
Markus Clermont

A Scalable Approach to
Spreadsheet Visualization

DISSERTATION

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

Studium der Angewandten Informatik

Universität Klagenfurt

Fakultät für Wirtschaftswissenschaften und Informatik

1. Begutachter: O. Univ-Prof. Mag. Dipl.-Ing. Dr. Roland Mittermeir
Institut für Informatik-Systeme

2. Begutachter: Univ-Prof. Dipl.-Ing. Dr. Martin Hitz
Institut für Informatik-Systeme

März 2003

ii

iii

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, daß ich die vorliegende Schrift verfaßt und die mit
ihr unmittelbar verbundenen Arbeiten selbst durchgeführt habe. Die in der
Schrift verwendete Literatur sowie das Ausmaß der mir im gesamten Arbeitsvor-
gang gewährten Unterstützung sind ausnahmslos angegeben. Die Schrift ist noch
keiner anderen Prüfungsbehörde vorgelegt worden.

Klagenfurt, am 24. März 2003

iv

v

To Annabelle and Magdalena.

vi

vii

Acknowledgements

I would like to thank my advisor, Prof. Roland Mittermeir, for his hints, valuable
tips and the amount of time he invested to supervise my research work. I am also
very grateful to my colleagues in the research group for the numerous discussions
we had.

I would like also to thank Prof. Martin Hitz, my second advisor, for his
important comments while reading the thesis.

I am much obliged to Simone Pansi for proof reading the thesis and enhancing
the readability. I am also grateful to all the other persons who read the thesis
and helped me to fix potential errors.

viii

ix

Kurzfassung

Die möglichen Anwendungen von Spreadsheets reichen von Textverarbeitung, die
auf numerische Dokumente ausgerichtet ist, bis zur Lösung und Visualisierung
komplexer mathematischer Gleichungen. Trotz des zunehmenden Problembewusst-
seins haben sich systematische Tests oder strukturierte Entwicklungsmethoden
als ungeeignet erwiesen. Tests sind in der Regel zu teuer, während strukturierte
Methoden von Benutzern ein zu hohes Maß an IT-Kenntnissen erfordern.

Bedingt durch die vielfältigen Anwendungen, lassen sich verschiedene Arten
von Spreadsheets identifizieren. Neben kleineren, aber berechnungsintensiven
gibt es auch große Spreadsheets mit regulärer Struktur. In dieser Arbeit wer-
den drei verschiedene Ansätze dargestellt, wie anhand der Visualisierung von
bestimmten Strukturen im Spreadsheet Fehler leichter aufgefunden werden. Die
drei Ansätze, Logical Areas, Semantic Classes und Data Modules unterstützen
die Analyse großer, regulärer Spreadsheets. Logical Areas und Semantic Classes
gruppieren Zellen zu abstrakten Einheiten, indem die Formeln in den individu-
ellen Zellen verglichen werden, während Data Modules die Zusammenhänge von
Zellen anhand des Datenflusses im Spreadsheet untersuchen.

Im Gegensatz zu anderen Visualisierungsansätzen werden so abstrakte
Einheiten gebildet, die nicht auf benachbarten Zellen mit gleichen Formeln
beschränkt sind. Die Einteilung der Formeln in abstrakte Einheiten
berücksichtigt auch bestimmte Abweichungen zwischen den Formeln. Logical
Areas werden auf der Basis einzelner Zellen gebildet, wobei deren räumliche
Verteilung keine Rolle spielt, und lediglich eine ähnliche Formel gefordert wird.
Semantic Classes, die auf den Logical Areas aufbauen, enthalten wiederkehrende
Bereiche, also ähnliche Zellen mit ähnlichen Nachbarn. Eine Semantic Class kann
als Menge von Bereichen aufgefaßt werden, die jeweils dieselbe Aufgabe erfüllen.
Ein Data Module ist eine Menge von Zellen, die zum selben Resultat beitragen.
Analog zur Semantic Class kann man ein Data Module daher als Menge von Zellen
betrachten, die an der Lösung von ein und derselben Aufgabe arbeiten.

