensive than decoding [5]. By benchmarking
a system, one can estimate how many pixels per second a
system can decode, e.g., for a four-processor system (Pen-
tium 4, 1.4 Ghz) a value of 150 Mpixels is realistic. Costs
are calculated as dimX ∗ dimY ∗ framerate for decoding;
for an encoding operation, the value is multiplied by 4.

The formula for resource costs for a given request r is given
as

ResourceCosts(r) =

1

1−NET − netr
∗ pnet +

1

1− CPU − cpur
∗ pcpu+

+
1

1−HD − hdr
∗ phd +

startupDelay

maxDelay

Note that by including the current resource usage, the cost
function also acts as an admission control, which assigns
infinite costs to requests which violate one of the following
constraints: NET + netr < 1.0, CPU + cpur < 1.0 and
HD + hdr < 1.0

The inclusion of the startup delay increases the costs for
a cache miss. The actual load of the current resources
handicaps resource intensive operations if free resources are
sparse.

Billing costs are calculated as

BillingCosts(r) =

ResourceCosts(r) + ContentCosts(r, quality) + profitr.

If the billing costs exceed the amount of money a client is
willing to pay, the request is rejected. Note that the content
costs function has to be provided by the content owner. If
no function exists, the proxy must bill full costs even for a
lower quality version of the video. profitr is the minimum
profit the proxy makes by servicing a single request.

FinalCosts are calculated as

FinalCosts(r) = (1−Quality(r)) ∗ResourceCosts(r)

If the resource costs are infinite or quality is 0, infinite final
costs are returned.

The disadvantage of this formula is that it ignores visual
quality. For instance, consider the case where the proxy
has cached two variants of the same video, a high-resolution
and a low-resolution version, and a client requests an even
lower-resolution version. The proxy will calculate the re-
source costs, quality and the final costs for the following
two possibilities: highRes → veryLowRes and lowRes →
veryLowRes. Our quality function will in both cases return
the value how exactly the features of the veryLowRes video

meet the user preferences of the client. In both possibilities
the target features are the same, thus the returned qual-
ity value will be equal for both. Decoding a high-resolution
video is naturally more expensive than a low-resolution video,
which results in higher resource costs – and thus higher fi-
nal costs – for the first scenario. However, starting from
the source with the larger resolution, the first version may
also result in better visual quality, which is currently not
addressed by our approach.

3.2.5 Finding the Best Version
For a request r, the proxy searches all videos in V that
have the same URL. For each video version found, the proxy
calculates its quality value. If one version is found that
returns a quality value greater than zero, we have a quality
hit (no transcoding is necessary) and can start streaming
this version.

In the other case, we have to calculate the final costs for
each version that meets the user preferences. The source →
target pair with the lowest final costs is chosen and the video
is adapted and streamed to the user in real-time.

In case the proxy cannot find any cached version that allows
the proxy to generate a quality hit, it contacts the server and
repeats its calculation with the original video as source.

To reduce the number of possible variations stored in the
proxy, we allow transcoding only to specific discrete points:

• Feature dimX must be a multiple of 44, dimY is cal-
culated according to the aspect ratio of the original
video.

• Average bitrate per second is defined as dimX∗dimY ∗
b bits/second, b ∈ {1, 2, 4, 8}.

• Framerate should be a multiple of 5 or equal to the
original framerate; if the video contains B-frames, the
adaptation result can vary but a version created by
dropping B-frames is never cached3.

• Color can only be true or false.

If no pre-cached version is found that has a quality greater
than zero, or which allows to create a version that has a
quality higher than zero, a quality miss is encountered, and
the original video has to be fetched from the server.

