
An MPEG-7 Multimedia Data Cartridge

Mario Döllera and Harald Koscha

aInstitute of Information Technology
University Klagenfurt

9020 Klagenfurt, Austria

Abstract

Broadly used Database Management Systems (DBMS) are not able to tackle the requirements of multimedia in
querying, indexing and content modeling. Therefore, extenders for multimedia data types have been proposed. These
extensions, however, offer only limited semantic modeling and rely on basic index structures which do not meet the whole
nature of multimedia, for instance for a Nearest-Neighbor Search. In this context, the paper presents a methodology
for enhancing extensible ORDBMS for multimedia data. In particular, we introduce an MPEG-7 Multimedia Data
Cartridge which includes a semantically rich metadata model for multimedia content relying on the MPEG-7 standard.
Furthermore, to fulfill the needs for efficient multimedia query processing, we created in this Cartridge a new indexing
and query framework for various types of retrieval operations.

Keywords:Multimedia Databases, MPEG-7, Multimedia Index Structures.

1. INTRODUCTION

Multimedia Database Systems (MMDBMS) organize and store multimedia data for content retrieval. These systems
rely on multimedia data models representing high- and low-level abstraction of media objects for facilitating various
operations (e.g., insertion, indexing, querying or retrieval). Many models have been proposed in the past which reflect
the needs of database users and developers.23 However, these models reveal important shortcomings: they are either
limited by the use of one kind of multimedia data (e.g., only images are supported) or by the capacity of semantic
modeling (e.g., only a keyword description of the content may be entered)∗. This is as astonishing, as there has been
recently published a new standard for describing the content of different types of multimedia data that offers richer
semantics than existing systems. It is MPEG-7,21 the first standard of the Moving Picture Experts Group not dealing
with coding exclusively (see section 3). The reason for this re-orientation is quite straightforward, coding has reached
a more or less satisfactory state (see MPEG-4), but yet we are not able to locate multimedia by standardized content.
As mentioned above, the benefits of MPEG-7 have not yet reached MMDBMS. In this context, our paper presents a
Multimedia Data Cartridge (MDC) that maps the MPEG-7 standard into a database model.

Besides the more effective modeling of multimedia content, access and retrieval has to be considered. We need an
efficient support for common multimedia retrieval functions, like similarity search, semantically meaningful queries
and browsing in an MMDBMS. An important tool to guarantee efficient query processing is the indexing mechanism
for commonly used datatypes. Innately, most database systems provide only a limited number of integrated access

∗see also our experience report in1

methods such as B-tree or hashing facilities. These techniques limit the use of database systems in multimedia. Avail-
able Object-Relational DBMSs (ORDBMS) provide some multimedia database extension packages such as DataBlades
(IBM-Informix) or Extenders (IBM-DB2). They rarely handle indexing of d-dimensional data (d>2) and advanced
similarity-search functionality, like a k-Nearest-Neighbor (k-NN) Search which is common for multimedia retrieval.
Indexing feature vectors must be a core tool in a MMDBMS, as it is not unusual to index images with a feature vector
dimensionality higher than 64 in.18–20 In this context several access methods for high dimensional data have been pro-
posed, e.g., SS-tree,8 SR-tree,9 M-tree,10 X-tree11 or TV-tree.12 A good survey on multidimensional access methods
is given in13 and.14 Unfortunately, these access methods are rarely available in common DBMS, nor are extensions
proposed to integrate them. We are only aware of an extension package for Informix by M.Kornacker.16 This work
integrates an adapted GiST framework2 into the Informix Dynamic Server with Universal Data Option (IDS/UDO).
However, the framework does not supply a multimedia support (e.g., data model and index integration).

Being aware of the shortcomings of related approaches, we designed a methodology for enhancing extensible OR-
DBMS. In particular, we implemented anMPEG-7 Multimedia Data Cartridge (MDC) . Our system relies on the
capacities of leading DBMSs (Oracle, IBM DB2 and IBM Informix, MSSQLServer) to provide services to extend their
management system. Oracle’s extension services were selected for the practical implementation, due to their avail-
ability (seehttp://technet.oracle.com). The multimedia extension created are, however, representatives for
other DBMS extension services like DataBlades from Informix or Extenders from IBM. Our MDC enhances the Oracle
type systems with an MPEG-7 compliant type system and integrates a new indexing system for multimedia retrieval
and queries. This indexing system is supported by an external framework (Multimedia Indexing Framework (MIF))
developed and validated by us in this context.

The remainder of this paper is organized as follows. In section 2 we define general characteristics of extensible
ORDBMS. This is followed by an overview of currently existing extensible ORDBMS. Section 3 introduces briefly
to the MPEG-7 MDS parts used in the MDC. Then, the common characteristics of ORDBMS extension services are
introduced. We discuss how our cartridge technology take advantage of them. Section 4 describes the core technologies
of MDC. Section 5 presents ourMultimedia Indexing Framework(MIF). Section 6 discusses experimental results on
our indexing framework and finally Section 7 concludes this paper and points to future work.

