
Composition of Transformations for

XML Schema Based Documents

Johann Eder and Marek Lehmann

University of Klagenfurt
Dep. of Informatics-Systems

{eder,marek}@isys.uni-klu.ac.at

Abstract. XML is gaining acceptance as a universal format for data
interchange and data publication. The proliferation of different docu-
ment type descriptions or XML Schemas, however, requires still ad-
equate treatment of heterogeneity, in particular the transformation of
documents between different schemas by XSLT programs. We propose a
new way to define XSLT transformations for XML Schema based doc-
uments. Transformations are based on types defined in XML Schemas.
Transformations of complex documents may be composed of transforma-
tions on subcomponents of these documents. A library stores information
about available transformations and their relation to schemas and types
and is instrumental in decomposing a document in a way that promotes
the application of already available transformations on subcomponents.
Therefore the tedious and error-prone work of programming transforma-
tions can be made easier and more efficient through reuse.

1 Introduction

The eXtensible Markup Language (XML) [3] has been widely accepted as a
universal format for data interchange and publication, in particular for data
published on the web or transmitted through web services. As XML is a meta-
language, everyone can define his or her own language in XML using document
type descriptions (DTD) or XML Schema [8]. The homogeneity XML brings on
lower levels is contrasted with the proliferation of different document types, dif-
ferent schemas, different semantics on upper levels of a communication channel.
Due to differences in interests, different requirements, progress and optimiza-
tion with different constraints, to hope for generally accepted standard format
for business documents is wishful thinking, but unrealistic at least. Information
systems dealing with receiving information from other parties or sending infor-
mation to them will have to manage heterogeneity. In particular, it is frequently
necessary to transform documents between different document types or schemas.

The most widely used and popular way to transform an XML document
from one schema to another are XSLT transformations [5]. XSLT allows one to
write simple transformations for small documents quite easily, but complexity
and error rates increase dramatically with the size of documents. For this reason
writing such transformations is very time consuming and tedious. Maintenance

katja
published in: Proceedings of Short Papers of the 7th East European Conference on Advances in Databases and Information Systems (ADBIS 2003), pp 38-47

and reuse of XSLT code is also very difficult. Therefore, support for program-
mers is highly desirable. In [7] an approach was proposed to solve this problem
by composing and decomposing XML transformations stored in a library and
attaching them to components of DTD based XML documents.

In this paper we extend this approach by taking into account the concepts
introduced by XML Schema. In particular, we can make use of the typing concept
of XML Schema for describing transformations. We propose to build up libraries
of well tested transformations between types of XML Schema. In our proposal
we emphasize reusing of existing transformations and making use of them in
defining new, more complex transformations.

The rest of the paper is organized as follows: in section 2 we briefly review
the concepts of XML, DTD, XML Schema and XSLT as much as is necessary for
presenting our transformation system. We present our library of elements, types
and transformations for XML Schema. Section 3 presents a top-down process
for composition and execution of transformations, and introduces the notion of
stubs, a concept necessary for composing XSLT transformations without side
effects. In section 4 we give an extensive example for stub aware transformations
to illustrate our approach. Finally, we draw some conclusions in section 5.

2 Transformation Library

XML is a W3C standard [3] that allows the sharing of data across applications,
platforms, and the Internet. In principle, an XML document consist of nested
elements. Any well-formed XML document can be represented as a tree in which
the element names (tags) describe the nodes. The DOM Model [9], a standard
interface for accessing and manipulating XML documents, uses the tree model.

XML is a metalanguage, which can be instantiated with the XML Schema or
DTD. Extensibility of XML by defining new grammars was crucial for its success.
It also causes problems, if two cooperating parties use different schemas for their
documents. This heterogeneity requires transformations of XML documents. We
can convert XML data from one representation to another by using XSLT [5].

XSLT is very powerful, but writing and maintaining big XSLT programs
is very arduous. The main problem is the lack of support for code reuse. In
[7] a proposal was presented to attach XSLT transformations to components.
This decomposition was based on DTDs. An XML component is a semantically
meaningful unit of the problem domain. In an XML document the tags can be
interpreted as delimiters of a component defined in such a way. In the tree model
the same component is defined as a subtree identified through its root element.

Due to DTD’s weaknesses, there are several other proposals of schema defi-
nition methods for XML [2]. One of the most promising is the XML Schema [8].
The most significant difference between DTDs and XML Schema is a possibility
do derive new user defined types in the manner similar to the object oriented
languages. We can distinguish two kinds of datatypes: simple and complex. Sim-
ple types contain neither child elements nor attributes. Complex types have such
possibility. Every element has to be of a certain type (simple or complex). At-

Element

Schema

Transformation

Attribute SimpleType Stub

AbstractType

defines

0..n from

to

useshas

1

ComplexType

1

0..n
is_of

10..n

1 0..n

0..n1

0..n
is_of

0..n 1

has
0..1

is_a

0..n0..1

Fig. 1. Metamodel for a Transformation Library

tributes always have a simple type. To simplify this idea we have introduced
an AbstractType class, which is not specified in [1]. A metamodel of the basic
concepts of XML Schema is the basis for our library of transformations (Fig. 1).

