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Abstract vii

Abstract

Companies and organizations make a great effort to provide better products
and better services at a lower cost, of reducing the time to market, of improving
and customizing their relationships with customers and, ultimately, of increasing
customer satisfaction and the company’s profits. These objectives push compa-
nies and organizations into continuously improving the business processes that
are performed in order to provide services or to produce goods.

Workflow technology has emerged as one of the latest technologies designed
to accomplish above demands by modeling, redesign and execution of business
processes. Especially in this context, workflow time management is important to
timely schedule workflow process execution, to avoid deadline violations, and to
improve the workflow turn-around times.

In this thesis, we proposed modeling primitives for expressing time constraints
between activities and binding activity executions to certain fixed dates (e.g. first
day of the month). Time constraints between activities include lower bound and
upper bound constraints. In addition, we present techniques for checking satisfia-
bility of time constraints at process build time. These techniques compute internal
activity deadlines in a way that externally assigned deadlines are met and all time
constraints are satisfied. Thus the risk of missing an external deadline is recog-
nized early and steps to avoid a time failure can be taken.

Our actual work focuses on: (1) providing an advanced workflow metamodel
that supports hierarchical composition of complex activities and reuse of activi-
ties in several workflow definitions; (2) modeling of time and time constraints to
capture the available time information; (3) developing PERT-net based pro-active
time calculations for computing internal deadlines to capture time constraint vio-
lations and raise alerts in case of potential future time violations; (4) accomplish
workflow transformations in order to tackle the problem of unnecessary rejections
induced by superfluous time constraint violations; and (5) describing our graphi-
cal WF-Designer prototype.
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1
Introduction

In today’s dynamic and turbulent business environment, there is a strong need
for organizations to become globally competitive. The survival key to competi-
tiveness is (i) to be closer to the customer and deliver value added products and
services within the shortest possible time and (ii) to make decisions quickly ahead
of competitors. Consequently, information and information technology have be-
come the critical strategic resource for any type of business. It results in the grow-
ing need of employees in all organization levels to efficiently and effectively use
information systems to consolidate their information resources, which demands
integration of business processes of an enterprise.

The solution for a business is to invest and operate with a valuable asset called
enterprise resource planning(ERP). Enterprise resource planning use integrated
cross functional software to re-engineer, integrate, and automate the basic business
process of a company to improve its efficiency, agility, and profitability. In a
business setting, enterprise resource planning attempts to mesh the suppliers and
customers with the manufacturing environment of the organization.

Certain examples of ERP used are marketing information systems, computer-
integrated manufacturing, computer-aided manufacturing, manufacturing execu-
tion systems, computer-aided engineering, computer-aided design, human resource
information systems, accounting information systems, and financial management
systems. These examples listed are not the only enterprise resource planning sys-
tems used; in fact, planning systems are available that are even more specific in
getting the job done.

Enterprise resource planning involves many advantages, among them location
is one of the positives that is fulfilled by using enterprise resource planning. It
is assumed that companies implementing enterprise resource planning solutions
have multiple locations of operations and control. Hence, online data transfer has
to be done via locations. To facilitate these transactions, the other important en-
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abling technologies for enterprise resource planning systems are Workflow (WF),
Workgroup, Groupware, Electronic Data Interchange, Internet, Intranet, and Data
Warehousing.

In this thesis we focus on workflows and workflow management systems (WfMSs).
WfMSs improve business processes by automating tasks, getting the right infor-
mation to the right place for a specific job function, and integrating information
in the enterprise [WfMC, 1999b; Lawrence, 1997; Georgakopoulos et al., 1995;
Hollingsworth, 1995].

1.1 Motivation for Research on Time Manage-
ment

As mentioned above, one of the most critical needs in companies striving to be-
come more competitive is the ability to control the flow of information and work
throughout the enterprise in a timely manner [Eder and Panagos, 2000; Eder et al.,
2000].

However, on the one hand, existing WfMSs [InC; Leymann and Roller; SAP;
Ultimus] offer limited support for modeling and managing time constraints asso-
ciated with processes and their activities [Bettini et al., 2002; Pozewaunig et al.,
1997; Jasper and Zukunft, 1996]. This support appears mainly by means of mon-
itoring activity deadlines [Schmidt, 1996]. Indeed, the consistency of these dead-
lines and the side effects of missing some of them are not addressed [Eder et al.,
2000]. On the other hand, time management has only recently attracted substantial
attention in the workflow research community [Marjanovic and Orlowska; Bettini
et al.; Casati et al.; Dadam et al.; Bussler]. They deal with time management in a
different manner each of them having their strengths and weaknesses. However,
the consistency of explicit time constraints and the side effects of missing some
of them are not addressed. Consequently, time-related restrictions, such as bound
execution durations and/or absolute deadlines, are often associated with process
activities and sub-processes. Arbitrary time restrictions and unexpected delays
could lead to time violations. Typically, time violations increase the cost of busi-
ness processes because they require some type of exception handling [Panagos
and Rabinovich, 1997b].

Therefore, the comprehensive treatment of time and time constraints is crucial
to designing and managing business processes. It is imperative that current and
future WfMSs provide the necessary information about a process, its time restric-
tions, and its actual time requirements to process modelers and managers. The
need for time management in workflows can be illustrated by the following points
[Eder and Panagos, 2000]:
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At build-time, when workflow schemes are defined and developed, workflow
modelers need means to represent time-related aspects of business processes
(activity durations, time constraints between activities,etc.) and to check
their feasibility.

At run-time, when workflow instances are instantiated and their executions
are started, process managers should be able to adjust time plans (e.g. extend
deadlines) according to time constraints and unexpected delays. Further-
more, they need pro-active mechanisms to be notified about possible time
constraint violations. Only then they can take the necessary steps to avoid
time failures. Workflow participants need information about urgencies of
the tasks assigned to them to manage their personal work lists. If a time
constraint is violated, the WfMS system should be able to trigger excep-
tion handling to regain a consistent state of the workflow instance. Business
process re-engineers need information about the actual time consumption of
workflow executions to improve business processes.

Finally, controllers and quality managers need information about activity
start times and execution durations, which are usually provided by workflow
systems via workflow documentation (also referred to asworkflow historyor
workflow logging) and monitoring interfaces.

1.2 Objectives and Contributions of this Thesis
In this thesis, we are mainly interested in build-time aspects. Therefore, a new
framework for time management in workflow systems is defined. In particular,
we address the following issues.

Developing an advanced workflow metamodel

We present a workflow metamodel for capturing structured and less structured
workflows. This metamodel supports hierarchical composition of complex activ-
ities. Both elementary and complex activities can be used in several workflow
definitions and in several definitions of complex activities (re-use).

Modeling of time and time constraints to capture the available time information

We developed a control structure based workflow model which can be represented
either as programming language style text or as structured graph. Each activity at
the specification level is augmented with a deterministic discrete duration value
and each occurrence at the model level with eight time values, which represent
time points for the end event of the occurrence. Time constraints are relations
between two activities of a certain type. Such constraints are depicted in tabular
form or as directed edge (this is only possible in the graph based model).



4 Introduction

Pro-active time calculations to capture time constraint violations and raise alerts
in case of potential future time violations

Time calculations are required for computing optimistic and pessimistic start and
finish times of activities within processes, available slack time for activities, up-
dating existing deadlines, and so on. Typically, the assignment of external dead-
lines is an iterative process. We outline a technique that can be used to verify
time constraint satisfiability,i.e., it is possible to find a workflow execution that
satisfies all constraints. If external deadlines cannot be met, the designer might
modify the workflow structure, or change the deadlines.

Performing workflow transformations in order to tackle the problem of unneces-
sary rejections induced by superfluous time constraint violations

We consider transformations which do not change the semantics of the workflow.
Such equivalence transformations are frequently needed for workflow improve-
ments, workflow evolution, organizational changes, and for time management in
workflow systems. For time management, for instance, we apply transformation
operations on the process model in order to expand the model or to separate the
intrinsic instance types in the process model.

Proof-of-concepts (PoC) with a prototype

We have implemented a prototype calledGraphical WF-Designerfor our time
management framework. The purposes of the prototype are (i) concept explo-
ration (proof-of-concept), (ii) demonstration, and (iii) validation.

1.3 Structure of the Thesis

Chapter 2gives a high-level overview of the current workflow management method-
ologies.

Chapter 3 represents the workflow model we assume in this thesis. We describe
the workflow objects and workflow control structures used in this thesis. In addi-
tion, our graphical representation of workflows is shown and illustrated by means
of examples.

Chapter 4 points out several requirements for a workflow metamodel. Then
the metamodel for workflow definitions that supports control structure oriented
as well as graph based representation of processes is developed. Important as-
pects of this metamodel, such as the elaborated hierarchical composition which
supports the re-use of activity definitions and the separation of specification and
model level in the workflow description are demonstrated. Moreover, the neces-
sary metamodel constraints are stated.
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Chapter 5’s main contribution is the development of a set of basic workflow
scheme transformations and, based on them several complex transformation oper-
ations are defined. All transformation operations presented maintain the seman-
tics of the underlying workflows. In order to accomplish equivalence-preserving
transformations, we will introduce a new equivalence criterion on workflows.

Chapter 6 represents our technique for modeling, checking, and enforcing tem-
poral constraints in workflow processes consisting of the above introduced control
structures, in particular conditional and alternative control structures. We demon-
strate our technique for calculating the timed workflow graph and for incorporat-
ing lower and upper bound constraints. Furthermore, we show how our technique
avoids superfluous time constraint violations by means of applying transformation
operations.

Chapter 7 describes the graphical workflow designer prototype that has been de-
veloped based on the introduced theoretical concepts. The workflow designer and
the time management functions provided by this tool are described and illustrated
with an example.

Chapter 8 summarizes the work presented in this thesis, expounds main conclu-
sions and identifies possible areas of future work.
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Workflow Systems Overview

This Chapter provides a general introduction to the concepts of workflow systems
and technology. There is a lot of work on workflow technology and systems dealt
with literature. TheWorkflow Management Coalition (WfMC)[Hollingsworth,
1995] has developed an overall standard for workflow systems. This standard
describes theWorkflow Reference Model, which identifies the characteristics, ter-
minology, and components ofWorkflow Management Systems(WfMSs). [Geor-
gakopoulos et al., 1995] gives a valuable survey about workflow management
technology. Moreover, there are some books that discuss workflow management
technology, e.g. extracts by [Jablonski and Bussler, 1996; van der Aalst and van
Hee, 2002; WfMC, 200220012000].

In the following, a brief overview of recent technologies is given. For detailed
information the above cited documentation might be consulted.

2.1 Introduction

Business enterprises must deal with global competition, reduce costs, and rapidly
develop new services and products. In order to cope with these requirements
enterprises must permanently reconsider and optimize the way they do business
and adapt their information systems and applications to support evolving business
processes accordingly [Georgakopoulos et al., 1995].

In the early days, work was passed from one participant (or worker) to another.
The main benefits were that work was delivered to people, and each worker could
assume that work was ready for processing, since the workflow system would not
forward incomplete items. Then delivery was automated. Consequently, workflow
technology matured and the process of delivery was automated. A work item or
data set was created, and it was processed and changed in stages at a number of
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processing points to meet business goals [WfMC, 2001]. Workflow technology
facilitates this by providing methodologies and software to support:

business process modeling to capture business processes as workflow speci-
fications.

business process re-engineering to optimize specified processes.

workflow automation, which consists of

process instantiation and control, and

interaction with users and applications.

During the last few years tools have been developed to not only do the work,
but to manage the workflow. Such a workflow is represented as a workflow pro-
cess, which is defined in a form that supports automated manipulation in the work-
flow computer system. The process is managed by a computer program that as-
signs the work, passes it on, and tracks its progress. The workflow process is
traditionally defined in office terms, i.e. moving the paper, processing the order,
issuing the invoice. But the same principles and tools apply to filling the order
from the warehouse, assembling documents, parts, tools, and to people repairing
a complex system, or manufacturing the complex device [WfMC, 2001].

An effort to provide a consensusWorkflow Reference Model[Hollingsworth,
1995] was made by the WfMC, gathering ideas from researchers in the field. The
WfMC published a glossary [WfMC, 1999a1994ba] of useful terms related to
workflow. This glossary defines workflow as:

The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.

Workflow normally comprises a number of logical steps, each of which is
known as an activity. Thus, an activity can involve manual interaction with a user
or workflow participant, or it might be executed using machine resources [WfMC,
2000].

2.1.1 Workflow Management System
A system that defines, creates and manages the execution of workflows through
the use of software, running on one or more workflow engines. The WfMS is
able to interpret the process definition, interact with workflow participants and, if
required, to invoke the use of IT tools and applications [WfMC, 2000].

All WfMSs may be characterized as providing support in three functional ar-
eas (see Figure2.1):
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The build-time functions, concerned with defining the workflow process and
its constituent activities.

The run-time control functions concerned with managing the workflow pro-
cesses in an operational environment and sequencing the various activities.

The run-time interactions with human users and IT application tools for pro-
cessing the various activity steps.

Figure 2.1: Workflow System Characteristics acc. to [Hollingsworth, 1995]

2.1.2 Workflow Reference Model
The Workflow Management Coalition has developed an overall framework for the
establishment of workflow standards. This framework includes theWorkflow Ref-
erence Model(see Figure2.2) that has been developed from the generic workflow
application structure by identifying the interfaces within this structure.

All workflow systems contain a number of generic components which inter-
act in a defined way. To achieve interoperability between workflow products a
standardized set of interfaces and data interchange formats between such compo-
nents is necessary. Therefore, the WfMC defined an interoperability protocol for
each interface within the workflow architecture as illustrated in Figure2.2. The
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Figure 2.2: Workflow Reference Model acc. to [Hollingsworth, 1995]

architecture of the Workflow Reference Model identifies five interfaces. These in-
terfaces are related to the workflow enactment service, and they are supported by
a set of API calls (WAPI). A detailed description can be found in [Hollingsworth,
1995].

2.1.3 Workflow Classification
A widely accepted workflow classification distinguishes betweenadministrative,
ad hoc, collaborative, andproductionworkflows. The parameters of this classifi-
cation are the execution frequency of the business processes and their value to the
associated enterprises. However, it is also possible to organize them according to
the task complexity and the task structure [Alonso et al., 1997; Georgakopoulos
et al., 1995]. Figure2.3 illustrates these classifications.

These different classes are characterized as follows [Alonso et al., 1997; Geor-
gakopoulos et al., 1995]:

Administrative workflows refer to bureaucratic processes where the steps
to follow are well established. There is a set of rules known by everyone in-
volved. Examples are the registration for courses in a university, registration
of a vehicle, and almost any other process in which there is a set of forms to
be filled in and routed through a series of steps.

Ad Hoc workflows are similar to administrative workflows except for the
fact that they tend to be created to deal with exceptions or unique situa-
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Figure 2.3: Workflow Classification acc. to [Alonso et al., 1997]

tions. This depends on the users involved. While for a university the process
of applying for a degree is an administrative procedure, for a student it is
something that happens only once and therefore ad hoc. If the process is
of sufficient complexity, it is possible to define a workflow to help with its
coordination and management. It may also be the case that the situation is
not exceptional, but each particular instance is unique.

Collaborative workflows are mainly characterized by the number of par-
ticipants involved and their interactions. Unlike other types of workflows,
which are based on the premise that there is always forward progress, a col-
laborative workflow may involve several iterations over the same step until
some form of agreement is reached; or it may even involve the steps back
to an earlier stage. The writing of a paper by several authors would serve
as a good example. Additionally, it must be pointed out that collaborative
workflows tend to be very dynamic in the sense that they are defined as they
progress.

Production workflows can be characterized as repetitive and predictable
business processes, which are directly related to the function of the organi-
zation. Credit and loan applications and insurance claims are typical exam-
ples, but the difference between administrative and production workflows is
sometimes a matter of perspective. Usually, when talking about production
workflows, the main points to consider are the large scale, the complexity
and heterogeneity of the environment where they are executed, the variety
of people and organizations involved, and the nature of the tasks.
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Another classification often found in the literature is corresponding the un-
derlying technology, mail-centric, document-centric and process-centric. Mail-
centric systems are based on electronic mail and can be roughly associated with
collaborative and ad hoc workflows. Document- centric systems are based on the
idea of routing documents and the ability to interact with external applications
is limited. Administrative workflows based on forms can be implemented us-
ing document-centered systems. Process-based systems correspond to production
workflows. They generally implement their own communication mechanisms,
they are built on top of databases and provide a wide range of interfaces to allow
interaction with legacy and new applications [Alonso et al., 1997].

2.2 Summary
This Chapter provides a brief overview of workflow technology necessary for this
thesis. Starting out with the workflow definition it gives an introduction to the no-
tion of workflow management systems and its components. Finally, the workflow
reference model and a widely accepted workflow classification is mentioned.
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Workflow Modeling

Workflow modeling is an effective technique for understanding and document-
ing existing business processes. Support for heterogeneous processes (human-
centered and system-centered), flexibility and reuse are important challenges for
the design of process modeling languages (cf. [van der Aalst and van Hee, 2002;
van der Aalst et al., 2002; Joeris and Herzog, 1999]). Flexible and collaborative
processes require human intervention. Therefore, a process modeling language
which on a high level of abstraction is needed is easy to use and supports the visu-
alization of its elements. Based on these design objectives and requirements, we
have developed a process modeling language which supports flexible workflow
specifications.

In this Chapter, we concentrate on workflow modeling concepts for heteroge-
neous processes under the given design goals. On the conceptual level, we focus
on the specification of complex user-defined control flow dependencies which can
be used at a high level of abstraction and which are reusable in different contexts.

This Chapter is organized as follows: in Section3.1 the notion of workflow
modeling is is introduced. Section3.2 discusses related work in literature, and
Section3.3 provides definitions for technical terms used in this Chapter. Sec-
tion 3.4gives an overview of common process modeling approaches. Section3.5
shows our corresponding graphical model for workflows. Section3.6 explains
the control structures appearing in our specifications, and Section3.7 describes
our composite workflow model. Finally, Section3.8complies conclusions drawn
from the above Sections.
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3.1 Introduction
In order to build a workflow specification, it is necessary to start with basic mod-
eling and representation concepts.

Numerous workflow models have been developed based on different modeling
concepts (e.g. Petri Net variants, precedence graph models, precedence graphs
with control nodes, state charts, control structure based models, etc.) and on
different representation models (programming language style text based models,
simple graphical flow models, structured graphs, etc.) [Eder and Gruber, 2002].
With respect to different points of view each of the listed modeling and repre-
sentation concepts has its characteristics, strengths and weaknesses. Therefore, a
workflow described in a particular model may be more suitable for a specific kind
of consideration (e.g. conceptual comprehension) then in a different model. Con-
sequently it becomes necessary that a workflow described in a particular model is
transformed to a different model to inspect it from a different point of view.

Transformations between representations can be difficult (e.g. the graphical
design tools for the control structure oriented workflow definition languageWDL
of the workflow systemPanta Rheihad to be based on graph grammars to ensure
expressiveness equality between text based and graphical notation [Eder et al.,
1997b]).

In this Chapter, the main contribution is the presentation of a workflow model
for control structure oriented as well as graph based processes. Important as-
pects are the elaborated hierarchical composition supporting re-use of activities
by means ofoccurrences.

In the following, an overview of different concepts as well as a detailed de-
scription of the concepts used in this thesis is given.

3.2 Related Work
Many languages have been proposed for the specification of workflow processes.
Some of these languages are based on existing modeling techniques, such as
precedence graphs, Petri nets and State charts. Other languages are system spe-
cific. Any attempt to give a complete overview of these languages is destined to
fail [van der Aalst et al., 2002]. Throughout this Chapter we will refer to common
languages without striving for completeness.
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3.3 Workflow Definition
We specify a more sophisticated definition of workflows as it is done in Sec-
tion 2.1.

DEFINITION : A workflow is a collection ofactivities, agents,andde-
pendenciesbetween activities. Activities correspond to individual steps
in a business process, agents (software systems or humans) are respon-
sible for the enactment of activities, and dependencies determine the
execution sequence of activities and the data flow between them [Eder
and Gruber, 2002; Eder et al., 2000].

(3.1)

3.3.1 Conformance Classes
According the WfMC ([WfMC, 1999b]) there are three conformance classes re-
stricting the transitions (dependencies) between activities. The conformance classes
are defined by the WfMC as follows:

non-blockedThere is no restriction for this class.

loop-blockedThe activities and transitions of a process definition form an
acyclic graph.

full-blocked For each join there is exactly one corresponding split of the
same kind and vice versa. (for the notion of join and split see Section3.5.2
or 4.4).

Workflows complying with the first two classes may lead to structural con-
flicts such as deadlocks and lack of synchronization [Sadiq and Orlowska, 1999a;
Lin et al., 2002]. Therefore, these workflows have to be verified to ensure their
correct execution, whereas workflows of the full-blocked class are per se struc-
turally conflict-free. Workflows of the third conformance class are also called
(well) structured workflows[Eder and Gruber, 2002] in this thesis, and they can
be defined as it is stated in the subsequent Section. In [Kiepuszewski et al., 1999],
a similar recursive definition of structured workflows is denoted. Although struc-
tured workflow models are less expressive than arbitrary workflow models [Kie-
puszewski et al., 1999], the concepts of time management can be shown more
easily on structured workflow models than on non-blocked models.
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3.3.2 Structured Workflow Definition
At present we assume that workflows arewell structured.

DEFINITION : A well-structured workflow consists ofm sequential
activities,T1 . . .Tm. Each activityTi is either elementary, i.e. it cannot
be decomposed any further, or it is complex. A complex activity con-
sists ofni parallel, sequential, conditional or alternative sub-activities
Ti

1, . . . ,Ti
ni , each of which is either elementary or complex (cf. [Eder

and Gruber, 2002]).

(3.2)

Typically, well structured workflows are generated by workflow languages
with the usual control structures which adhere to a structured programming style
(e.g. Panta Rhei [Eder et al., 1997b]).

3.3.3 Occurrence(s) of Activities
Within a complex activity a particular activity may appear several times. To distin-
guish between those appearances, we introduce the notion of occurrences [Eder
and Liebhart, 1995; Liebhart, 1998; Eder and Gruber, 2002]. An occurrence is
associated with an activity and represents the place where an activity is used in
the specification of a complex activity. Each occurrence, therefore, has different
predecessors and successors.

The distinction between an activity and its (multiple) occurrence(s) is impor-
tant for the feature of re-useability, i.e. an activity is defined once and used several
times in workflow definitions. Equally, for maintenance it is only necessary to
change an activity once, and all its occurrences are changed as well. This allows
new workflows to be easily composed using predefined activities. A composition
of this kind can be called aworkflow specification.

3.4 Workflow Models
In order to build a workflow specification, it is necessary to start with modeling
concepts. Numerous workflow models have been developed. In this Section a
brief overview of some common workflow models is given.