2. MULTIMEDIA EXTENSION FOR EXTENSIBLE ORDBMS

Although many well-working multimedia retrieval systems are available, DMBS are mostly lacking support for
multimedia applications, i.e., missing type models and indexing capabilities.
A practical solution to overcome these drawbacks is to use an extension service provided by many ORDBMS products
(e.g., Oracle’s Data Cartridges, Informix DataBlades or DB2 Extenders). Note that, there are many extensions available
for GIS and simple image repositories, but there is not yet a proposal for a multimedia extension package available.

The following subsections define some main characteristics an extensible package should offer for the creation of a
multimedia extension package and examines then available extension services.

2.1. General Characteristics of extensible ORDBMS

Extensible packages should enable database designers and programmers to extend at least the following parts of a
DBMS system (see figure 1): type system, server execution, query processing, query optimizer and data indexing.

These parts should furnish the following characteristics. First of all they should beserver-basedwhich means that
all components reside at the server. Furthermore theyextend the server. By defining new types, one is able to create a
solution-oriented image of a real world problem. Theintegration with the server ensures that the optimizer, indexer and
other mechanisms recognize and respond to these extensions. Finally these parts should bepacketizablefor transferring
them to another database.

Figure 1. Multimedia Extension for extensible ORDBMS

• Type System:Besides the common native SQL data types, such as e.g.,INTEGER, the type system should support
new types including user-defined objects or internal large object types (e.g.BLOB). New user-defined object types
(e.g., an Image Type) should specify the characteristics of the resource and the low- and high-level content.

• Server Execution Environment: This environment should allow the usage of popular programming languages
such as PL/SQL, Java or C language routines for the realization of stored procedures, functions andmethodsof
user-defined object types.

• Query Optimizer: The query optimizer should be able to consider additional statistic collections or cost functions
of new access methods for choosing an optimal query plan.

• Data Indexing: An efficient usage of user-defined object types requires the capability of enhancing the database
by new access methods. The extension package has to provide processes to maintain the index content during load
and update operations and to search the index during query processing. The index itself should be stored internally
as heap-organized or index-organized table or externally as an operating system file.

2.2. Oracle Data Cartridges

The extension package provided by Oracle is calledData Cartridge. Oracle databases are build as a modular ar-
chitecture with the extensible services described above. The usual way for using Oracle’s Extensibility Services is to
implement a Data Cartridge that extends the extensibility interface (see7).
Oracle adds support for new types including user-defined objects, collections (e.g.VARRAY) or internal large object
types (e.g.,BLOBor XMLType).
Oracle’s server execution environment provides two main advantages. First, the components of a data cartridge and
other database procedures and functions can be implemented in any popular programming language such as PL/SQL,
Java or external C language routines. Second, the type system decouples the implementation of an object’s method from
its specification. The specification just defines the head of the method with appropriate in and out parameters. It is not
defined what kind of implementation is behind the object’s method.
Further Oracle introduces the concept of anindextypefor user-defined access methods. Eachindextypehas specific oper-
ators and uses an object that is responsible for the implementation. This object has to implement all necessary functions
which are provided by ODCI (Oracle Data Cartridge Interface) for indexing e.g., ODCIIndexCreate or ODCIIndexInsert.

2.3. Informix DataBlades and DB2 Extenders

IBM offers currently two different extension packages for their database products, namely Informix DataBlades and
DB2 Extenders. Besides SQL native types, Informix supports three different user defined data types. Arow typeencap-
sulates a grouping of multiple columns into the definition of a new data type. Thedistinct typeis a customized version
of an existing data type.Opaque typesare defined by writing C, C++, or Java code to store, index and operate against
that data type. DB2 Extenders generally specifies UDT‘s (user-defined types) and allows besides the CLOB type an
additional XMLCLOB type for handling XML files.
Both systems enable a database developer to enhance the server execution environment by user-defined functions and
stored procedures implemented in PL/SQL, C(++) or Java.

Both systems also have the possibility to enhance their database by user defined access methods. Informix DataBlades
provides aVirtual Index Interface (VII)that allows the developer to create new indexes by implementing their cor-
responding methods (e.g., amcreate, aminsert). DB2 Extenders uses a specific SQL command for index extensions
together with some search methods. The consistency during insert, update and delete has to be managed with the help
of triggers.

3. MPEG-7

MPEG-721, 22 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group) and formally known as
”Multimedia Content Description Interface”. The standard is organized in eight parts (from system, low- and high-level
multimedia description schemes, to reference software and conformance) and provides a rich set of standardized tools
to describe multimedia content. A detailed explanation of all parts is beyond the scope of this paper but can be found
at.21, 22 The multimedia data is represented with the help of descriptions. A description consists ofDescription Schemes
(DS) and a set ofDescriptors (D). A Descriptor is a representation of a feature and defines its syntax and semantic,
it may for instance be a distinctive characteristic of audio-visual information. The description scheme identifies
relationships among other components (DS and D). Both, DS and D, can be defined and modified with the help of the
Description Definition Language (DDL)which bases on XML Schema extended by new data types, like for feature
vector representation. The example in figure 2 illustrates the use of MPEG-7 for describing the content of an Image.

<Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
 xsi:schemaLocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">
 <Description xsi:type="ContentEntityType">
 <MultimediaContent xsi:type="ImageType">
 <Image>
 <MediaLocator>
 <MediaUri> file://goal.jpg</MediaUri>
 </MediaLocator>
 <SpatialDecomposition gap="true" overlap="false">
 <StillRegion id="KloseGoal">
 <TextAnnotation>
 <FreeTextAnnotation>
 Klose shoots a goal with right foot.
 </FreeTextAnnotation>
 </TextAnnotation>
 <VisualDescriptor xsi:type="ScalableColorType"
 numOfCoeff="64" numOfBitplanesDiscarded="0">
 <Coeff> 2 4 6 8 10 ...
 </Coeff>
 </VisualDescriptor>
 </StillRegion>
 <StillRegion id="Spectators">
 <TextAnnotation>
 <FreeTextAnnotation>
 Spectators are crying
 </FreeTextAnnotation>
 </TextAnnotation>
 <VisualDescriptor xsi:type="ScalableColorType"
 numOfCoeff="64" numOfBitplanesDiscarded="0">
 <Coeff> 3 5 7 9 11 ...
 </Coeff>
 </VisualDescriptor>
 </StillRegion>
 </SpatialDecomposition>
 </Image>
 </MultimediaContent>
 </Description>
</Mpeg7>

ROOT

Description
xsi:type=ContentEntityType

Mpeg7

MultimediaContent
xsi:type=ImageType

Image

MediaLocator

MediaUri

file://goal.jpg

SpatialDecomposition
gap="true" overlap="false"

StillRegion
id="KloseGoal"

TextAnnotation

VisualDescriptor

xsi:type="ScalableColorType"
numOfCoeff="64" ..

FreeTextAnnotation Coeff

Klose shoots a
goal with right

foot.

2 4 6 8 10

Root node

Element node

Element node with
attributes

Text node

Legend

Figure 2. MPEG-7 Example Document and their corresponding DOM tree

Figure 2 uses theImageType and StillRegion DSfor this purpose. The ImageType DS describes the semantic, the
representation and the context of images. We describe one image located atgoal.jpg . This image is decomposed into
two sub-images, each specified with a (StillRegion) DS. This DS offers a large number of different elements (e.g., spatial
location information, text annotation, as well as means for further sub-regioning. In our example we specified an own
id, e.g., KloseGoal), aTextAnnotationthat contains text description on the image, and aVisualDescriptionwhich figures
a feature vector of size 64 for each StillRegion.

4. MULTIMEDIA DATA CARTRIDGE

We have decided to use Oracle‘s Data Cartridge technology for the implementation of our multimedia extension
calledMultimedia Data Cartridge (MDC). The MDC currently consists of two parts (see figure 3 (a)). The fist part is
theMultimedia Data Modelwhich contains the metadata describing the multimedia content. It is realized with the help
of theextensible type systemof the cartridge environment. For this purpose, the MPEG-7 MDS schema is mapped to a
database schema, i.e., to respective object types and tables. This mapping is discussed in subsection 4.1.

The second part is theMultimedia Index Typewhich provides an extensible indexing environment for multimedia
retrieval. For instance, we may use an SS-tree or SR-tree from our Multimedia Indexing Framework (MIF) framework
to index a high-dimensional color histogram. Another possibility is the use of an LPC-file18 for an NN-search in high-
dimensional spaces, or a V-tree24 for spatial queries. These are only few possibilities which are useful and possible in
our Multimedia Data Cartridge (MDC). The indexing part of MDC is described in subsection 4.2 and further sections.

(a) (b)

Figure 3. (a) Overview of the Multimedia Data Cartridge (MDC) Architecture and (b) Detailed view of GistService process

4.1. Multimedia Schema

The Multimedia Schema relies on the MPEG-7 standard to provide a complete metadata schema for structural and
semantic content of multimedia data (high-level descriptions). We provide object types for low-level features, like color,
shape, texture and link them to the high-level features. This enables us to retrieve multimedia data not only by low-level
features, as this is done commonly in Content-Based Systems (CBR-systems),27 but also on semantically meaningful
content in combination with low-level characteristics. For instance, in a sports application we could think of a query like:
“give me all goals of Miroslav Klose in the Football WorldCup which he shot by head (high-level) and where he wear the
traditional white/black dresses (low-level)”. Obviously, indexing these events is of interest here. We provide therefore
a flexible interface definition to the database in order to enable the plug-in of various multimedia annotation tools. In
particular, we are working with Joanneum Research to integrate a Video Publisher. This tool enables us to annotate and
publish video document like Word Document which render the cumbersomely semantic annotation process much easier.
For more information on this tool, the reader is referred tohttp://www.video-wizard.com/ .

Figure 4 shows a small extract of our multimedia database schema which is used in context with the multimedia
indexing extension and their experimental results (see section 6) and which shall demonstrate the mapping strategy. The
complete schema may be obtained fromhttp://www-itec.uni-klu.ac.at/˜harald/codac/schema.
pdf . Please note that, this schema supports the MPEG-7 example, given in section 3.