The composition of XML documents allows us to write a separate transfor-
mation for every component. In our proposal the XML Schema enables us to
attach a source type and a target type to XSLT transformations (Fig. 1). Our
motivation is to have a library of well tested and reusable transformations be-
tween various types which describe often used components. Special techniques
described in section 3 combine such transformations.

In the XML Schema a complex type defines the structure of an element.
Every such element will be a root element of a DOM subtree corresponding to a
component described by this complex type. The DOM Level 2 does not support
type information. However, by having type information stored in some external
repository we can label each element in the DOM tree with its type.

XML Schema gives the programmers flexibility in defining schemas for the
same documents in many different ways. There have been some efforts to define
design patterns for the XML Schema [4]. From our point of view the most useful
pattern is called the Venetian Blind Design. In this pattern all meaningful com-
ponents of an XML document (e.g. an address) are defined as named complex
types. Such complex type can be easily reused in many parts of a document (e.g.
elements personalAddress and officeAddress both of type addressT).

3 Top-Down Transformations

We propose a top-down approach to transformations of XML documents. The
input to the transformation is a source document, a type and a name of a target
document into which the source document has to be transformed. In the first
step the transformer looks for a direct transformation between a source tree and
a target tree. If there is no transformation found, the transformer decomposes
the source document into subcomponents and tries to transform every subcom-
ponent of the source document into a subcomponent of the target tree. Every
transformation treats a transformed component as a separate subtree. In this

1

2
3

A:AT

B:BT C:CT

A:AT

B:YT C:ZT

X:XT

Y:YT Z:ZT

A:XT

Y:YT Z:ZT

Fig. 2. Transformation with renaming component names at the higher level

way it is guaranteed that the transformation will not see the environment of
this component. As the result of all these transformations we will obtain several
transformed trees corresponding to desired subcomponents. In the next step the
transformer has to glue together these partial results with an additional trans-
formation, which should be simpler than a complex transformation between the
source and target type, because it will use well defined partial results.

In our metamodel transformations are attached to the types. But in one
document we can have several differently named elements of the same type.
Every transformation knows the structure of a type being transformed, but it
does not know the root name of a subtree representing this type. This problem
concerns both the source and the target type. A transformation can only change
the structure of a component from the source into the target type, but it cannot
change the root name of a tree corresponding to this component. The name of
the root of the transformed subtree can be changed by a transformation at the
upper level of the document tree, where this information is available.

In the first step Fig. 2 shows the transformation of two subcomponents: one
from type BT into type YT and the other from type CT into type ZT. Both
transformations do not change the root names of the transformed subtrees. In
the second step we transform their parent element A of the AT type into an
element of the XT type. This transformation is possibly very simple, involving
just renaming and rearranging of subcomponents. At this level the information
about root names of subtrees is available both in the source type AT and in the
target type XT. In the last step we just rename the root of the whole tree. This
name was given in a user’s call to the transformer.

When we apply transformations to all or some subcomponents of a given
component, we change a type of this component. The programmer of the trans-
formation for a component modified in such a way has to be aware of changes
in its structure. In the example in Fig. 3 a transformation of type AT cannot
use any more information from the subtree pointed by the transformed element
B. This leads to an idea of employing stubs. A stub is a placeholder for the
transformed subcomponents. If a subtree was transformed by a separate partial
transformation, then it is replaced by a stub in the source document. In the pro-
cess of transformation of its parent the stub is a black box. Every transformation
of the element on the upper level of the tree has to be aware of stubs. Subse-
quently every transformation registered in the system has to declare which stubs

A:AT

B:BT C:CT

A:AT

B:YT C:CT

transform(BT, YT)

Fig. 3. Type change of A after the transformation of its children

(if any) it is going to use. In every stub description is an XPath [6] localization
of a subcomponent which is to be replaced in the source tree, a target type of
this subcomponent and a label of this component in the target tree. Localization
of the stubs allows one to easily extract all subtrees which correspond to them
in the source tree. In the source tree every subtree extracted in such a manner
is replaced by a special tag with the stub description. At the end all the stubs
will be again replaced by the correctly transformed subcomponents.

In a document which is being transformed the stubs replace all separately
transformed subcomponents. A transformation on the upper level does not have
access to the content of these subcomponents. This prevents side effects during
XSLT transformations such as accidental matching of patterns in the template
rules.

