
Exploiting Generalization for the Composition of

Transformations of XML Schema Based

Documents

Marek Lehmann

University of Klagenfurt
Dep. of Informatics-Systems
marek@isys.uni-klu.ac.at

Abstract. Open exchange of electronic documents in XML formats fre-
quently requires the transformation to different XML-Schemas or DTDs
(document type description). We propose a transformation system which
eases the tedious production of such transformations, in particular XSLT
transformations by composing (available) transformation programs. In
this paper we show how the inheritance concepts of XML-Schema can
be exploited to increase reuse of existing component transformations.

1 Introduction

The eXtensible Markup Language (XML) [2] has been widely accepted as a
universal format for data interchange and publication, in particular for data
published on the web or transmitted through web services. As XML is a meta-
language, everyone can define in XML his or her own language using document
type descriptions (DTD) or XML Schema [8]. Information systems dealing with
information from other parties or sending information to others will have to
manage this heterogeneity. In particular, it is frequently necessary to transform
documents between different document types or schemas.

The most widely used and popular way to transform an XML document from
one schema to another is to use XSLT transformations [4]. XSLT allows to write
simple transformations for small documents quite easy, but complexity and error
rates increase dramatically with the size of documents. For this reason writing
of such transformations is very time consuming and tedious.

In [7] an approach was proposed to solve this problem for the DTD based
documents by composing/decomposing XML transformations stored in a library
and attaching them to components of XML documents. In [6] this approach was
extended to XML Schema based documents. In particular the later proposal
made use of the typing concept of XML Schema and linked XSLT transforma-
tions to XML Schema types.

In this paper we extend the approach presented in [6] by taking into account
the concepts of type inheritance introduced by XML Schema. In [6] we pro-
posed building of a library of well tested transformations between types. Before



a transformation is programmed, this library is searched for existing transfor-
mation, or at least transformations of components of the actual document. If
such a transformation is not found, the IS A hierarchy of types can be used to
find transformations of closely related types.

2 XML Schema

Currently XML is widely used for documents exchange. Structure of these doc-
uments is mainly defined in document type declarations (DTD) [2]. But due
to DTD’s weaknesses, there are several other proposals of methods of defining
schemas for XML documents [9]. One of the most promising is XML Schema,
a new W3C recommendation [8] for defining the structure of XML documents.
XML Schema specification defines few basic building blocks for designing schemas.
Like in DTDs programmers can define elements and attributes. The most sig-
nificant difference to DTDs is a possibility do derive new user defined types in
the manner similar to the object oriented languages. We can distinguish two
kinds of datatypes: simple datatypes and complex datatypes. The main differ-
ence between them is that simple types do not contain any child elements nor
attributes and complex types have such possibility. Every element has to be of
certain type – simple or complex. To simplify this idea we have introduced in an
AbstractType class, which is not specified in [1].

New user defined types can be derived by restriction or extension of a base
type. Simple types can be derived only by restriction of a value space of some
existing simple type. Complex types can be derived both by restriction and
extension of simple and complex types. In new complex type we can extend a
structure of a base type by adding new attributes or subcomponents. We can also
create a new complex type which is a subset of the base type. We can restrict a
value space or a structure (e.g. restrict a number of occurrences of some elements
or attributes).

XML Schema supports type substitutability. This means that any element of
a base type can be substituted in a document instance by any element of a type
derived from the base type. It is not important whether this type was derived by
restriction or by extension. If we have a base complex type PublicationType and
we derived from it another complex type called BookType, we can use instances
of BookType instead of instances of PublicationType. But we have to inform
the parser about this change by special a XML attribute xsi:type as on given
example.

<Publication xsi:type="BookType">

<Title>Quo Vadis?</Title>

<Author>Henryk Sienkiewicz</Author>

<Date>1997</Date>

<ISBN>0781805503</ISBN>

<Publisher>Hippocrene Books</Publisher>

</Publication>



3 Transformation Library

In [6] we presented the idea of decomposition of XSLT transformations and link-
ing them to components described by XML Schema types. Every transformation
was responsible for transforming elements of a given source type into elements
of a given target type. We proposed to maintain a library of well tested transfor-
mations between types. Whenever a user wants to transform a document from
one type into another type, our transforming system can look up a proper trans-
formation in the library and apply it. The metamodel for our transformation
library is presented on Fig. 1.

Fig. 1. Metamodel for a transformation library with hierarchies of types

The type substitutability in XML Schema gives us new possibilities in match-
ing appropriate transformations. If any instance of a base type T can be replaced
by an instance of a derived type T´, than any legal transformation of the type
T should be valid for the type T´. We inherit transformations down the IS A
hierarchy. If we cannot find any transformation for the type T´ we can look for
a transformation of its base type T. But type substitutability gives us also some
possibilities with a target type. If we cannot find a correct transformation to
the target type, we can try to transform our source to any type derived from
the target type (including types derived transitively). Of course it is necessary
to inform the parser about this change of the output document by adding a
special XML attribute xsi:type to the result element. We must be aware that
the type substitutability can also appear in the instance of the source document.
The transformation system must check the real type of a source element being
processed and look for the appropriate transformations.



4 Conclusions

We presented a new approach to transformations of XML Schema based docu-
ments. In particular we emphasized the following:

– Assigning source types and target types to transformations.
– A meta structure for storing XML Schema type’s hierarchies and associated

transformations in a library.
– Allowing to transform an element of a given type by transformations designed

for types related to this given type in the IS A hierarchy.

We shortly presented how to attach transformations to types and how to
apply the knowledge about the type hierarchy to transform documents more
efficiently. Our purpose was to minimize the effort in development process for
creating transformations between XML documents. It is achieved by reusing
existing transformations for given types and the types related to them through
inheritance.

References

1. Paul V. Biron, Ashok Malhotra: XML Schema Part 2: Datatypes. W3C Recom-
mendation 2 May 2001, http://www.w3.org/TR/xmlschema-2/

2. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler: Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

3. K. Cagle, J. Ducket et al.: Professional XML Schema. Wrox Press, 2001
4. James Clark XSL Transformations (XSLT) Version 1.0. W3C Recommendation

16 November 1999, http://www.w3.org/TR/xslt
5. James Clark, Steve DeRose: XML Path Language (XPath) Version 1.0. W3C

Recommendation 16 November 1999, http://www.w3.org/TR/xpath
6. J. Eder, M. Lehmann: Composition of Transformations for XML Schema Based

Documents. Submitted for publication, 2003.
7. J. Eder, W. Strametz: Composition of XML-Transformations. In Electronic Com-

merce and Web Technologies. Second International Conference (EC-Web 2001).
LNCS 2115, p. 71 ff., 2001

8. David C. Fallside: XML Schema Part 0: Primer. W3C Recommendation 2 May
2001, http://www.w3.org/TR/xmlschema-0/

9. Dongwon Lee, Wesley W. Chu: Comparative Analysis of Six XML Schema Lan-
guages ACM SIGMOD Record, Vol. 29, No. 3, September, 2000

10. Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsoh:.
XML Schema Part 1: Structures. W3C Recommendation 2 May 2001,
http://www.w3.org/TR/xmlschema-1/