MediaFormat()

DOC_ID : Integer
PART_ID : Integer
Content : SYS.XMLType
Medium : SYS.XMLType
FileFormat : SYS.XMLType
FileSize : Integer
System : SYS.XMLType
Bandwidth : Float(126)
BitRate : SYS.XMLType
TargetChannelBitRate : Integer
ScalableCoding : SYS.XMLType
VisualCoding : VisualCodingType
AudioCoding : AudioCodingType
SceneCodingFormat : SYS.XMLType
GraphicsCodingFormat : SYS.XMLType
OtherCodingFormat : SYS.XMLType

MediaFormatType

Format : SYS.XMLType
Pixel : SYS.XMLType
Frame : SYS.XMLType
ColorSampling : SYS.XMLType

VisualCodingType

Format : SYS.XMLType
AudioChannels : SYS.XMLType
Sample : SYS.XMLType
Emphasis : SYS.XMLType
Presentation : SYS.XMLType

AudioCodingType

TextAnnotation()

DOC_ID : Integer
PART_ID : Integer
dummyAttr12 : dummyNTType13
relevance : Float(126)
confidence : Float(126)
lang : Varchar2(50)

TextAnnotationType

MediaInformation()

DOC_ID : Integer
PART_ID : Integer
MediaIdentification : REF MediaIdentificationType
MediaProfile : dummyNTType02

MediaInformationType

MediaProfile()

DOC_ID : Integer
PART_ID : Integer
ComponentMediaProfile : dummyNTType38
MediaFormat : REF MediaFormatType
MediaTranscodingHints : SYS.XMLType
MediaQuality : SYS.XMLType
MediaInstance : dummyNTType01
master : Varchar2(5)

MediaProfileType

dummyNTType13

AnnotationTable1()

FreeTextAnnotation : CLOB
lang : Varchar2(50)
StructuredAnnotation : SYS.XMLType
DependencyStructure : SYS.XMLType
KeywordAnnotation : SYS.XMLType

dummyType14

dummyNTType02

dummyNTType38

MediaInstance()

DOC_ID : Integer
PART_ID : Integer
InstanceIdentifier : SYS.XMLType
MediaLocator : SYS.XMLType
LocationDescription : SYS.XMLType

MediaInstanceType

dummyNTType01

MediaIdentification()

DOC_ID : Integer
PART_ID : Integer
EntityIdentifier : SYS.XMLType
AudioDomain : SYS.XMLType
VideoDomain : SYS.XMLType
ImageDomain : SYS.XMLType

MediaIdentificationType

dummyNTType16

VisualDescriptor : Varchar2(60)
VisualDescriptor_ID : Integer
VisualDescriptionScheme : SYS.XMLType

dummyType28

dummyNTType27

Image()
StillRegion()

DOC_ID : Integer
PART_ID : Integer
MediaInformation : REF MediaInformationType
MediaInformationRef : SYS.XMLType
MediaLocator : SYS.XMLType
StructuralUnit : SYS.XMLType
CreationInformation : SYS.XMLType
CreationInformationRef : SYS.XMLType
UsageInformation : SYS.XMLType
UsageInformationRef : SYS.XMLType
TextAnnotation : dummyNTType83
dummyAttr105 : dummyType85
MatchingHint : SYS.XMLType
PointOfView : SYS.XMLType
Relation : dummyNTType112
SpatialLocator : SYS.XMLType
SpatialMask : SYS.XMLType
MediaTimePoint : SYS.XMLType
MediaRelTimePoint : SYS.XMLType
MediaRelIncrTimePoint : SYS.XMLType
dummyAttr23 : dummyNTType27
MultipleView : SYS.XMLType
SpatialDecomposition : dummyNTType16

StillRegionType

ScalableColor()

DOC_ID : Integer
PART_ID : Integer
Coeff : CLOB
numOfCoeff : Integer
numOfBitplanesDiscarded : Integer

ScalableColorType

StillRegion : REF StillRegionType
StillRegionRef : SYS.XMLType

dummyType21

dummyNTType20

SRSpatialDecomposition()

DOC_ID : Integer
PART_ID : Integer
criteria : Varchar2(4000)
overlap : Varchar2(5)
gap : Varchar2(5)
dummyAttr18 : dummyNTType20

StillRegSpatDecType

SemanticBase : REF SemanticBaseType
SemanticBaseRef : SYS.XMLType

dummyType52

dummyNTType51

SemanticBag()

dummyAttr53 : dummyNTType51
Graph : SYS.XMLType

SemanticBagType

dummyNTType60

SemanticDescription()
Semantics()

DOC_ID : Integer
PART_ID : Integer
DescriptionMetadata : SYS.XMLType
Relationships : SYS.XMLType
OrderingKey : SYS.XMLType
Affective : SYS.XMLType
Semantics : dummyNTType60
ConceptCollection : SYS.XMLType

SemanticDescriptionType

ColorQuantization()

DOC_ID : Integer
PART_ID : Integer
Component : SYS.XMLType
NumOfBins : Varchar2(12)

ColorQuantization

ColorStructure()

DOC_ID : Integer
PART_ID : Integer
Value : CLOB
colorQuant : Integer

ColorStructureType

dummyNTType83

Semantic : REF SemanticBagType
SemanticRef : SYS.XMLType

dummyNTType84

dummyType85

Figure 4. Small Extract of the MPEG-7 Database Schema (Types and Tables)

The presented Multimedia Schema contains the mapping of anMPEG-7 StillRegionTypewhich is a delegate for
images in MPEG-7 (i.e., StillRegion denotes complete images and parts of them). In the database schema we created an
object type of the same name (StillRegionType). Some of elements are declared as separate object types, some are defined
by the specificSYS.XMLType. The decision which type to use was carried on importance for the querying process. For
instance, the element of typeTextAnnotationTypewas chosen to be detailed further, because it is of importance for
free-text search in the database, while theUsageInformationwas chosen to be declared asSYS.XMLType. The later type
contain only few information for a concrete image, because meta-information on the usage may already be declared
at the MPEG-7 root level, further it spans a DS which might contain many different descriptions with similar content.
This would lead to many database object and tables, probably containing few content. Therefore, we decided to store
the subtree of the MPEG-7 document containingUsageInformationdirectly in the database type/table. However, this
information is not lost for querying. The reason is that theXMLTypeprovides XPATH query functionality which enables
one to reach elements and attributes of this document by XPATH. In other words, with a combined select and XPATH
query any information may be reached. However, as pointed out earlier, important information can be reached directly
through object navigation, as for instance from StillRegion to TextAnnotation.