Petri Net Variants
Basically, in a Petri net-based model, activities are modelled as transitions.
Arcs represent dependencies between activities, and places are used to model
the internal states of the workflow. Conditional and alternative branching
are modelled by using a place with multiple outgoing arcs. A transition
with multiple outgoing arcs represents the parallel execution of activities.
In order to avoid deadlocks, a parallel branching must end with a so-called
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synchronization transition which has multiple incoming arcs [van der Aalst
and van Hee, 2002; van der Aalst, 1998].

Figure 3.1: Example Petri-Net acc. to [van der Aalst, 1998]

Precedence Graphs
A precedence graph is a directed acyclic graph whose nodes represent tasks
and whose edges indicate the order in which tasks are to be accomplished
(loops have to be unfolded). A directed edge from nodeu to nodev means
that the task corresponding tou must be done before the task corresponding
to v. In other words, a task is executed as soon as all its predecessors have
completed. Numerous descendant methodologies like PERT and CPM are
widely used, especially in project management and product development
domains [Pozewaunig et al., 1997].

Precedence Graphs with Control Nodes
A precedence graph with control nodes is an above described precedence
graph which is augmented with control nodes like split and join nodes in
order to establish control structures such as parallel, conditional and alter-
native structures (s. Section3.6). Generally, a split node refers to a control
element having several immediate successors, which are executed depend-
ing on the control structure. A join node refers to a control element that is
executed after (a) particular immediate predecessor(s) finish(es) execution.
This depends on the control structure [Eder and Gruber, 2002; Zhao and
Stohr, 1999].

State Charts
State charts were originally developed for reactive systems (e.g. embedded
control systems in automobiles) and have been quite successful in this area.
State charts reflect the behavior of a system in that they specify the control
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flow between activities. A state chart is basically a finite state machine with
a distinguished initial state and transitions driven by EventConditionAction
rules (ECA rules). Each transition arc between states is annotated with an
ECA triple. A transition from stateX to stateY fires if the specified event
E occurs and the specified conditionC holds. The effect is that stateX is
left, stateY is entered, and the specified actionA is executed. Conditions
and actions are expressed in terms of data item variables; conditions and
events may also refer to states and the modification of variables by means of
special predicates likein(s) andch(v) wheres is a state andv is a variable. In
addition, an actionA can explicitly start or stop an activity and can generate
an eventE or set a conditionC [Wodtke and Weikum, 1997].

Script Languages
Script languages allow the description of workflows in a textual form and
their “look and feel” is similar to that of traditional programming languages.
Thus the workflow definition language WDL for the system Panta Rhei
([Eder et al., 1997b]) consists of five basic units: the workflow specifica-
tion part, the definition of activities, roles, organization structures and inter-
process communication.

The workflow specification part of WDL enables the formal description
of a workflow (process). Primarily this serves to specify the control and data
flow of a workflow. Additionally, transactional and time relevant aspects are
specified within this part.

The structure of a typical workflow specification is similar to the struc-
ture of ordinary procedural programs:

Header: Every workflow has a name and any number of optional argu-
ments. Arguments are forms which are passed into the workflow and/or
produced by the workflow.

Declaration Part: The declaration part consists of two units: work-
flow declaration and data declaration. The workflow declaration part
serves the specification of general process information. This type of in-
formation is equal for all processes and comprises information of the
process owner, a subject text, a short description of the current process,
the specification of the maximal execution time and the specification of
some action (e.g. the execution of a special time activity) in case of a
time failure. Forms which are produced within a workflow have to be
declared in the data declaration part. This is simply done by assigning
form types to form variables. Fields within the form can be accessed via
the dot notation. The scope of a data declaration is the whole workflow.
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Body: This is the main part of a workflow specification. The description
of the control and data flow of the process is expressed between the
keywordsbegin and end. Within the workflow context this means to
answer the following W-questions:who has to do what and when and
with which data. Based on this paradigm, typical statement sequences
in WDL are of the following simple structure:

agent name activity name (form names);

The semantics of this is: The workflow agentagent name performs
the activityactivity name with the forms defined by the arguments
form names.

WDL offers a variety of control structures to specify the execution or-
der of workflow steps. The most relevant control structures are sequence,
alternative and parallelism (and-parallelism and or-parallelism).

Rule-based Languages
In rule-based languages workflows are composed by a set of rules. Each
rule is composed by two parts, which are called left-hand side (lhs) and
right-hand side (rhs), e.g. bylhs⇒ rhs. The program executes on the con-
tent of the working context. The effect of a computation is the successive
application of the rules in the program to the content of the working context.
The effect of applying a rule to the working context is either the removal
of a record or the introduction of a new record. Therhs of the rule con-
tains the action used to modify the content of the working context. Thelhs
of each rule represents the conditions that have to be met for the rule to be
applicable. Thelhs is composed by a sequence of conditions, where each
condition is a pattern. A pattern is a condition on the content of the working
context. The pattern describes a record by specifying the values for certain
fields. The pattern is satisfied if there is one record in the working context
that meets the requirement specified by the pattern. The programmer is al-
lowed to introduce to the program a number of initial rules that are going
to be executed first in the program. The assumption is that when the pro-
gram starts, the initial rules are going to be executed; their effect is to add
the mentioned records to the working context [Wichert et al., 2001; Bonner,
1999; Casati et al., 1996a; Kappel et al., 1995].

As the subsequent example ruleR GetOffers shows, the action is exe-
cuted by sending the messagenotifyAgent to the instancea get offers

if the condition evaluates to true.
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DEFINE RULE R GetOffers
ON POST (Activity, perform: aFolder) DO
IF Offers notUpToDateFor: ((aFolder at: ’Order’) positions)
THEN
EXECUTE a get offers notifyAgent

ACTIVATED FOR (a create order form).

Example Rule acc. to [Kappel et al., 1995]

3.5 Workflow Representation
A workflow specification is also based on representation concepts. In literature
different representation models such as programming language style text based
models, simple graphical flow models, structured graphs, etc. were introduced. In
this Section an overview of our workflow representation models is given.

3.5.1 Programming Language Style Text Based Represen-
tation

Usually, well-structured workflows are generated by workflow languages with
the usual control structures which adhere to a structured programming style (e.g.
Panta Rhei [Eder et al., 1997b]).

Figure 3.2: Workflow specification example (control structure)

Figure3.2shows an example of a script language model based workflow. The
control structures define complex activities. Here, the workflow specification for
workflowWFS1represents a sequence of occurrenceO1, where the occurrenceO1
stands for the activityA1. Activity A1 is a complex activity; it consists of three
sequential occurrences, namelyO2, O3, andO4, where they embody the activities
A2, A3, and againA2. O2 is the predecessor ofO3, andO3 is the predecessor
of O4, which is implicitly expressed by the ordering of the occurrences. The
complex activityA2 represents a conditional structure with the occurrencesO5
andO6. OccurrencesO5 andO6 stand for activitiesA4 andA5. ActivitiesA3, A4
andA5 are elementary activities.
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3.5.2 Workflow Graphs

Structured workflows can also be represented bystructured workflow graphs(SWG),
where nodes represent activities or control elements and edges correspond to de-
pendencies between nodes. Anand-splitnode refers to a control element having
several immediate successors, all of which are executed in parallel. Anand-join
node refers to a control element that is executed after all of its immediate pre-
decessors finish execution. Anor-split node refers to a control element whose
immediate successor is determined by evaluating a boolean expression (condi-
tional) or by choice (alternative). Anor-join node refers to a control element that
joins all the branches after an or-split.

The graph representation of a workflow definition can be structured in a sim-
ilar way such as it is the case in the text-based representation (block-structured
workflow languages) of the workflow definition. Directed edges stand for depen-
dencies, hierarchical relations, and part-of relations between nodes. Figure3.3
shows the graphical elements.

Figure 3.3: Graphical elements

Activity and occurrence nodes are represented by a rectangle in which the
name of the representing activity or occurrence is indicated. An activity node
additionally features the structure of the representing activity (only in complex
activities). Thestructure indicates the control structure (‘seq’, ‘par’, ‘cond’ or
‘alt’) of a complex activity. At the model level (s. Section3.7), nodes feature the
name of the related specification occurrence that is encapsulated between round
brackets. Control elements are represented by a circle in the graph in which the
name and the structure of the control element is indicated. Furthermore, any exist-
ing predicate of a node will be depicted between angle brackets below the graphi-
cal element. Directed edges stand for dependencies, hierarchical relations (dashed
line directed edge), and part-of relations (dot and dash line directed edge) between
nodes.

Figure3.4 shows the workflow defined in Fig.3.2 in graph notation. In the
graphical representation, (implicit) relationships in the text-based specification
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Figure 3.4: Workflow specification graph example

are explicitly expressed by the different directed edges (dependency, hierarchy,
andpart-of).

Regardless of the structured workflow definition, a structured workflow graph
has two different emergences as it is described below.

3.5.2.1 Strictly Structured Workflow Graph

A workflow graph isstrictly structuredif each split node is associated with exactly
one join node and vice versa, and each path in the workflow graph originating in
a split node leads to its corresponding join node [Eder and Gruber, 2002].

3.5.2.2 Less Strictly Structured Workflow Graph

To allow more transformations (see Section5) and the separation of workflow
instance types in the workflow model we also offer a less strict notion. Here, a split
node may be associated with several join nodes, however, a join node corresponds
to exactly one split node. Each path originating in a split node has to lead to
an associated join node. Such graphs result from equivalence transformations
necessary e.g. for time management [Eder and Gruber, 2002].

Both representations of workflows can be freely mixed in our approach which
we call hybrid graphor graph-basedworkflow representations. Graph based
structures can be used as complex activities, and structured composite activities
in turn can be used in graph based representations.
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3.6 Workflow Control Structures

In this Section control structures capturing elementary aspects of process con-
trol are discussed. A workflow model is created by composition of these control
structures [van der Aalst et al., 2000; Marjanovic and Orlowska, 1999a].

The figures below describe the control structures in two representation models,
namely as graph based representation and as programming language style text
based representation. All of the following control structures are listed in [van der
Aalst et al., 2002]. Additionally, a general notion of control structures can be
found in [WfMC, 1999a].

3.6.1 Sequence

A sequence (sequential execution) is the most basic workflow pattern. It is re-
quired for a dependency between two or more activities, so that one activity can
be started after the predecessor activity is finished.

Figure 3.5: Sequential Execution Example

3.6.2 Parallelism

All activities of a parallel structure are executed. A parallel structure is necessary
when two or more activities need to be executed parallel, thus allowing activities
to be executed simultaneously or in any order.

3.6.3 Conditional

Exactly one of several (mutually exclusive) activities that satisfy a given condition
(predicate) is executed (XOR). There is always one activity at execution time that
satisfies the given condition. The activity that is executed next depends on data
and state that are generated during the execution of the workflow process instance.
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Figure 3.6: Parallel Execution Example

Figure 3.7: Conditional Execution Example

3.6.4 Alternative

Any activity among many alternative activities can be executed. The activity that
is executed next depends on policies and information that are shared by all alter-
native activities of the alternative structure, and which are determined by agents.
This means that any alternative will lead to a correct workflow execution [Eder
et al., 1999a].

Figure 3.8: Alternative Execution Example
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3.6.5 Iteration
In our approach loops of an activity are simply considered a complex activity. Al-
ternatively, loops could be introduced as repetitions of a workflow graph. It might
not be possible to exactly predict the number of iterations that will be executed
during run-time. For this reason it is necessary to split the iteration into a struc-
ture that is composed of sequences and conditionals which connect the complex
activity multiple times [Eder and Pichler, 2002].

In the following we assume that the workflow-graph of Figure3.9is embedded
in the complex iteration (loop) activityAE that is bound byM0 andM5.

Figure 3.9: Iteration AE as Complex Activity

In the following it is necessary to split the iteration into a structure that is
composed of sequences and conditionals which connect the complex activityAE
multiple times, as shown in Figure3.10. A detailed consideration about that con-
version can be found in [Eder and Pichler, 2002].

Figure 3.10: Iteration Split into Sequences and Conditionals

3.7 Composition Structure of the Workflow Model
In the workflow specification, the concept of occurrences helps to distinguish be-
tween several referrals to the same activity within a complex activity. When a
complex activity is used several times within a workflow, we also have to dis-
tinguish between the different appearances of occurrences. Therefore, a model
is required that corresponds to the specification, so that for the definition of the
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dependencies between activities an occurrence of an activity in a workflow has
to be aware of its process context. Therefore, we transform the design informa-
tion (specification) contained in the metamodel into a composition, i.e. tree-like
structure. In such a tree-like structure different appearances of the same activity
are unambiguously distinguished, so that we can define the dependencies between
activities on the basis of these occurrences. We call these itemsmodel elements,
and the workflow consisting of model elements theworkflow model.

Figure 3.11: Workflow Model Control Structure Example

Figure3.11shows the workflow model for the workflow specification in Fig-
ure3.2. In the following example, the model elementsM2 andM4 have their own
contexts withM5 andM6 or M7 andM8 respectively, and they are built up like
a tree. Figure3.12shows the workflow model in graph notation, giving the full
unflattened model in the upper half and the full flattened model in the lower half
(s. Section5.5.1.1).

3.8 Summary
This Chapter presented an overview of workflow modeling and representation
concepts, emphasizing the control perspective. Some common modeling lan-
guages (text based as well as graphical) are pointed out briefly. Apart from the
declaration of necessary definitions, all relevant workflow control structures are
specified and described. Finally, the workflow model that is used in this thesis
and which is deduced from the workflow specification closes the Chapter.
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Figure 3.12: Workflow Model Graph Example



28 Workflow Modeling



4
Workflow Metamodel

The objective of this Chapter is to introduce the metamodel that is used in this
work as basis for our temporal workflow model and workflow transformations.
It comprises a set of modeling concepts to capture various aspects of workflows.
In particular, the workflow metamodel presented allows to model structural, func-
tional, reuse and informational aspects of workflows (cf. [Eder and Gruber, 2002]).

This Chapter is organized as follows: Section4.1briefly introduces workflow
metamodels, and Section4.2discusses several requirements for a workflow meta-
model. Section4.3 provides a brief overview of related work in literature. Sec-
tion 4.4describes in detail our workflow metamodel and Section4.4.5shows the
semantical integrity constraints for the metamodel. Section4.5shows a workflow
which complies with our metamodel. Section4.6 complies conclusions drawn
from the above Sections.

4.1 Introduction

Workflow modeling is the process of creating an abstract representation of a busi-
ness process. Models serve several purposes, such as testing a workflow before
its application, communicating with customers, visualizing the working process,
and reducing complexity etc. A particular workflow must obey predefined rules.
These rules are specified in what is called a paradigm. The paradigm essentially
defines the entities and relationships allowed in the given domain. The paradigm,
in this sense, defines the syntax of the modeling language. The paradigm is de-
signed to fit for particular domain, and therefore describes the way that models
are used.

In general, the paradigm is represented by the specification of a metamodel. It
formally defines the syntax, semantics, presentation, and translation specifications
of a particular modeling environment. Here, the workflow metamodel establishes
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the modeling semantics required to specify the aspects of business processes, thus
it is a formalization of all available design concepts.

In this Chapter, we define a new metamodel for workflow specifications that
supports control structure oriented as well as graph based representation of pro-
cesses as introduced in [Eder and Gruber, 2002]. Important aspects of this meta-
model are the elaborated hierarchical composition supporting re-use of activity
definitions and the separation of specification and model level in the workflow
description. Moreover, metamodel constraints that have to be fulfilled in order to
guarantee the integrity of our workflow model are stated.

4.2 Metamodel Requirements

In this Section, several requirements for workflow metamodels are briefly dis-
cussed to sufficiently describe the structure and characteristics of a workflow by a
workflow metamodel.

Generally, the aspects of workflows, which have to be definable by using a
workflow metamodel, depend on the requirements resulting from the application
domain. The completeness of a workflow metamodel is relative to its application
so, in one application data flows do not have to be modeled, or in another one
deadlines play an important role ([Eder et al., 1999b; Marjanovic and Orlowska,
1999b]). Since constructing a workflow metamodel that satisfies all requirements
from all potential application domains is hardly feasible, there is no such thing
as a “complete” workflow metamodel [Kradolfer, 2000]. Nonetheless, there are
several common aspects of workflows that are relevant in many applications: (1)
control-flow (or process) perspective, (2) resource (or organization) perspective,
(3) data (or information) perspective, (4) task (or function) perspective, (5) oper-
ation (or application) perspective. Other perspectives are the causal aspect (regu-
lations and dependencies), the historical aspect (logging), the transactional aspect
(workflow consistency), etc. [Becker et al., 2000; Curtis et al., 1992; Jablonski and
Bussler, 1996; Sadiq and Orlowska, 1999b]. In the following, the most important
aspects are briefly described:

Control-flow aspect: The control-flow perspective specifies which tasks
need to be executed and in what order (i.e. the routing). The different control
structures are described in Chapter3.

Organizational aspect:In the resource (organizational) perspective, the or-
ganizational structure and the population are specified. Resources ranging
from humans to devices form the organizational population are mapped onto
resource classes. (Which resources have to perform which activities?)
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Informational aspect: The data perspective deals with control and produc-
tion data. Control data are data introduced solely for workflow manage-
ment purposes. Control data are often used for routing decisions in condi-
tional structures. Production data are information objects (e.g. documents,
forms, and tables) whose existence does not depend on workflow manage-
ment. (Which data are produced and consumed by workflows, and how do
they flow?)

Functional aspect: The task (functional) perspective describes the content
of the process steps, i.e. it describes the characteristics of each task. A task
is a logical unit of work with characteristics such as the set of operations
that need to be performed, description, expected duration, due-date, priority,
trigger. These applications create, read, or modify control and production
data in the data perspective.

Operational aspect: In the operational perspective, the elementary actions
are described. Note that one task may involve several operations. These
operations are often executed using applications ranging from a text editor
to custom-built applications for performing complex calculations. Usually,
these applications create, read, or modify control and production data in the
data perspective.

Besides the aforementioned requirement aspects, there are further non-functional
requirements a workflow metamodel should fulfill: (1) enactability, (2) ease of
use, (3) correctness criteria, (4) evolution, and (5) reuse (see Sect.3.3.3).

In the following, we present a metamodel that has been tailored to support
workflow transformations and time management. Therefore it does not contain all
necessary components (perspectives) of a workflow metamodel. In this Chapter
we present a metamodel for capturing (strictly and less strictly) structured work-
flow models in the form of classically nested control structure representation as
well as the frequently used graph representations. This metamodel supports hi-
erarchical composition of complex activities. Both elementary and complex ac-
tivities can be used in several workflow definitions and in several definitions of
complex activities (re-use). A sophisticated feature of our metamodel is that it
divides the workflow specification and the (expanded) workflow model(s). More-
over, our metamodel includes some specific functionalities such as transformation
operations (flatten, unflatten, unfold, etc.).

4.3 Related Work
A vast number of workflow metamodels has been proposed yet (see e.g. [Casati
et al., 1995; Hofstede et al., 1996; Jablonski, 1994; Joeris and Herzog, 1998; Kap-
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pel et al., 1995; Kradolfer, 2000; Krishnakumar and Sheth, 1995; Liebhart, 1998;
Meyer-Wegener and B̈ohm, 1999; Sadiq et al., 2000; Trajcevski et al., 2000]). De-
spite the standardization efforts taken by the WfMC [WfMC, 1999b] no generally
accepted metamodel has been developed so far.

4.4 Workflow Metamodel Description
In this thesis, UML is used as meta-modeling language and OCL (Object Con-
straint Language) as integrity constraint language [Warmer and Kleppe, 1999].

The metamodel shown in Figure4.1 [Eder and Gruber, 2002] gives a general
description of the static scheme aspects (the build time aspects) of workflows.
The metamodel presented in Fig.4.1 is adopted to the purpose of this thesis and
does therefore not contain all necessary components of a workflow metamodel.
In the following, we discuss the elements of the metamodel in detail. The impor-
tant concepts along with examples have already been described in the previous
Chapters.

4.4.1 Metamodel Stratifications
The metamodel consists of the following parts (stratifications): the specification
level contains the description of workflow types and activity types together with
their composition structure via occurrences (see below). The model level contains
the expanded workflow specifications, so that all activity appearances may have
their individual characterizations (like due dates, agent, etc.). The instance level
and the organization level are omitted in this work (for these aspects see i.e. [Eder
et al., 2002]). We did not take the dimension of data into account, since there
the differences between workflow systems are too big to allow a more general
treatment.

4.4.2 Workflows and Activities
The classWorkflowcontains the typical header information of a workflow. It
describes the process itself and has the unique attributewfId for the identification,
and the attributesnameanddescription. Further administrative information, e.g.
authorandcreation dateis also available.

4.4.2.1 Activity

A workflow uses activities which are represented by the classActivity that has the
attributesaID (unique),name, description, precondition(expressing constraints
on when the activity can be called),postcondition(expressing the results deliv-
ered by the activity when it successfully finishes execution) andduration. Activ-
ities are either (external) workflows, elementary activities or complex activities
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Figure 4.1: Workflow Metamodel
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either expressed by the generalization hierarchy. An activity may belong to many
workflows, a fact that is modeled by the associationwf uses.

4.4.2.2 Complex Activity

Complex activities, modeled by the classComplexActivity, are composed of other
activities, which are represented as (activity-) occurrence in the composition of a
complex activity. Complex activities have a type (attributetype) describing their
control structure (seqfor a sequential activity,par or and for a parallel activity,
condor or for a conditional activity oralt for an alternative activity). Through
the associationparentbetween activities and complex activities (hierarchical re-
lationship) we also register in which activities an activity appears.

4.4.3 Occurrences

To support reuse the notion of occurrence is central in our metamodel. Occur-
rences are specified by the classOccurrencewhich has the attributesoID (unique),
predicate(optional),positionand type. The attributepredicateis used to repre-
sent the condition for child occurrences of conditional activities and for occur-
rences following an or-split. The attributepositionindicates the processing posi-
tion within the scope of the complex activity, and it can have either of the values
‘start’, ‘ between’, ‘ split’, ‘ join’, ‘ end’ or ‘ start/end’. The attributetypeshows the
same information as the attributetypeof the classComplexActivity. An occur-
rence can either be an activity occurrence or a control occurrence, as described
below. Each occurrence corresponds to exactly one activity by the association
belongsto, and each activity corresponds to several occurrences.

An occurrence is the placeholder for an activity, i.e., for each complex activity
the occurrences of its child activities are determined by the associationconsistof.
These occurrences are designated as child occurrences of the complex activity.

For all child occurrences of a sequence activity, the predecessor and successor
for each of this occurrence is defined by means of transitions which are modeled
by the association classTransitionwhere the association is a reflexive relationship
referencing the classOccurrence. Per sequence, it produces exactly one child
occurrenceS that has no predecessor, and exactly one child occurrenceJ that
has no successor. IfS andJ are the same occurrence, the attributepositionof S
holds the value ‘start/end’. OtherwiseShas the value ‘start’ andJ the value ‘end’.
The remaining child occurrences (if existent) have the value ‘between’. It has to
be noted that transitions can be defined only for child occurrences of sequences
and control structures, since predecessors and successors can only be defined for
occurrences.



