
Analyzing Large Spreadsheet Programs

Markus Clermont
Institut für Informatik-Systeme

Universität Klagenfurt
Universitätsstrasse 65–67

A-9020 Klagenfurt
Austria

mark@isys.uni-klu.ac.at

Abstract

Although the results of spreadsheet programs are the
base for very important decisions and are subject to many
changes, they are only poorly documented. In this paper
we introduce an approach that extents previous work in the
area of spreadsheet visualization. It enables the maintainer
to decompose large spreadsheets into self contained parts,
that are similar to modules in conventional software. Of
course there are important differences, as these modules are
only recognized during analysis, and users are not forced to
build modular spreadsheets. This is very important, as we
aim not to change the spreadsheet users. It has turned out,
that attempts to change the users are usually doomed to fail.

This approach can be considered orthogonal to se-
mantic classes, that have been introduced in prior work.
The generated abstraction is not build upon the formula-
contents of the spreadsheet, but on properties of the data
flow graph. Therefore, spreadsheets with irregular for-
mulas can be solely analyzed with the new approach.
On the other hand, large spreadsheets can be decom-
posed into data modules at first, that are smaller and eas-
ier to understand. Each of the data modules can than be
analyszed with a formula based approach.

1. Introduction

The widespread use of the personal computer is insep-
arably intertwined with the success of spreadsheets as end-
user programming language. Up-to-date spreadsheets are of
highest importance in most business organizations and full-
fil various tasks- from simple data collection up to the sim-
ulation of very complex models. Studies [25] have shown,
that spreadsheet systems are more often used by the middle
and higher management of organizations than word proces-
sors.

As various studies (see e.g. [18]) have shown, software
quality of the spreadsheets does not correspond to their
importance. This problem might arise because spreadsheet
programmers are not IT-experts, but domain experts. [16]
states that training of spreadsheet programmers is only a
partial solution. Well trained spreadsheet programmers tend
to make the same number of errors in their spreadsheets
because they start to use more complicated and thus more
error-prone formulas.

Another reason for the high number of errors is the high
complexity of spreadsheets. For the IT-professional it is ob-
vious that spreadsheets are data-flow programs. However,
the spreadsheet writers see them as computer support for
tools that are on every desktop: pencil, paper and a pocket-
calculator. For convenience they can redirect the results of
the different pocket-calculators to serve as the input for an-
other calculator.

As spreadsheets are a very powerful end-user program-
ming tool, their field of applications is also wide spread (see
[3, 11, 14]). Of course, a specific approach for the analysis
of spreadsheets cannot cover all possible applications.

The complexity of the comprehension of a large spread-
sheet can be reduced, as each of the blocks can be analyzed
and understood by any common spreadsheet visualization
technique (see e.g. [15, 7, 1, 2, 21]), and the cooperation of
the blocks becomes subject to a second phase in the com-
prehension process.

The spreadsheet visualization approaches known so far
deal with analysis of spreadsheets on the formula-level1.
Therefore, a spreadsheet is considered a set of cells, with
each cell possibly containing a formula expression. In our
previous work [15], we consider spreadsheets the result of a
copy, paste and modify process, and grouped cells with sim-

1 Indeed, only one visualization approach that was discovered in litera-
ture deals with dataflow based visualization [6]. This approach is dis-
cussed in Section 5.



ilar contents into so called logical areas. A further abstrac-
tion step introduced semantic classes, that contain blocks of
similar cells that are repeatedly used throughout the spread-
sheet. As it can be seen by the short summary of the ap-
proach, it focuses on formulas. In field experiments [8] it
turned out that this approach is efficient for spreadsheets
with regularly occuring formulas.

However, there is also a different kind of spreadsheet
programs, that is usually neglected by conventional spread-
sheet visualization approaches. These spreadsheets do not
have a regular formula structure and hence, it is difficult
to find a helpful criterion for grouping cells into units. The
here introduced approach considers a spreadsheet program
as a special kind of dataflow program. Cells are grouped
into abstract units, so called data modules, by examining
the data dependency graph (DDG) of the spreadsheet pro-
gram. As this technique does not rely on any properties of
formulas, it is also efficient for spreadsheet programs with
irregular formulas.