Other object types are forMediaInformation(MediaInformationType, MediaProfile, MediaFormat etc.). They de-
scribe information on the coding, media attributes, locations and physical structure of the data. Semantic content of an

image may be obtained through the Semantic reference to anSemanticBagTypewhich is an abstract root object type
for concrete semantic indexing classes, like events, places and time. Finally, the decomposition of the image (structural
aspect) is specified by following the reference of theSpatialDecompositionelement in the StillRegionType.

Further important object types areScalableColorTypeandColorStrucutureType. They are used to store the feature
vectors of the color histograms extracted from the images described by aStillRegionand are indexed with the help of
ourMultimedia Indexing Framework(see subsection 4.2).

Finally, we had to introduce some dummy types. These stem from (m,n) relationships in the element associations of
the MPEG-7 schema. They cannot be directly mapped to object associations and are represented as “dummy”, i.e., not
originally named in MPEG-7. In terms of tables, they are nested table in the respective parent table. An example is the
VisualDescriptorwhich is an XML element collection in the MPEG-7 StillRegionType.

In order to store structured values, all relevant (queryable) types, have to be declared as tables. Table names for
types are shown in the last line of each box defining a type. For instance for theStillRegionTypewe defined two tables
StillRegion()andImage(). The later models the delegate functionality of the StillRegion DS in MPEG-7.

Example Mapping of an MPEG-7 Document This paragraph describes the most important steps that are used during
insertion of our example MPEG-7 document (see figure 2 left side). The basic idea is to perform a post order traversal
of the document‘s DOM tree (see figure 2 right side) which is created with the help of an corresponding XML parser.
A leaf node is defined as either having no more child nodes (e.g.: FreeTextAnnotation, Note: the text element is not
indicated as a node) or representing an XMLTYPE (e.g.: MediaLocator) which is inserted with all child elements.
Besides the XMLTYPE and basic types, such as Integer, the insertion process has to identify the following types:REF
Typerepresents a reference pointing to a row somewhere in the database,Dummy Typesindicates nested tables and
Empty Typesmeaning that the element has no corresponding column in the current table (e.g.: VisualDescriptor element
of table StillRegion). The main part is to identify a node in the DOM tree that corresponds to a database table in our
schema. After a successful identification the necessary insert statement has to be created. For this purpose we have to
specify the table name the parameter list and their values. The attributes of the current node (identified as a database
table) can be fetched with methods of the DOM API to retrieve all childs. The attribute name/value pairs are stored into
the respective column and value list vectors. Finally, the complete insert statement can be build and executed. After a
successful execution the algorithm proceeds with the next node in the post order traversal. The algorithm terminates as
soon as the root element of the document is reached.
Looking at the example, that would mean that the tree is traversed along the leftmost subtree until theMediaLocator
node has been reached. As its type is XMLTYPE, the traversal is continued at its sibling,SpatialDecomposition. Again,
the tree is traversed until the next leaf node is reached, namelyFreeTextAnnotation. The parent node is a possible insert
candidate and therefore processed as described before. The other nodes considered immediately for being inserted are
(in the order of traversal):VisualDescriptor, StillRegion, SpatialDecomposition, Image, MultimediaContent, Description
andMpeg7.

4.2. Multimedia Indexing Framework (MIF)

The Multimedia Indexing Framework (see figure 3 (a)) is divided into three modules. Each module may be used on
its own and may be distributed over the network.

4.2.1. GistService

The GistService (see figure 3 (b)) is the part realized in the external address space and is implemented in C++. It runs
as an own process (called service) in the Windows Operating System environment and manages all available access
methods. The current version offers support for Generalized Search Trees (GiST, see section 5) and further access
methods not relying on balanced trees (e.g., LPC-files18 to support NN-search in high dimensional vector spaces.

The service is split into two main components: TheGistCommunicatorand theGistHolder. TheGistCommunica-
tor is a COM-object (Component Object Model) which offers services through an IDL interface (Interface Definition

Language). It is used for inter-process communication between the database (the GistWrapper shared library) and the
implemented access methods. Thus, theGistCommunicatorsupplies the necessary functionality (e.g., creating, insert-
ing, deleting) for accessing the index structures. The result of the operations are forwarded to the database.
It is the task of theGistHolderto manage all currently running index trees and the accesses to them. Each index tree is
identified through a global and unique ID which is forwarded to the accessing process. For simplicity, the index trees
are internally stored in an array, but this data structure can be replaced simply by any other more dynamic structure.