Workflow Metamodel Description 35

Every child occurrence of conditional activities and every occurrence that fol-
lows an or-split is associated with a predicate, so that there is exactly one occur-
rence with which the predicate is fulfilled in the processing.

All child occurrences of conditional, parallel and alternative activities have the
value ‘start/end’ in the attributeposition.

At this point the description of the classComplexActivitycan be finished.
Apart from the attributes mentioned above,ComplexActivityhas the methodsget-
FirstChildren, getLastChildrenandgetChildren, wheregetFirstChildrenreturns
the child occurrences of the complex activity with the value ‘start’ or ‘start/end’
of the attributeposition, getLastChildrenreturns the child occurrences of the com-
plex activity with the value ‘end’ or ‘start/end’ andgetChildrenreturns all child
occurrences of the complex activity. There are some other reasonable methods
concerning this class (cf. [Eder et al., 2003; Ninaus, 2002]).

4.4.3.1 Activity Occurrence

The occurrence of an activity in the specification appears both in in the class
ActivityOccurrenceand Occurrence. The classActivityOccurrenceinherits the
characteristics from the classOccurrence. The classActivityOccurrencehas the
methodflattenthat carries out the process described below.

4.4.3.2 Control Occurrence

A control occurrence represents a control element such as a split or a join (see
above). The classControlOccurrencethat has the attributecntrPosition, mod-
els these control elements and inherits the characteristics from the classOccur-
rence. Moreover, it has the methodunflatten. The attributecntrPositionindicates
whether it belongs to a split or a join control element. The classControlOccur-
rencehas the reflexive (recursive) associationis counterpartthat indicates the
accompanying (matching) join control element to the split control element and
vice versa.

4.4.4 Workflow Model
The description of workflow models is contained in the classWFModelthat has
the attributesmId (unique),descriptionandstructureType. The attributestruc-
tureTypeindicates whether the workflow is a strict blocked workflow or a hybrid
workflow. This class is connected by the associationwf hasModel to the class
Workflow. This relationship is needed, since a workflow can have several models.

4.4.4.1 Model Element

A workflow model consists of model elements that are represented by the class
ModelElementwith the attributesmeId(unique),predicateandposition. The class
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ModelElementhas the methodsgetFirstChildren, getLastChildrenand getChil-
dren(they are analogous to the methods ofComplexActivitywith identical names).
An object of the classModelElementreferences exactly one object of the classOc-
currenceby the associationspecifiedby. An object of the classOccurrencerefer-
ences many objects of the classModelElement. The attributepositionis analogous
to the attribute of the classOccurrencewith identical name. An element can ei-
ther be an activity occurrence or a control occurrence. Analogous to occurrences,
model elements can have transitions, modeled by the classModelTransition. The
hierarchical relationship between model elements is maintained by the association
meparent.

4.4.4.2 Model Activity Occurrence

The occurrence of an activity in the model places a model occurrence there, and
it is modeled by the classModelActivityOccurrence. The class has the method
flattenthat carries out the process described in the subsequent Chapter.

4.4.4.3 Model Control Occurrence

If a model occurrence that represents a complex activity is flattened, the model
occurrence is represented through a split and a join control element, the so-called
control occurrences. These control elements are modeled by the classModel-
ControlOccurrencethat has the attributecntrPositionand the methodunflatten.
The attributecntrPositionindicates whether it concerns to a split or a join con-
trol element. The methodunflattenis the inverse method toflattenof the class
ModelActivityOccurrence. The classModelControlOccurrencehas the recursive
associationis counterpartthat indicates the accompanying join control element
to the split control element and vice versa.

4.4.5 Metamodel Integrity Constraints
Integrity constraints provide a way of ensuring that changes made to the workflow
model by authorized users do not result in a loss of workflow consistency. The
violation of consistency constraints results in erroneous system behavior and has
therefore to be avoided. Thus, integrity constraints form an essential part of the
workflow metamodel. A declaratively specified integrity constraint can be any
arbitrary predicate applied to the workflow model. It is customary to distinguish
between two kinds of constraints: static and dynamic [Chomicki, 1995]. Only
static constraints are considered here. They refer to the current state of the work-
flow model (e.g., “all child occurrences of a complex activity of the type ‘seq’
must be interrelated”).

In the following, the integrity constraints are described in two ways, i.e. form-
less in prose and formally in OCL. Table4.1gives a short overview of the integrity
constraints that are not represented in the class diagram.
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Table of Integrity Constraints

Level Name Description

IC1 Every complex activity must have at least one child-activity

IC2 Every complex activity must have at least one child-occurrence

IC3 All child-activities of an activity must be referenced at least by a child-
occurrence of the activity

IC4 All child-occurrences of an activity referring to exactly one child-
activity of the activity

Specification IC5 Sequence-activities must have successional child-occurrences

IC6 Only child-occurrences of sequence-activities are allowed to have tran-
sitions

IC7 Corresponding split and join control occurrences (which belong to-
gether) reference mutually (to each other)

IC8 The corresponding split and join control occurrences reference the same
occurrence

IC9 The relation given by the association parent is acyclic

IC10 If a model exists, every occurrence has at least one dedicated model-
occurrence

IC11 If a model exists, the model must be complete and sound

IC12 If a model exists, the model occurrence transitions are analogous to the
occurrence transitions

Model IC13 If a model exists, the hierarchical structure of the model occurrences
has to be analogous to the hierarchical structure of the occurrences

IC14 Corresponding split and join model control occurrences (which belong
together) reference mutually (to each other)

IC15 The corresponding split and join model control occurrences reference
the same occurrence

IC16 The transitions of model control occurrences must be analogous to the
structure of the corresponding complex activity

IC17 The relation given by the association meparent must be acyclic

Table 4.1: Integrity Constraints (Brief Description)
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4.4.5.1 Integrity Constraints Belonging the Specification Level

IC1: A complex activity is composed of sub-activities and must therefore have at
least one child-activity. Thus, the set of sub-activities of a complex activity must
be not empty.

ComplexActivity:

self.sub->notEmpty

IC2: A complex activity consists of occurrences and must therefore have at least
one child-occurrence. Thus, the set of child-occurrences of a complex activity
must be not empty.

ComplexActivity:

self.childOccurrence->notEmpty

IC3: All child-activities of an activity must be referenced by a child-occurrence
of the activity and vice versa. Hence, the set of sub-activities of a complex activity
CA has to be identical with the set of activities which are referenced by the child-
occurrences ofCAand vice versa. This requires that IC1 and IC2 are valid.

ComplexActivity:

self.sub->includesAll(self.childOccurrence.activity) and
self.childOccurrence.activity->includesAll(self.sub)

IC4: Every occurrence belongs to exactly one activity. Thus, the cardinality of
the set of activities of an occurrence is one.

Occurrence:

self.activity->size = 1

IC5: The child-occurrences of a complex activity of type ‘seq’ must have succes-
sional (interrelated) child-occurrences, such that every child-occurrence has one
of these child-occurrences as successor, except the child-occurrence with the po-
sition ‘end’ or ‘start/end’, and such that every child-occurrence has one of these
child-occurrences as predecessor, except for the child-occurrence with the posi-
tion ‘start’ or ‘start/end’. In order to apply this integrity constraint, it is necessary
that IC1, IC2, IC3 and IC4 are valid.
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ComplexActivity:

-- There is exactly one ’start’-occurrence

self->select(type =’seq’).childOccurrence->select(
position =’start’ or position = ’start/end’)->size = 1

-- There is exactly one ’end’-occurrence
self->select(type =’seq’).childOccurrence->select(
position = ’end’ or position = ’start/end’)->size = 1

-- Every occurrence except the end-occurrence has
-- exactly one successor

self->select(type =’seq’).childOccurrence->select(
position = ’start’ or position = ’between’)->forAll(
hs | hs.next->size = 1)

-- The end-occurrence has no successor

self->select(type =’seq’).childOccurrence->select(
position = ’end’ or position = ’start/end’).next->isEmpty

-- The corresponding activity of the successor-occurrence
-- of an occurrence and the corresponding activity of
-- the occurrence are identical

self->select(type =’seq’).childOccurrence->select(
position = ’start’ or position = ’between’)->forAll(
hs | hs.activity = hs.next.activity)

-- Every occurrence except the start-occurrence has
-- exactly one predecessor

self->select(type =’seq’).childOccurrence->select(
position = ’between’ or position = ’end’)->forAll(
hp | hp.prev->size = 1 }

-- The start-occurrence has no predecessor

self->select(type =’seq’).childOccurrence->select(
position = ’start’ or position = ’start/end’).prev->isEmpty

-- The corresponding activity of the predecessor occurrence
-- of an occurrence and the corresponding activity of
-- the occurrence are identical

self->select(type =’seq’).childOccurrence->select(
position = ’between’ or position = ’end’)->forAll(
hp | hp.activity = hp.activity.prev }
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IC6: Only child-occurrences of sequence-activities are allowed to have transi-
tions, i.e. the predecessor and successor sets of child-occurrences of complex
activities with the type ‘par’, ‘cond’ or ‘alt’ are empty.

ComplexActivity:

self->select(type =’par’).childOccurrence.next->isEmpty and
self->select(type =’par’).childOccurrence.prev->isEmpty

self->select(type =’cond’).childOccurrence.next->isEmpty and
self->select(type =’cond’).childOccurrence.prev->isEmpty

self->select(type =’alt’).childOccurrence.next->isEmpty and
self->select(type =’alt’).childOccurrence.prev->isEmpty

IC7: Corresponding (matching) split and join control occurrences reference mu-
tually to each other. A split control occurrence (cntrPosition = ’start’) has at least
one matching join control occurrence (cntrPosition = ’end’) and a join control oc-
currence has exactly one matching split control occurrence. Other relationships
between control occurrence are not allowed.

ControlOccurrence:

self.cntrPosition = ’start’ implies
self->includesAll(self.join.split) and self.split->isEmpty

self.cntrPosition = ’end’ implies self = self.split.join and
self.join->isEmpty

IC8: Corresponding (matching) split and join control occurrences reference the
same super-activity. This means that they have to stem from one complex activ-
ity. This, the super-activity of the split control occurrence is the same activity as
the super-activity of the join control occurrence and vice versa. This constraint
requires that IC7 is valid.

ControlOccurrence:

self.cntrPosition = ’start’ implies
self.activity.super = self.join.activity.super

self.cntrPosition = ’end’ implies
self.activity.super = self.split.activity.super
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IC9: The relation given by the association parent must be acyclic. Hence a com-
plex activity does not contain itself as an (transitive) sub-activity.

Activity:

not self.getAllSubActivities()->includes(self)

4.4.5.2 Integrity Constraints Belonging to the Model Level

IC10: For every model, every occurrence of the specification from which the
model is derived, has at least one dedicated model occurrence in the model. That
means that if a modelWFM is derived from a specificationWFS, every occur-
rence ofWFShas at least one pendant inWFM. This constraint assumes that the
specification is correct.

Workflow:

self.wFModel->forAll( wfm | wfm.modelElement->notEmpty implies
self.occurrence->forAll( so |
wfm.modelElement.occurrence->exists(elem | elem = so)))

IC11: If a model exists, then the model must be complete and sound, i.e. the
model must be correctly expanded according the specification, such that an oc-
currence of an activity has to be aware of its process context. Thus, if a model
WFM is derived from a specificationWFS, every model elementME, which be-
longs to a complex activityCA, features the analogous sub-model elements asCA
(child-occurrences ofCA). This constraint requires that IC9 is valid.

Workflow:

self.wFModel->forAll( wfm | wfm.modelElement->notEmpty implies
wfm.modelElement->forAll(me |
me.occurrence.activity.childOccurrence->forAll(so |
so.modelElement->exists(me1 | me1.super = me)))

IC12: If a model exists, then the model occurrence transitions are analogous to
the occurrence transitions of the specification. Hence, if is a model elementME,
which is referenced by a specification occurrenceSO, has a predecessor model
elementPME, then the referenced specification occurrencePSOof PME must be
the predecessor ofME. Likewise, if a model elementME, which is referenced
by a specification occurrenceSO, has a successor model elementSME, then the
referenced specification occurrenceSSOof SME must be the successor ofME.
This constraint requires that IC9 and IC10 are valid.
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Occurrence:

self.prev.modelElement->forAll(mo | self.modelElement.prev = mo) and
self.next.modelElement->forAll(mo | self.modelElement.next = mo)

IC13: If a model exists, then the hierarchical structure of the model elements has
to be analogous to the hierarchical structure of the occurrences of the underlying
specification so, for all model elementsME, which reference a complex activity
CA, the referenced set of specification occurrences of their sub-model elements is
identical to the set of the child-occurrences ofCA.

ModelElement:

self->select(
me | me.occurrence.activity.oclIsKindOf(ComplexActivity) = true)->forAll(
me1 | me1.sub.occurrence->includesAll(
me1.occurrence.activity.childOccurrence))

IC14: Corresponding split and join model control occurrences (which belong
together) reference mutually (to each other). A split model control occurrence
(cntrPosition = ’start’) has at least one matching join model control occurrence
(cntrPosition = ’end’) and a join model control occurrence has exactly one match-
ing split model control occurrence. No other relationships between model control
occurrences are allowed.

ModelControlOccurrence:

self.cntrPosition = ’start’ implies
self->includesAll(self.join.split) and
self.split->isEmpty

self.cntrPosition = ’end’ implies self = self.split.join and
self.join->isEmpty

IC15: Corresponding split and join model control occurrences reference the same
occurrence. This means that they have to stem from one complex activity. There-
fore, the occurrence which is referenced by a split model control occurrence, is
the same occurrence as the occurrence which is referenced by the matching join
model control occurrence and vice versa.
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ModelControlOccurrence:

self.cntrPosition = ’start’ implies
self.occurrence = self.split.occurrence

self.cntrPosition = ’end’ implies
self.occurrence = self.join.occurrence

IC16: The transitions of model control occurrences must be analogous to the
structure of the corresponding complex activity. Hence a split has a transition to
every model element, which returns the method getFirstChildren() applied to the
split, and a join has a transition to every model element, which returns the method
getLastChildren() applied to the join.

ModelControlOccurrence:

self.cntrPosition = ’start’ implies
self.next->includesAll(self.getFirstChildren())

self.cntrPosition = ’end’ implies
self.prev->includesAll(self.getLastChildren())

IC17: The relation given by the association meparent must be acyclic. This
means that a model element does not contain itself as a (transitive) sub-model
element.

ModelElement:

not self.getAllSubElements()->includes(self)

4.5 Workflow Example

In the course of the thesis we will now use the following running example in
Figure4.2.

In this graph, we have a sequence of activity occurrenceA, a parallel control
structure with and-splitM2 andM9 as the corresponding and-join, and the activity
occurrenceI . The parallel structure has two paths with the activity occurrenceH
and a sequence (M3 andM8). This sequence consists of activity occurrenceB,
a conditional structure and activity occurrenceG. The conditional structure has
three paths with activity occurrenceE, F and a sequence, which is composed of
activity occurrenceC andD.
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Figure 4.2: Example Workflow

4.6 Summary
This Chapter starts out with a couple of requirements for a workflow metamodel,
which depend on the process perspective, are pointed out. Then, the metamodel
for workflow definitions that supports control structure oriented as well as graph
based representation of processes is presented. It is pointed out that the elab-
orated hierarchical composition supporting re-use of activity definitions and the
separation of specification and model level in the workflow description are impor-
tant aspects of this metamodel. Moreover, metamodel constraints that have to be
fulfilled in order to guarantee the integrity of our workflow model are presented.



5
Workflow Transformations

In this Chapter, workflow transformations which do not change the semantics of
the workflow are considered in particular. Such transformation operations may
be applied to a process model SWF to transform it into SWF’, so that SWF and
SWF’ still maintain an underlying structural relationship with each other.

This Chapter is organized as follows: Section5.1 introduces the notion of
workflow transformations. Section5.2 gives a brief overview of related work in
literature. Sections5.3 and5.4 capture necessary definitions for the subsequent
Sections. Sections5.5and5.6show the transformations in detail. Section5.7and
5.8conclude this Chapter.

5.1 Introduction
Generally, a workflow model evolves through numerous changes during its life-
time to meet dynamic and changing business requirements. New technology,
new laws, and new market requirements lead to modifications of the workflow
process definitions at hand. Organizations are continually faced with the chal-
lenge to bring ideas and concepts to products and services in an ever-increasing
pace. Companies separated by space, time and capabilities come together to de-
liver products and solutions required by the global marketplace. The trends to-
wards virtual corporations and e-commerce, and increasing global networking of
economies have become a reality. As a result, more and more workflow processes
are subject to continuous change1 [van der Aalst, 2001; Ellis and Keddara, 2000;
van der Aalst, 1999; Joeris and Herzog, 1998; Casati et al., 1996b1995].

A critical challenge for workflow management systems is their ability to re-
spond effectively to changes [Ellis and Keddara, 2000; Reichert and Dadam, 1998].

1Adaptive workflow is an area of research which examines concepts, techniques, and tools to
support change.
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Changes may range from ad-hoc modifications of the process for a single customer
to a complete restructuring of the workflow process to improve efficiency.

5.1.1 Types of Workflow Changes
This Section deals with the different kinds of changes and their consequences.
Some of the perspectives relevant for change are [van der Aalst et al., 1999]:

process perspective, i.e. tasks are added or deleted or their ordering is
changed.

resource perspective, i.e. resources are classified in a different way, or new
classes are introduced.

control perspective, i.e. changing the way resources are allocated to pro-
cesses and tasks.

task perspective, i.e. upgrading or downgrading tasks.

system perspective, i.e. changes to the infrastructure or the configuration of
the engines in the enactment service.

5.1.2 Process Perspective Changes
Two kinds of changes in the process perspective are identified [van der Aalst et al.,
1999]:

individual (ad-hoc) changesare handled on a case-by-case basis. In order
to provide customer specific solutions or to handle rare events or errors, the
process is adapted for a single case or a limited group of cases. Exceptions
often result in ad-hoc changes. A typical example of an ad-hoc change is
skipping a task in case of emergency. This kind of change is often initiated
by some external factor. A typical dilemma related to ad-hoc change is the
problem to decide what kinds of changes are allowed and the fact that it is
impossible to foresee all possible changes.

structural (evolutionary) changesof the workflow process: from a certain
moment in time, the process changes for all new cases to arrive at the sys-
tem. A structural change is normally the result of a new business strategy,
re-engineering efforts (BPR), or a permanent alteration of external condi-
tions (e.g., a change of law). An evolutionary change is initiated by the
management to improve efficiency or responsiveness, or it is forced by leg-
islature or changing market demands. The workflow is changed to improve
responsiveness to the customer or efficiency (do more with less).
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Both for ad-hoc and evolutionary changes, we distinguish three ways in which the
routing of cases along tasks can be changed [van der Aalst et al., 1999]:

Extend: adding new tasks which (1) are executed in parallel, (2) offer new
alternatives, or (3) are executed in-between existing tasks.

Replace:a task is replaced by another task or a subprocess (i.e., refinement),
or a complete region is replaced by another region.

Re-order: changing the order in which tasks are executed without adding
new tasks, e.g. swapping tasks or making a process more or less parallel.

Generally, workflow transformations are operations on a workflowSWFre-
sulting in a different workflowSWF’. Each workflow transformation deals with
a certain aspect of the workflow (e.g. move splits or joins, eliminate a hierarchy
level) [Eder and Gruber, 2002].

It is essential that such changes are introduced systematically and that their im-
pact is clearly understood. Workflow model transformation is a suitable approach
for this purpose [Sadiq and Orlowska, 2000]. The application of pre-defined trans-
formation operations can ensure that the modified process conforms to a given
class of constraints specified in the original model.

5.1.3 Classes of Transformation

Obviously, two classes of transformation principles can be identified to capture
evolving changes during the lifetime of workflows. The first one is the class of
equivalence-preserving transformations. Here, much attention must be payed to
the equivalence criterion, since there are different notions on the equivalence cri-
terion which biases the set of transformations. The second one is the class of
non-equivalent transformations. Several sub-classes of this class of transforma-
tion can be subsumed to it with different degrees of restrictiveness. The most
unrestricted class is the class of arbitrary transformations where no restrictions to
it exist. In [Sadiq and Orlowska, 2000] for instance, two classes of non-equivalent
transformations are introduced, namely the imply and subsume class with pro-
gressively relaxed restrictions.

We focus on structurally equivalent transformations. In the following we de-
velop a set of basic transformations which do not change the semantics of the
workflow. For this purpose, we introduced a new equivalence criterion on work-
flows and workflow instance types. Furthermore we established complex transfor-
mations based on this basic set of transformations by repeated application of those.
These complex transformations allow to separate the intrinsic instance types of a
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workflow. All presented transformations are feasible in both directions (symmet-
ric), i.e. fromSWFto SWF’and vice versa fromSWF’to SWF[Eder and Gruber,
2002].

5.2 Related Work
So far, there has not been much literature about workflow transformations. In
[van der Aalst et al., 2000] various workflow patterns for different WfMSs con-
cerning different workflow models are catalogued. The alternative representations
employ different control elements. The alternative representations are assumed to
be semantically equivalent, but there is no equivalence criterion, nor there are any
transformation rules.

[Kiepuszewski et al., 1999] address the modeling of structured workflows and
transforming arbitrary models to structured models, based on the equivalence no-
tion of bisimulation. In this paper, the authors investigate transformations based
on several patterns, and analyze in which situations transformations can be ap-
plied. One of the specified transformations is moving split nodes, which is, in
contrast to our work, considered a non-equivalent transformation. The so-called
overlapping structure, which has been introduced in the context of workflow re-
duction for verification purposes, is adopted in our work and it is used by the
transformationMoving and-join over or-join.

Finally, in [Sadiq and Orlowska, 2000], three classes of transformation princi-
ples are identified to capture evolving changes of workflows during their lifetime.
We only focus on the first class, that is on structurally equivalent transformations.
In this work, the equivalence criterion (relationship) for structurally equivalent
workflows is too restrictive, because the workflows must have identical sets ofex-
ecution nodes, which implies that transformations using node duplication cannot
be applied. Considering the differences in the workflow models we adopted the
eliminating of join nodes as join coalescing with different semantics.

5.3 Workflow Instance Type
Due to conditionals not all instances of a workflow processes the same activities.
We classify workflow instances into workflow instance types according to the ac-
tivities actually executed. Similar to [Marjanovic and Orlowska, 1999b], a work-
flow instance typerefers to (a set of) workflow instances that contain exactly the
same activities, i.e. for each or-split node in the workflow graph the same succes-
sor node is chosen; for each conditional complex activity the same child-activity is
selected. Therefore, a workflow instance type is a submodel of a workflow where
each or-split has exactly one successor; each conditional or alternative complex
activity has exactly one subactivity [Eder and Gruber, 2002].
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Fig. 5.1shows the instance types of the above workflow in Fig.3.11in textual
notation. The graphical representation is depicted in Fig.5.2.