Usually, these spreadsheet programs are smaller than
spreadsheets with regular formulas, because they cannot be
created by copying and pasting. Nevertheless, data modules
also play a role in the analysis of large spreadsheets, be-
cause they can partition a large spreadsheet program into
different parts that are only loosely interconnected. Consec-
utively, each of these parts can be comprehended on its own.
As a data module has also a well defined interface to the rest
of the spreadsheet program, the knowledge of the function-
ality of individual data modules can than be reassembled to
comprehend how the whole spreadsheet works.

In this paper we will introduce and define data mod-
ules. For the definition of the spreadsheet related vocabu-
lary used in this paper we refer to [15, 7]. Only definitions
that are crucial for the further understanding of this paper
are given in the next section. A toolkit for the decomposi-
tion of spreadsheets and the visualization of data modules
is introduced in Section 3 by means of an example. Finally,
the possible applications of data modules are outlined in a
broader context. In the concluding section we will discuss
the position of our work among other spreadsheet visualiza-
tion approaches.

2. Data Modules

Subsequently, an abstraction technique that operates on
the data flow graph of a spreadsheet program, i.e. the DDG,
is introduced. The DDG is defined as follows:

Definition 1: Data Definition Graph (DDG)
The data dependency graph (DDG) of a spreadsheet is a di-
rected acyclic graph DDG = (V,E), where each cell c in
the spreadsheet is represented by a vertex v ∈ V , if the cell
is not computationally dead, i.e. not referenced by any other
cell and not referencing any other cell, and empty. There is
an edge (v1, v2) ∈ E, if the formula in the cell correspond-
ing to v2 references the cell corresponding to v1.

Spreadsheet programs have some basic characteristics of
data flow programs and of graph-reduction programs, too
[7]. Thus, the DDG of a spreadsheet program has an impor-
tant role for its execution. As stated by Definition 1, in the
DDG each cell of the spreadsheet program is represented
by a node, and there is an edge from node n1 to node n2,
if the cell represented by n2 references the cell represented
by n1. As the DDG is a directed, acyclic graph, there are
some nodes, that are not sources of further edges, i.e. sink
nodes.

To grasp the idea, one can assume that a data module is
a set of cells that has a distinguished result cell, that is tran-
sitively dependent on all cells in the data module. Cells that
are outside the data module may only reference its result
cell. Broadly speaking, a data module is a subgraph of the
DDG, that has only a single sink node (see Definition 2)-
namely its result cell. The result cell of such a data mod-
ule is either a sink node of the DDG, i.e. a result cell of the
spreadsheet program, or a node that is connected to more
than one data module. Obviously, this definition is recur-
sive, but because of the hierarchical organisation of a DDG
and its finiteness, this is not a problem.

The construction of data modules will start assuming the
DDG sink nodes to be data modules and adds all cells that
only contribute to the specific sink node. A cell that tran-
sitively contributes to more than one sink node is assumed
to be the starting point of a new data module and will be
treated in the same way.

However, before the DDG can be partitioned into such
data modules, the result cells have to be identified. Obvi-
ously, not all sink nodes of the DDG have the semantics of
a result of the spreadsheet program, e.g. check-sums.

In contrast to conventional programming where interme-
diate results are not displayed and each subroutine has a
well defined result, in a spreadsheet each intermediate result
is visible to the user and all the other formulas. Sometimes,
calculations are deliberately formulated in a more compli-
cated way in order to obtain some desired intermediate re-
sults. Obviously, most of the cells of a spreadsheet program
can be either auxiliary, intermediate or result cells. For sure,
cells that are not further referenced by other cells can be
considered result cells, because we know that users place
them on the spreadsheet, because they want to see their con-
tents. If they would not like to see the displayed value, they
had not introduced this cell.



Therefore, it is legitimate to start with results, i.e. cells,
that are not referenced by other cells, and search those cells,
that influence a specific result. As a matter of fact, it is often
the case, that the sink nodes in the DDG are not the real
results, but check-sums. In this case, the check-sums have
to be removed manually, and the remaining DDG is then
analyzed.

Subsequently, data modules and their required properties
will be formally defined. The identification of result cells
and an algorithm for partitioning the DDG into data mod-
ules are discussed.

2.1. Formal Definition

As stated above, a data module is a set of cells in the
spreadsheet program that contribute to a specific result or
intermediate result. In the following definition, a data mod-
ule is defined as a triple of its member nodes (Vd), the edges
(Ed) and a result node (n). As a data module is defined as
a part of the DDG, the nodes represent cells of a spread-
sheet program.