4.2.2. GistWrapper

The GistWrappermodule is a in C++ implemented shared library that is used by the database to connect to theGist-
Service. The library has two main tasks. First, it makes the GistService accessible for database procedures. An Oracle
database has the possibility to call external C/C++ code via shared libraries. The GistWrapper acts as a wrapper for the
GistService. The second task is the transformation of the input and output data to make it usable for both the GistService
and the database. For instance, a simple C Char type has to be transformed into a BSTR string, or a VARIANT type into
a String and so on. The GistWrapper module offers a similar interface as the GistService module.

4.2.3. Multimedia Index Type

The multimedia index type consists of severalindextypes, their correspondingoperatorsand the appropriate implemen-
tation (objects). We will illustrate the integration process with the example of an R-tree. For this purpose, we defined
first a new Oracleindextype. Eachindextypeneeds someoperatorsthat are offered by this type. Example of operators
which we realized are the following:

– rt equalpoint(CLOB, CLOB, number, number);
– rt nearestpoint(CLOB, CLOB, number, number);

The first operator defines an equality search and the second one a nearest neighbor search for point data. The param-
eters are defined as follows: 1) element in the database table, 2) search item, 3) amount of results, and 4) the dimension.

In the second step we defined an object that delegates all necessary index methods (e.g., ODCIIndexInsert, ODCIIn-
dexCreate, ...) to their corresponding implementations. In this example, most methods are forwarded to the GistService.

5. GIST FRAMEWORK

As mentioned above, our indexing framework, MIF, relies partially on theGiST framework. The theory and imple-
mentation of the GiST framework was developed by J. H. Hellerstein and his group at the University of California,
Berkeley. The GiST framework enables a developer to plug-in new balanced tree implementations into the framework
and to test their performance. This is done by implementing some specific methods for insertion, deletion and search.
The current GiST version, 2.0, already includes source code† for the R-tree, R*-tree, SS-tree, SR-tree, SP-tree and
B-tree.

Generally spoken, a GiST is a balanced tree with (key, RID) pairs in the leaves and (predicate, child page pointer) pairs
as internal nodes. The framework and their corresponding trees have no restrictions on the key data stored within the tree
or on their organization within and across nodes. Once a new access method is set up, its balance may be improved by
an additional tool in the GiST framework environment, the amdb.4 Amdb is a tool for designing, debugging, analyzing
and performance measuring of GiST implemented access methods. The current GiST framework (version 2.0) has some
shortcomings. First of all only one index tree may be used at time. Second, no support for additional non-balanced tree
indexes is given.
The GiST framework is widely used in the CBR research,15 but yet this framework has not been integrated into an
extensible DBMS to support multimedia applications.

Finally, it is important to note that there has been extensive testing of the framework which is reported in,25 also in
combination with an CBR prototype called Blobworld.5, 6 The efficiency of the GiST framework has been demonstrated
in these previous works, yet its integration into a DMBS, together with the important multimedia extensions we made,
has to be carefully evaluated for efficiency which is detailed in the next section 6).

†http://gist.cs.berkeley.edu/

6. EXPERIMENTAL RESULTS

This section describes a significant part of the series of experiments we performed in order to evaluate the effective-
ness of ourMultimedia Indexing Framework(MIF). The tests were carried out on two distinct datasets, onesynthetic
(uniform dataset)and onereal. The experimental settings are as follows:

• The synthetic dataset contains 64 and 96 dimensional feature vectors that are represented as strings. The values
were generated uniformly over the normalized [0..1] space.

• The real dataset was generated from an 1 hour and 46 minutes long movie, encoded with DIVX4. From the
movie, we extracted 64 dimensional color histogram of 200000 frames of size 352x288 pixel, by retaining the two
most significant bits in the RGB space. The generated feature vectors were inserted into the database. Further we
separated color histograms of 100 frames for the query process.

In order to compare the built-in indexing mechanism and our MIF for efficiency we have to carry out exact match
queries. The remaining supporting MIF retrieval functions, like reach search, NN-search and overlap search, are in
addition to the build-in index functions.

The retrieval was carried out through server-sided JDBC, i.e., the java class resides in the database and are executed
through Oracle’s own JVM (Java Virtual Machine). The insertion was accomplished through a java class that resides
outside of the database and was connected through thin JDBC. In both cases, we always used the same java classes for
the measurements, thus the results are comparable.

6.1. Indexing Details

The feature vectors are stored in a column of typeCharacter Large Object (CLOB). We had to use theCLOBdata
type, because of the high dimensionality of the required data (e.g., multi-level feature vector of frames in MPEG movies).
As a consequence, the build-in B-tree can not be used, as it does not handle CLOBs. In theory, the build-in B-tree should
be able to index data up to 160 dimension (limited through the VARCHAR2 data type of Oracle), but in practice the
dimension handled depends on the number of data points, for instance for a dimension of 2 (!) we are able to insert 2.8
millions, after this value the database crashed. Instead, we used theOracle Text Indexwhich is able to index CLOB string
representations without severe limitations. Based on these index techniques we compared the response time between a
normal (no index) solution, the Oracle Text Index andMIF. The response time was measured for insertion and query
operations. The query operation was limited to exact match queries, because of the limited functionality of current
database indexing mechanisms. As mentioned above this shortcoming can be compensated with MIF.