Figure 5.1: Workflow instance types in text-based notation

5.4 Equivalence of Workflows

In the previous Sections we presented some of the possibilities to change work-
flow specifications. Actually these changes only make sense when they can be
performed in a way that we can guarantee (beforehand) that the transformation
satisfies a certain set of correctness preservation properties. If we were not able to
make any statements about correctness preservation, the new system would have
no relationship to the old one [van der Aalst et al., 1999].
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Figure 5.2: Workflow instance types in graph-based notation

Two different kinds of correctness notions can be distinguished, viz. syntactic
and semantic correctness.

Syntactic correctnessmeans that the workflow which results from applying a
transformation operation is still syntactically correct. This is accomplished by
the integrity constraints of the metamodel in the previous Chapter. Syntactic cor-
rectness is independent of the context.

Semantic correctnessdeals with similarities between the capabilities of the old
workflow and the capabilities of the new workflow. It may therefore be desir-
able that the new workflow is semantically equal to the old workflow. Semantic
correctness is concerned with the context in which the change occurs.
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5.4.1 Equivalence Definitions
Our goal is to support the transformation of workflows without changing the se-
mantics. For this purpose we need a clear definition when workflows are equiv-
alent. Our definition is based on the consideration that workflows are equivalent
if they provide the same tasks. Therefore, the equivalence of correct workflows
bases on equivalent tasks and its identical execution order. Workflows are equiv-
alent if they execute the same tasks in exactly the same order. Therefore, the
equivalence of correct workflows (WF1≡WF2) is based on equivalent sets of
workflow instance types [Eder and Gruber, 2002].

DEFINITION : Two workflowsWF1 andWF2 are equivalent (WF1≡
WF2) if their sets of instance typesITS1 and ITS2 are equivalent
(ITS1≡ ITS2). Two instance type sets are equivalent if and only if
for each element of one setIT1 there is an equivalent element in the
other setIT2 (IT1≡ IT2).

(5.1)

DEFINITION : Two workflow instance typesIT1 andIT2 are equiva-
lent (IT1≡ IT2) if they consist of occurrences of the same (elementary)
activities with the identical execution order. The position of or-splits
and or-joins in instance types is irrelevant, since an or-split has only
one successor in an instance type.

(5.2)

DEFINITION : Two occurrencesO1 andO2 are equivalent (O1≡O2) if
they belong to the same activityA (O1.activity= O2.activity).

(5.3)

5.4.1.1 Equivalence Relation

We can define the equivalence as a relation≡⊆WF×WF.

Such a relation≡ is reflexive iffw f1≡ w f1.

Such a relation≡ is symmetric iffw f1 ≡ w f2 impliesw f2 ≡ w f1 andw f2 ≡ w f1
impliesw f1≡ w f2.

Such a relation≡ is transitive iffw f1≡ w f2∧w f2≡ w f3 impliesw f1≡ w f3.
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5.4.1.2 Equivalence Example

Figure5.3 shows a workflowSWF1 with a sequenceCSconsisting ofM1, CC
andM4. The conditional elementCC consists ofM2 andM3, both are elementary
occurrences. The elementary occurrenceM1 refers to activityA, M2 refers to
activity B, M3 refers to activityC, andM4 refers to activityD. We can build the
instance types ofSWF1 which are illustrated below.SWF1(IT1) andSWF1(IT2)
depicts the two instance types.

Figure 5.3: Workflow Example with Instance Types - 1

Figure5.4shows a similar workflowSWF2 with a sequenceCSconsisting of
M1 andCC. The conditional elementCC consists ofCS1 andCS2, both are se-
quence structures with occurrencesM2 andM41 orM3 andM42. The elementary
occurrenceM1 refers to activityA, M2 refers to activityB, M3 refers to activityC,
andM4 refers to activityD. We can build the instance types ofSWF2 which are
illustrated below.SWF2(IT1) andSWF2(IT2) depicts the two instance types.
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Figure 5.4: Workflow Example with Instance Types - 2

In order to check the equivalence ofSWF1 andSWF2 we have to check
the sets of instance typesITS1 and ITS2. ITS1 consists ofSWF1(IT1) and
SWF1(IT2), and ITS2 consists ofSWF2(IT1) and SWF2(IT2). We take
SWF1(IT1) which executes the activitiesA, B andD in this order. Now, there
must be an instance type inSWF2(IT2) that executes the same activities in iden-
tical order. SWF2(IT1) executes the activitiesA, B andD in this order. Hence,
both instance types are equivalent. We take the next instance type ofITS1, which
is SWF1(IT2). It executes the activitiesA (M1),C (M3) andD (M4) in this order.
We take the remaining instance type ofITS2, which isSWF2(IT2). It executes
the activitiesA (M1), C (M3) andD (M4) in this order. Therefore,SWF1(IT2)
andSWF2(IT2) are equivalent. Since any instance type ofITS1 has an equivalent
instance type inITS2 and vice versa, both workflows are equivalent.

5.4.1.3 Equivalence Transformation Relation

We can define a workflow transformation as a relation∼t ⊆WF×WF.

Such a relation∼t is reflexive iffw f1 ∼t w f1⇒ w f1≡ w f1.

Such a relation∼t is symmetric iffw f1 ∼t w f2⇒ w f1≡ w f2.

Such a relation∼t is transitive iffw f1 ∼t w f2∧w f2 ∼t w f3 impliesw f1≡ w f3.
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5.5 Basic Transformations
A basic transformation defines a one-step transformation of a workflow. A basic
transformation applies to a workflow if a part of the workflow matches the left-
hand or right-hand side pattern of the transformation. In this case the workflow is
replaced with the workflow in which the matching part is replaced by the corre-
sponding transformation pattern (right-hand or left-hand side) that were matched
in the left-hand or right-hand side. Thus a transformation succeeds to apply if the
left-hand resp. right-hand side matches, and fails to apply if this is not the case.
In general, a transformation may succeed or fail to apply to a workflow.

In the following Sections, the basic workflow transformations are described
verbally, graphically and with pseudocode. There are three types of basic trans-
formations: (1) hierarchy manipulation, (2) moving joins, and (3) moving splits.
Table5.1gives a short overview of the basic workflow transformations.

Table of Basic Workflow Transformations

Type Name Description

Hierarchy Manipulation WFT-H1 Flatten/Unflatten

WFT-H2 Sequence Encapsulation

WFT-J1 Join Moving Over Activity Occurrence

WFT-J2 Join Moving Over Seq-Join

WFT-J3 Moving Or-Join Over Or-Join

WFT-J4 Moving Alt-Join Over Alt-Join

Moving Join WFT-J5 Moving Or-Join Over Alt-Join

WFT-J6 Moving Alt-Join Over Or-Join

WFT-J7 Or-/Alt-Join Coalescing

WFT-PS Separating a Conditional/Alternative Path

WFT-J8 Moving Or-/Alt-Join Over And-Join - Unfold

WFT-J9 And-Join Moving Over Or-Join

Moving Split WFT-S1 Moving Or-/Alt-Split Before Activity Occurrence

WFT-S2 Split Moving Over Seq-Join

Table 5.1: Overview of Basic Workflow Transformations

5.5.1 Hierarchy Manipulation
This type of transformation manipulates the hierarchy relationship of occurrences
within a workflow by eliminating (flattening) or adding (unflattening) a level of the
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composition hierarchy in a model. Subsequently, the (total) (un)flatten operation
is described.

5.5.1.1 Flatten/Unflatten (WFT-H1)

The operationflatteneliminates a level of the composition hierarchy in a model
by substituting an occurrence of a complex activity by its child occurrences and
two control elements (split and join element). Between the split control element
and every child occurrence, a dependency is inserted, so that the split element is
the predecessor of the child occurrences. Between the last child occurrence(s)
and the join control element a dependency is inserted as well, so that the join
element is the successor of the child occurrence. Fig.5.5 shows an example of
such a transformation. Here, applying the transformationflattenin the workflow
modelSWFon occurrenceM1 with the child occurrencesM2 andM3, results in
the workflowSWF’, whereM1 is replaced by the splitS1 and the joinJ1. S1
is the predecessor ofM2 andM3, andJ1 is the successor ofM2 andM3. The
application of theflattenoperation on a workflow model until no further hierarchy
can eliminated is calledtotal flatten(see Fig.3.12). The inverse function toflatten
is calledunflatten.

Figure 5.5: Flatten

Algorithm 5.1 describes the flatten operation in pseudocode. Here, the method
insertModelControlOccurrence()creates a new split control object,insertModel-
Transition()creates a new transition object, andremoveModelElement()deletes a
model element object. The input variable must be an object of the classModelAc-
tivityOccurrence.

5.5.1.2 Encapsulation in a Sequence (WFT-H2)

The occurrence of an activity can be encapsulated between two sequence control
elements (split and join element). A dependency is inserted between the split con-
trol element and the occurrence, so that the split element is the predecessor of the
occurrences. Furthermore, a dependency is inserted between the occurrence and
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Algorithm 5.1 Flatten
1: Procedure Flatten
2: in: oc:ModelActivityOccurrence
3: soc := insertModelControlOccurrence(’split’)
4: eoc := insertModelControlOccurrence(’join’)
5: for all elemente in oc.getFirstChildren()do
6: insertModelTransition(soc, e)
7: end for
8: for all elemente in oc.getLastChildren()do
9: insertModelTransition(e, eoc)

10: end for
11: for all elemente in oc.subdo
12: e.super := soc
13: end for
14: insertModelTransition(oc.pred, soc)
15: insertModelTransition(eoc, oc.next)
16: removeModelElement(oc)

the join control element, so that the join element is the successor of the occurrence.
This new hierarchy level is settled in.

Figure 5.6: Occurrence Encapsulation

Fig. 5.6shows an example of such a transformation. Here, the application of
the transformation in the workflow modelSWFon occurrenceM1 results in the
workflow SWF’, whereM1 is encapsulated between the splitS1 and the joinJ1.
S1 is the predecessor ofM1, andJ1 is the successor ofM1.
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5.5.2 Moving Joins
Moving Joinsmeans changing the topological position of a join control element
(and-join, or-join, alt-join, or seq-join). This transformation separates the intrinsic
instance types contained in a workflow model. Some of the following transforma-
tions require node duplication. In some cases moving a join element makes it
necessary to move the corresponding split element as well.

5.5.2.1 Join Moving Over Activity Occurrence (WFT-J1)

A workflow SWFwith an or-join or an alt-joinJ1 followed by activity occurrence
M3 can be transformed to workflowSWF’ through node duplication, so that the
join J1 is delayed afterM3 as shown in Fig.5.7. Here,M3 will be replaced by its
duplicatesM31 andM32, so thatJ1 is the successor ofM31 andM32, andM1 is
the predecessor ofM31 andM2 is the predecessor ofM32. This transformation,
and all of the following ones, can be applied to structures with any number of
paths.

Figure 5.7: Join Moving Over Activity

Algorithm 5.2 describes the transformation operations in pseudocode. Here, the
methodcopyModelElement(in)creates a copy of the objectin. The remaining
methods are describe above. The input variable must be an object of classModel-
ControlOccurrence.
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Algorithm 5.2 Join moving over activity
1: Procedure Join Moving Over Activity
2: in:j1:ModelControlOccurrence
3: for all po in j1.prevdo
4: nme := copyModelElement(j1.next)
5: insertModelTransition(nme, j1)
6: insertModelTransition(po, nme)
7: removeModelTransition(po, j1)
8: end for
9: te := j1.next

10: j1.next := j1.next.next
11: removeModelElement(te)

5.5.2.2 Join Moving Over Seq-Join (WFT-J2)

A workflow SWFwith an or-join or an alt-joinJ1 followed by a sequence join
J2 can be transformed to workflowSWF’ through node duplication, so that the
join J1 is delayed afterJ2 as shown in Fig.5.8. Here,J2 will be replaced by its
duplicatesJ21 andJ22, so thatJ1 is the successor ofJ21 andJ22, andM1 is the
predecessor ofJ21 andM2 is the predecessor ofJ22. This transformation results
in a less structured workflow.

Figure 5.8: Join Moving Over Seq-Join
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5.5.2.3 Moving Or-Join Over Or-Join (WFT-J3)

In a workflowSWFwith a nested or-structure (i.e. within an or-structure with the
split S1 and the corresponding joinJ1 there is another or-structure with the split
S2 and the corresponding joinJ2 ), the inner joinJ2 can be moved behind the
outer joinJ1, which makes it necessary to move the corresponding split element
S2 and to adjust the predicates according to the changed sequence ofS1 andS2
by conjunction or disjunction. This change causes the inner or-structure to be put
over the outer. An example of this transformation in the workflowSWF’ is shown
in Fig. 5.9.

Figure 5.9: Or-Join Moving Over Or-Join

Algorithm 5.3 describes the transformation operations in pseudocode. The input
variable must be an object of the classModelControlOccurrence.
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Algorithm 5.3 Or-Join Moving Over Or-Join
1: Procedure Or-Join Moving Over Or-join
2: in: j1:ModelControlOccurrence
3: s1 := j1.split
4: j2 := j1.prev.oclIsKindOf(ModelControlOccurrence)
5: s2 := j2.split
6: j1.prev := j1.prev - j2
7: j1.next := j2
8: j2.prev := j2.prev∪ j1
9: j2.next := j1.next

10: s1.next := s1.next - s2
11: s1.prev := s2
12: s2.next := s2.next∪ s1
13: s2.prev := s1.prev
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5.5.2.4 Moving Alt-Join Over Alt-Join (WFT-J4)

In a workflowSWFwith a nested alt-structure (i.e. within an or-structure with the
split S1 and the corresponding joinJ1 there is another alt-structure with the split
S2 and the corresponding joinJ2 ), the inner joinJ2 can be moved behind the
outer joinJ1, which makes it necessary to move the corresponding split element
S2. This change causes the inner alt-structure to be put over the outer. An example
of this transformation in the workflowSWF’ is shown in Fig.5.10.

Figure 5.10: Alt-Join Moving Over Alt-Join
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5.5.2.5 Moving Or-Join Over Alt-Join (WFT-J5)

In a workflowSWFwith a nested alt/or-structure, i.e. within an alt-structure with
the splitS1 and the joinJ1 there is an or-structure with the splitS2 and the joinJ2
, the inner joinJ2 can be moved behind the outer joinJ1. This makes it necessary
to move the corresponding split elementS2 and to duplicate control elements and
occurrences and adjust the predicates. This change causes the inner or-structure
to be put over the outer. An example of this transformation is given in Fig.5.11.

Figure 5.11: Or-Join Moving Over Alt-Join

Algorithm 5.4 describes the transformation operations in pseudocode. The input
variable must be an object of the classModelControlOccurrence.
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Algorithm 5.4 Or-Join Moving Over Alt-Join
1: Procedure Or-Join Moving Over Alt-Join
2: in:j2:ModelControlOccurrence
3: j1 := j2.next
4: s1 := j1.split
5: s2 := j2.split
6: nj2 := copyModelElement(j2)
7: ns2 := copyModelElement(s2)
8: for all po1 in j2.prevdo
9: nme1j := copyModelElement(j1)

10: nme1s := copyModelElement(s1)
11: nme1 := copyModelElement(po1)
12: insertModelTransition(nme1s, nme1)
13: insertModelTransition(nme1, nme1j)
14: for all po2 in (j1.prev - j2)do
15: nme2 := copyModelElement(po2)
16: insertModelTransition(nme1s, nme2)
17: insertModelTransition(nme2, nme1j)
18: end for
19: insertModelTransition(ns2, nme1s)
20: insertModelTransition(nme1j, nj2)
21: end for
22: ns2.prev := s1.prev
23: nj2.next := j1.next
24: removeModelElement(s2.next)
25: removeModelElement(s1.next)
26: removeModelElement(j1.prev)
27: removeModelElement(s1)
28: removeModelElement(j1)
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5.5.2.6 Moving Alt-Join Over Or-Join (WFT-J6)

In a workflowSWFwith a nested or/alt-structure, i.e. within an or-structure with
the splitS1 and the joinJ1 there is an alt-structure with the splitS2 and the joinJ2,
the inner joinJ2 can be moved behind the outer joinJ1. This makes it necessary
to move the corresponding split elementS2 and to duplicate control elements and
occurrences and adjust the predicates. This change causes the inner alt-structure
to be put over the outer. An example of this transformation is given in Fig.5.12.

Figure 5.12: Alt-Join Moving Over Or-Join
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5.5.2.7 Join Coalescing (WFT-J7)

In a workflow SWFwith a nested or-structure or alt-structure, i.e. within an or-
structure or alt-structure with the splitS1 and the joinJ1 there is an or-structure or
alt-structure with the splitS2 and the joinJ2, J2 can be coalesced withJ1, which
makes it necessary to coalesce the corresponding split elementS2 andS1. This
change causes that the or-structures or alt-structures are replaced by a single one.
The predicates must be adapted when or-structures are coalesced. An example
for this transformation is given in Fig.5.13. This transformation is similar to the
structurally equivalent transformation presented in [Sadiq and Orlowska, 2000] as
far as the differences in the workflow models are concerned.

Figure 5.13: Join Coalescing

Algorithm 5.5 describes the transformation operations in pseudocode. The input
variable must be an object of the classModelControlOccurrence.
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Algorithm 5.5 Join Coalescing
1: Procedure Join Coalescing
2: in:j2:ModelControlOccurrence
3: j1 := j2.next
4: s1 := j1.split
5: s2 := j2.split
6: nj1 := copyModelElement(j1)
7: ns1 := copyModelElement(s1)
8: nj1.prev := (j1.prev∪ j2.prev) - j2
9: ns1.next := (s1.next∪ s2.next) - s2

10: ns1.prev := s1.prev
11: nj1.next := j1.next
12: removeModelElement(s2)
13: removeModelElement(s1)
14: removeModelElement(j1)
15: removeModelElement(j2)
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5.5.2.8 Separating a Conditional/Alternative Path (WFT-PS)

In a workflowSWFwith an or-structure or alt-structure with the splitS1 and the
join J1 and a path with nodeM1 (activity or control occurrence), the path with
M1 can be separated by means of duplicatingJ1, so that the duplicateJ11 has
as predecessorM1 and in the set of predecessors ofJ1, the occurrenceM1 is
eliminated. A necessary precondition is thatJ1 has no successor. An example for
this transformation is given in Fig.5.14.

Figure 5.14: Separating a Conditional/Alternative Path

Algorithm 5.6 describes the transformation operations in pseudocode. The input
variable must be an object of the classModelElement, which is the predecessor of
a join.

Algorithm 5.6 Separating a Conditional/Alternative Path
1: Procedure Separate
2: in:m1:ModelElement
3: j1 := m1.next
4: nj1 := copyModelElement(j1)
5: nj1.prev := m1
6: j1.prev := j1.prev - m1
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5.5.2.9 Moving Join Over And-Join - Unfold (WFT-J8)

The unfold transformation produces a graph-based structure which is no longer
strictly structured and requiresmultiple sequential successors, which means that
a node, with the exception of splits, can have more than one sequential successor
in the workflow definition. However, in each instance type every node except for
and-splits has only one successor (the other successors of the definition are in
other instance types).

An or-join or alt-joinJ2 can be moved behind its immediately succeeding and-
join J1, requiring duplication of control elements. The transformation is shown
in Fig. 5.15and Fig.5.16. To moveJ2 behindJ1 we place a copy ofJ1 behind
every predecessor ofJ2, so that each of these copies ofJ1 has additionally the
same predecessor asJ1 except forJ2. A copy ofJ2 is inserted, such that it has
the copies ofJ1 as predecessor and the successor ofJ1 as successor. ThenJ1 is
deleted with all its successor and predecessor dependencies. IfJ2 has no longer a
successor, it will also be deleted.Partial unfold, as it is described in [Eder et al.,
2000], is a combination of already described transformations.

Algorithm 5.7 describes the transformation operations in pseudocode. The input
variable must be an object of classModelControlOccurrence.

Algorithm 5.7 Join Moving Over And-Join
1: Procedure Unfold
2: in:j2:ModelControlOccurrence
3: j1 := j2.next
4: s1 := j1.split
5: s2 := j2.split
6: for all po2 in j2.prevdo
7: nj1 := copyModelElement(j1)
8: nj1.pred := (j1.pred - j2)∪ nj1
9: po2.next := nj1

10: nj1.next := j2
11: end for
12: j2.next := j1.next
13: removeModelElement(j1)
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Figure 5.15: Join Moving Over And-Join (Unfold) - 1
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Figure 5.16: Join Moving Over And-Join (Unfold) - 2
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5.5.2.10 And-Join Moving Over Or-Join (WFT-J9)

This transformation is introduced in [Kiepuszewski et al., 1999]. Starting with a
workflow SWFwith an or-joinJ1, which has only and-joinsJ21 . . .J2m as prede-
cessors, each of these and-joinsJ2i ∈ {J21 . . .J2m} has the identical set of prede-
cessorsM1 . . .Mn. Let the sets of the predecessors ofM1 . . .Mn for every and-join
beS1 . . .Sm. The or-joinJ1 can be moved before the predecessors of the and-joins,
which necessitates the duplicating and coalescing of control elements. The trans-
formation is shown in Figure5.17. In order to moveJ1 we place a copy ofJ1 for
every predecessor of an and-joinsJ2i ∈ {J21 . . .J2m}, so that each copy ofJ1 has
the same number of predecessors asJ1 and every copy ofJ1 has as predecessor
one element from every setS1 . . .Sm, so that every element fromSi ∈ {S1 . . .Sm}
has only one successor. Furthermore, we place a copy of an and-joinJ2i with
its predecessors, so that every copied predecessor of the copied and-joinJ2i has
exactly one copy ofJ1 as its predecessor. The copy of the and-joinJ2 has as
successor the successor ofJ1, if existent. Now, the and-joinsJ21 . . .J2m with
their predecessors and with all their successor and predecessor dependencies are
deleted.

Figure 5.17: And-Join Moving Over Or-Join
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Algorithm 5.8 describes the transformation operations in pseudocode. The input
variable must be an object of the classModelControlOccurrence.

Algorithm 5.8 And-Join Moving Over Or-Join
1: Procedure And-Join Moving Over Or-Join
2: in:j2:ModelControlOccurrence
3: j1 := j2.next
4: nj2 := copyModelElement(j2)
5: for all po2 in j2.prevdo
6: npo2 := copyModelElement(po2)
7: nj1 := copyModelElement(j1)
8: npo2.next := nj2
9: nj1.next := npo2

10: for all po3 in j1.prevdo
11: for all po4 in po3.prevdo
12: if po4.occurrence.activity = npo2.occurrence.activitythen
13: nj1.prev := nj1.prev∪ po4.prev
14: end if
15: end for
16: end for
17: end for
18: for all po3 in j1.prevdo
19: for all po4 in po3.prevdo
20: removeModelElement(po4)
21: end for
22: removeModelElement(po3)
23: end for
24: removeModelElement(j1)
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5.5.3 Split Moving
Split Movingchanges the position of a split control element. This transformation
separates (moving splits towards start) or merges (moving splits towards end) the
intrinsic instance types contained in a workflow model, in analogy to join moving.
Not every split can be moved. Moving an alt-split is always possible. For an or-
split it is necessary to consider data dependencies on the predicates. Another
aspect of or-split moving to be considered is that the decision which path of an or-
split is selected will be transferred forward, so that uncertainty based on or-splits
will be reduced.