In der vorliegenden Arbeit wird anhand der Entwicklung von Spreadsheets in
den letzten 40 Jahren sowie einer kurzen Beschreibung der vielfältigen Anwen-
dungsmöglichkeiten die Bedeutung von Spreadsheets untermauert. Da Spread-
sheets bis zum heutigen Zeitpunkt weitgehend als Sache der Endbenutzer angese-
hen wurden, gibt es auch noch kein eindeutiges Fachvokabular. Ein solches wird
in dieser Arbeit eingeführt. Nach der Vorstellung von verschiedenen Studien,
die Spreadsheets auf Fehler untersuchen, wird auch auf eine im Rahmen dieser
Arbeit durchgeführte Untersuchung eingegangen, anhand der die Effizienz von
Logical Areas beim Überprüfen von Spreadsheets gezeigt wurde. Weiters werden
verschiedene Ansätze zur Formalisierung des Spreadsheet-Entwicklungsprozesses
diskutiert und die theoretischen Grundlagen, Algorithmen zur Berechnung und
Anwendungsmöglichkeiten von Logical Areas, Semantic Classes und Data Mod-
ules und eine Implementierung der Algorithmen als Prototyp vorgestellt.

x

xi

Abstract

Applications of spreadsheets reach from word processing that is specialized
on numeric documents to the solution and visualization of complex mathemat-
ical equations. Despite of an increasing problem awareness among the users,
systematic testing and structured development methodologies are not widely ap-
plied. Testing is too expensive, and structured development methodologies do
not take into account that spreadsheet users are end-users, and thus have only
little IT-training.

Because of the diverse areas of application, many different kinds of spread-
sheets can be identified. Aside from small, but computationally intensive spread-
sheets, there are also huge spreadsheets with regular structure. Three different
approaches for the visualization of regular structures in spreadsheet programs
are introduced in this thesis. Logical Areas, Semantic Classes, and Data Mod-
ules, identify different structural aspects of spreadsheets and effectively reduce
the complexity induced by the size of huge spreadsheets. The generated visual-
izations aim to support the spreadsheet writers to find errors.

To identify Logical Areas and Semantic Classes the cells’ contents, i.e. the
formulas, are examined in order to find regular structures. The Data Modules
approach examines the data flow between cells. In contrast to other visualization
techniques, the identified abstract units are not limited to adjacent cells with
equal formulas, but will also contain similar formula. It is up to the auditor to
state the desired degree of similarity. Logical Areas are made up from single cells
with similar formulas, but without considering their spatial dispersion. Semantic
Classes evolved from Logical Areas. They are made up from regularly recurring
regions of cells, i.e. similar cells with similar neighbors. A Semantic Class can
be considered to consist of sets of cells that fulfill the same kind of task. A Data
Module is a set of cells that contribute to the same result of the spreadsheet.
Thus, a data module can be considered a set of cells that cooperate to fulfill a
given task.

To frame this work the importance of spreadsheets is pointed out by outlining
the development of spreadsheet systems throughout the last 40 years and by a
short description of different possible applications areas. Due to the fact, that
spreadsheets are still considered to be in the responsibility of end-users, the vo-
cabulary is still somewhat ambiguous. Hence, this thesis introduces a well defined
terminology for dealing with spreadsheet-related issues. After the presentation
of various spreadsheet error studies, including one that was carried out as part
of this thesis, in order to show the auditing capabilities of Logical Areas, dif-
ferent approaches for the definition of the spreadsheet development process are
presented. The theoretical foundations and algorithms for identifications of Log-
ical Areas, Semantic Classes and Data Modules are presented, as well as different
auditing strategies and a prototype using these visualization approaches.

xii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 History of Spreadsheet Systems 3

1.2.1 The Pre-PC Area . 3
1.2.2 Early Spreadsheet Systems 5
1.2.3 Modern spreadsheet systems 5
1.2.4 Trends . 6

1.3 Roadmap of the Thesis . 8

2 Spreadsheets in Practice 11
2.1 Applications of Spreadsheet Systems 11

2.1.1 Spreadsheets in Business Applications 12
2.1.2 Spreadsheets in Programming 12

2.2 Spreadsheets in Business . 13
2.2.1 Spreadsheets as Management Information Systems 13
2.2.2 Spreadsheets as the Organization’s Interface 17
2.2.3 Errors and Consequences 17

2.3 Terms and Concepts . 19
2.3.1 Basic Building Blocks . 19
2.3.2 Spreadsheet Programs and Spreadsheet Instances 22
2.3.3 Graph Representations . 24
2.3.4 Different Views on the Spreadsheet 25
2.3.5 Area concepts . 26
2.3.6 Further Terms . 26

3 Characteristics of Spreadsheet Programs 29
3.1 Social Differences . 29

3.1.1 Spreadsheets and end-user computing 30
3.1.2 Organizational matters . 31

3.2 Structural Differences . 32
3.3 Evaluation Strategy Differences 35

3.3.1 Experiments . 36
3.3.2 Graph Reduction Semantic 41

xiii

xiv CONTENTS

3.3.3 Basic Differences to Reduction Semantics 42
3.3.4 Basic Differences to Data Flow Semantics 44
3.3.5 Spreadsheet Evaluation Strategy 46