6.2. Detailed Results

The comparison of MIF using R-trees and Oracle 9i build-in Text Index17 shows that the MIF based trees show less
insertion efficiency (due to the external proc calls), but offer significantly higher query performance.

Indexing – Synthetic Dataset The following figures show the results for the insertion process: Left side of figure 5
for 64 dimensional point entries and right side of figure 5 for 96 dimensional point entries. These figures show that the
MIF has a higher insertion time than the related solutions. The extra time for the MIF is caused by the overhead from
switching and transferring the data between the Oracle address space and the external address space. This overhead does
not penalize the MIF, because insertion are rare in our mostly read-only application context, and second the insertion
does not explode even for a large data set.

It has to be noted that the memory consumption of theOracle Text Indexis enormous. The table space consumed is in
the worst case over 3.8 GB for an insertion operation of 200.000 point elements with 96 dimensions. Compared to this,
the memory consumption of theMIF is significantly smaller, e.g., for the same insertion operation as above, it requires
only a table space of about 220 MB.

Figure 5. Response Time of the Insert Statements (50000 to 200000 points with 64 dimension (left) and 96 dimension
(right))

Retrieval Query – Synthetic Dataset The results for the query evaluation show that our framework MIF outperforms
clearly the related solutions. This is important, as in typical ad-hoc scenarios the query process is far more often used
than the indexing process.

Left side of figure 6 shows that for exact match queries involving 64 dimensions, theMIF environment outperforms
clearly both related solutions. The figures show the mean value of 5 measurements including each 100 select statements.
A sequential search is, of course, significantly slower. Positively, theMIF environment is from 6 to 7 times faster than
the Oracle Text Index for 175.000 data entries of 65 respectively 96 dimensions. Furthermore, MIF performs from 85 to
134 times better than the no index solution for the same amount of indexed elements.

Figure 6. Response Time of Select Statements of points with 64 dimension (left) and 96 dimension (right)

Indexing and Retrieval – Real Dataset The response time for the insertion process with the real dataset was similar
to the results obtained from the synthetic dataset test series and is presented in figure 7 (left side). The response time is
again measured as the mean value of 5 measurements each including 100 select statements. The response time of the
sequential scan was very similar to that measured for the synthetic data set (see figure 6). Moreover, in reason of the

great discrepancy between the index and non-index solutions, the results of the non-index solution are not presented in
this figure.

Figure 7. Response Time of Inserts and Select Statements for color histograms (real dataset) with 64 dimension

Figure 7 shows that the Oracle Text Index performs worse than in the previous test series. On average, we increased
our efficiency by a factor of 6 compared to the synthetic data which leads to an overall improvement of 46 times faster
than the Oracle Index (and this even with the call to an external address space) for 175000 indexed elements. Contrarily
to the uniform dataset from above, the color histogram derived from this special movie contains far more zero values.
This fact seems to shorten the use of the Oracle Text Index significantly.

7. CONCLUSION AND FUTURE WORK

This paper introduced theMDC (Multimedia Data Cartridge) as an MPEG-7 supported Database System Extension
to an Oracle DBMS. It allows one to process (e.g., insert, query, retrieve) multimedia data more efficiently than related
approaches (e.g., DMBS extender or CBR systems). Our approach introduced first a new database meta model for
multimedia data based on the MPEG-7 MDS standard. Second, we proposed an extension of the indexing mechanism
based on our newMIF (Multimedia Indexing Framework). This framework allowed not only the execution of exact-
match queries, but also supplied more multimedia specific operations, like range-search, NN-search, overlap etc., and
meets thus more precisely the requirements of multimedia search and filter applications than the broadly used DBMS
Extenders (e.g., DB2 Extenders). We furthermore showed that a new index type could be instantiated with only few
steps using the Data Cartridge technology in combination with the GiST-framework. Finally, the experimental analysis
showed that the build-in indexes of Oracle were outperformed for queries they may still handle (exact match). Moreover,
the performance for an NN-search with MIF were comparable to those of the exact match. This showed together with
our extension mechanisms (support for similarity search), the effectiveness of our approach.

The proposed methodology applies to other extensible object-relational DBMS as well, as long as they provide an
extensible type system, query processing/optimization interface and access methods, as for instance IBM DB2 and IBM
Informix do.

Future research will focus on integrating a cost-based query optimizer to our MDC by implementing the respective
Cartridge interface. We will thereby rely on our preliminary work in.28 Further work will also concentrate on integrat-
ing additional access methods into the MIF for supporting better the semantically meaningful queries (e.g., index the
semantic relations). In this context we are also working on a query interface in order to admit a user friendly access to
our MDC enhancement.

REFERENCES

1. Harald Kosch. MPEG-7 and Multimedia Database Systems. Sigmod Records, 31(2). June 2002.
2. Joseph M. Hellerstein, Jeffrey F. Naughton and Avi Pfeffer. Generalized Search Trees for Database Systems. In Proceedings

of the 21st International Conference of Very Large Databases VLDB, pages 562-573, Zurich Switzerland 1995.
3. Marcel Kornacker. PHD Thesis: Access Methods for Next-Generation Database Systems. University of California at Berkley,

2000.
4. M. Shah, M. Kornacker, J. M. Hellerstein. Amdb: A Visual Access Method Development Tool. In Proc. User Interfaces To

Data Intensive Systems, pages 130-140, Edinburgh, Scotland, 1999.
5. C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein and J. Malik. Blobworld: A System for Region-Based Image Indexing

and Retrieval. Third International Conference on Visual Information Systems, pages 509-517, Amsterdam, The Netherlands,
June 1999. Springer Verlag ISBN:3-540-66079-8.