Definition 2: Data Module
Let (V,E) denote the sets of vertices and edges of a DDG
of a given spreadsheet program. A data module d is a triple
(Vd, Ed, n), with Vd ⊆ V , Ed ⊆ E and n ∈ Vd that fulfills
the following requirements:

1. n �∈ domain(Ed)

2. Vd ∩ {n} = domain(Ed)

3. domain(E \ Ed) ∩ (Vd \ {n}) = ∅
4. n ∈ range(Ed) ∨ {n} = Vd

5. range(Ed) ⊂ Vd

The specified properties of a data module guarantee that

1. the result cell of the data module is not referenced by
any other cell in the data module,

2. the data module is connected,

3. all edges with a source inside a data module are also
part of the data module, only edges having their source
in the result node are excluded,

4. the result of the data module is target of an edge in
the data module, or the data module consists of a sin-
gle cell, and

5. a cell in a given data module is only referenced by cells
in the same data module.

Obviously, there are arbitrary subgraphs of the DDG that
fulfill these requirements, e.g. each single cell can be con-
sidered a data module. However, in order to introduce an
abstraction step, maximal data modules have to be identi-
fied.

Definition 3: Maximal Data Module
A data module d = (Vs, Es, n) in a DDG = (V,E) is
called a maximal data module, if � ∃v ∈ V ∩ Vs that can be
added to d without violating any of the conditions that are
required for a data module.

Hence, a data module is considered maximal if no other cell
of the spreadsheet program (or no other node of the corre-
sponding DDG) can be added.

Nevertheless, so far only the properties of individual data
modules have been described. Additionally, there are some
requirements that a valid partitioning of a given DDG into
data modules has to fulfill. On the one hand, it has to be
guaranteed that the union of all data modules is the orig-
inal DDG, i.e. all nodes and edges of the DDG have to
take part in one data module. On the other hand, no node of
the DDG is allowed to be in more than one data module.
As the DDG on its own, with cells as singleton data mod-
ules, already fulfills these properties, the data modules have
to be maximal.

For each DDG there is one partitioning into data mod-
ules that fulfills the above stated requirements. This kind of
partitioning is called a valid partitioning.

Definition 4: Valid partitioning
The set DMod of data modules over a DDG = (V,E) of a
given spreadsheet program is a valid partitioning if it fulfills
the following requirements:

1.
⋃{Vs|∃n, Es • (Vs, Es, n) ∈ DMod} = V

2.
⋃{Es|∃n, Vs • (Vs, Es, n) ∈ DMod} ∪
∪{(n, v1)|(n, v1) ∈ ∨∃(Vs, Es, n) ∈ DMod} = E

3. ∀(V1, E1, n1) ∈ DMod, (V2, E2, n2) ∈ DMod|V1 �=
V2 • V1 ∩ V2 = ∅

4. ∀d ∈ DMod|d is maximal

The first and the second property ensure that all nodes and
edges of the DDG are assigned to at least one data mod-
ule in DMod. Only edges leaving the result cell of a data
module are not considered. The third requirement prevents
a node from being assigned to two data modules. The last
requirement ensures that all the data modules in a valid par-
titioning have to be maximal data modules.

The spatial position of member cells in a data module
is not considered at all. Therefore, the members of a data
module might be located in different parts of the spread-
sheet UI. Thus, the concept of spatial nearness is not part
of these definitions. However, as it follows from the defi-
nitions above, the concept of computational nearness is the
key-concept of data modules. Matching spatial and compu-
tational nearness of cells turned out to be helpful for audit-
ing spreadsheet programs (see [7]).



2.2. Identifying Data Modules

The identification of the data modules in a given DDG
starts with the

removal of unnecessary sink nodes, to eliminate check-
sums and other calculations that do not have the seman-
tics of a result of the spreadsheet program. This step is
necessary, because very often all sections of a spreadsheet
are connected by some calculations that either yield a fi-
nal sum or a check-sum. However, in this case each cell of
the spreadsheet program is transitively referenced by the fi-
nal sum and there will be only one data module.

Thus, the sink nodes of the DDG have to be checked
by the users who decide if a sink node should be removed
or not. The users have to prune the DDG until all the sink
nodes are results of the spreadsheet program. All further
consideration in this section concern the pruned DDG.