3.4 Criteria for Successful Methodologies 47

4 Spreadsheet Error Studys 51
4.1 A Taxonomy of Spreadsheet Errors 51

4.1.1 System Generated versus User Generated Errors 52
4.1.2 Quantitative versus Qualitative Errors 52
4.1.3 Qualitative Errors . 54

4.2 Area Related Errors . 56
4.3 Results of Field Audits and Experiments 58

4.3.1 Metrics . 58
4.3.2 Findings . 60

5 Survey of Development Methods 67
5.1 The Spreadsheet Development Process 68

5.1.1 The R.A.D.A.R Spreadsheet life cycle 70
5.1.2 Spreadsheet Analysis and Design 73

5.2 Layout-Design Guidelines . 74
5.2.1 Improving Spreadsheet Style 74
5.2.2 Further Style Guides . 76

5.3 Logical Spreadsheet Design . 77
5.3.1 Data Flow Oriented Spreadsheet Design 77
5.3.2 Relational Spreadsheet Modeling 82
5.3.3 Structured Spreadsheet Modeling 91

5.4 Testing Methodologies . 96
5.5 Visual Spreadsheet Auditing . 97

5.5.1 Commercial Visualization Toolkits 97
5.5.2 S2 and S3 Visualization 98
5.5.3 Data Flow Based Visualization 99

6 Model Visualization 101
6.1 Rationale . 101
6.2 Logical Areas . 104

6.2.1 Terms and Concepts . 105
6.2.2 Examples for Logical Areas 109
6.2.3 Auditing Strategies for Logical Areas 111
6.2.4 Discussion . 117

6.3 Semantic Classes . 120
6.3.1 Formal Definition . 121
6.3.2 An Algorithm for the Identification of Semantic Units . . . 128
6.3.3 Auditing Strategies Based on Semantic Classes 131

CONTENTS xv

6.3.4 Discussion . 139
6.4 Data Modules . 142

6.4.1 Formal Definition . 143
6.4.2 Identifying Data Modules 145
6.4.3 Auditing Strategies Based on Data Modules 148

6.5 Discussion . 150

7 The Model Visualization Toolkit 157
7.1 Environment . 157

7.1.1 Advantages of Gnumeric 158
7.1.2 Architecture of the Prototype 158

7.2 Functionality and Implementation 160
7.2.1 Component Logical Areas 160
7.2.2 Component Semantic Classes 166
7.2.3 Component Data Modules 172
7.2.4 Control Flow in the Component 172

7.3 Limits and Improvement . 175

8 Outlook 177
8.1 Discussion . 177

8.1.1 Position of the Work . 178
8.1.2 Further Applications . 179

8.2 Further Work . 181
8.2.1 Usage of Layout Information 181
8.2.2 Automatic Identification of Errors 183

9 Conclusion 185

A Installation Guide 189
A.1 Installing and Compiling GNUMERIC and the toolkit 189

xvi CONTENTS

List of Figures

1.1 VisiCalc user interface . 7
1.2 Roadmap of the Thesis . 9

3.1 Change-propagation experiment 37
3.2 Loop Unfolding . 38
3.3 Circular Reference Experiment . 39
3.4 Formula View of salary-accounting spreadsheet 40
3.5 The salary-accounting spreadsheet. No error is visible 41
3.6 The salary-accounting spreadsheet. An error is visible in E10 . . . 42
3.7 The salary-accounting spreadsheet with erroneous checksums. . . 43
3.8 Graph reduction vs. string reduction 44
3.9 Spreadsheet evaluation strategy 47

4.1 Taxonomy of spreadsheet errors 52
4.2 The vicious cycle of spreadsheet maintenance 55
4.3 Reference to a blank/wrongly typed cell. 57
4.4 Physical area specification error. 57
4.5 Physical area mix-up problem. 58

5.1 Spreadsheet development process 68
5.2 Spreadsheet life cycle . 73
5.3 Spreadsheet structure recommended by Ronen et al. [RPL89] . . 76
5.4 Spreadsheet Flow Diagram Notation 78
5.5 Example spreadsheet for the SFD modelling technique. 80
5.6 Example SFD model . 81
5.7 Example for spreadsheet factorization 84
5.8 The spreadsheet compiler Model Master 90
5.9 Structure chart of a spreadsheet program 94
5.10 Resulting spreadsheet program . 95
5.11 Example for calculating a guided-sum. 99