6. M. Thomas, C. Carson and J. M. Hellerstein. Creating a Customized Access Method for Blobworld, Proc. of the 16th Int.
IEEE Conf. on Data Engineering, page 82, San Diego, CA, March 2000, IEEE Computer Society 2000.

7. Data Cartridge Developer‘s Guide. Oracle 9.2, Part No.: A96595-01, March 2002.
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/appdev.920/
a96595.pdf .

8. D. A. White and R. Jain. Similarity Indexing with the SS-tree. In Proc. of the 12th Int. IEEE Conf. on Data Engineering,
pages 516-523, New Orleans, Louisiana 1996. IEEE Computer Society 1996, ISBN 0-8186-7240-4.

9. N. Katayama and S. Satoh. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. In Proc. of the
1997 ACM SIGMOD Int. Conf. on Management of Data, pages 369-380, 1997.

10. P. Ciaccia, M. Patella and P. Zezula. M-tree: An efficient Access Method for Similarity Search in Metric Spaces. In Proc.
of the 23rd Int. Conf. on Very Large Data Bases, pages 426-435, Athens, Greece 1997. Morgan Kaufmann 1997, ISBN
1-55860-470-7.

11. S. Berchtold, D. A. Keim and H. P. Kriegel. The X-tree: An Index Structure for High-Dimensional Data. Proceedings of the
22nd VLDB, pages 28-39, Mumbai (Bombay), India August 1996. Morgan Kaufmann 1996, ISBN 1-55860-382-4.

12. K. I. Lin, H. V. Jagadish and C. Faloutsos. The TV-tree: An Index Structure for High-Dimensional Data. VLDB Journal 3(4),
pages 517-542, 1994.

13. Volker Graede and Oliver G̈unther. Multidimensional Access Methods. ACM Computing Surveys, 30(2), pages 170-231,
1998.

14. C. B̈ohm, S. Berchtold and D. A. Keim. Searching in High-Dimensional Spaces - Index Structures for Improving the Perfor-
mance of Multimedia Databases. ACM Computing Surveys 33(3), pages 322-372, 2001.

15. R. Bliujute, C. S. Jensen, S. Saltenis, G. Slivinskas. R-tree Based Indexing of Now-Relative Bitemporal Data. In Proc. of the
24th VLDB Conference, pages 345-356, New York, USA, 1998. Morgan Kaufmann 1998.

16. M. Kornacker. High-Performance Extensible Indexing. In Proc. of the 25th VLDB Conference, pages 699-708 Edinburgh,
Scotland, 1999. Morgan Kaufmann 1999.

17. Oracle Text. An Oracle Technical White Paper, May 2001.http://technet.oracle.com/products/text .
18. G. Cha, X. Zhu, D. Petkovic and C. Chung. An Efficient Indexing Method for Nearest Neighbor Searches in High-

Dimensional Image Databases. IEEE Transaction on Multimedia 4(1), pages 76-87, March 2002.
19. M. Flickner, H.Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele

and P. Yanker. Query by image and video content: The QBIC system. IEEE Computer, 28(9):23-32, Sept. 1995.
20. M. A. Stricker and M. Orengo. Similarity of color images. In Storage and Retrieval for Image and Video Databases, SPIE,

pages 381-392, San Jose, CA, 1995.
21. J.M. Martinez. Overview of the MPEG-7 standard, v8.0. ISO/MPEG N4980, MPEG Requirements Group, Klagenfurt 2002.

Available athttp://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm .
22. J. M. Martinez, R. Koenen and F. Pereira. MPEG-7. IEEE Multimedia, 9(2), pages 78-87, April-June 2002.
23. R. Tusch, H. Kosch and L. Boeszoermenyi. VIDEX: An Integrated Generic Video Indexing Approach, In Proc. of the ACM

Multimedia Conference 2000, pages 448-451, Los Angeles, USA.
24. M. R. Mediano, M. A. Casanova and M. Dreux. V-Trees - A Storage Method for Long Vector Data. In Proc. 20th International

Conference on Very Large Data Bases, pages 321-330, Santiago, September 1994.
25. Nathan G. Colossi and Mario A. Nascimento. Benchmarking Access Structures for High-Dimensional Multimedia Data.

Technical Report 99-05. Department of Computing Science University of Alberta, Canada. 1999.
26. S.-C. Chen, R. L. Kashyap and A. Ghafoor. Semantic Models for Multimedia Database Searching and Browsing. Kluwer

Press, 2000.
27. A. Yoshitaka and T. Ichikawa. A Survey on Content-Based Retrieval for Multimedia Databases. IEEE Transactions on Knowl-

edge and Data Engineering, 11(1), pages 81-93, 1999.
28. S. Atnafu, L. Brunie and H. Kosch. Similarity-Based Operators and Query Optimization for MMDBMS. In International

Database Engineering and Application Symposium (IDEAS) 2001, IEEE CS Press, pages 346-355, Grenoble, France, 2001.