Of course it can be argued that each cell in the spread-
sheet program is visible and therefore a result of the spread-
sheet program. However, it is important to distinguish be-
tween intermediate results that might be introduced only in
order to get insight into the calculation or to rewrite a for-
mula in a simpler way, and the final result, that is placed on
the spreadsheet because the spreadsheet users really want to
see it. Obviously, all sink nodes of the DDG, i.e. cells that
are not referenced by any other cell any more, are placed on
the spreadsheet because the spreadsheet users want to have
them there.

The algorithm for the identification of data modules is
very straightforward. It operates on the pruned DDG and
starts at the sink nodes. Each sink node is considered a data
module. Nodes that are the source of edges that target only
to one data module are merged with the specific data mod-
ule. A node that is a source of edges into more than one data
module is considered a data module on its own. These steps
are repeated until all nodes in the DDG are assigned to a
data module (see Figure 1).

The algorithm terminates, as soon as all nodes are as-
signed to a data module. The first for checks all of the nodes
that are not yet assigned to a data module, whether they are
not referenced by any other unassigned node. For the se-
lected nodes the algorithm checks, whether one data mod-
ule depends on the cell. If the cell has exactly one depend-
ing data module, the cell is added to it. In any other case,
i.e. there are either more than one or none dependents, the
cell will become a data module on its own. Finally, the cell
is removed from the set of unassigned nodes.

The partitioning algorithm does not add edges to data
modules, however they can be added in a further step. All
edges between two nodes in the same data module are added
to this data module. The result cell of a data module is its
only sink node.

AlgorithmPartitionDDG: (pruned DDG d)
return Set of Data Modules

1 declare
2 nodeset V, DM, JOIN
3 node v, v′, currentnode
4 edgeset E
5 edge e
6 P node identified dm set
7 Integer amount of dependents
8 Boolean found = true
9 begin
10 identified dm set = ∅
11 (V,E) = d
12 while (found)
13 found = false
14 for v ∈ V
15 if� ∃v′ ∈ V • (v, v′) ∈ E
16 current node = v
17 found=true
18 break
19 end if
20 end for
21 amount of dependents = 0
22 ∀DM ∈ identified dm set
23 if ∃(current node, v) ∈ E • v ∈ DM

∨JOIN �= DM
24 JOIN = DM
25 amount of dependents =

amount of dependents + 1
26 end if
27 end for
28 if amount of dependents = 1
29 identified dm set =

identified dm set \ JOIN
30 JOIN = JOIN ∪ {current node}
31 identified dm set =

identified dm set ∪ JOIN
32 else
33 identified dm set =

identified dm set ∪ {current node}
34 end if
35 V = V \ current node
36 end while
37
38 return identifed dm set
39 end

Figure 1. Partitioning of a pruned DDG into
node sets of data modules



3. Example

This section aims to demonstrate the analysis of a small
example spreadsheet by means of data modules. Therefore,
a prototype is introduced that implements various spread-
sheet visualization techniques, i.e. logical areas and seman-
tic classes [15] and data modules.

The prototype is freely available as a plug-in for the gnu-
meric spreadsheet system. Gnumeric [12] is an open source
spreadsheet system that is part of the gnome project for
Linux. The toolkit can be started from the spreadsheet sys-
tem’s menu bar and is tightly integrated. All of the tasks
that are subsequently described in course of the example
are supported by the prototype.

As soon as the spreadsheet is analyzed, the users can
choose two different views: a hierarchical view, contain-
ing abstract units at top level, e.g. logical areas, semantic
classes or data modules, and their contents at a subordinate
level. The contents of a data module are cells.

In order to analyze a given spreadsheet program, users
will have to remove the DDG sink nodes at first (see the
previous section). Therefore, the user interface contains two
lists (see Figure 2), one with the identified sink nodes, and
a second one with the already removed sinks. Of course,
the removal of a sink node from the DDG will turn its
predecessors in the DDG into sink nodes. Users can iter-
ate through sink node removal several times, until all nodes
they consider check sums, are removed from the DDG.

The example spreadsheet (see Figure 3) summarizes the
book-keeping of a salesman over three years. There are
some constant values, e.g. the fixed cost, the inflation and
the earning per unit sold. For each quarter of a year the
quantity of sold units is multiplied with the earnings per
unit. The difference between fixed costs and earning is the
result of the quarter. The result of a year is calculated as the
sum of the results of the four quarters. The cash available
at the end of the year is calculated by adding the amount of
cash available at the end of the last year and the year’s re-
sult. For the years past 1999, the fixed costs are adjusted
with the inflation rate, that is specified in the cell D1.