5.5.3.1 Moving Split Before Activity Occurrence (WFT-S1)

A workflow SWFwith an or-split or alt-splitS1 with activity occurrenceM1 as
predecessor can be transformed in the workflow SWF’ through node duplication,
so thatS1 is located beforeM1 (see Fig.5.18). Here,M1 will be replaced by its
duplicatesM11 andM12, so thatS1 is the predecessor ofM11 andM12, andM2
is the successor ofM11 andM3 is the successor ofM12. Predicates are adjusted.

Figure 5.18: Split Moving Before Activity

Algorithm 5.9 describes the transformation operations in pseudocode. Here, the
methodcopyModelElement(in)creates a copy of the objectin. The remaining
methods are described above. The input variable must be an object of the class
ModelControlOccurrence.
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Algorithm 5.9 Split Moving Before Activity
1: Procedure Split Moving Before Activity
2: in: s1:ModelControlOccurrence
3: for all po in s1.nextdo
4: nme := copyModelElement(s1.prev)
5: insertModelTransition(s1, nme)
6: insertModelTransition(nme, po)
7: removeModelTransition(s1, po)
8: end for
9: te := s1.prev

10: s1.prev := te.next
11: removeModelElement(te)

5.5.3.2 Split Moving Over Seq-Join (WFT-S2)

A workflow SWFwith an or-split or alt-splitS1 proceeded by a sequence split
S2 can be transformed to workflowSWF’ through node duplication, so that the
split S2 is delayed afterS1 as shown in Fig.5.19. Here,S2 will be replaced by its
duplicatesS21 andS22, so thatS1 is the predecessor ofS21 andS22, andM1 is
the successor ofS21 andM2 is the successor ofS22. This transformation results
in a less structured workflow.

Figure 5.19: Split Moving Over Seq-Split
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5.6 Complex Transformations

The basic workflow transformations above can be used to define more complex
transformations as compositions with facultatively repeated application of these
basic transformations within their composition. These complex transformations
do not change the semantics of the workflow either.

Complex transformations are established to e.g. address the time constraint
incorporation problems as stated in [Eder et al., 2000]. In that paper, three com-
plex transformations are constructed: (1) thebackward unfolding procedure, (2)
the partial backward unfolding procedure, and (3) theforward unfolding proce-
dure. Unfolding means that or-joins or alt-joins are moved topologically to the
rear and or-splits or alt-splits are moved as near to the start as possible and thus
the intrinsic instance types are separated.

In the following Sections, these transformations are outlined verbally, graph-
ically and with pseudocode. Table5.2 gives a short overview of the complex
workflow transformations.

Table of Complex Workflow Transformations

Name Description

CWFT1 Backward Unfolding Procedure

CWFT2 Partial Backward Unfolding Procedure

CWFT3 Forward Unfolding Procedure

Table 5.2: Overview of Complex Workflow Transformations

5.6.1 Backward Unfolding Procedure

A procedure for generating an equivalent backward unfolded workflowUW for
a workflowW is described in [Eder et al., 2000]. The transformation specifies
how a workflow has to be modified to become fully unfolded. An alternative
approach to unfold a workflow is to apply the above listed basic transformations in
a way that no or-join or alt-join element has an activity as successor. Every (less)
structured workflow can be fully unfolded, because for every constellation there
is a basic transformation that can be applied in order to move the corresponding
join topologically backward. The following constellations are identified:

or-/alt-join before activity - use WFT-J1

or-/alt-join before and-join - use WFT-J8

or-/alt-join before seq-join - use WFT-J2

or-/alt-join before or/alt-join - use WFT-J3, WFT-J4, WFT-J5, or WFT-J6

separate path - use WFT-PS
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Backward unfolding is applied in the following workflow example. Figure5.20
represents the initial workflow. The or-joinsM9 andM18 have to be moved to the
rear.

Figure 5.20: Aggregated Workflow

Figure5.21shows an intermediate step of the transformation, whereM9 and
M18 are moved over the adjacent activity occurrenceM10 orM19.

Figure 5.22 shows the unfolded workflow for the workflow shown in Fig-
ure5.20.

Algorithm5.10describes the fully unfold transformation operations in pseudocode.
Here, the methodapply(wf,setof transformations)returnstrue, if a transforma-
tion operation insetof transformationscan be applied onwf, otherwise it returns
false.

Algorithm 5.10 Backward Unfolding Procedure
1: Procedure Backward Unfold
2: in: wf:Workflow
3: sot :=WFT-J1, WFT-J2, WFT-J3, WFT-J4, WFT-J5, WFT-J6, WFT-J8,WFT-

PS
4: while wf is not fully unfoldeddo
5: apply(wf,sot)
6: end while

The above procedure suffers from the potential explosion of the number of
“duplicate” nodes in the unfolded workflow, since it considers each instance type
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Figure 5.21: Prepared Workflow

separately. This is not always desirable when discriminating between instance
types. To avoid this problem, we developed thepartial unfoldingtechnique (see
[Eder et al., 2000]).
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Figure 5.22: Unfolded Workflow
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5.6.2 Partial Backward Unfolding Procedure
We can unfold the workflow only where it is desired. The procedure of partially
unfolding a workflowG to a workflowH begins by selecting ahot-node, with the
side effect that all instance types going through the hot-node are factored out, or
intuitively, the workflow graph reachable from the hot-node is duplicated [Eder
et al., 2000]. In principle, every node can be a hot-node. For practical reasons,
we assume that a hot-node is an immediate predecessor of an or-join. In the next
Chapter we will show how hot-nodes are chosen when a time constraint cannot
be incorporated. Once a hot-node is identified, partial unfolding takes place as
follows:

1 Mark all (transitive) successors of the hot-node;

2 Apply the transformationsWFT-J1, WFT-J2, WFT-J3, WFT-J4, WFT-J5, WFT-
J6, WFT-J8, WFT-PSon the marked workflow elements so that no or-join
or alt-join element has an activity element as successor in the context of the
marked workflow elements;

Figure 5.23: Intermediate Partially Unfolded Workflow

Based on this procedure, we partially backwardly unfold the workflow shown
in Figure5.20at nodeM6. Figure5.23shows the prepared workflow, and Fig-
ure5.24shows the resulting partially unfolded workflow.
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Figure 5.24: Partially Unfolded Workflow

Algorithm 5.11 describes the partial unfold transformation operations in pseu-
docode. Here, the methodmark successors(hot-node)marks all (transitive) suc-
cessors of the hot-node and returns the marked elements as a(sub-)workflow.

Algorithm 5.11 Partial Backward Unfold
1: Procedure Partial Backward Unfold
2: in: hot-node:Workflow
3: sot :=WFT-J1, WFT-J2, WFT-J3, WFT-J4, WFT-J5, WFT-J6, WFT-J8
4: subwf := mark successors(hot-node)
5: while subwf is not fully unfoldeddo
6: apply(subwf,sot)
7: end while

5.6.3 Regarding Transformation Sequence When Unfold-
ing

When (partially) unfolding a workflow, the sequence of applying the transfor-
mation operations is of great importance. As it is shown below, it is sometimes
necessary that transformation steps are rolled back in order to achieve the goal,
which is especially true for less structured workflows. In this context it is worth
considering the workflow depicted in Figure5.25, where we want to unfold the
workflow affecting the path with occurrencesA andC.

The first transformation step is to unfold the workflow concerning occurrence
C. The result is shown in Figure5.26. Here, we cannot apply any further un-
fold transformation because of the less strict structure that results in overlapping
structures.
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Figure 5.25: Unfold Workflow Procedure

Figure 5.26: Unfold Workflow Procedure - 1

Therefore, we withdraw the first step and unfold the workflow regarding oc-
currenceA, which is depicted in Figure5.27 (occurrencesX1 andX2 represent
the complex occurrence belonging the parallel structure bound byM4 andM9).

Figure 5.27: Unfold Workflow Procedure - 2

After that transformation step we separate the path with occurrenceC. The
result is shown in Figure5.28.

To sum up, the transformation step order is of great importance to attain the
workflow aimed for and to avoid unnecessary cancellations of operations.
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Figure 5.28: Unfold Workflow Procedure - 3

5.6.4 Forward Unfold Procedure
A procedure for generating an equivalent forward unfolded workflowUW for
a workflow W is described below. In order to unfold a workflow forward the
transformations listed above must be applied so that no or-split and no alt-split
element has an activity element as predecessor. Because of data dependencies,
thought, not every (less) structured workflow can be fully forward unfolded.

For the following constellations there is a basic transformation that can be
applied in order to move the corresponding split topologically forward. The fol-
lowing constellations are identified:

or-/alt-split after activity without data dependencies - use WFT-S1

or-/alt-split after seq-split - use WFT-S2

or-/alt-split after or/alt-join - use WFT-J3, WFT-J4, WFT-J5, or WFT-J6

For the constellationsor-/alt-split after and-jointhere does not exists a trans-
formation.

Algorithm 5.12 describes the fully forward unfold transformation operations in
pseudocode. Here, the methodapply(wf,setof transformations)returnstrue if
any transformation operation insetof transformationscan be applied onwf. Oth-
erwise it returns false.
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Algorithm 5.12 Forward Unfolding Procedure
1: Procedure Forward Unfold
2: in: wf:Workflow
3: sot :=WFT-S1, WFT-JS2, WFT-J3, WFT-J4, WFT-J5, WFT-J6
4: while wf is not fully unfolded and apply(wf,sot)do
5:

6: end while

5.7 Application
There are several applications for the presented methodology. Thus, it serves as
sound basis for design tools (see Chapter7). Furthermore, it enables analysts and
designers to incrementally improve the quality of the model. We can provide auto-
matic support to achieve certain presentation characteristics of a workflow model.
A model can be transformed to be inspected it from different points of view. In
particular a model suitable for conceptual comprehension can be transformed to a
model better suited for implementation.

5.8 Summary
This Chapter presents an approach to tackle the problem of change without mod-
ifying the semantics. The main contribution is the development of a set of basic
workflow scheme transformations. Based on it, several complex transformation
operations that maintain the semantics are also defined. In order to accomplish
transformations preserving equivalence, we introduced a new equivalence crite-
rion on workflows.
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6
Time Management in Workflows

In this Chapter, we address the crucial role of time management in workflow pro-
cesses. In particular, we describe how structural (i.e.,execution order dependent)
and explicit (i.e., fixed-date, periodic, upper- and lower-bound) time constraints
can be “captured” during process definition and validated during modeling time.
Therefore, the basic temporal concepts used in workflows are introduced and a
framework for time modeling is presented.

This Chapter is organized as follows: Section6.1, generally introduces the
particular importance of time management in enterprises. Section6.2 gives an
overview of related work in literature. In Section6.3, time aspects within the
scope of WfMSs are discussed. Sections6.4 and6.5 deal with time constraints
and our time model. Sections6.6and6.7show our corresponding graphical model
for workflows. Sections6.8, 6.9and6.10provide the methods and algorithms for
our time management framework. A short example of how to apply our techniques
is given in Section6.11. Finally, Section6.12concludes this Chapter.

6.1 Introduction

Today, the most critical requirement of companies striving to become more com-
petitive is the ability to control the flow of information and work throughout
the enterprise in terms of time. Workflow management systems (WfMSs) im-
prove business processes by automating tasks, by getting the right information
to the right place for a specific job function, and by integrating information in
the enterprise [Lawrence, 1997; Georgakopoulos et al., 1995; WfMC, 1999a;
Hollingsworth, 1995]. However, existing WfMSs [InC; Leymann and Roller; Flo]
offer only limited support for modeling and managing time constraints associated
with processes and their activities [Bettini et al., 2002; Pozewaunig et al., 1997].
This support takes place through monitoring activity deadlines [Schmidt, 1996].
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However, the consistency of these deadlines and the side effects of not meeting
them are not addressed [Eder et al., 2000].

In process centered organizations, time management is essential for process
modeling and management. Many business processes have restrictions such as
limited duration of subprocesses, terms of delivery, dates of re-submission, or ac-
tivity deadlines. Generally, time violations increase the cost of a business process
because they lead to some form of exception handling [Panagos and Rabinovich,
1997b]. Therefore, a WfMS should provide the necessary information about a
process, its time restrictions, and its actual time requirements to a process man-
ager. In addition, the process manager needs tools to anticipate time problems,
to avoid time constraints violations proactively, and to make decisions about the
relative priorities of processes and timing constraints [Eder et al., 2000].

In the following, the concepts of time management, introduced in [Eder et al.,
20001999ba; Pozewaunig et al., 1997], and the workflow meta model of Chap-
ter 4, introduced in [Eder and Gruber, 2002] are brought together resulting in an
extended meta model. The notion oftimed workflow graphsthat was introduced in
[Eder et al., 1999a; Pozewaunig et al., 1997] is used to show how time information
is represented in these graphs. In [Eder et al., 20001999b], whereexplicit tem-
poral constraintsand a technique for incorporating these constraints into timed
workflow graphs was introduced, is also made use of for our new concepts.

6.2 Related Work

A large amount of work has been done on workflow systems across the fields of
CSCW (Computer Supported Cooperative Work) and advanced transaction mod-
els. Functionality and limitations of workflow systems have been analyzed in
several papers (see e.g. [Alonso et al., 1997]).

Although the field of time management has received a lot of attention in ar-
eas such as project management, job-shop scheduling, and active databases, cur-
rently available commercial workflow products provide little support beyond sim-
ply monitoring activity deadlines. Commercial workflow systems (as reviewed,
e.g., in [Alonso et al., 1997]) are usually limited to the specification of a deadline
for each activity or global plan. In some cases more elaborate temporal condi-
tions can be specified, but no reasoning other than run-time evaluation on these
conditions is supported. Furthermore, workflow research has recently started ad-
dressing time management issues [Eder and Panagos, 2000; Eder et al., 2000].
Up to now, however, little attention has been paid to modeling advanced temporal
features for workflow systems, except for some exceptions [Bettini et al., 2002].

A good overview of time management literature can be found in [Bettini et al.,
2002; Eder and Panagos, 2000], which is largely reproduced below and comple-
mented with current work in this field.
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An ontology of time for identifying time structures in workflow management
systems is developed in [Jasper and Zukunft, 1996]. The authors represent time
aspects within a workflow environment by using the Event Condition Action
(ECA) model found in active database management systems. Furthermore, they
discuss special scheduling aspects and basic time-failures. The setting of internal
deadlines differs from dynamic workflow modification that is supported by some
existing workflow products and research prototypes. The latter is done to reflect
changes in the model of the business process or a particular instance of the pro-
cess. In contrast, our goal is to capture time information at build time and to cope
with explicit time constraints.

In [Kao and Garcia-Molina, 1993ab], the authors examined the problem of
how the deadline of a real-time activity is automatically translated to deadlines
for all sequential and parallel sub-tasks constituting the activity. Each sub-task
deadline is assigned just before the sub-task is submitted for execution, and the
algorithms for deadline setting assume that theearliest deadline firstscheduling
policy is used. While our work is partly similar to the above work, there are
several important differences. In particular, we treat alternative and conditional
activities. Also, we offer techniques for building the timed graph at process build
time. Moreover, our work supports the assignment of external deadlines to indi-
vidual activities as well as to the entire process.

In [van der Aalst et al., 1994], the authors show how high-level Petri nets are
used to model workflows in an office environment. Such nets, which are extended
with “color”, “time” and “hierarchy”, describe i.e. the temporal behavior of real
systems. However, temporal reasoning could not be performed by means of high-
level Petri nets.

[Panagos and Rabinovich, 19961997ab] suggest the use of static data (e.g.
escalation costs), statistical data (e.g. average activity execution time and prob-
ability of executing a conditional activity), and run-time information (e.g. agent
work-list length) to adjust activity deadlines and estimate the remaining execution
time of workflow instances. However, this work can be used only at run-time and,
furthermore, it does not address explicit time constraints.

In [Bussler, 1998], the author proposes the integration of workflow systems
with project management tools to provide the functionality necessary for time
management. However, these project management tools do not allow the model-
ing of explicit time constraints and, therefore, they do not provide any means for
their resolution.

In [Pozewaunig et al., 1997], the authors present an extension to the net-
diagram technique PERT to compute internal activity deadlines in the presence
of sequential, alternative, and concurrent executions of activities. Using this tech-
nique, business analysts provide estimates of the best, worst, and median execu-
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tion times for activities. Theβ-distribution is used to compute activity execution
times as well as the shortest and longest process execution times. Having done
that escalations are monitored at run-time based on the ePERT. Our work extends
this work by handling both structural and explicit time constraints at process build
and instantiation times.

In [Eder et al., 1997a; Pozewaunig, 1996], the notion of explicit time con-
straints is introduced. Nevertheless, this work focused more on the formulation
of time constraints, the enforcement of time constraints at run-time and the es-
calation of time failures within workflow transactions [Eder and Liebhart, 1997].
Our work follows the work described in [Eder et al., 1997a; Pozewaunig, 1996]
and extends it with the incorporation of explicit time constraints into workflow
schedules.

In [Dadam et al., 2000], the authors describe some of the time-related func-
tionalities of theADEPTtime workflow management system. As part of the time
functionality, minimal and maximal durations may be specified for each work-
flow activity. In addition, time dependencies between workflow activities may be
defined. These dependencies are the same as the lower bound and upper bound
constraints we presented in this thesis, and they are modeled using an additional
edge that links the activities involved in such constraints. At build time, the exis-
tence of a valid time schedule is checked (i.e. an assignment of absolute start and
finish times so that all constraints are satisfied). Start and finish times for activi-
ties are calculated at run-time using the Floyd-Warshall algorithm, and users are
notified when deadlines are going to be missed.

Temporal constraint networks in the context of workflows have already been
dealt with in [Haimowitz et al., 1996], who were concerned with health care en-
terprises, and in [Zhao and Stohr, 1999], who examined a claim handling system
to track individual tasks subject to constraints with other tasks in the workflow.
However, both papers do not address the problem of explicit time constraints.

[Casati et al., 1999] describe the WIDE system developed in the context of
a European project on workflow systems. In that chapter of the book, the defi-
nition of temporal information is considered to be of great importance for these
systems, particularly for handling temporal exceptions. Primitives are introduced
to model time intervals, durations and periodic conditions, but there has been no
investigation about temporal constraints in this domain.

The work presented in [Marjanovic, 20012000; Marjanovic and Orlowska,
1999ba] is close to our work. The authors propose a framework for time modeling
in production workflows. They apply the same constructs for workflow specifi-
cation and similar temporal constraints. Duration constraints in the form [min,
max] for each activity involved are an integral part of a workflow specification.
They provide an algorithm to check that any other type of constraint that may be
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needed (deadline and inter-task constraints) is implied by the duration constraints
and the workflow structure. This is similar to how checking is performed in our
framework. However, there are important differences between the two of them.
In contrast to the above mentioned work, we do not consider time constraints in
isolation and provide solutions for overlapping, interleaving, and interfering con-
straints. Furthermore, between the activities that belong to a time constraint, there
must be a path which is unnecessary in our approach. As demonstrated in [Eder
et al., 1999b], a set of time constraints may be unsolvable (i.e. there is no instance
of a workflow that does not violate at least one time constraint) even if every sin-
gle constraint is solvable in isolation. In addition, our techniques are pro-active
in nature, and they attempt to modify the E- and L-values of activities to make
constraints satisfying.

In [Zhuge et al., 20012000], the authors propose a framework for time mod-
eling in workflows. They consider (i) the same constructs for workflow specifi-
cation as we do, (ii) multiple time axes, and (iii) transition durations. However,
transition durations can be modeled by a transition task or multiple alternative
transition tasks. There are some shortcomings: they do not treat and-structures
and or-structures differently when time information is calculated; explicit time
constraints are not taken into consideration. Inconsistency can be found on the
build-time calculation, where run-time terms are used.

In [Bettini et al., 20022000] the authors propose to enhance the capabilities
of workflow systems to specify quantitative temporal constraints on the duration
of activities and synchronization requirements. In particular, they investigate con-
sistency (to ensure that the specification of the temporal constraints is possible
to satisfy), prediction (to foretell the time frame for the involved activities), and
enactment services (to schedule the activities so that, as long as each agent starts
and finishes its task within the specified time period, the overall constraints will
always be satisfied) in a workflow system by providing corresponding algorithms.
The authors also generate schedules considering different time granularities. In
contrast to [Bettini et al., 2002], we do not check workflow instance types for
constraint violation in isolation. As demonstrated in Section6.10.1, this is not
sufficient and may lead to impossible schedules with contradictory intervals.

This thesis adapts and extends the time modeling and management technique
presented in [Eder et al., 20001999b] and puts it together with the work in [Eder
et al., 1999a; Pozewaunig et al., 1997]. In particular, we extend the expressive-
ness of the workflow model by augmenting it with procedures for dealing with
conditional executions (see [Eder et al., 2000]) and alternative executions. Conse-
quently we have to adapt the computation of timed graphs and the incorporation
algorithm for explicit time constraints to the increased expressiveness and com-
plexity of execution constructs.
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6.3 Time Modeling in Workflows
It is imperative that current and future WfMSs provide the necessary information
about a process, its time restrictions, and its actual time requirements to process
modelers and managers. This information can be represented by a workflow pro-
cess definition.

We basically distinguish between three categories of time periods considering
workflows process definitions:

1 Build-Time The time period when manual and/or automated (workflow) de-
scriptions of a process are defined and/or modified electronically [WfMC,
1999a].

2 Run-Time The time period when workflow processes are instantiated (enact-
ment) and executed.

3 Post-Run-TimeThe time period after instantiated workflow processes are ter-
minated.

These time periods are ordered timely and may overlap, and they are respon-
sible for different tasks, as can be seen in Figure6.1.

6.3.1 Build-Time, Run-Time and Post-Run-Time
At build-time, when workflow schemes are defined and developed, workflow mod-
elers need means of representing time-related aspects of business processes (ac-
tivity durations, time constraints between activities,etc.) and of checking their
feasibility [Eder and Panagos, 2000].

At run-time, when workflow instances are instantiated and their executions
are started, process managers should be able to monitor and adjust time plans
(e.g.,extend deadlines) according to time constraints and any unexpected delays.
Furthermore, they need pro-active mechanisms for being notified about possible
time constraint violations so that they can take the necessary steps to avoid time
failures. Workflow participants need information about urgencies of the tasks as-
signed to them to manage their personal work lists. If a time constraint is violated,
the WfMS should be able to trigger exception handling to regain a consistent state
of the workflow instance [Eder and Panagos, 2000].