6.1 A block of a typical business spreadsheet 102
6.2 Difference between node and link equivalence classes 107
6.3 Example spreadsheet for Example 8. 108

xvii

xviii LIST OF FIGURES

6.4 Partial order of equivalence criteria. 110
6.5 Example for node equivalence classes 110
6.6 Example for link equivalence classes 111
6.7 Example spreadsheet for evaluation of auditing approach, value level.113
6.8 Example spreadsheet for evaluation of auditing approach, formula

level. 114
6.9 Example spreadsheet with colorized logical areas 115
6.10 SRGLA of the example spreadsheet, based on structural equivalence116
6.11 Hierarchy of logical areas in the example spreadsheet 117
6.12 SRG of the example spreadsheet, based on copy equivalence . . . 119
6.13 Example spreadsheet with semantic supports framed, ~d = (1, 0, 1) 124

6.14 Example spreadsheet with semantic supports framed, ~d = (0, 1, 1) 125
6.15 Example for semantic units . 126
6.16 Pattern of semantic units projected to the UI 135
6.17 SRGSC of an example spreadsheet 137
6.18 Semantic lasses in the structure browser 138
6.19 Hierarchy of EqStart and EqRest 139
6.20 Visualization of Semantic Classes, EqStart,Rest = se 140
6.21 Visualization of Semantic Classes, EqStart,Rest = ce 141
6.22 Visualization of Semantic Classes, EqStart,Rest = ce 142
6.23 DDG of the example spreadsheet 154
6.24 Valid partitioning in the structure browser 155
6.25 Data modules on the spreadsheet UI 156
6.26 SRGDM of the example spreadsheet program 156

7.1 The architecture of the prototype 159
7.2 The user interface of the Logical Areas-Component 163
7.3 User interface of the Semantic Classes component 169
7.4 User interface of the Data Modules-component 173

List of Tables

1.1 Overview of spreadsheet development over the last fifty years . . . 4

2.1 Categorization of spreadsheets . 13
2.2 Estimated impact of spreadsheet errors 15
2.3 ”Strategy software” in companies 16
2.4 Reports of spreadsheet errors in practice (see [Pan02a, But00]) . . 18

3.1 Differences between spreadsheet and imperative programs 32

4.1 Field audits in the last 15 years 60
4.2 Development experiments in the last 15 years 61
4.3 Absolute number of errors identified 63
4.4 Number of identified errors relative to non-empty cells 63
4.5 Error classification into qualitative and quantitative errors 63
4.6 Error distribution by error category 64
4.7 Error class distribution . 64

5.1 Map for the New Product Projection 86
5.2 Map entries for attribute SalesUnits 86

6.1 Selection Algorithm . 132
6.2 Merging algorithm . 133
6.3 Calculating the co-occurence . 134
6.4 Partitioning of a pruned DDG into node sets of data modules . . 147

7.1 Initial data structure of Logical Areas Component 161
7.2 The data type EquivClass conveniently handles logical areas. . . . 162
7.3 Initial data structure of the Semantic Classes component 167
7.4 The C implementation of the merging algorithm 168
7.5 The C implementation of the co-occurence calculation 170
7.6 Initial data structure of the Data Modules component 172
7.7 C++ implementation of Data Modules analysis. 174
7.8 Special Features and Implementing Components 176

xix

xx LIST OF TABLES

Chapter 1

Introduction

This thesis deals with spreadsheets and software quality. For an IT-professional
it is obvious that spreadsheets are software. However, typical spreadsheet users
are domain specialists and have little or no IT-training. For them spreadsheets
are a computer supported realization of three tools that are fundamental for our
modern civilization: paper, pencil, and calculator. As they are familiar with
the use of these tools, they do not expect any problems even when creating
complex spreadsheets. Therefore, they are not willing to make the extra effort
to learn and apply software engineering methodology to increase the quality of
their spreadsheets. Additionally, even if they want to decrease the error-rate in
their spreadsheets, some of the techniques offered so far are either too expensive,
too sophisticated or too restricting to be widely applied. To overcome these
problems this thesis will introduce a visualization technique that supports the
user in re-constructing the spreadsheet’s conceptual model.

Based on the visualization, less complex abstractions of the spreadsheet can be
generated. Consequently, the understanding of the internal logic and the calcula-
tions of the spreadsheet will be presented in a more comprehensive way. Critical
regions and repeatedly used patterns of calculations are identified. Therefore,
testing will become cheaper and faster. Maintenance and error-corrections can
be performed without committing model-errors which are due to misunderstand-
ings.

The visualization approaches that are introduced, focus on different aspects
of the spreadsheet program, i.e. the formulas and constants in the spreadsheet.
Thus, this work does not deal with erroneous input data at all.