Finally, the three annual results are summed up in order
to get an overall result. For the sake of simplicity, our ex-
ample does not have any check-sums.

Usually, the DDG (see Figure 4) serves as means for
comprehending how cells depend on each other. Although
the example spreadsheet’s DDG is simple, it has only 68
nodes and 86 edges, it is not easy to comprehend at first
sight, because the reader is overwhelmed by the complex-
ity of all the nodes and links.

In contrast, the complexity of the DDG is effectively re-
duced by an SRGDM , by collapsing the number of nodes
and edges, without loosing any important information. The
SRGDM is a directed, acyclic graph. It is an abstraction of

Figure 2. Screen-shot of the prototype. The
two lists in the check sum frame allow the
user to exclude certain sink nodes from the
DDG for the further analysis.

the DDG, with each node representing all the cells in one
data module. There is an edge between two nodes, if any of
the cells in the data module represented by the first node ref-
erences the result cell of the data module represented by the
second node.

In order to construct an SRGDM , the spreadsheet has
to partitioned into data modules at first. Subsequently, data
modules are labelled by the cell adress of their result cells.
If we decide, not to remove any sink node from the DDG,
the following data modules are identified by the partition-
ing algorithm. Consecutively, each data module is labeled
with the cell address of its result cell.

• Singletons: B2, D1, H7

• B7 (B1, B7)



Figure 3. Example spreadsheet, value view.

Figure 4. Example spreadsheet’s DDG. The
sink nodes are shaded in dark gray.

• E10 (B6, C6, D6, E6, C7, D7, E7, B8, C8, D8, E8, B9,
C9, D9, E9, E10)

• K10 (H6, I6, J6, K6, I7, J7, K7, H8, I8, J8, K8, H9, I9,
J9, K9, K10)

• E19 (B15, C15, D15, E15, B16, C16, D16, E16, B17,
C17, D17, E17, B18, C18, D18, E18, E19)

• E20 (D2, E11, K11, E20)

• H19 (H15, H16, H17, H19)

In Figure 5, cells in the same data module are shaded
equally. At first sight, it is interesting, that the Fixed Cost
of the first quarter of the years 1999 (B7) and 2000 (H7) are
not part of the data modules containing the other cells in the
spatial blocks. However, this is clear the formulas when are
considered. The corresponding cells are referenced by some
cells that are not part of the data module, e.g. B7 is refer-
enced to calculate the fixed cost for the second quarter of
1999 (C7) and to calculate the fixed cost for next year (H7).
The cash-cells are not part of the years’ data modules ei-
ther, because the remaining cash is always transfered into
the next year, e.g. K11 references K10 and E11.

The SRGDM so generated (see Figure 6) is less com-
plex than the original DDG, as it consists of 9 nodes and 15
edges, compared to 68 nodes and 86 edges, but it still con-
tains important information about the spreadsheet programs
structure. For instance, it becomes obvious at first sight, that
cells in the data module K10 depend only on cells either in
K10, in H7 or in B2. This information is important for mak-
ing local changes or for error tracing (see next section).

Furthermore, the detailed analysis of a specific data mod-
ule, for instance K10, in the broader context of the SRGDM

is supported. Therefore, we can zoom into K10, replacing
the node K10 in the SRGDM with the subgraph of the
DDG that contains only cells, that are members of K10



Figure 5. Example spreadsheet, formula view. Cells in the same data module are shaded equally. The
result cells of each data module are typeset in an italic font.

Figure 6. Example spreadsheet’s SRGDM

(see Figure 7). This analysis technique resembles to the
application of shrimp views that have turned out to be a
successful approach for the comprehension of conventional
software [24].

4. Applications

As mentioned above, there are several possible appli-
cations for data modules in the context of large spread-
sheet programs. Consecutively, we will briefly discuss vi-
sualization, decomposition, maintenance, and fault tracing
of spreadsheet programs by means of data modules.

4.1. Visualization

As stated in the previous section, there are at least two
ways to exploit the partitioning of a spreadsheet program for
the visualization. The SRGDM of a spreadsheet program is
a powerful abstraction of the DDG and is, together with
shrink-views, an important aid for the comprehension of a
spreadsheet program. Additionally, it can also be used for
finding structural errors in a spreadsheet program by look-
ing for broken links, i.e. areas of the spreadsheet program
that should be in the same data module, but are not, maybe
due to a misreference in a formula.