3.2.6 Example
Assume that a server offers the video dummy.mp4 with the
following features: dimX=352, bitrate=912384, color=true,
framerate=25.00 fps, 12 of 25 frames are B-frames (all B-
frames account for 20% of the video’s bitrate), the content is
freely available. Aspect ratio is a constant with a value of 11

9
,

resulting in dimY = 288. A client is requesting this video
with dimX: (176, 197, 219)/0.20; bitrate: (64000, 183999,
303999)/0.20; color: true/0.20; framerate: (15.00, 15.00,
30.00)/0.20; maximum delay: (0,0,1000)/0.20. The proxy

3It would be counterproductive to cache a version which can
be generated on the fly so easily.

charges pnet = 10, pcpu = 10, phd = 10, current resource
usage is zero.

According to the user preferences, the proxy calculates for
each feature the following possible values: dimx = {176}
(thus dimY is set to 144), bitrate = {101376, 202752}, color =
{true} and framerate = {15, 20, 25, 30}. The proxy calcu-
lates for all combinations ResourceCosts, Quality and Final-
Costs:

Features Costs Quality Final

(176,101376,true,15.0) 8.969 0.536 4.161
(176,101376,true,20.0) 9.068 0.476 4.751
(176,101376,true,25.0) 9.167 0.416 5.353
(176,101376,true,30.0) 9.269 0.356 5.969
(176,202752,true,15.0) 8.994 0.632 3.311
(176,202752,true,20.0) 9.092 0.572 3.893
(176,202752,true,25.0) 9.192 0.512 4.487
(176,202752,true,30.0) 9.294 0.452 5.094

Thus, the proxy will insert into the (initial empty) cache the
following versions (most popular first):

• (176,202752,true,15.0) – required quality

• (352,912384,true,25.0) – original quality

4. EVALUATION
Before integrating the cost function into QBIX-G, exper-
iments were performed in order to test the idea. We as-
sumed pnet = 10, pcpu = 10, phd = 10, a disk bandwidth of
10 Mbyte/sec and a network bandwidth of 80 Mbit/sec. For
CPU speed we assumed a two-processor system, which is ca-
pable of transcoding approximately six streams in parallel
(bitrate scaling of CIF stream).

We used WebTraff [4] to generate a list of 10000 requests4,
for the request pattern we assumed a Zipf distribution with
α = 1.0 and 0.3. We simulated 1000 videos each with a di-
mension of 352x288, a framerate of 30 and a constant bitrate
of 912384 bits/sec. The total size (thus also the duration) of
the videos followed a Pareto distribution with the tail index
set to 1.2. On average, videos had a duration of 86 seconds,
request interarrival time was set to 20 seconds.

The frame pattern was set to IPBPB..., which allowed a
30 fps video to be temporally adapted down to 16 fps. B-
frames contributed to 20% of the total bitrate. The total
size of all videos was approximately 9 GB, cache sizes were
set in the range from 1% up to 10% of the total video size,
the number of one-timers in the request sequence was set to
30%. For cache replacement we used standard LRU.

We ran several benchmarks with the number of users requir-
ing transcoding (e.g., for mobile devices) varying between
0% and 100%. Such mobile users (as referred to in the re-
mainder of the paper) were simplified to use one of four
different devices, with the corresponding user preferences

4The number of requests generated by WebTraff was actu-
ally slightly lower.

dimX bitrate delay in msec color framerate
(144,172,200)/0.20 (48000,172999,297999)/0.20 (0,0,1000)/0.20 false/0.20 (15.00,15.00,30.00)/0.20
(201,229,257)/0.20 298000,422999,547999)/0.20 (0,0,1000)/0.20 true/0.20 (15.00,20.00,30.00)/0.20
(258,286,314)/0.20 (548000,672999,797999)/0.20 (0,0,1000)/0.20 true/0.20 (15.00,25.00,30.00)/0.20
(315,344,374)/0.20 (798000,923000,1048000)/0.20 (0,0,1000)/0.20 false/0.20 (15.00,30.00,30.00)/0.20

Table 1: User Preferences

shown in table 1. Mobile requests were pseudo-randomly
distributed over the whole request sequence with every class
being equally important.

We assume that the server does not do transcoding, all
transcoding work is done by the proxy. None of the videos
is present in a layered encoded format, thus transcoding is
never used for cache replacement.