At post-run-time, when workflow instances are terminated and their execu-
tions are finished, business process re-engineers get information about the actual
time consumption of workflow executions via workflow documentation (also re-
ferred to asworkflow historyor workflow logging) [Eder et al., 2002; Geppert and
Tombros, 1997] and monitoring interfaces to improve business processes. Fi-
nally, controllers and quality managers need information about activity start times
and execution durations. Figure6.1 shows the time modeling process model as
described above.
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Figure 6.1: Process Model for Time Management in WfMSs

In this Chapter, we are mainly interested in the following aspects at build-time:

Modeling of time and time constraints to capture the available time informa-
tion;

Pro-active time calculations to capture time constraint violations and raise
alerts in case of potential future time violations;

In the case of time constraint violations we are deforming (transforming)
the workflow without any semantic change so that superfluous constraint
violations are avoided.

We should note, however, that the effectiveness of time management depends
on the kind of the workflow, how detailed its description is, and whether there are
external causes for time relevant events. For highly structured, production-based
workflows, time requirements can be calculated with a high degree of accuracy.
For administrative workflows, which cover different organizations, which depend
on external events (e.g. waiting for a customer to reply), or which may change
their scheme during execution, time calculations are imprecise. Nevertheless, time
management, time planning, and controlling has to be done, and, according to our
experience, it is being done in current business processes. Usually, time planning
relies on estimates based on experience. Time management during the execution
of a process becomes even more important in such an environment, where time
monitoring is essential for adjusting plans to avoid deadline violations. Therefore,
any knowledge about time issues should be modeled and used during workflow
execution [Eder and Panagos, 2000].
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6.3.2 Time Aspects in Workflow Management Systems

In several application domains of WfMSs the supervision of firm deadlines is
inevitable, e.g. for the medical treatment of patients in a hospital environment
or for the assembly of products with an ensured delivery date. The same holds
true for software engineering projects, especially when they follow a predefined
process model [Jasper et al., 1996].

6.3.2.1 Ontology of Time

In our time ontology, we choose a discrete model of time1 in which time is viewed
as isomorphic to the integers [Clifford and Rao, 1987].

Conceptually, time is linear and time points (chronons) can be identified with
the integers under the usual ordering<. The difference of any two time points is
likewise an integer. An interval is a pair of points< n,m>, wheren < m [Bettini
et al., 1998; Kautz and Ladkin, 1991].

Behavior over time is represented in terms of events and links between the
events. An evente represents instantaneous changes of qualitative values of pa-
rameters and their resultant values at a time point. Changes of quantitative values
are assumed to be continuous and differentiable (cp. [Bettini et al., 2002]).

However, time is expressed in some basic time units relative to a time origin
which is usually the start of the workflow.

6.3.2.2 Execution Durations and Deadlines

Activity and process deadlines correspond to maximum allowable execution times
for activities and processes, respectively. At process build time, these deadlines
are specified relative to the beginning of the process, using some time granularity,
e.g. 2 hours, 5 minutes, or by Wednesday. At process instantiation time, a calendar
is used to convert all relative deadlines to absolute time points, to modify the
assigned deadlines, or to assign new deadlines [Eder and Panagos, 2000].

It is important to note that activity durations and deadlines may not be the
same, which is, however, the way they are regarded as by some of the exist-
ing workflow management systems. To distinguish between activity duration and
deadline is beneficial for cases where the actions taken when a deadline is missed
might lead to high costs (e.g. rollback of the entire process). In cases, where an
activity takes longer to be executed than the duration assigned to it in the workflow
scheme, preemptive steps can be taken to assess deadline satisfiability, to modify
workflow parameters, and to alert appropriate agents and process managers [Eder
and Panagos, 2000; Eder et al., 1999b].

1 There are also the continuous model (isomorphic to the real numbers) and the dense model
(isomorphic to the rationals).
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Deadlines do not have to be associated with every activity occurrence of a
workflow scheme. However, it is highly beneficial to assign deadlines to all activ-
ities. The most compelling reason for this is the ability to monitor the execution
progress of activities and processes, so that preemptive actions are taken when
delays are developed. We present how these deadlines, referred to asinternal
deadlines, are computed at process build time [Eder and Panagos, 2000].

6.4 Time Constraints

The temporal constraints used in this thesis can be seen as a generalized version
of gap-order constraints as introduced in [Revesz, 1993]. In particular, we allow
both a minimal and a maximum bound on the distance between two variables. The
notion of temporal constraint network used in this thesis is deeply investigated in
[Schwalb and Vila, 1998; Dechter et al., 1991].

Time constraints(temporal constraints) are different rules that regulate the
time component of a workflow [Marjanovic, 2000]. These constraints are derived
implicitly from control dependencies and activity durations on the one hand, and
from organizational rules, laws, commitments, etc. on the other hand (e.g. an
appeal can be filed within 7 days after the verdict, a meeting invitation has to be
sent to all participants at least one week before the meeting) [Eder and Panagos,
2000; Eder et al., 20001999b]. Hence, we can identify two categories of time
constraints in general:implicit time constraintsandexplicit time constraints.

6.4.1 Implicit Time Constraints

Given a workflow scheme, a workflow designer can assign execution durations to
individual elementary activities [InC; Leymann and Roller; Flo] at the specifica-
tion level. These durations can be either calculated from past executions (work-
flow logs), or they can be assigned by specialists based on their experience and
expectations. In addition, multiple execution durations may be assigned to some
activity (cf. [Eder and Pichler, 2002]). Usually, the most common duration values
used include minimum, maximum, and most frequent execution times. Here, we
take the average duration.

Many time constraints are derived implicitly from control dependencies be-
tween occurrences of activities at the model level. They arise from the fact that
an activity occurrence can only start when its predecessor activity occurrences
have finished. Such constraints are calledstructural time constraintsbecause they
reflect the control structure of the workflow.
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6.4.2 Explicit Time Constraints
In addition, workflow designers may specifyexplicit time constraints. Such ex-
plicit constraints are either (1) temporal relations between start and end of (dif-
ferent) occurrences (events), or (2) bindings of events to certain sets of calendar
dates [Eder et al., 1999b; Eder and Panagos, 2000]. As mentioned above, these
constraints are based on organizational rules and business policies, laws and reg-
ulations, service-level agreements, commitments, and so on. Examples of such
constraints include: (1) an invitation for a meeting has to be mailed to the partici-
pants at least one week before the meeting; (2) after a hardware failure is reported,
a service team should be at the customer’s site within 4 hours; (3) vacant positions
can be announced on the first Wednesday of each month; (4) inventory checks
should be finished by December, 31st; (5) loans above 1 mio.e are approved
during scheduled meetings of the board of directors.

6.4.2.1 Temporal Relationship Constraints

For temporal relationships between events the following time constraints can be
defined, assuming thatδ corresponds to a relative time duration that is expressed
in some time granularity (cf. [Eder et al., 1999b]).

Lower bound constraint: The time distance between source eventse of
occurrences and destination eventdeof occurrenced must be greater than
or equal toδ. The notation used islbc(s,se,d,de,δ).

Upper bound constraint: The time distance between source eventse of
occurrences and destination eventdeof occurrenced must be smaller than
or equal toδ. The notation used isubc(s,se,d,de,δ).

Explicit time constraints (temporal relationships and fixed-date bindings) can
obviously only be reasonably defined in the model stratum (level) of a workflow,
seeing that the model level of a workflow represents the expanded structure of
its corresponding workflow specification. Given that and the fact that multiple
models can be derived from a specification, explicit time constraints affect only a
specific workflow model.

In contrast to [Bettini et al., 2002; Marjanovic and Orlowska, 1999b], our
method allows to specify explicit constraints between parallel activity occurrences.

An example of a lower-bound constraint includes a legal workflow with activi-
ties of serving a warning and closing a business with the requirement that a certain
time period passes between serving the warning and closing the business. Another
example is a chemical process control workflow where a reaction is initiated only
when certain time passes after the start of another reaction.

Upper-bound constraints are even more common. Thus, final patent filing
must be done within a certain period of time after the preliminary filing. Like-
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wise, time limits for responses to business letters provide typical examples of
such constraints [Eder and Panagos, 2000].

We assume that for all upper and lower bound constraints the source node is
temporallybefore the destination node according to the ordering implied by the
workflow model.

6.4.2.2 Checking Constraint Correctness

Furthermore, temporal relationships are evidently restricted to occurrenceswithin
an instance type. However, our workflow modeling concept represents several
instance types within a workflow model (cp. Section5.3), hence the scope of
temporal relationship constraints has to be checked. This checking procedure is
shown in the following Algorithm6.1.

Algorithm 6.1 Checking Constraint Correctness
1:

2: ↓ source,destination:ModelControlOccurrence;↑ validConstraint:boolean
3:

4: validConstraint := false
5: sourcepredset := source.getAllPredecessor()
6: destinationpredset := destination.getAllPredecessor()
7:

8: if source∈ destinationpredsetthen
9: validConstraint := true

10: else
11: commonpredset := NULL
12: for all commonpred∈ sourcepredset and

commonpred∈ destinationpredsetdo
13: commonpredset := commonpredset∪ {commonpred}
14: end for
15: for all commonpred∈ commonpredsetdo
16: if commonpred.getSuccessor()∩ commonpredset ={} then
17: if commonpred.oclIsKindOf(ModelControlOccurrence) and

commonpred.cntrPosition = ’start’ and
commonpred.type<> ’cond’ and
commonpred.type<> ’alt’ then

18: validConstraint := true
19: end if
20: end if
21: end for
22: end if
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Algorithm 6.1 has two input parameters (source and destination node of the
constraint) and a boolean output parameter that indicates the correctness of the
considered constraint. If the source node is a predecessor of the destination node,
then both nodes correspond to the same instance type, and therefore, the constraint
is correct and the algorithm returns true (see line 8-9). Otherwise, we have to
check the latest common predecessor that is a split node (see line 10-16). If this
split node is not an or-split and not an alt-split (line 17), the constraint is correct
because its source and destination node affects the same instance type. If the split
node is an or-split or an alt-split, the constraint spans over two instance types and
the algorithm returns false. Figure6.2shows some examples;ubc2 andubc3 are
correct constraints, whereasubc1 is incorrect.

Figure 6.2: Examples of Correct and Incorrect Constraints

6.4.2.3 Fixed-Date Constraints

To express constraints that bind events to specific calendar dates, an abstraction
that generalizes a, typically infinite, set of dates (i.e., “every other Monday” or
“every 5th workday of a month”) is required [Eder et al., 1999b; Eder and Pana-
gos, 2000].

Fixed-date object: A fixed-date object is an abstract data typeT with the
following methods:T.next(D) andT.prev(D) return, respectively, the next
and previous valid dates after an arbitrary dateD; T.period returns the max-
imum distance between valid dates; andT.dist(T ′) returns the maximum
distance between valid dates in the given object and in another fixed-date
objectT ′, having as default valueT.period.
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Having fixed-date objects at our disposal, we can now definefixed-date con-
straintsas follows [Eder et al., 1999b]:

Fixed-date constraint: To express a time constraint that binds an evente
of occurrencef to some fixed date(s), we writef dc( f ,e,T), whereT is a
fixed-date object.

Although several fixed-date constraints could be associated with an activity,
for the sake of simplicity, we assume that only one such constraint is used in the
remainder.

Conversion of Fixed-Date Constraints

An important aspect of the later computation is the transformation of fixed-date
constraints into lower-bound constraints using worst-case estimates. This map-
ping is necessary because, at build time, calendar values for the workflow execu-
tion are not available and, thus, we can only use information about the duration
between two valid time points for a fixed-date object. At process-instantiation
time we will have more information concerning the actual delays due to fixed-
date constraints [Eder and Panagos, 2000; Eder et al., 1999b].

Consider a fixed-date constraintf dc(a,s,T). Assume that occurrences start
instantaneously after all their predecessors finish. In the worst case, occurrencea
may finish atT.period+ a.d after its last predecessor occurrence finishes, if the
events is the start. Lett1 and t2 be valid dates inT with the maximum time-
interval between them. i.e.,t2− t1 = T.period, and letb be the last predecessor
occurrence to finish (cp. [Eder and Panagos, 2000; Eder et al., 1999b]).

The time interval between end-events ofb anda is the longest ifb finishes just
after timet1, because thena cannot start immediately (it would not finish at valid
datet1 + a.d), and would have to wait until timet2 before starting. In this case,
the distance between end events ofb anda is δ = (t2− t1)+a.d = T.period+a.d,
assumingb itself does not have a fixed-date constraint associated with it. Ifb
has a fixed-date constraintf dc(b,e,T ′), similar reasoning can be used to obtain
δ = T.dist(T ′) if a.d ≤ T.dist(T ′) andδ = a.d + T.period otherwise (cp. [Eder
and Panagos, 2000; Eder et al., 1999b]). The graphical representation of that issue
is shown in Figure6.3.

A fixed-date constraintf dc(a,e,T) is replaced by lower-bound constraints
lbc(b,e,a,e,δ) for every predecessorb of occurrencea, whereδ is computed for
each predecessor, as shown above.

Fixed-Date Constraints Associated with Start-Occurrences

If a fixed-date constraint is associated with the start occurrence, then a dummy
occurrence has to be inserted as predecessor (cf. [Kolmann, 2001]), since the
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Figure 6.3: Conversion of Fixed-Date Constraints

derived lower bound constraint needs a relationship from a source node (here the
dummy occurrence) to the destination node (here the start node).

6.5 Timed Workflow Model
Bearing in mind the time constraints introduced above, our time management
techniques are based on the notion of atimed workflow model, which extends
the workflow model of Section3.3 by augmenting each activityA at the specifi-
cation level with a deterministic discrete duration value and each occurrencen at
the model level with the following.

n.EBF: The earliest point in timen can finish when the shortest conditional
and alternative path is chosen to reachn;

n.EBS: The earliest point in timen can finish when the shortest conditional
and the longest alternative path is chosen to reachn;

n.EWF: The earliest point in timen can finish when the longest path is cho-
sen to reachn;

n.EWS: The earliest point in timen can finish when the longest path is chosen
to reachn;

n.LBF: The latest point in timen has to finish in order to meet the overall
deadline via the shortest conditional and alternative path;

n.LBS: The latest point in timen has to finish in order to meet the overall
deadline via the shortest conditional and the longest alternative path;

n.LWF: The latest point in timen has to finish in order to meet the overall
deadline via the longest conditional and shortest alternative path.

n.LWS: The latest point in timen has to finish in order to meet the overall
deadline via the longest conditional and the longest alternative path.
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For the sake of simplicity we restrict ourselves to present only time values for
the end event of occurrences, since activity durations are assumed to be determin-
istic, and start times for occurrences are computed by subtracting their durations
from their termination times.

The interpretation of this diagram is that E-values and L-values are the ac-
cumulation of possible execution paths. Only the best and worst, and the fastest
and slowest execution paths are tracked explicitly, all others are included in the
diagram. It is easy to see that the following invariants holds at any time for any
occurrences:

s.EBF ≤ s.EWF ≤ s.EWS,s.EBF ≤ s.EBS≤ s.EWS, ands.EWS≤ s.LWS

6.5.1 Timed Workflow Metamodel
Due to the temporal extensions of the workflow model, the metamodel has to
be adapted to fit the changes. Hence, the metamodel of Section4.4 is extended
by the classTimeConstraintas well as by some additional attributes in the class
ModelElement.

The association classTimeConstraintcontains the necessary information for
explicit time constraints. It has the unique attributetcId for the identification, and
the attributetype to identify lower and upper bound constraints. The attributes
boundandsatisfiedcomplete the information. The involved occurrences (source
und destination) are identified by the reflexive relationship of the association class
referencing the classModelElement.

Moreover, the classModelElementis augmented with the attributes for the
E-valuesandL-values. Figure6.4shows the extended metamodel.
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Figure 6.4: Timed Workflow Metamodel with Time Components
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6.6 Representations of Timed Workflow Models

Before we move on to the calculation operations for the time values, we present
some different representation methods for timed workflow models. Again, (timed)
workflow models could be represented either in textual or in graph based forms
(see Section3.4). Process management already includes some common graph-
based representations like PERT, CPM and Gantt Charts which are briefly intro-
duced below.

There are many advantages to using net (graph-based) representation methods
(cf. [Pozewaunig et al., 1997]):

Net methods are widely used in project and workflow management.

Time dependencies between parts of the workflow can be visualized imme-
diately. Some types of restrictions can be identified by just looking at the
diagram, and important aspects can easily be localized.

Net diagrams are flexible and understandable. Adaption can easily be made,
and they are traceable for every one.

The accordance between workflow description languages (WDLs) and net
methods facilitates the transformation from one concept to another without
great effort. Additionally, it is also easy to interpret the values of the net
diagram in terms of the workflow description.

6.6.1 PERT Chart
Program evaluation and review technique (PERT) charts depict task, duration, and
dependency information. Each chart starts with an initiation node where the first
task, or tasks, originates from. If multiple tasks begin at the same time, they
are all started from the node or branch, or fork from the starting point. Each
task is represented by a line which states its name or another identifier (known as
Activity-on-Arc (AoA)2), its duration, the number of people assigned to it, and in
some cases, the initials of the personnel assigned to it. The other end of the task
line is terminated by another node which identifies the start of another task, or the
beginning of any slack time, i.e. waiting time between tasks. Each task is con-
nected to its successor tasks thereby forming a network of nodes and connecting
lines. The chart is complete when all final tasks come together at the completion
node. When slack time exists between the end of one task and the start of another,
the usual method is to draw a broken or dotted line between the end of the first
task and the start of the next dependent task [Modell, 1996]. A PERT chart may
have multiple parallel or interconnecting networks of tasks, but no conditional

2A second representation type is the Activity-on-Node (AoN).
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Figure 6.5: Example PERT Chart

execution of tasks. Figure6.5 depicts such a task net where only the name and
duration of each task is stated.

6.6.2 CPM Chart

Critical Path Method (CPM) charts are similar to PERT charts and are sometimes
known as PERT/CPM. In a CPM chart, the critical path is indicated. A critical
path consists of a set of dependent tasks (each one dependent on the preceding
one) which together take the longest time to complete. Although it is unusual,
a CPM chart can define multiple, equally critical paths. Tasks which fall on the
critical path should be noted in some way, so that they attract special attention.
One way to do this is to draw critical path tasks with a double line instead of a
single line. Tasks which fall on the critical path should receive special attention
by both the project manager and the personnel assigned to them [Modell, 1996].

6.6.3 Gantt Chart

A Gantt chartis a horizontal bar chart developed as a production control tool in
1917 by Henry L. Gantt, an American engineer and social scientist. Frequently
used in project management, a Gantt chart provides a graphical illustration of a
schedule that helps to plan, coordinate, and track specific tasks in a project.

A Gantt chart is a matrix which on the vertical axis lists all the tasks to be
performed. Each row contains a single task identification which usually consists
of a number and a name. The horizontal axis is headed by columns indicating
estimated task duration, skill level needed to perform the task, and the name of
the person assigned to the task, followed by one column for each period in the
project’s duration. Each period may be expressed in hours, days, weeks, months,
or other time units. In some cases it may be necessary to label the period columns
as period 1, period 2, and so on. The graphics portion of the Gantt chart consists
of a horizontal bar for each task connecting the period start and period ending
columns. A set of markers is usually used to indicate estimated and actual start
and end. Both each bar and the name of each person assigned to the task are on a
separate line [Modell, 1996]. Figure6.6shows an example for a Gantt Chart.



Representations of Timed Workflow Models 103

Figure 6.6: Gantt Chart Example

6.6.4 ePERT Chart
Several concepts needed to represent workflows are not covered by the “classi-
cal” PERT-diagram. One of the most important of these concepts is the notion
of alternative execution paths a process can take. This cannot be modeled by
means of a net diagram. In fact, the only way is to design a separate plan for
each possible execution path. Because of the complexity of an average workflow
structure and the exploding number of separate net diagrams, this is in general not
acceptable. Moreover, it is necessary to allow the transformation of further control
structures, like iteration or choices. That is why a new syntactical element needs
to be introduced directly to the syntax of PERT, the alternative. Net diagrams with
alternatives are calledextended PERTor ePERT. Alternative paths in ePERT are
indicated by an arc which spans over the edges of the successing activities. In
an ePERT Chart, every node stores four time values for for the earliest and latest
finish time [Pozewaunig et al., 1997; Pozewaunig, 1996]. Figure 6.7 shows an
example for an ePERT Chart.

Figure 6.7: Example ePERT Chart acc. to [Pozewaunig et al., 1997]
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6.7 Timed Workflow Graph
The main goal of a workflow graph is to show the control and data flow between
the activities of a given workflow process. Workflow graphs (see Section3.5.2)
can be extended to include time-related data. Since workflow graph nodes, which
correspond to activity occurrences, have attributes associated with them such as
the role that is responsible for the enactment of the activity, one could easily model
time-related data (see Section6.5) by adding more attributes. Moreover, time
constraints between activity occurrences or control occurrences could be shown
in the graph by additional edges, such astime edges[Dadam et al., 2000].

In the following, we focus on time-related activity occurrence attributes. A
workflow graph that includes time information is referred to astimed activity
graphor timed workflow graph (TWfG). Each activity occurrence node in a timed
graph is calledtimed activity occurrence node[Eder and Panagos, 2000].

As we have mentioned in the previous Section, each activityA hasstart and
end eventsassociated with. Depending on the execution duration(s) associated
with A, several pairs of these events could be “attached” toA. For the sake of
simplicity, however, we use the average execution time as the expected execution
duration of an activity.

Figure 6.8: An Occurrence Node in a Timed Workflow Graph

Here, the start event can be computed when the end event is known and, thus,
we only need to consider end events when modeling time constraints (cp. [Eder
et al., 20001999a]). According to this, each activity occurrence is augmented with
eight time values as presented in Section6.5. Figure6.8shows the time extension
of such a node.

6.7.1 Constraint Representation
None of the representation methods of Section6.6 can cope with explicit time
constraints. Therefore, we developed an appropriate time constraint representa-
tion.

For a temporal relationship constraint a labelled directed edge with a dot and
dash line that we calltime constraint edge (TCE)is placed in the TWfG. The
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time constraint edge originates from the source node to the destination node of
the belonging constraint, and it is labelled with the constraint id, constraint type,
bound and the satisfied attribute. Time constraint edges are similar to time edges
in [Dadam et al., 2000].

Figure6.9shows an example timed workflow graph that is based on the afore-
mentioned notions. Our method for the computation of activity occurrence end
events is presented in the next Section.

Figure 6.9: Example Timed Workflow Graph

An alternative way to depict explicit time constraints in timed workflow graphs
is, for the sake of clarity, to tabulate. Such a table is like a legend. Both represen-
tation methods can be mixed freely. For better comprehensibility it is convenient
to represent unsatisfied time constraints in graphical form and the satisfied ones
in tabular form.