The second possible visualization approach is coloring
the cells on the spreadsheet user interface in a way that cells
in the same data module will have the same color. This vi-
sualization technique supports the user in finding holes in
data modules, i.e. cells that are referenced from another data
module, but should not be. However, it does not give any in-
formation about links between different data modules.

A combination of both visualization approaches is most
effective, as the user can easily spot the extent of a data
module on the colored user interface, and can trace the links
in the SRGDM view.

4.2. Decomposition

Many problems in the field of spreadsheet analysis is due
to the overwhelming complexity that is often due to the size
of the spreadsheet programs. In field audits, spreadsheets



Figure 7. Example spreadsheet’s SRGDM ,
zoomed into K10. The members of K10 are
shaded dark.

with 9000 cells on the average [8] have been reported. Ob-
viously, the comprehension of such large sheets calls for ef-
fective abstraction techniques. Data modules can be used to
decompose a large spreadsheet into smaller parts and con-
dition it for further analysis of the individual data modules
by means of other visualization techniques.

4.3. Maintenance

Spreadsheet programs are often subject to short main-
tenance cycles. Together with the fact, that there is little
documentation and only poor testing done, maintenance
of spreadsheet programs becomes a critical issue. Data
modules can increase the understanding the maintainer has
about the internal logic of a spreadsheet. Obviously, there is
less risk, if only new data modules are added or a given data
module is extended, than if an existing data module is de-
stroyed in course of a maintenance operation. thus, there is

also a kind of guidance for the maintainer.

4.4. Fault Tracing

Fault tracing is a very common problem in spreadsheet
programs, as the symptoms of errors often do not occur at
the same place as the faults that cause the wrong results.
Hence, most testing techniques also involve techniques for
fault tracing that are usually based on the calculation of er-
ror probabilities for the predecessors of the faulty cell in the
spreadsheet programs DDG (see e.g. Ayalew [1] or Reich-
wein et al. [20]).

The generation of data modules and the usage of the
SRGDM are a powerful support for fault tracing. If an error
is detected in the result cell of a data module, it is not neces-
sary to check all the predecessors in the DDG until the er-
ror is found. If the spreadsheet auditor is aware of the data
module where the symptom of the error occurred, there are
only two possibilities:

1. The error occurred inside the data module where it is
detected, or

2. the error occurred in a predecessor module in the
SRGDM .

It is not difficult to decide on which case applies: the spread-
sheet auditor has to check only the result cells of the prede-
cessor data modules in the SRGDM . If they are correct,
the error is buried in the module where the failure occurred.
Else it is assumed that the error is propagated from the er-
roneous module.

For the first case, the DDG of the data module where
the failure occurred has to be checked by one of the tech-
niques that are suggested in [1, 20]. Nevertheless, a piece
of extra information the auditors are aware is that the error
must be in the currently examined subgraph of the DDG,
and the bug tracing can stop at the module boundaries.

In the second case, the same process is repeated: it has
to be checked, whether the fault occurred inside the data
module, or in one of its predecessor modules. Depending on
the error source, either the module is checked, or the search
continues upward in the SRGDM .

Obviously, also a combination of error sources is possi-
ble, as errors can be hidden inside the module as well as in
several predecessor modules. Nevertheless, an iteration of
several testing and correction phases will finally find all the
errors.

5. Related Work

In order to overcome the problems of testing spread-
sheets, i.e. the lack of sufficient test data and the lack of
testing skills, visual auditing has become a popular review



method for spreadsheet programs. The rationale of spread-
sheet visualization is to reduce the inherent complexity of
spreadsheet programs to a magnitude that is easier to under-
stand for the human auditor (see e.g. Nixon et al. [17]). Usu-
ally visual auditing tools color cells that share certain char-
acteristics, i.e. similar formulas, a certain data type or spa-
tial neighborhood, with the same color on the spreadsheet
UI. Thus, the auditor does not have to check the spread-
sheet on a cell-by-cell basis any more but can check larger
units. Examples for these techniques are the S2 and S3 Vi-
sualization [22], SpACE [2], the spreadsheet detective [23]
and logical areas and semantic classes [15, 7, 9].