In this chapter it will be shown why it is necessary to deal with spreadsheet
quality problems. For this purpose, the motivation of the work introduced here
will be pointed out. The development of spreadsheets from the introduction of
computers to modern spreadsheet systems is briefly summarized in Section 1.2.
Finally, an outlook on the thesis is given in Section 1.3.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

spreadsheet systems belong to the so-called killer-applications that are installed
on nearly every desktop computer. Therefore, it is not surprising that spread-
sheets are the basis for important decisions in daily business-life (see O’Brien and
Wilde [OW96], Mittermeir et al. [MCA00] or Chan [CS96]). As pointed out in
Section 2.2.3, faulty spreadsheet instances can have severe effects.

According to several studies (see Panko [PH96], Butler [But00] and Clermont
et al. [CHM02]) in the average 3% of the cells on a specific spreadsheet instance
were erroneous, and 60%− 96% of the surveyed spreadsheet instances contained
faulty cells. These error rates seem rather high but they correspond to the human
error rate that psychologists generally state for the solution of complex cognitive
problems. Therefore, the same error rate as in conventional software should be
expected. However, this is not the case because in conventional software devel-
opment techniques like modularization reduce the overall complexity. Thorough
testing and a defined software development process are applied and have a further
influence on the overall software quality.

Due to the fact that spreadsheet users are end-users (see Nardi and Miller
[NM90a] or Brown and Gould [BG87]), these techniques that impose restrictions
on the spreadsheet programmers, cannot be directly applied to spreadsheet de-
velopment. The beauty of spreadsheet programs is defined by the freedom of the
users to either express their model without limitations on the spreadsheet pro-
gram, or, as it is stated by Nardi and Miller [NM90b], to formalize their domain
with the support of the spreadsheet.

The development process itself is generally a trial-and-error process. The user
will make a first prototype of his domain and then modify or extend it until it fits
his needs. As Parnas [Par94] states, software ages. Spreadsheets are software,
consequently, they are also subject to aging. Hence, the spreadsheet program life
cycle is often subdivided into short maintenance cycles. Each of the maintenance
cycles tends to modify the initial spreadsheet program in order to re-adjust it for
an evolved environment.

In addition, spreadsheet programs are usually not or only insufficiently docu-
mented. Hence, the high amount of modifications to the spreadsheet model tends
to blur it. Maintenance will be based on assumptions of how the initial model
looked like. Of course, these assumptions do match the maintainers current view
of the problem, but they might not match the creators domain-model. Therefore,
it is indispensable to find a way to support spreadsheet comprehension without
making additional IT-knowledge necessary.

Effective auditing of spreadsheet programs has to be performed by a group of
at least three IT and domain-specialists performing code inspection on a cell-by-
cell level. This approach is described by Panko [Pan97]. Although it is reported
that more than 90% of the errors can be found, the major drawback of this
approach is that it is very expensive. Of course, the same is true for reviews in

1.2. HISTORY OF SPREADSHEET SYSTEMS 3

the conventional software development process. However, the problem awareness
in software engineering motivates developers to spend time and money in order to
increase the software quality. As end-users are not aware of the quality problems,
they are not willing to take the overhead into account.

Modern testing tools (see Chapter 5 for an overview) are nearly as effective
but easier to apply. Nevertheless, there are still two more drawbacks of testing
approaches in general: firstly, although it sounds strange, testing of spreadsheet
programs and the correction of errors tend to entail further inconsistencies of
the spreadsheet model and hence, will increase the errors coming up in further
maintenance operations (see the results of a field audit reported by Clermont
et al. [CHM02]). As testing is performed on the numerical level, corrections
are often also made on the numerical level only, i.e. a formula that produces an
unexpected output is ’corrected’ by overwriting it with the expected value or by
introducing spurious if-statements.

The second drawback are costs. As business applications of spreadsheet pro-
grams tend to become large (20 columns and 200 rows are common), the testing
on the required cell-by-cell level is too time-consuming to be taken into consid-
eration. Hence, it should be possible to find dangerous spots on the spreadsheet
and identify copies of groups of cells already tested. These copies do not have to
be tested again.

1.2 History of Spreadsheet Systems

As spreadsheets are a helpful modeling tool and support problem formalization
by the user (see Nardi and Miller [NM90a]), they have already existed before the
advent of personal computers in offices. However, the decision to use computers in
business organizations was strongly influenced by the availability of spreadsheet
systems (see Browne [Bro02] or Power [Pow02]).