6.8 Timed Workflow Model Calculus
From the area of operations research [Glover et al., 1992; Philipose, 1986; Eiselt
and von Frajer, 1977] or production informatics [Galloway, 1993; Dorninger et al.,
1990] several techniques are known to calculate and optimize parameters of pro-
cess resources. By analyzing these techniques we found several similarities be-
tween workflow modeling and execution on the one side and project planning
methods on the other. In our work we use a method of net optimization, PERT
(Program Evaluation and Review Technique) or ePERT, to take the information
obtained by the workflow definition and calculate buffer times for every activity
occurrence [Pozewaunig et al., 1997].
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For the sake of simplicity, we assume that all time information is given in some
basic time units. For applications, time information has to be given in application
specific temporal units. For build time and workflow schemes, time information
is always given relative to the beginning of a workflow. For workflow instances,
this time information is mapped to an actual calendar.

In this and the following Sections, we bring together the timed workflow graph
calculations of [Eder et al., 1999a; Pozewaunig et al., 1997], which are based on
PERT/CPM, and the time constraint incorporation method of [Eder et al., 1999b]
that is based on CPM. That has already been done in [Eder et al., 2000] with a
different metamodel as introduced in Section4.4. Hence, an adaption of the cal-
culation operations as mentioned above is performed. Subsequently, some con-
siderations about these presumed calculation techniques are made briefly.

Without explicit time constraints, E- and L-values can be computed by ex-
tending the Critical Path Method (CPM) [Philipose, 1986] to handle conditional
[Pozewaunig et al., 1997] and alternative execution paths [Eder et al., 1999a].

CPM assumes that the durations of activities are deterministic. We are aware
that this assumption does not hold true for many workflows and that for these
workflows a technique dealing with a probability distribution of activity dura-
tions like the Project Evaluation and Review Technique (PERT) [Philipose, 1986]
would be more appropriate. However, we chose the CPM technique as it allows
us to present the concept more clearly without the math involved with probability
distributions.

All calculations are accomplished only on full flattened models because com-
plex activity occurrences may have different execution durations due to condition-
als or alternatives. That issue is dealt with in [Eder and Pichler, 2002] by means
of duration histograms.

6.8.1 Computation of the Timed Workflow Model

We first compute the timed graph using structural constraints. Table6.1shows the
actual computations, whered(n) denotes the execution duration of occurrencen.
E-values are computed in a forward pass, with the E-values of the starting work-
flow occurrence being set to its duration. L-values are computed in a backward
pass, with the L-values of the last workflow occurrence equal to its E-values or to
its max E-value.

The distance between the E-value and the L-value of an activity occurrence is
its buffer timeor slack time. In our example, occurrenceD has a buffer of 35 time
units in all cases (BF,BS,WF,andWS). This buffer, however, is not exclusively
available to only one occurrence. In our example, the buffer ofD is shared with
C. If C uses some buffer-time, then the buffer ofD is reduced.
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Best Case

forward (best fastest) (best slowest)

sequence j.EBF = τ.EBF +d( j) j.EBS= τ.EBS+d( j)
and-join j.EBF = max({τ.EBF +d( j)}) j.EBS= max({τ.EBS+d( j)})
or-join j.EBF = min({τ.EBF +d( j)}) j.EBS= min({τ.EBS+d( j)})
alt-join j.EBF = min({τ.EBF +d( j)}) j.EBS= max({τ.EBS+d( j)})

∀ immediate activity occurrence predecessorτ of j

reverse (bf) (bs)

sequence j.LBF = τ.EBF−d(τ) j.LBS= τ.EBS−d(τ)
and-split j.LBF = min({τ.EBF−d(τ)}) j.LBS= min({τ.EBS−d(τ)})
or-split j.LBF = max({τ.EBF−d(τ)}) j.LBS= max({τ.EBS−d(τ)})
alt-split j.LBF = max({τ.EBF−d(τ)}) j.LBS= min({τ.EBS−d(τ)})

∀ immediate activity occurrence successorτ of j

Worst Case

forward (wf) (ws)

sequence j.EWF = τ.EWF +d( j) j.EWS= τ.EWS+d( j)
and-join j.EWF = max({τ.EWF +d( j)}) j.EWS= max({τ.EWS+d( j)})
or-join j.EWF = max({τ.EWF +d( j)}) j.EWS= max({τ.EWS+d( j)})
alt-join j.EWF = min({τ.EWF +d( j)}) j.EWS= max({τ.EWS+d( j)})

∀ immediate activity occurrence predecessorτ of j

reverse (wf) (ws)

sequence j.LWF = τ.EWF−d(τ) j.LWS= τ.EWS−d(τ)
and-split j.LWF = min({τ.EWF−d(τ)}) j.LWS= min({τ.EWS−d(τ)})
or-split j.LWF = min({τ.EWF−d(τ)}) j.LWS= min({τ.EWS−d(τ)})
alt-split j.LWF = max({τ.EWF−d(τ)}) j.LWS= min({τ.EWS−d(τ)})

∀ immediate activity occurrence successorτ of j

Table 6.1: Calculation instructions for timed workflow model without explicit
time constraints
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Computing the timed workflow graph delivers the duration of the entire work-
flow, and deadlines for all occurrences so that the termination of the entire work-
flow is not delayed. Thus the timed activity graph gives the necessary information
for the dispatching of occurrences at run time.

Figure6.10shows the timed workflow graph we use in the rest of the thesis.
In this graph, activityA is followed by an and-split, havingM9 as the and-join,
and activityB is followed by an or-split, havingM7 as the or-join. The values of
nodeI show the duration of the workflow, i.e.I .EBF andI .EWS indicate that the
workflow execution may take between 36 and 58 time units.G.EBF indicates that
G may finish after 5 time units (whenE follows B), while G.EWS indicates that
no path fromA to G should take more than 53 time units.B.LBF, tells us that if
B is finished at time point 50, the workflow may still be able to terminate in time.
However, we do not have any guaranty, since we do not know which conditional
paths will be followed afterwards. FromB.LWS we learn that ifB is finished at
time point 2, we can meet the overall deadline, irrespective of the conditionals.

Figure 6.10: Example timed workflow graph without upper bound constraints

6.9 Time Constraint Satisfiability
After activity occurrence durations and time constraints are assigned, time cal-
culations are required for computing optimistic and pessimistic start and finish
times of activity occurrences within processes, available slack time for activities,
updating existing deadlines, converting relative time information to absolute time
points, and so on. Usually the assignment of external deadlines (explicit time con-
straints) is an iterative process. The designer first assigns the duration to activities,
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and the time calculations at process build time are then used to compute the dura-
tion of the whole process and the relative position of all activity occurrences. The
designer can then choose to set external deadlines to some of the activity occur-
rences and recompute the time information. If external deadlines cannot be met,
the designer might modify the workflow structure or change the deadlines [Eder
and Panagos, 2000].

We suggest that a timed workflow graph satisfies a time constraint if the ex-
ecutions in which all activities complete at their E-values or L-values are valid
with respect to this constraint. Here, we demand for equal treatment of condition-
als and alternatives in the context of time constraints. For explicit time constraints
this means (cf. [Eder et al., 2000]):

upper-bound constraints ubc(s,d,δ) should check for constraint violations;
for s.EX +δ≤ d.EX ands.LX +δ≤ d.LX, whereX ∈ {BF,BS,WF,WS}.
lower-bound constraints lbc(s,d,δ) should check for constraint violations;
for s.EX +δ≥ d.EX ands.LX +δ≥ d.LX, whereX ∈ {BF,BS,WF,WS}.

When a constraint is violated, the E- and L-values of source- and destination
occurrence are shifted in an attempt to satisfy the constraint, with the invariant
that an E-value is not greater than its corresponding L-value [Eder et al., 2000].

6.10 Incorporating Explicit Time Constraints
In this Section, we outline a technique that can be used to verify time constraint
satisfiability,i.e., it is possible to find a workflow execution that satisfies all time
constraints.

Once the timed workflow graph is constructed, we can incorporate explicit
time constraints into it by using the algorithms shown in [Eder et al., 20001999b].
Lower bound constraints are incorporated during the construction of the timed
workflow graph; they may increase E-values during the forward pass and decrease
L-values during the reverse pass. Additionally, the incorporation of upper-bound
constraints should check for constraint violations (see above Section). When an
upper bound constraint is violated, the E-values and L-values of source and des-
tination occurrence are shifted in an attempt to satisfy the constraint with the in-
variant that an E-value is not greater than its corresponding L-value [Eder et al.,
2000].

During the incorporation of explicit constraints the semantics of the E-values
change: the E-values mandate that activity terminations should not occur before
them in order to meet the time constraints. Therefore, the E-values and L-values
define the time interval during which an activity has to terminate. This time inter-
val is referred to as thelife-line of the activity [Eder et al., 2000].
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However, [Eder et al., 1999b] do not distinguish between conditional and un-
conditional (parallel) branches in the computation of worst case E- and L-values.
While this ensures that the execution of the workflow will avoid to violate tempo-
ral constraints when the incorporation algorithm succeeds, it is too pessimistic. In
particular, there are cases where execution without constraint violation is possible
and the incorporation algorithm does not succeed due to the interference of con-
straints on mutually exclusive conditional branches, as we will show below [Eder
et al., 2000].

6.10.1 Conditional Execution Paths
When explicit time constraints involve conditionally executed occurrences, it may
be beneficial to consider some/all of the conditional paths in isolation. By doing
so, we may be able to avoid superfluous constraint violations and to schedule
conflicts during process execution. In general, the following issues need to be
addressed when we derive timed graphs that violate explicit time constraints [Eder
and Panagos, 2000; Eder et al., 2000]:

Figure 6.11: Workflow Example with Conditional Execution Paths

1 Checking individual constraints for violation may not be sufficient.As shown
in [Eder et al., 1999b], a set of time constraints may not be satisfiable, even
if each individual constraint is satisfiable. Consequently, the incorporation
procedure should consider all of the constraints.

2 Checking workflow instance types for constraint violation in isolation is not
sufficient.If two instance types only differ after or-splits, the common initial
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activities should have the same E- and L-values. If we cannot find such E-
and L-values in all instance types to satisfy the constraints, then it may not
be possible to schedule the execution of this workflow in a way that all time
constraints are met.

Figure 6.12: Workflow Instance Types of Figure6.11

If we consider two instance types as shown in Figure6.12for the workflow
in Figure6.11(duration of occurrenceH is changed to 95 as well as modified
time constraints), where one includesF and results inB.EX = 2 andB.LX =
45, and the other one includesE and results inB.EX = 76 andB.LX = 93
(X ∈ {BF,BS,WF,WS}). Here, it is not possible to satisfy the time constraints
for either instance, sinceB is executed in both of them, and the scheduling
information forB, i.e., the valid interval forB to terminate, is contradictory.
Consequently, we cannot start executingB since we do not know which path
is going to be taken after it.

3 Incorporating upper-bound constraints using best-case values may not be mean-
ingful. When an upper bound constraint exists between a conditionally exe-
cuted activityC and a successor activityG, which is always executed, check-
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ing this constraint for the best-case is not possible when the E- and L-values
of G do not depend on the best-case E- and L-values ofC.

4 Checking violation of upper-bound constraints using worst-case values may
lead to unnecessary rejections when the workflow has conditional branches.
Similar to the above case, when the worst-case E- and L-values ofC do not
contribute to the worst-case values of another activity, we may find a constraint
violation when trying to incorporate several constraints.

This can be seen when examining the case whereubc(B,D,20) andubc(C,G,15)
need to be incorporated into the timed graph shown in Figure6.9. If we incor-
porateubc(B,D,20) first, thenD.Lwc becomes 22 and, consequently,ubc(C,G,15)
cannot be satisfied. However, each of these constraints is individually satisfi-
able, as shown in Figure6.13, since the path containingC and D does not
influence the computation of the worst case E- and L-values of nodesB andG.

Figure 6.13: Path withubc(B,D,20) andubc(C,G,15)

6.10.2 Calculation/Incorporation Procedure

Initially, two passes over the full flattened workflow graph are performed. We first
compute the timed graph using structural constraints and any explicit lower-bound
constraints. The E- and L-values for all activity occurrences are computed using
an extension of the CPM method. In particular, E-values of occurrences without
predecessors are set to the durations of these activities, and a forward traversal of
the workflow graph is done for computing the remaining E-values. Then, the L-
values of activities without successors are set to their corresponding E-values, and
a backward traversal of the workflow graph is done for computing the remaining
L-values. During this traversal, if external lower bound constraints exists, the E-
and L-values of the activity occurrences are correspondingly modified as can be
seen in Section6.10.3.

Then, we attempt to incorporate all upper-bound constraints. Upper-bound
constraints are incorporated into the computed E- and L-values. A necessary con-
dition for the constraintubc(s,d,δ) to be satisfiable is that thedistancebetween
s andd is less thanδ. This distance is the sum of the execution durations of the
occurrences on the longest path betweensandd. Since this distance only depends
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on the E- and L-values ofsandd, a violated upper-bound constraint could be satis-
fied by changing these values in a consistent way. Details about how such changes
are performed as well as the algorithmic properties of our technique can be found
in Section6.10.4. It should be noted, though, that the satisfaction of individual
upper-bound constraints may lead to a violation of already incorporated upper-
bound constraints. Therefore, when an upper-bound constraint is incorporated
into the E- and L-values of activities, all previously incorporated upper-bound
constraints should be validated again.

When an upper-bound constraint is violated, we determine whether its source
and destination nodes are connected via conditionally executed activities or whether
they belong to the same workflow instance type (see Algorithm6.1). Here, we
partially unfold the workflow graph and, finally, we attempt the constraint incor-
poration procedure again (cp. [Eder and Panagos, 2000; Eder et al., 2000]).

Figure 6.14: Partially Unfolded Workflow of Figure6.9

To check the satisfiability of time constraints, we extended the algorithm in
[Eder et al., 20001999b] to the full nodes (best/worst and fastest/slowest cases).
If a constraintubc(s,d,δ) cannot be successfully incorporated, the algorithm par-
tially unfolds the workflow starting froms andd, if unfolding has not yet hap-
pened. After unfolding, we restart the incorporation procedure on the partially
unfolded workflow graph. That procedure is shown with Algorithm 6.4.

If a constraint is violated despite unfolding, we check whether there is an
overlapping constraint and perform the unfold for the source and destination nodes
of this constraint. An example for this procedure is given in the workflow shown
in Figure6.9and the constraintsubc(B,D,20) andubc(C,G,15). If ubc(B,D,20)
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is incorporated first, thenubc(C,G,15) cannot be incorporated sinceD.LWS is
22 (and thereforeC.LWS is 17). Now we partially unfold the workflow graph,
compute the timed graph, and incorporate the constraints there. The result of this
procedure is the graph shown in Figure6.14.

As mentioned above, the following calculation algorithms are defined on full
flattened workflow graphs.

6.10.3 Lower-Bound Constraint
Algorithm 6.2 shows computation (forward and backward) of the timed graph
using structural constraints and any explicit lower-bound constraints. In the actual
computationsn.d denotes the execution duration of occurrencen.

Forward Calculations

for all occurrences a with a.pos = start
a.EBF := a.d
a.EBS := a.d
a.EWF := a.d
a.EWS := a.d

endfor
for all occurrences a with a.pos 6= start

in a topological order
switch a.type
case ’seq’:

a.EBF := max(b.EBF + a.d,
{m.s.EBF + m.δ | m = lbc(s,a,δ)})

a.EBS := max(b.EBS + a.d,
{m.s.EBS + m.δ | m = lbc(s,a,δ)})

a.EWF := max(b.EWF + a.d,
{m.s.EWF + m.δ | m = lbc(s,a,δ)})

a.EWS := max(b.EWS + a.d,
{m.s.EWS + m.δ | m = lbc(s,a,δ)})

case ’and-join’:
a.EBF := max({b.EBF + a.d | b ∈ a.pred},

{m.s.EBF + m.δ | m = lbc(s,a,δ)})
a.EBS := max({b.EBS + a.d | b ∈ a.pred},

{m.s.EBS + m.δ | m = lbc(s,a,δ)})
a.EWF := max({b.EWF + a.d | b ∈ a.pred},

{m.s.EWF + m.δ | m = lbc(s,a,δ)})
a.EWS := max({b.EWS + a.d | b ∈ a.pred},

{m.s.EWS + m.δ | m = lbc(s,a,δ)})
case ’or-join’:

a.EBF := min({b.EBF + a.d | b ∈ a.pred},
{m.s.EBF + m.δ | m = lbc(s,a,δ)})

a.EBS := min({b.EBS + a.d | b ∈ a.pred},
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{m.s.EBS + m.δ | m = lbc(s,a,δ)})
a.EWF := max({b.EWF + a.d | b ∈ a.pred},

{m.s.EWF + m.δ | m = lbc(s,a,δ)})
a.EWS := max({b.EWS + a.d | b ∈ a.pred},

{m.s.EWS + m.δ | m = lbc(s,a,δ)})
case ’alt-join’:

a.EBF := min({b.EBF + a.d | b ∈ a.pred},
{m.s.EBF + m.δ | m = lbc(s,a,δ)})

a.EBS := max({b.EBS + a.d | b ∈ a.pred},
{m.s.EBS + m.δ | m = lbc(s,a,δ)})

a.EWF := min({b.EWF + a.d | b ∈ a.pred},
{m.s.EWF + m.δ | m = lbc(s,a,δ)})

a.EWS := max({b.EWS + a.d | b ∈ a.pred},
{m.s.EWS + m.δ | m = lbc(s,a,δ)})

otherwise:
// split nodes, activity occurrences
a.EBF := max(b.EBF + a.d,

{m.s.EBF + m.δ | m = lbc(s,a,δ)})
a.EBS := max(b.EBS + a.d,

{m.s.EBS + m.δ | m = lbc(s,a,δ)})
a.EWF := max(b.EWF + a.d,

{m.s.EWF + m.δ | m = lbc(s,a,δ)})
a.EWS := max(b.EWS + a.d,

{m.s.EWS + m.δ | m = lbc(s,a,δ)})
endswitch

endfor

Algorithm 6.2: Forward Calculation
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Backward Calculations

for all occurrences a with a.pos = end
a.LBF := a.EBF

a.LBS := a.EBS

a.LWF := a.EWF

a.LWS := a.EWS

endfor
for all occurrences a with a.pos 6= end

in a reverse topological order
switch a.type
case ’seq’:

// similar calculation as and-split because of
// possible multiple successors
a.LBF := max({s.LBF - s.d | s ∈ a.succ},

{m.d.LBF - m.δ | m = lbc(a,d,δ)})
a.LBS := max({s.LBS - s.d | s ∈ a.succ},

{m.d.LBS - m.δ | m = lbc(a,d,δ)})
a.LWF := max({s.LWF - s.d | s ∈ a.succ},

{m.d.LWF - m.δ | m = lbc(a,d,δ)})
a.LWS := max({s.LWS - s.d | s ∈ a.succ},

{m.d.LWS - m.δ | m = lbc(a,d,δ)})
case ’and-split’:

a.LBF := min({s.LBF - s.d | s ∈ a.succ},
{m.d.LBF - m.δ | m = lbc(a,d,δ)})

a.LBS := min({s.LBS - s.d | s ∈ a.succ},
{m.d.LBS - m.δ | m = lbc(a,d,δ)})

a.LWF := min({s.LWF - s.d | s ∈ a.succ},
{m.d.LWF - m.δ | m = lbc(a,d,δ)})

a.LWS := min({s.LWS - s.d | s ∈ a.succ},
{m.d.LWS - m.δ | m = lbc(a,d,δ)})

case ’or-split’:
a.LBF := max({s.LBF - s.d | s ∈ a.succ},

{m.d.LBF - m.δ | m = lbc(a,d,δ)})
a.LBS := max({s.LBS - s.d | s ∈ a.succ},

{m.d.LBS - m.δ | m = lbc(a,d,δ)})
a.LWF := min({s.LWF - s.d | s ∈ a.succ},

{m.d.LWF - m.δ | m = lbc(a,d,δ)})
a.LWS := min({s.LWS - s.d | s ∈ a.succ},

{m.d.LWS - m.δ | m = lbc(a,d,δ)})
case ’alt-split’:

a.LBF := max({s.LBF - s.d | s ∈ a.succ},
{m.d.LBF - m.δ | m = lbc(a,d,δ)})

a.LBS := min({s.LBS - s.d | s ∈ a.succ},
{m.d.LBS - m.δ | m = lbc(a,d,δ)})

a.XLWF := max({s.LWF - s.d | s ∈ a.succ},
{m.d.LWF - m.δ | m = lbc(a,d,δ)})
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a.LWS := min({s.LWS - s.d | s ∈ a.succ},
{m.d.LWS - m.δ | m = lbc(a,d,δ)})

otherwise:
// join nodes, activity occurrences
a.LBF := min({s.LBF - s.d | s ∈ a.succ},

{m.d.LBF - m.δ | m = lbc(a,d,δ)})
a.LBS := min({s.LBS - s.d | s ∈ a.succ},

{m.d.LBS - m.δ | m = lbc(a,d,δ)})
a.LWF := min({s.LWF - s.d | s ∈ a.succ},

{m.d.LWF - m.δ | m = lbc(a,d,δ)})
a.LWS := min({s.LWS - s.d | s ∈ a.succ},

{m.d.LWS - m.δ | m = lbc(a,d,δ)})
endswitch

endfor

Algorithm 6.3: Backward Calculation

6.10.4 Upper-Bound Constraints
Algorithm 6.4 shows the incorporation of all upper-bound constraints based on
the timed graph as it results from Algorithms 6.2 and 6.3.