4.1 Transcoding Rules
In case a quality miss is encountered, the proxy tries to
match the stored versions to the request according to the
following guidelines:

• Bitrate miss: Drop B-frames until in bitrate range or
until no B-frames left. If the result violates the accept-
able frame/bitrate range of the client, do transcoding
in the decompressed domain. Never cache a result gen-
erated by temporal adaptation, simply assign the hit
to the original video.

• Spatial miss: Always transcode, put the generated
video to the beginning of the LRU list, do not change
the position of the original video.

• Framerate miss: Drop B-frames until in framerate range
or no B-frames left. If the resulting fps value is still too
high, transcode and additionally drop frames in the de-
compressed domain. Only insert transcoded versions
into the proxy cache.

If the proxy cannot create a version that matches the re-
quest (because of an invalid request or due to its admission
control), it rejects the request.

4.2 Measured Parameters
The following parameters are measured during benchmark
execution:

• Rejected Requests: How many requests were rejected
due to unsatisfiable requests, either because the ad-
mission control rejected the request or because the
requested transcoding step is not supported in the
proxy? A rejected request also counts as an object
miss.

• Quality Hits: How many requests could be fulfilled
directly from the cache without the need for further
transcoding?

• Object Hits: How many requests could be fulfilled
from the cache (including hits that needed adapta-
tion)?

• Byte Miss Rate: How many of the requested bytes had
to be fetched from the media server when an object
miss was encountered or a request was rejected? We
decided to include the latter to distinguish between our
proxy which detects rejection caused by quality mis-
match in advance and a traditional proxy which would
try to service even absurd requests such as streaming
an HDTV video to a cell phone.

• Not Cached Due To Locking: How many videos could
not be inserted into the proxy cache because it could
not free up enough space due to file locking?

• Not Cached Due To Size: How many videos were not
inserted due to the video object exceeding a size thresh-
old value?

4.3 Results
We present the results from five different scenarios. The first
is the typical business user scenario, where no mobile clients
are present and our media gateway acts as a conventional
Web proxy. A more realistic approach assumes that up to
25% of all requests are from mobile users. We measured
this use-case with transcoding turned off, which resulted in
a rejection rate of 25%, and with media gateway function-
ality enabled, with a rejection rate of 0%. The (unlikely)
extreme case, where all clients require adaptation was also
benchmarked, once with the cache size being the upper size
threshold limit for video objects, and once with with limit-
ing the size of the objects at 25% of the cache size. Note that
request rejection due to admission control occurred only in
the unlikely 100% mobile scenario, where at most 4% of the
requests were rejected.

4.3.1 Object Hit Rate
As shown in figure 2, the proxy-only scenario without adap-
tation proves to be the best in object hit rate, but as soon
as adaptation is a necessity, the picture changes. The tra-
ditional proxy with mobile users at 25% is now the worst
solution.

The 100% mobile users scenario shows the price one pays for
using media gateway functionality without layered encoding.
In the less skewed case with α = 0.3, object hit rate is nearly
equal or worse to the traditional proxy case, where 25% of
the requests were rejected! With a more skewed distribution
(α = 1.0), it shows a much better hit rate. There are several
reasons for this behavior: first, none of the videos supported
layered encoding, thus the sum of the size of all transcoded
versions of one video is larger than the size of one single
layered encoding version of the same video. Second reason
is that if there is enough disk space in the proxy cache, we
also store the original versions of the videos. This causes
problems later when cache replacement is triggered and the
videos the proxy wants to evict are locked. For example,

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

O
bj

ec
t H

it
R

at
e

(%
)

Size of Cache / Total Videos Size (%)

Object Hit Rate for a Zipf value of 0.30, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(a) Zipf α = 0.3

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

O
bj

ec
t H

it
R

at
e

(%
)

Size of Cache / Total Videos Size (%)

Object Hit Rate for a Zipf value of 1.0, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(b) Zipf α = 1.0

Figure 2: Object Hit Rate

when transcoding a two hour video in the decompressed do-
main, this video, and the generated transcoded version, will
be locked for the whole play-out time, i.e. two hours. Thus,
large files can remain for very long time in the cache, even
if they are one- or zero-timers.