The time-line in Table 1.1 on the following page gives an overview of spread-
sheet development and divides it into the pre-PC area, the early spreadsheet sys-
tems, current spreadsheet systems and trends. Each of these parts will be briefly
described in the following subsections.

1.2.1 The Pre-PC Area

Before spreadsheet systems or even computers were available accountants already
used sheets of papers that were divided into rows and columns in order to arrange
their accounts and figures in a readable way. These sheets, so-called spreadsheets,
have not only given the name to the modern, computer supported spreadsheet
systems. In fact, the long lasting use of traditional, not computerized spreadsheets
opened the offices’ doors for spreadsheet systems.

4 CHAPTER 1. INTRODUCTION

Era Year Invention

A
A
A�

�
�

P
r
e
P
C

Non computerized spreadsheets for accountants

1961-
1964

Spreadsheet implementations for simulations of fi-
nancial models on mainframes. Implemented with
Fortran IV.

1978 Software Arts, the company that released
VisiCalc, is founded.

E
a
r
l
y

S
p
r
e
a
d
s
h
e
e
t
s

1979 VisiCalc, the first interactive spreadsheet system,
is released for the Apple II. The system is devel-
oped by Software Arts, marketing is done by Visi-
Corp.

1981 VisiCalc is ported to different platforms, among
them the IBM PC.

1983 Legal conflicts between VisiCorp and Software
Arts favor the invention of Lotus 1-2-3.

1985 Due to a lack of development Software Arts is sold
to Lotus, although they won the law-suit against
VisiCorp.

1984 Microsoft Excel is released, originally for the
512K Apple.

M
o
d
e
r
n

1987 Microsoft Excel 2.0 is released for MS-DOS. It is
also one of the first applications that is ported to
Microsoft’s newly released Windows Operating

System.
1992 Spreadsheet systems from other companies are re-

leased for Windows.
1995 IBM acquires Lotus Development. Microsoft

Excel is market-leader.

T
r
e
n
d
s

2000– Numerous spreadsheet systems are freely available
for the open-source operating system LINUX.

Table 1.1: Overview of spreadsheet development over the last fifty years

1.2. HISTORY OF SPREADSHEET SYSTEMS 5

In the middle of the 1960s the first computerized spreadsheets for the simula-
tion of financial models were implemented on mainframe computers by Richard
Mattesich and his research group (see [Mat02]). The chosen programming lan-
guage was Fortran IV. These simulations were mere first steps and the envi-
ronment had nothing in common with the capabilities of modern spreadsheet
systems. However, a baseline for the rapid development in the next forty years
was laid.

1.2.2 Early Spreadsheet Systems

Although spreadsheets are often argued to be the obstetrician that enabled the
breakthrough of the IBM personal computers, they were actually invented in 1979,
i.e. two years before the PC. The first spreadsheet system for microcomputers,
VisiCalc, was available for the Apple-II and later on for the HP85 and HP87

systems (see [Pow02]).
Modern spreadsheet systems have a user interface that is still similar to the

one offered by VisiCalc. It has only been subject to minor changes in the last 20
years in order to add mouse-support and diagram capabilities (see Figure 1.1 on
page 7).

After the release of the IBM PC in 1981 VisiCalc was immediately ported
to the new platform and the software, sold for $100 was often the trigger for
companies to buy PCs that were worth a multiple of this value. In the dawn
of the PC-era VisiCalc dominated the market. However, after some company-
internal conflicts (see Power [Pow02], Bricklin [Bri00] or [Fle02]), Lotus became
the new market-leader.

The spreadsheet functionality of the Lotus-1-2-3 spreadsheet system was a
small increment to VisiCalc’s functionality, but it adopted faster to new operating
systems and the handling was more user friendly. Additionally, new features,
like diagrams and database-integration were added. Brandel [Bra99] states that
VisiCalc was slow in adopting the new capabilities of the PC, i.e. the greater
memory and the 16 bit capabilities. Consequently, Lotus dominated the software
market in the early and mid 1980s when Microsoft was still gathering strength
with increasing sales of the MS-DOS operating system and their word-processor
MS-WORD.

Although Microsoft was successful in selling software for IBM PCs, the initial
release of the spreadsheet system MS-EXCEL was sold for the 512K Apple in
1984. Nevertheless, three years later MS-EXCEL was ported to the IBM-PC to
run under MS-DOS 2.0.

1.2.3 Modern spreadsheet systems

The release of Microsoft’s operating system with a graphical user interface, Windows,
was at the same time the start of a new era of spreadsheet systems. The spread-

6 CHAPTER 1. INTRODUCTION

sheet user interface was improved by adding new features, like mouse operation
or drag and drop.