When we check slack time at m.s, we use the≥ relation. When we check
slack time at m.d, we use the≤ relation, which is different to [Eder et al., 1999b]
who use the relations> and<.

repeat
error := false
for each m = ubc(s,d,δ)
if (m.s.EBF + m.δ < m.d.EBF or m.s.EBS + m.δ < m.d.EBS or

m.s.EWF + m.δ < m.d.EWF or m.s.EWS + m.δ < m.d.EWS)
(* violation at E *)
if (m.s.LBF ≥ m.d.EBF - m.δ and m.s.LBS ≥ m.d.EBS - m.δ and

m.s.LWF ≥ m.d.EWF - m.δ and m.s.LWS ≥ m.d.EWS - m.δ)
(* slack at m.s *)
m.s.EBF := max(m.d.EBF - m.δ, m.s.EBF)
m.s.EBS := max(m.d.EBS - m.δ, m.s.EBS)
m.s.EWF := max(m.d.EWF - m.δ, m.s.EWF)
m.s.EWS := max(m.d.EWS - m.δ, m.s.EWS)
recompute timed graph
if m.d.EBF or m.d.EBS or

m.d.EWF or m.d.EWS changes
graph changed := unfold(s,d)
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if not graph changed
error := true (* already unfolded *)

else
recompute timed graph

endif
endif

else
error := true (* no slack *)

endif
endif
if (m.s.LBF + m.δ < m.d.LBF or m.s.LBS + m.δ < m.d.LBS or

m.s.LWF + m.δ < m.d.LWF or m.s.LWS + m.δ < m.d.LWS)
(* violation at L *)
if (m.d.EBF ≤ m.s.LBF + m.δ and m.d.EBS ≤ m.s.LBS + m.δ and

m.d.EWF ≤ m.s.LWF + m.δ and m.d.EWS ≤ m.s.LWS + m.δ)
(* slack at m.d *)

m.d.LBF := min(m.s.LBF + m.δ, m.d.LBF)
m.d.LBS := min(m.s.LBS + m.δ, m.d.LBS)
m.d.LWF := min(m.s.LWF + m.δ, m.d.LWF)
m.d.LWS := min(m.s.LWS + m.δ, m.d.LWS)
recompute timed graph
if m.s.LBF or m.s.LBS or

m.s.LWF or m.s.LWS changes
graph changed := unfold(s,d)
if not graph changed
error := true (* already unfolded *)

else
recompute timed graph

endif
endif

else
error := true (* no slack *)

endif
endif

endfor
until error = true or nothing changed

Algorithm 6.4: Incorporation of Upper Bound Constraints

6.10.5 Valid Workflow Executions
At the end of the build-time calculations, there are at least two (possibly not dis-
tinct) valid workflow executions (schedules). These executions are obtained if all
activities complete at their E-values or their L-values. There may be other valid
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combinations of occurrence completion times within(E,L) ranges. We suggest
that a timed graphsatisfiesa constraint if the executions in which all occurrences
complete at their E- or L-values are valid with respect to this constraint. In addi-
tion, by examining the L-values of an occurrence, one can determine if there is a
path containing this activity that may lead to time error during process execution.
In particular, if all L-values of an activity are greater than their corresponding E-
values, there are execution paths containing this activity that are likely to avoid
time violations. However, if some L-values are less than their corresponding E-
values, then there are paths that may lead to time violations [Eder and Panagos,
2000].

6.11 Example for Computing the TWG
In this Section, by means of an example we will show how our time management
technique works. Starting with the workflow of Figure4.2, we show step by step
how our technique is applied.

The initial step is to build the timed workflow graph by applying the algo-
rithm 6.2 and 6.3. Figure6.10shows the result after considering structural and
lower bound constraints.

Figure 6.15: Example Workflow - Transformation Step 1 and 2
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The next step is to incorporate upper constraints in the timed workflow graph
by applying the algorithm 6.4. Here we have two constraintsubc(B,D,20) and
ubc(C,G,15) that need to be incorporated into the timed graph shown in Fig-
ure6.10. If we incorporateubc(B,D,20) first, thenD.Lwc becomes 22 and, con-
sequently,ubc(C,G,15) cannot be satisfied as shown in Figure6.9.

Due to the unsatisfied constraintubc(C,G,15), we transform the workflow
according to the operations of Chapter5 in order to separate the inherent instance
type that belongs to activity occurrenceC andD. This transformation is depicted
in Figure6.15and6.16, where the time information is masked. In the upper part of
Fig. 6.15, transformationWFT−J7 (Join Coalescing) is employed. In the lower
part (WF2), transformationWFT− J1 (Join Moving Over Activity Occurrence)
is applied. In the upper part of Fig.6.16, transformationWFT−J2 (Join Moving
Over Seq-Join) is employed and in the lower part (WF4), transformationWFT−
J8 (Moving Or-Join Over And-Join). After that, transformationWFT− J1 and
WFT−J2 have to be applied.

Figure 6.16: Example Workflow - Transformation Step 3 and 4

After the partial unfolding the timed workflow is re-calculated as shown in
Figure6.14.
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6.12 Summary
In this Chapter, we presented our technique for modeling, checking, and enforcing
temporal constraints in workflow processes containing conditionally and alterna-
tively executed activity occurrences. Our technique distinguishes between time
constraints that apply to disparate execution paths and, thus, it avoids the superflu-
ous time constraint violations detected by existing techniques that treat these paths
similar to those of unconditionally executed occurrences. In addition, our incor-
poration of explicit time constraints into the unfolded graph avoids the problem of
detecting scheduling conflicts when workflow instances are treated independently
of each other.
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7
Prototypical Implementation

In this Chapter, we focus on the description of our prototype calledGraphical
Workflow Designer(GWfD) that is developed to support workflow modeling and
time management during workflow build-time. The prototype is based on the con-
cepts introduced in the previous Chapters and it is implemented as an autonomous
Java application. The main reason to develop theGWfD is the proof-of-concept
testing in order to determine whether our theoretical concepts are valid and sound,
and whether all the promises that have been made about it are met.

7.1 Introduction

TheGWfD prototype was developed at the University of Klagenfurt, Department
of Informatics-Systems, in the course of the “Softwarepraktikum”, winter term
2002, by Stefan Perauer and Robert Sorschag.

In this Chapter, we will describe the functionality of theGWfD and show
the general practice by means of an example. Here, the implementation aspects
and details such as software architecture, the relational database model, database
connectivity, etc. are not described unless it is important.

TheGWfD is implemented in Java and it uses theJGraphSwing Component
[JGraph] for the graphical workflow representation. Oracle8i serves as database
management system (DBMS), where workflows are durably stored. The relational
model is gained from our workflow metamodel by applying the steps as proposed
e.g. in [Elmasri and Navathe, 2000]. Furthermore,JDBC technology provides
connectivity to the SQL database and allows us to access the stored workflows.

In the next Sections, a brief overview of the software architecture and the
provided functionalities of theGWfD is given.
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7.1.1 GWfD Architecture
The demands on theGWfDarchitecture were primarily system independency, per-
sistent data management, modularity, extensibility and simplicity. System struc-
turing is accomplished by a three layered architecture as shown in Figure7.1. We
use the recommended architectural design patternModel-View-Controller(MVC)
as the blueprint for our interactive prototype.

Figure 7.1:GWfD Architecture

The three layers ofData Source Connectivity, Application LayerandPresen-
tation Layerare organized in a layered architecture, as, for instance, proposed in
[Garlan and Shaw, 1993]. Each layer provides services to the layer above and
uses services provided by the layer below.

Data Source Connectivity Layer: This layer represents the API to the data
source relevant for theGWfD. A data sources may be a database or an XML
file.

Application Layer : The major task of this layer is to create, modify, and
delete workflow specifications, deduce workflow models from the specifi-
cation, and perform time calculations and transformations on the workflow
model. Then, the result is passed to the presentation layer.

Presentation Layer: This layer is responsible for the visualization of work-
flow specifications and models. It should be able to present the results in an
intuitively graphical way with the usual functionalities.
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7.2 GWfD Functionalities
The GWfD tool provides functionalities that enable the workflow designer to
maintain workflow engineering. These functionalities comprises the following:

Workflow specification

Creation: building up a new workflow specification that includes the
creation of complex/elementary activities and occurrences as well as the
corresponding transitions.

Modification: insertion, deletion and modification of complex/elementary
activities and/or occurrences.

Deletion: deletion of a workflow specification or model.

Workflow model deduction
Derives a workflow model from the current workflow specification. It is
possible to derive multiple workflow models.

Workflow transformation
Depending on the context of the occurrences considered, all possible trans-
formations are proposed. Choosing a transformation operation, the work-
flow model is modified accordingly.

Workflow time calculation
E- and L-values for every workflow element are calculated and time con-
straints are incorporated.

Time constraint definition
Time constraints (lbc, ubc) between two appropriate workflow occurrences
can be defined and activated or deactivated.

Options

Data Source (DBMS) selection

Appearance of GUI

Color setting for graphical model elements
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7.3 The Workflow Designer Tool GWfD

TheGWfD tool is described by means of an example. In that way our methodol-
ogy is demonstrated step by step and depicted by screenshots. The main parts of
theGWfD are described in the following Sections. A complete description of our
workflow design tool can be found in [Perauer and Sorschag, 2003].

7.3.1 The Main Window
The Main Windowof GWfD consists of a menu, a virtual desktop with a min-
imized specification and model window, a time constraint list (presently mini-
mized) and a command bar (control panel or toolbar) that is placed below the
menu. A screenshot of theMain Windowis shown in Figure7.2.

Figure 7.2: Main Window of theGWfD

7.3.1.1 The File Menu

The File menu offers the usual functionalityNew to generate a new workflow,
Load/Saveto load or store a workflow from/to a data source, andExit to close the
application. Figure7.3depicts the openFile menu.
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Figure 7.3: File Menu ofGWfD

7.3.1.2 The Load/Save Window

If the itemLoad/Savein theFile menu is selected, then theLoad/Save Windowis
opened (see Figure7.4).

Figure 7.4: Load/Save Window

The list component (list panel) on the right itemizes the workflows stored in
the specified data source. If we click on one entry in the list panel, then the
corresponding information such as name, version, author, etc. of the selected
workflow is shown on the left. We can load or delete the workflow by clicking on
the buttonLoador Delete. If a workflow is already loaded, then we can store it by
clicking on the buttonSave.
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7.3.1.3 The Extra Menu

Before we can load a workflow from a data source, we have to set parameters such
as the data source location.

Figure 7.5: Database Location
Options

Figure 7.6: Control Element
Background Color Options

The Extra menu has only theOption item. If it is activated by clicking on
it, then theOption window appears. It contains three tabs which are (i)Styleto
change appearance of the GUI, (ii)Database Optionsto specify the location of
the database, and (iii)ModelWindowto set the color for model control elements
(e.g. the background color of all and-split and and-join elements is set to light
green).

Figure7.5 illustrates theDatabase Optionspane with the oracle database lo-
cation parameters necessary for the JDBC driver. Here, user name, password,
database server name, port id and database name are given. Figure7.6 depicts
the ModelWindowpane where color setting parameters for the control element
background can be changed.

7.3.2 The Specification Editing Window
A workflow can be created or modified by means of theSpecification Editing
Window, which appears by clicking on the leftmost button in the command bar or
by opening theSpecificationmenu and clicking on theEdit item. If no workflow
is loaded, then the window is blank; otherwise the loaded workflow elements
(activities and occurrences) are listed in the right list panel as it is depicted in
Figure7.7, for example.
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Figure 7.7: Specification Editing Window (loaded Workflow)

In order to specify a workflow, we firstly define the elementary and complex
activities. Therefore, we click on theNew Activitybutton and the first entry in
the list element on the right appears. Then we type in the name, the duration and
further information on the given text input fields. After that we choose the type of
activity by clicking on theControl Typecombo-box and assign the wanted activity
type. For a complex activity, we choose eithersequence, parallel, conditionalor
alternative, and for an elementary activity, we chooseelementar. To create the
next activity, we are clicking on theNew Activitybutton again and type in the
necessary information.

Occurrences are created in the context of a particular complex activity. This
means that we first have to click on a complex activity in the list element, and
afterwards we need to click on theNew Occurrencebutton. Beneath the com-
plex activity in the list element, a new entry appears that begins with the string
“|----”. Similar as for activities, we type in the name, the duration and further
information at the given text input fields. Here, the occurrence must have the same
name as the corresponding activity. Hence, if we want to create an occurrence of
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activity A, the occurrence must be labeled asA. The order of occurrences is sig-
nificant for complex activities of typesequence, because this order represents the
execution order and therefore; the transitions are defined accordingly.

Workflow elements can be deleted by selecting it in the list element and click-
ing theDeletebutton afterwards. If all workflow elements are defined, then the
OK button has to be clicked. This initiates checking the correctness of the work-
flow specification, as specified by the integrity constraints in Section4.4.5, and
emerging errors are displayed.

7.3.3 The Specification and Model Window
After we have loaded or created a workflow specification, theSpecification and
Model Windowillustrates the workflow as depicted in Figure7.8, for example.

Figure 7.8: Specification and Model Window

The upper window, called Specification Window, represents the workflow
specification in graphical form. The lower window, called Model Window, re-
flects the derived workflow model (cf. Section3.7). We call this workflow model
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master workflow model. Our master workflow model, which can be recognized by
the pink window background, allows no modifications (e.g. transformations) of
the workflow model. Therefore we can derive (any number of) workflow models
by clicking on theModelmenu and selecting theGenerateChildModelitem. Such
workflow model windows (also calledChild-Model Window) are identified by the
white window background. The nodes in the workflow model windows depict the
name and the type of the represented activity or occurrence. Only in elementary
activity occurrences, its duration is depicted by numbers in italics.

There are some functionalities concerning the master workflow window that
are partially described in the following.

7.3.3.1 Zooming

TheGWfD supports a zooming feature though which to zoom the display. When
the right mouse button is clicked at the desktop, a context menu is displayed (see
Figure7.9). Here we can repeatedly zoom-in and zoom-out in steps of 30%. There
are also predefined zooming factors available.

Figure 7.9: Model Window with Context Menu and visible E/L-Values
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7.3.3.2 Calculating Time Values

As described in Chapter6 the E-values and L-values can be calculated for our
workflow models. For that purpose, we invoke the context menu and click on the
item CalculateEpert. After that we can fad in and fad out these time values by
making a right mouse click on the regarding nodes. In Figure7.9, the time values
for all elementary occurrences are faded in.

7.3.4 Time Constraint List

TheTime Constraint Listis located on the left in the desktop. To make theTime
Constraint Listpane narrower or wider, the divider on the left has to be pointed
at. When the pointer changes to a↔, the left mouse button has been hold down
as you drag the divider to the left or right.

Figure 7.10: Time Constraint List and Activated Context Menu
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7.3.4.1 Defining a Relational Time Constraint

Explicit relational time constraints (ubc and lbc) are defined by selecting two ac-
tivity occurrences. In order to select two elements in the workflow model window
at the same time, it is necessary to press and hold theCtrl key and left-click the
elements in question. Then a right mouse click on one of the selected items has
to be performed to invoke the context menu, which has now two additional items,
namelyAdd UpperBound ConstraintandAdd LowerBound Constraint(see Fig-
ure7.10). After one of these items is selected, the user is requested to type in the
bound value, and by clicking on theOK button, the time constraint is stored and
displayed in theTime Constraint Listif the constraint complies with the integrity
constraints.

Figure 7.11: Checking Time Constraints

Every entry in theTime Constraint Listrepresents an explicit time constraint.
The type, the source occurrence, the destination occurrence and the bound of the
constraints are shown on the list. In order to improve the handling of our time
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management, we added a checkbox to enable (activate) and disable (deactivate)
defined constraints. This procedure is preferred to repeatedly deleting and insert-
ing time constraints. Figure7.11shows the definition and activation of a ubc time
constraints.

7.3.4.2 Checking Time Constraints

Time constraints are checked during the computation of the E-values and L-values
as described in Section7.3.3.2. If a constraint violation occurs, a dialog box
with an error message appears (see Figure7.11). We are now aware, that at least
one constraint cannot be satisfied, but we do not know which one. So we can
activate and deactivate the time constraints to find a maximum set of satisfied time
constraints or to check each time constraint individually. For each unsatisfied time
constraint, we perform the transformation operationUnfoldas described below.

Figure 7.12: Child-Model Window of theGWfD

7.3.5 The Child-Model Window
As mentioned above we designed our prototype to make transformation operations
possible only inChild-Model Windows. In a Child-Model Windowillustrated in
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Figure7.12, the workflow model is represented in the same way as in the master
model window.

7.3.5.1 Applying Transformations

In order to separate the intrinsic instance types in a workflow model, we apply
the partial unfold transformation operation. Therefore, we have to specify the
instance type to be separated. As illustrated in Figure7.12, we select an adjacent
predecessor of acond-joinand invoke the context menu by a right mouse click
on the selected predecessor. The first item in the context menu is“Transform ...”.
This item has to be to chosen. After that, a list of all possible transformation
operations in this context appears, which in this case could only be thePartial
Unfoldoperation. If this operation is selected, the workflow model is accordingly
modified and the graphical representation is updated, as we can see in Figure7.13.

If we perform the recalculation of the E- and L-values, we can see that both
time constraints are now satisfied.

Figure 7.13: Partial Unfolded Workflow Model
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There are some other transformations implemented, as described in Chapter5.
Depending on which workflow elements are selected, our prototype proposes all
possible transformation operations. In Figure7.14, for instance, we perform the
transformationJoin Moving over Activity. Therefore, we have to select thecond-
join and its successor. Then we invoke the context menu by a right mouse click
on the selected successor orcond-join. The further steps are similar to the ones
already described above.

Figure 7.14: Join Moving over Activity

The result is shown in Figure7.15. A detailed description of applying work-
flow transformations inGWfD can be found in [Perauer and Sorschag, 2003].

7.4 Summary
The algorithms for incorporating explicit time constraints in timed workflow graphs
with (partial) unfolding were implemented in a prototype for an extended work-
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Figure 7.15: Result of Join Moving over Activity of Fig.7.14

flow design tool. The prototype accepts workflow descriptions in the workflow
definition language of the workflow system Panta Rhei [Eder et al., 1997b], ex-
tended with explicit time constraints. The algorithms for unfolding and partially
unfolding workflow graphs as well as the algorithms for computing timed work-
flow graphs and incorporating explicit time constraints into these timed graphs are
defined by these process definitions.
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8
Conclusions and Further Work

In this Chapter we conclude this dissertation by summarizing our contributions
and discussing directions for future work.

8.1 Conclusions

Time is a fundamental concept of the universe. We can define time e.g. as a
structure of (simultaneous) events on the level of elementary processes. Every
elementary process runs on a time scale and, therefore, time plays an important
role in workflows.

The main objective of this thesis is to investigate time aspects in workflow
management systems and to propose a comprehensive framework for time man-
agement.

In this thesis we presented a new approach to time management in workflow
systems. After a brief overview of workflow technology, a sophisticated work-
flow model for control structure oriented processes as well as for graph based pro-
cesses is presented. Important aspects of our workflow model are the elaborated
hierarchical composition supporting re-use of activities by means ofoccurrences
and the separation of specification and model level workflow descriptions. Along
those lines, we developed a workflow metamodel in UML notation which allows
to design and to maintain temporal workflows. Moreover, we defined necessary
integrity constraints for this model. To cope with the numerous changes during
the lifetime of a workflow model and in order to separate the intrinsic instance
types of a workflow model for time management, we developed a set of basic
and complex workflow transformations, which do not change the semantics of the
workflow. That is why we introduced a new equivalence criterion on workflows
and workflow instance types. As main part of this thesis, we addressed the crucial
role of time management in workflow processes. In particular, we described how
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structural and explicit time constraints can be “captured” during process defini-
tion and validated during modeling time. Therefore, the basic temporal concepts
used in workflows are introduced and a framework for time modeling is presented.
Finally, to demonstrate the approach introduced in this thesis, a graphical work-
flow designer prototype calledGWfD has been designed and implemented as an
autonomous Java application.GWfD is the conceptual modeling and verifica-
tion tool for workflows designed and developed at the University of Klagenfurt,
Austria. Our prototype supports time management and transformation functions
during workflow build-time including specification and verification of temporal
constraints. Basic functions ofGWfD are illustrated on workflow examples used
throughout this thesis.

Based on the experience made when working on this research project, some final
thoughts and conclusions on time management can be drawn:

Time management in workflows is different from time management in other
areas like e.g. production planning and control, artificial intelligence, tem-
poral databases,etc.

Better control of execution times cannot be reached by only introducing a
time value attribute for each activity. On the contrary, useful time man-
agement means to (i) record possible start and termination times for each
activity and the overall process, (ii) define time constraints between activi-
ties, (iii) verify the consistency of time constraints, and to (iv) proactively
resolve and avoid time constraints violations.

The verification of temporal consistency is crucial to workflow management
in order to guarantee a temporal error-free workflow execution regarding
the underlying workflow structure. Therefore, verification during workflow
modeling means to determine time constraints that are not satisfied.

The problem of unnecessary workflow model rejections induced by superflu-
ous time constraint violations is also essential. It can be tackled at maximum
by performing workflow transformations.

A proper time management method during build-time dramatically improves
workflow execution by reducing time-driven exceptions, detecting bottle-
necks and providing optimization tools in a collaborative environment, test-
ing a workflow before deploying it, communicating with customers, visual-
izing, and reducing complexity, etc.
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8.2 Ongoing Work/Further Work

This Section sketches areas of further developments and ongoing work in the field
of time management in workflows.

8.2.1 Schedules

The execution of a workflow instance requires the re-computation of the timed
graph after the completion of an activity occurrence that is the source of a lower-
bound constraint or has a successor that is the source of an upper-bound constraint.
These re-computations could be avoided by sacrificing some of the flexibility in
the timed graph. The timed graph specifies ranges for activity occurrence com-
pletion times so that thereexistsa combination of activity occurrence completion
times that satisfies all timing constraints. Run-time re-computation was required
because once completion time for finished activity occurrences is observed, not all
completion times within the ranges of the remaining activity occurrences continue
to be valid [Eder and Panagos, 2000; Eder et al., 1999b].

We define ascheduleto be a (more restrictive) timed graph in whichanycom-
bination of activity completion times within[E,L] ranges satisfies all timing con-
straints. In other words, given a schedule no violations of time constraints occur
as long as each activity occurrencea finishes on time within the interval[a.E,a.L].
Consequently, as long as activity occurrences finish within their ranges, no timed
graph re-computation is needed. Only when an activity occurrence finishes out-
side its range, the schedule for the remaining activities must be recomputed [Eder
and Panagos, 2000; Eder et al., 1999b].

Following the schedule definition for every upper-bound constraintubc(s,d,δ),
s.E +δ≥ d.L and for every lower-bound constraintlbc(s,d,δ), s.L+δ≤ d.E the
reverse is also true as well, i.e. the timed graph that satisfies these properties is a
schedule. From the way we compute E- and L-values for the activity occurrences
in a timed workflow graph, the E- and L-values already qualify as schedules (see
Section6.10.5). Consequently, when every workflow activity occurrence finishes
execution at its E-value, there is no need to check for time constraint violations.
The same is true when activities finish execution at L-values [Eder and Panagos,
2000; Eder et al., 1999b].

Regarding the scheduling problem, there is plenty literature (see [Suresh and
Chaudhuri, 1993] for a good survey) [Bettini et al., 2000].

The development of algorithms for computing schedules with various charac-
teristics is the subject of current research (cf. [Eder et al., 2003; Ninaus, 2002]).
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8.2.2 Generalizing to Temporal Reasoning with Multiple
Granularities

It is surprising that there is hardly any literature on the subject of temporal rea-
soning with multiple granularities [Bettini et al., 2002]. In most cases, either
the multiple granularities are not considered (e.g. [Dechter et al., 1991]), or it
is assumed that constraints in terms of multiple granularities can be equivalently
translated in terms of a single granularity. However it is not always possible to
convert a temporal distance among two events in terms of one granularity into one
in terms of another granularity. Therefore, this work can be extended to multiple
time granularities as considered above.

8.2.3 Relaxing the Restrictive Workflow Structure
The temporal workflow graphs in Section3.5.2form a subclass of those consid-
ered “well-structured”. A topic of further work is to relax the restriction on the
workflow structure to arbitrary workflow networks.
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versiẗat Klagenfurt, 2001.97

M. Kradolfer. A Workflow Metamodel Supporting Dynamic, Reuse-Based Model
Evolution. PhD thesis, Universität Zürich, 2000.
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