To solve this problem we introduced the use case with the
small threshold value of 25% of the cache size. With such
a small threshold value, for most videos the original version
and large transcoded versions are never cached but instead
smaller videos are. Due to the fact that the majority of
requests goes to videos that are below this threshold, this
results in an overall improvement of object hit rate by up
to 6%. This result is very close to the hit rate a traditional
proxy can achieve.

4.3.2 Quality Hit Rate
This measurement is used to detect how much transcod-
ing work can be saved by the media gateway functionality.
When comparing figure 2 with figure 3, one sees that in the
non transcoding scenarios Quality Hit Rate and Object Hit
Rate are equal. In the 25% mobile users case, our media
gateway offers a higher quality hit rate than the traditional
proxy. Again, the lack of layered encoding forces our gate-
way proxy to ”waste” disk space on several self contained
versions of one video. Thus, the higher the amount of mo-
bile users is, the lower is the hit rate. Again, introducing the
lower size threshold proves to be beneficial to the quality hit
rate of the 100% mobile case. In the α = 1.0 case, quality
hit rate is as high as 38%, which means that approximately
every third request can reuse an adaptation result from a
prior request.

4.3.3 Byte Miss Rate
Again, the traditional proxy is best, with media gateway
functionality increasing the miss rate by a few percent (see
figure 4). With the small threshold limit set, byte miss rate
is slightly worse than in the standard case.

4.3.4 Locking
Generally speaking, locking has a worse effect in a proxy
that does transcoding than otherwise. As shown in figure 5,
13% to 34% of all video insertions fail due to locking whereas
in the non-transcoding scenarios this value is clearly lower.
Interestingly, locking seems to be worse with highly skewed

request distributions. The reason is that some large source
videos remain in the cache for a very long time, e.g., con-
sider a popular 100 second video being used as transcoding
source. With α = 1.0 it is very likely that during the time
the original video is locked, another request will need the
same video for a different transcoding step and extend the
lock time for the original video. Thus, a constant (large)
amount of the proxy cache is always locked, with the other
less popular requests competing for the reduced space.

Introducing a threshold of 25% significantly reduces the lock-
ing problem. Due to the size limit, most original video ver-
sions are never cached and thus cannot block other videos.
Naturally, the rejection rate of videos because of their size
goes up as shown in figure 6. Up to 60% of all video inser-
tions fail. Note that for a sequence of 10000 requests, where
all requests requiring transcoding, the number of insertions
is as high as 16000 for the less skewed case (cache size 10%).
With α = 1.0 this value is reduced to less than 10500.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a multimedia proxy gate-
way that makes a first step towards offering What You Need
is What You Get services. By combining user preferences,
resource usage and quality into one cost formula, we are able
to determine which version will give the client a good enough
quality with acceptable costs at the proxy. We have shown
the effects of transcoding in the decompressed domain on
the byte, object and quality hit rate and that locking is a
major problem if the number of adaptation requests is high
and one is forced to rely solely on transcoding. As long as
the number of devices requiring adaptation remain a mi-
nority, transcoding is a feasible processing step in a media
gateway proxy and a useful addition to layered encoding
support. The minor loss of object hit rate is compensated
by the gained functionality and will be further reduced when
layered encoding is available.

For further work, we will extend our simulations to include
layered encoding, and implement the cost function and user
preferences support into our open-source RTSP proxy im-
plementation QBIX, which in turn is part of our multime-
dia framework ViTooKi (Video Tool Kit, available at http:
//vitooki.sourceforge.net). The integration is conform
to the MPEG-7 and MPEG-21 standards.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Q
ua

lit
y

H
it

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Quality Hit Rate for a Zipf value of 0.30, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(a) Zipf α = 0.3

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Q
ua

lit
y

H
it

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Quality Hit Rate for a Zipf value of 1.0, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(b) Zipf α = 1.0

Figure 3: Quality Hit Rate

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

B
yt

e
M

is
s

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Byte Miss Rate for a Zipf value of 0.30, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(a) Zipf α = 0.3

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

B
yt

e
M

is
s

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Byte Miss Rate for a Zipf value of 1.0, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(b) Zipf α = 1.0

Figure 4: Byte Miss Rate

6. REFERENCES
[1] J. Bormans and K. Hill. N5231 - MPEG-21 Overview

v.5. http: // www. chiariglione. org/ mpeg/
standards/ mpeg-21/ mpeg-21. htm , Oct. 2002.