Once the subcomponents are extracted from the source tree, they are treated
as separate documents. The transformer has to determine their source type by
using the schema information and the given XPath expression. The target type
of every subcomponent corresponding to the stub is given in the stub description.
Having acquired this information the transformer may try to apply recursively
the whole procedure for each subcomponent. A transformation between types
can change only the structure of the component being transformed. However, it
cannot change the name of the root element of this component. Since the label
of this root element was given in the stub description, the transformer may just
replace this name.

After these operations we have a source document with stubs replacing sub-
components, as well as a set of these subcomponents transformed by other trans-
formations. In the next step the transformer applies the stub aware transforma-
tion from the source to the target document. It is important that this transfor-
mation does not interfere with the content of the stubs. It copies the stubs into
the target document probably rearranging their order. As a result we obtain the
target document with stubs located in correct places. Finally we have to replace
all stubs by the transformed subcomponents. All steps are presented in Fig. 4.

4 Example of the Stub Aware Top-Down Transformation

In this section we illustrate the presented ideas with an example. We show a
process of a stub aware transformation from the source type aT into target type
xT. The XML Schema definitions of the source and target types are given in
Appendix A and B. The extended notation of the DOM trees of the source and
target type can be found in Fig. 5. Our source document is looks as follows:

Y
Y'X'

X

separate transformations of
subcomponents corresponding
to stubs

stubbing

XML

source document

XML

source document
with stubs

XML

target document
with stubs

destubbing

XML

target document

transformation
aware of stubs

Fig. 4. Stub aware top down transformation

<a>

<b1>Element b1</b1> <b2>Element b2</b2>

<c>

<d>

<d1>Element d1</d1> <d2>Element d2</d2> <d3>Element d3</d3>

</d>

<c1>1</c1>

</c>

In the analyzed scenario the user has requested our system to transform a
document ’a’ from a given schema to a document ’x’ from another schema.
The transformer will use schema information to determine the type of both

a:aT

b:bT

b1:xs:string b2:xs:string

c:cT

c1:xs:shortd:dT

d1:xs:string d2:xs:string d3:xs:string

1

y:yT

x:xT

y1:xs:string y2:xs:string y3:xs:string

z:zT

z1:xs:string z2:xs:string

2

Fig. 5. Hierarchy of the source (1) and target (2) types in our example

documents and attempt to find, among the registered transformations, a trans-
formation between them. There is only a stub aware transformation registered
between types aT and xT. Stubs are localized in the source tree aT by an XPath
expression: /*/c/d. An asterisk in this expression matches root names of all dif-
ferently named elements of the type aT. The description of the transformation
is presented as follows:

<transformation id="aT2xT">

<URL>aT2xT.xsl</URL>

<sourceSch>letters.xsd</sourceSch> <sourceType>aT</sourceType>

<targetSch>letters.xsd</targetSch> <targetType>xT</targetType>

<stubs>

<stub id="stub_dT2yT" targetRoot="y" targetType="yT"

localization="/*/c/d"/>

</stubs>

</transformation>

In the source document the transformer extracts all components correspond-
ing to the stub description and replaces them with a special tag. As the result
we obtain a stubbed source document and a set of separate trees correspond-
ing to extracted components. The transformer has to maintain the association
between stubs and a component corresponding to every stub. A stubbed source
document and extracted component are shown as follows:

<a>

<b1>Element b1</b1> <b2>Element b2</b2>

<c>

<stub type="stub_dT2yT" id="001"/>

<c1>1</c1>

</c>

<d>

<d1>Element d1</d1> <d2>Element d2</d2> <d3>Element d3</d3>

</d>

After stubbing the transformer can independently work with the stubbed
source tree and every tree representing extracted subcomponents. It can apply
the following stub aware transformation to the stubbed source document:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

<xsl:element name="{name(./*)}">

<xsl:apply-templates select="./*/c/stub"/>

<xsl:apply-templates select="./*/b"/>

</xsl:element> </xsl:template>

<xsl:template match="b">

<xsl:element name="z">

<xsl:element name="z1">

<xsl:value-of select="./b2"/>

</xsl:element>

<xsl:element name="z2">

<xsl:value-of select="./b1"/>

</xsl:element>

</xsl:element> </xsl:template>

<xsl:template match="stub">

<xsl:copy-of select="."/> </xsl:template>

</xsl:stylesheet>

There are a few important issues concerning this transformation. First of
all it is a transformation between types. For this reason no assumptions can be
made about the root names of the source and target trees. During the process of
transformation the root name is simply copied from the source tree to the tar-
get tree. Another important issue is the stub awareness. Transformation cannot
interfere with the stub content. As a result of this transformation we obtain the
following stubbed target tree:

<a>

<stub type="stub_dT2yT" id="001"/>

<z>

<z1>Element b2</z1> <z2>Element b1</z2>

</z>

The transformer should also transform the extracted components. First it
has to determine the type of every component. Since it has already obtained the
information about the source schema, this will not be difficult. The target type
and the root label of the component were given in the stub description. With the
information about the source and target types of components, the transformer
can repeat the whole transformation procedure for every component.