However, there might be spreadsheets were formulas are
only occasionally copied, and thus, these techniques will
not be effective any more. In this case, data flow based tech-
niques have to be applied. The simplest approach, i.e. show-
ing the immediate DDG successors and predecessors, is
implemented as a standard feature in most spreadsheet sys-
tems [10]. Although this approach is helpful for debugging
a specific formula, it is not helpful for the comprehension
of the spreadsheet program.

Chan et al. [6, 5] introduce another interesting visualiza-
tion and debugging approach. It is mainly data flow based
and offers support for local and global debugging. How-
ever, both debugging strategies are again tied to the spread-
sheet as visualization tool. Therefore, the user can only au-
dit a section of the spreadsheet that corresponds to the size
of their screen at a time. In brief, it is assumed that the data
flow in a spreadsheet program should correspond to a text:
the data should flow from cells that are situated on the upper
left corner of the spreadsheet UI to cells on the bottom-right
corner of the spreadsheet UI. Data flow that does not corre-
spond to this rule is considered dangerous and will thus be
reported to the auditor by colorizing the concerned cells.

However, as the spreadsheet UI is the user inter-
face of the auditing toolkit, the linkage between spatially
widespread parts of the spreadsheet is still very hard to un-
derstand, and zooming can only be done by adjusting the
display size.

In contrast, data modules do not make an assumption
like this. Although the debugging effectivity of data mod-
ules might suffer from the lack of such an assumption they
will reduce the amount of information users have to pro-
cess, if they are doing maintenance or error tracing. Never-
theless, the approach suggested by [6] is designed for de-
bugging a spreadsheet program, but not for the support of
spreadsheet comprehension.

The term of a modulare spreadsheet often appears in
the relevant literature [13, 19, 4, 26]. However, these ap-
proaches aim to force the user into a design phase in spread-
sheet development. It has turned out, that they will effi-
ciently decrease errors and lead to more comprehensive
spreadsheet programs. Nevertheless, they are not widely

used, as they aim to change the spreadsheet users and re-
quire a certain degree of IT-training. Spreadsheets that have
been carefully designed with a modular approach in mind,
can be very efficiently analyzed with the data modules ap-
proach.

Nevertheless, our approach does not force spreadsheet
users to change the way they are creating spreadsheets. Of
course, a inherently modular spreadsheet will yield a more
helpful abstraction than an entangled one. However, it is still
the decision of the users, how they build their spreadsheets.

6. Conclusion

This paper presents a new technique for spreadsheet de-
composition and spreadsheet visualization. Data modules
are either an extension to arbitrary formula based spread-
sheet comprehension techniques as they can decompose
large spreadsheets into smaller units. On the other hand,
they are also a visualization technique on their own that
can be efficiently applied to large spreadsheets, or regions
of spreadsheets, with no regular formula usage. The ratio-
nale behind data modules is to find subgraphs of the DDG
that are capsuled from the rest of the spreadsheet program.

It has turned out that the approach is suitable for large
spreadsheets that are often composed from more than one
only loosely related areas. Data modules can find these
areas and allow independent analysis, testing and mainte-
nance for each of these areas. Additionally, fault tracing is
supported.

In contrast to other techniques that are based on similar-
ities between the formulas, data modules will analyze only
the links between cells, neglecting any operations. Thus,
even spreadsheets with irregular formula usage can be suc-
cessfully analyzed.

References

[1] Y. Ayalew. Spreadsheet Testing Using Interval Analysis. PhD
thesis, Universität Klagenfurt, Universitätsstrasse 65–67, A-
9020 Klagenfurt, Austria, November 2001.

[2] R. Butler. Is This Spreadsheet a Tax Evader ? How H. M.
Customs & Excise Test Spreadsheet Applications. In Pro-
ceedings of the 33rd Hawaii International Conference on
System Sciences - 2000, volume 33, 2000.

[3] R. Casimir. Real programmers don’t use spreadsheets. ACM
SIGPLAN Notices, 27(6):10–16, June 1992.

[4] D. Chadwick, K. Rajalingham, B. Knight, and D. Edwards.
An Approach to the Teaching of Spreadsheets Using Soft-
ware Engineering Concepts. In Proceedings of the 4th In-
ternational Conference on Software Process Improvement,
Research, Education and Training INSPIRE’99, pages 261–
273, 1999.

[5] H. C. Chan, editor. Easy Steps to Design & Check Your Ex-
cel spreadsheets. Federal Publications, 2001.