By company policy, Microsoft’s Excel spreadsheet system was one of the first
available spreadsheet systems for the new environment. The competitors of Mi-
crosoft have not been able to compensate this advantage and, consequently Excel
has remained the standard spreadsheet system up to now.

However, only little development has taken place since Lotus-1-2-3. The most
important feature that was added was the integration of an expressive macro-
language. This macro-language enables the spreadsheet user to add arbitrary
imperative functions to his spreadsheet. More sophisticated use of this extension
will turn the spreadsheet into a kind of database or user interface, supporting the
conventional program written in the macro-language.

Nevertheless, the main application area for spreadsheets is still end-user pro-
gramming. In this field the macro-language is only scarcely applied and often
deteriorates the understanding of the developed spreadsheets.

1.2.4 Trends

Most likely, Excel will remain the market-leader for the next years. However,
with the propagation of new operating systems (like Linux), a new generation of
spreadsheet systems is also likely to come up. Browne [Bro02] counts more than
20 different spreadsheet systems for different UNIX platforms. In contrast to
spreadsheet systems currently dominating the market, these spreadsheet systems
are more flexible due to the fact that most of them are open-source software.
Therefore, new core functionalities can easily be implemented and will be part of
the next release.

Hence, new ideas and development technologies can easily diffuse through
these systems. This might be a way out of the lack of inventions in the last 20
years of spreadsheet system development.

One of the above mentioned spreadsheet systems is Gnumeric, which is part
of some linux distributions. Gnumeric is subject to an open-source license and
therefore, it is freely available and can be modified. The currently implemented
functionality is similar to Excel’s. However, there are more innovative techniques
used to achieve the same results. These techniques include the representation in
XML (see Bradley [Bra98] for more details on XML) of spreadsheet programs.

New functionality can be added by plug-ins, a feature that is available for
Excel, too, or by extending the source code. The latter is more efficient because
the formula parser and several internal data-structures can be accessed. These
possibilities were a prerequisite for the spreadsheet toolkit developed in this work
to be integrated into the spreadsheet system (see Chapter 7).

1.2. HISTORY OF SPREADSHEET SYSTEMS 7

Figure 1.1: The user interface of the initial VisiCalc spreadsheet system (see
[Bri00] for more screenshots). The displayed version has already got the A1-
notation for cell-addresses.

8 CHAPTER 1. INTRODUCTION

1.3 Roadmap of the Thesis

The next chapter is meant to give the reader an insight into different ways of
using spreadsheet programs in business. Users who are already familiar with
these issues might want to skip the first two sections of the chapter. However,
the third section is essential for the further understanding of this thesis, as the
vocabulary that will be used throughout this work is defined there.

Chapter 3 points out the main differences between spreadsheet programs and
conventional software. It is highly recommended to go through this chapter in
order to gain insight on why the conventional software engineering approach to
quality assurance is doomed to fail with spreadsheets. Some theoretical issues
which are of importance for the proper understanding of the background of this
work are outlined in Section 3.3. Readers who are mainly interested in the ap-
plication of this approach might want to skip this section.

In Chapter 4 the importance of quality assurance for spreadsheet programs is
stated and supported by the results of some studies that examined spreadsheet
programs that are in use by major companies. One of these studies was also
used to demonstrate the efficiency of the auditing approach that is introduced in
Chapter 6.

Chapter 5 discusses different methods and techniques for spreadsheet devel-
opment and auditing that are currently discovered in the literature. The purpose
of the chapter is to work out why these approaches are not generally used in prac-
tice, although most of them have promising concepts. Nevertheless, some of the
ideas are also important for the visual spreadsheet auditing approach introduced
in Chapter 6.

Chapter 6 introduces the visual spreadsheet auditing methodology developed
in this work. It consists of 3 different approaches. Each of the individual ap-
proaches, its advantages, disadvantages and limits as well as possible auditing
strategies for the approaches are discussed in detail and explained by an exam-
ple. This chapter can be considered crucial both for readers interested in the
application and in the theoretical background of the technology.

In Chapter 7, the auditing toolkit that was implemented as part of the work,
is described from a technical point of view. The implementations of the most
important algorithms as well as architecture and control flow of the individual
components are briefly described.

Finally, the Chapter 8 discusses again the advantages and disadvantages of
the introduced approach compared to conventional spreadsheet auditing and test-
ing methodologies. Furhtermore, possible applications of this methodology, that
might not be limited to spreadsheet auditing, and further improvements are out-
lined. In Figure 1.2 on the facing page a graphical visualization of the interde-
pendencies between the chapters is shown.