In our example we assume that the transformer finds a direct transforma-
tion between type dT and yT. Once again it is a transformation between types
and there is no awareness of the root names of documents being transformed.
But since the root label of a target component was given in the stub descrip-
tion, after performing the transformation, the transformer can rename the whole
component tree.

After the transformation of the stubbed source tree and all extracted com-
ponents, the transformer can start the process of destubbing. Every stub in the
transformed document should be replaced by a corresponding component. In the
final phase the transformer should rename the root of the resulting tree due to
the name given in the user call. As a result we obtain the target document:

<x>

<y>

<y1>Element d3</y1> <y2>Element d2</y2> <y3>Element d1</y3>

</y>

<z>

<z1>Element b2</z1> <z2>Element b1</z2>

</z>

</x>

5 Conclusions

We have presented a new approach to transformations of XML Schema based
documents. Our proposal consists of the following:

– Assigning source types and target types to transformation
– Composition of transformations out of transformations for subtrees using

stubs to avoid side effects
– A meta structure for storing XML Schemas and associated transformations

in a library
– A general decomposition and transformation process

We have described how to compose new transformations for complex docu-
ments by using the existing transformations of the subcomponents belonging to
these documents. In order to do that we have introduced the idea of stubs. In
our approach a stub is a placeholder for partially transformed subcomponent of
a bigger document.

The method introduced in this paper is intended to increase the efficiency of
the development process for creating transformations between XML documents.
This can be achieved through reuse of existing transformations and the ten-
dency to write smaller transformations for well defined components. These are
then used to define transformations for more complex documents. The way an
XML Schema is designed will have influence on how easily the transformations
can be applied. We believe that the design model of XML schemas called the
Venetian Blind Model is the most suitable.

References

1. P. V. Biron, A. Malhotra: XML Schema Part 2: Datatypes. W3C Recommendation
2. A. Bonifati, D. Lee: Technical Survey of XML Schema and Query Languages

Technical report, 2001
3. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler: Extensible Markup Language

(XML) 1.0 (Second Edition). W3C Recommendation
4. K. Cagle, J. Ducket et al.: Professional XML Schema. Wrox Press, 2001
5. J. Clark XSL Transformations (XSLT) v1.0. W3C Recommendation
6. J. Clark, S. DeRose: XML Path Language (XPath) v1.0. W3C Recommendation
7. J. Eder, W. Strametz: Composition of XML-Transformations. LNCS 2115
8. D. C. Fallside: XML Schema Part 0: Primer. W3C Recommendation
9. A. Le Hors et al.: Document Object Model (DOM) Level 2 Core Specification v1.0.

W3C Recommendation

Appendix A: The Source Type in the Example

<xs:element name="a" type="aT"/> <xs:complexType name="aT">

<xs:sequence>

<xs:element name="b" type="bT"/>

<xs:element name="c" type="cT"/>

</xs:sequence>

</xs:complexType> <xs:complexType name="bT">

<xs:sequence>

<xs:element name="b1" type="xs:string"/>

<xs:element name="b2" type="xs:string"/>

</xs:sequence>

</xs:complexType> <xs:complexType name="cT">

<xs:sequence>

<xs:element name="d" type="dT"/>

<xs:element name="c1" type="xs:short"/>

</xs:sequence>

</xs:complexType> <xs:complexType name="dT">

<xs:sequence>

<xs:element name="d1" type="xs:string"/>

<xs:element name="d2" type="xs:string"/>

<xs:element name="d3" type="xs:string"/>

</xs:sequence>

</xs:complexType>

Appendix B: The Target Type in the Example

<xs:element name="x" type="xT"/> <xs:complexType name="xT">

<xs:sequence>

<xs:element name="y" type="yT"/>

<xs:element name="z" type="zT"/>

</xs:sequence>

</xs:complexType> <xs:complexType name="yT">

<xs:sequence>

<xs:element name="y1" type="xs:string"/>

<xs:element name="y2" type="xs:string"/>

<xs:element name="y3" type="xs:string"/>

</xs:sequence>

</xs:complexType> <xs:complexType name="zT">

<xs:sequence>

<xs:element name="z1" type="xs:string"/>

<xs:element name="z2" type="xs:string"/>

</xs:sequence>

</xs:complexType>