[6] H. C. Chan and Y. Chen. Visual checking of spreadsheets.
In Spreadsheet Risks, Audit and Development Methods, vol-
ume 1, pages 75–85. EuSpRIG, University of Greenwich, 7
2000.

[7] M. Clermont. A Scalable Approach to Spreadsheet Visualiza-
tion. PhD thesis, Universität Klagenfurt, Universitätsstrasse
65–67, A-9020 Klagenfurt, Austria, March 2003.

[8] M. Clermont, C. Hanin, and R. Mittermeir. A Spreadsheet
Auditing Tool Evaluated in an Industrial Context . In Spread-
sheet Risks, Audit and Development Methods, volume 3,
pages 35–46. EUSPRIG, 7 2002.

[9] M. Clermont and R. Mittermeir. A Pattern Based Approach
to Spreadsheet Auditing. In Proceedings of the 6th Interna-
tional Conference on Information Systems Implementation
and Modelling ISIM’03, April 2003.

[10] J. S. Davis. Tools for spreadsheet auditing. International
Journal of Human-Computer Studies, 45(4):429–442, 1996.

[11] G. Filby, editor. Spreadsheets in Science and Engineering.
Springer, Berlin, Heidelberg, 1998.

[12] J. Goldberg. The gnumeric project.
http://www.gnumeric.org, January 2003. visited on 10th Jan-
uary 2003.

[13] B. Knight, D. Chadwick, and K. Rajalingham. A structured
methodology for spreadsheet modelling. In Spreadsheet
Risks, Audit and Development Methods, volume 1, pages 43–
50. EuSpRIG, University of Greenwich, 7 2000.

[14] P. Kokol. Some Applications of Spreadsheet Programs
in Software Engineering. Software Engineering Notes,
12(3):45–50, July 1987.

[15] R. Mittermeir and M. Clermont. Finding High-Level Struc-
tures in Spreadsheets. In Proceedings of the 9th Working
Conference on Reverse Engineering, 2002.

[16] B. Nardi and J. Miller. An Ethnographic Study of Distributed
Problem Solving in Spreadsheet Development . In Proceed-
ings of the conference on Computer-supported cooperative
work , pages 197–208. ACM, October 1990.

[17] D. Nixon and M. O’Hara. Spreadsheet auditing software.
In Spreadsheet Risks, Audit and Development Methods, vol-
ume 2. EuSpRIG, University of Greenwich, 7 2001.

[18] R. R. Panko. What we know about spreadsheet errors. Jour-
nal of End User Computing: Special issue on Scaling Up End
User Development, 10(2):15–21, Spring 1998.

[19] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards.
Quality Control in Spreadsheets: A Software Engineering-
Based Approach to Spreadsheet Development. In Proceed-
ings of the 33rd Hawaii International Conference on System
Sciences 2000, volume 33. IEEE, 2000.

[20] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spread-
sheets: An integrated methodology for spreadsheet testing
and debugging. In Proceedings of the 2nd Conference on
domain-specific languages, volume 2, pages 25–38. ACM,
2000.

[21] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green,
and G. Rothermel. Wysiwyt testing in the spreadsheet
paradigm: An empirical evaluation. In ICSE 2000 Proceed-
ings, pages 230–239. ACM, 2000.

[22] J. Sajaniemi. Modeling spreadsheet audit: A rigorous ap-
proach to automatic visualization. Journal of Visual Lan-
guages and Computing, 11(1):49–82, 2000.

[23] S. C. Software. Operis group plc.
http://www.operis.com/oak.htm, 2002. visited on 11th
September 2002.

[24] M.-A. D. Storey and H. A. Müller. Manipulating and doc-
umenting software structures using SHriMP views. In Pro-
ceedings of the 1995 International Conference on Software
Maintenance (ICSM ’95) (Opio (Nice), France, October 16-
20, 1995), 1995.

[25] G. E. Vlahos and T. W. Ferratt. The use of information tech-
nology by managers of corporations in greece to support de-
cision making. In Proceedings of the conference on Com-
puter Personal Research, pages 136–151. ACM, 1992.

[26] N. P. Wilde. A WYSIWYC (What You See Is What You
Compute) Spreadsheet. In Proceedings of the 1993 Sympo-
sium on Visual Languages, pages 72–76. IEEE, IEEE Com-
puter Society Press, 1993.