[2] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu,
and L. H. Hsu. Proxy Servers for Scalable Interactive
Video Support. IEEE Computer, 43(9):54–60, Sept.
2001.

[3] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W.
Ross. Distributing Layered Encoded Video through
Caches. In Proceedings of IEEE INFOCOM, pages
622–636, Apr. 2001.

[4] C. W. N. Markatchev. WebTraff: A GUI for Web
Proxy Cache Workload Modeling and Analysis. In
IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications
Systems, number 10, pages 356–363, Oct. 2002.

[5] P. Schojer, L. Böszörmenyi, H. Hellwagner, B. Penz,
St. Podlipnig. Architecture of a Quality Based
Intelligent Proxy (QBIX) for MPEG-4 Videos. In
ACM World Wide Web Conference, pages 394–402,
May 2003.

[6] S. Paknikar, M. Kankanhalli, K. R. Ramakrishnan,
S. H. Srinivasan, and L. H. Ngoh. A Caching and
Streaming Framework for Multimedia. In Proceedings
of ACM Multimedia, pages 13–20, Nov. 2000.

[7] S. Podlipnig and L. Böszörmenyi. Replacement
Strategies for Quality Based Video Caching. In IEEE
International Conference on Multimedia and Expo
(ICME), volume 2, pages 49–52, Aug. 2002.

[8] R. Rejaie and J. Kangasharju. Mocha: A Quality
Adaptive Multimedia Proxy Cache for Internet
Streaming. In 11th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pages 3–10, June 2001.

[9] M. Sasabe, N. Wakamiya, M. Murata, and
H. Miyahara. Proxy Caching Mechanisms With Video
Quality Adjustment. In Proceedings of the SPIE
Conference on Internet Multimedia Management
Systems, pages 276–284, Aug. 2001.

[10] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix
Caching for Multimedia Streams. In Proceedings of
IEEE INFOCOM’99, pages 1310–1319, Mar. 1999.

[11] W3C. Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0 (W3C
Recommendation). http: // www. w3. org/ TR/ 2004/
REC-CCPP-struct-vocab-20040115/ , Jan. 2004.

[12] Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Shu.
Video Staging: A Proxy-Server-Based Approach to
End-to-End Video Delivery over Wide-Area Networks.
IEEE/ACM Transactions on Networking,
8(4):429–442, 2000.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

Lo
ck

in
g

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Not Cached Due To Locking Rate for a Zipf value of 0.30, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(a) Zipf α = 0.3

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

Lo
ck

in
g

R
at

e
(%

)

Size of Cache / Total Videos Size (%)

Not Cached Due To Locking Rate for a Zipf value of 1.0, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(b) Zipf α = 1.0

Figure 5: Not Cached Due To Locking

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

S
iz

e
(%

)

Size of Cache / Total Videos Size (%)

Not Cached Due To Size Rate for a Zipf value of 0.30, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(a) Zipf 0.3

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

N
ot

 C
ac

he
d

D
ue

 T
o

S
iz

e
(%

)

Size of Cache / Total Videos Size (%)

Not Cached Due To Size Rate for a Zipf value of 1.0, One Timers=0.30

Traditional Proxy, No Adaptation Necessary
Traditional Proxy, 25% Mobile Users

Media Gateway Proxy, 25% Mobile Users
Media Gateway Proxy, 100% Mobile Users

Media Gateway Proxy, 100% Mobile Users, Object Size Limit 25%

(b) Zipf 1.0

Figure 6: Not Cached Due To Size