1.3. ROADMAP OF THE THESIS 9

Chapter 7

Chapter 8

Chapter 9

Chapter 1

Chapter 3 Chapter 4 Chapter 5

Section 6.1

Section 6.2

Section 6.3

Section 6.4

Sections 2.1 and 2.2

Section 2.3

Chapter 6

Section 6.5

Figure 1.2: Roadmap of the thesis. Solid edges indicate crucial dependencies
whereas dotted edges indicate dependencies that do not influence the further
understanding. Chapter 6 that is boldly framed can be considered the main
contribution of this thesis.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Spreadsheets in Practice

As spreadsheets are a universal tool, there are also different kinds of spread-
sheets that can be distinguished on basis of their application area. In Section 2.1
categories to apply to some classifications of spreadsheets are discussed. Consec-
utively, the importance of spreadsheets in business life is surveyed and some ex-
amples for spreadsheet errors are given that entailed law-suits or the bankruptcy
of enterprises (see Section 2.2 and Section 2.2.3). An unambiguous terminology
for dealing with spreadsheets is introduced in Section 2.3.

2.1 Applications of Spreadsheet Systems

As spreadsheets are a very powerful tool, the possible applications of spreadsheets
are nearly unlimited. In this section the spreadsheet usage in three domains,
i.e. Science and Engineering, Business, and Programming, is briefly described.
Usually, all spreadsheets have the main task to gather data and perform some
kind of analysis. However, typical business spreadsheets consist of simple calcu-
lations, like summing or calculating mean values, and these calculations tend to
be repeatedly applied to different input data.

In contrast, scientific spreadsheets might also have a huge number of input
parameters, but the calculations tend to be much more complex and are usually
not repeatedly applied. These differences must be considered in spreadsheet
development techniques, too. Whilst scientific spreadsheets have to be developed,
maintained, and thus, tested on a cell-by-cell basis, the regular re-occurrence of
certain patterns is an important characteristic of business spreadsheets.

The typical scientific spreadsheet is used for the modeling of mathematical
equations or for the calculation and visualization of statistics. Orvis [Orv98]
states that spreadsheets in physics and electronics engineering are mainly used
to evaluate experimental data. As physicists need to solve complex equations
that often cannot be solved analytically, they depend on numerical solutions.
Rather than writing complex special purpose computer-programs, many of these

11

12 CHAPTER 2. SPREADSHEETS IN PRACTICE

equations can be solved easily by a spreadsheet. Together with their visualization
and layout capabilities their solutions are more understandable for the user. Orvis
[Orv98] argues that the presentation of intermediate results, which is one of the
characteristics of spreadsheets that are discussed in Chapter 3, will increase the
scientist’s understanding of how his methods work and where the shortcomings
are.

Although the examples presented in the literature, e.g. Orvis [Orv98], Gorni
[Gor98], Julian [Jul98] or Kokol [Kok87], are computationally complex, they tend
to consist of uniform rows or columns that contain parameters and formulas.

Another kind of numerical spreadsheets is used in science and engineering.
Spreadsheets of this kind do generally not deal with the evaluation of experimen-
tal data but with the solution of certain differential equations (see e.g. Neuwirth
[Neu98], Leroux and O’Brien [LRO98], Leharne [Leh98], and Shaw [Sha98]).
These spreadsheets consist of an area to specify some input parameters and an
irregular part where calculation is performed. Usually a formula is not copied
into other cells.

2.1.1 Spreadsheets in Business Applications

Spreadsheets are a very important application in modern organizations. They
are used to

• perform what-if analyses (see Teo and Tan [TT00]),

• make forecasts,

• calculate time-series (see Ragsdale [RP00]),

• calculate results of previous business periods (see Clermont et al. [CHM02],
Subsection 4.3.2), and

• communicate with government agencies, i.e. the tax office (see Butler [But00]).

The above list makes it obvious that spreadsheets are of vital economic impor-
tance for organizations.

Moreover, the typical spreadsheet in business life is created by domain spe-
cialists. It consists of regular blocks that contain either equal formulas, or a
certain pattern of formulas that is used repeatedly. Clermont et al. [CHM02]
presents a field audit of business spreadsheets that examined 60, 000 cells in 78
spreadsheets. 34, 570 out of 36, 429 examined formulas were copies of the 1, 859
distinct originals.

2.2. SPREADSHEETS IN BUSINESS 13

Type User
Avg.
Size

Computational
Complexity

Formula
Patterns

Scientific
Statistical

Scientist,
Engineer

middle high regular

Scientific
Numerical

Scientist,
Engineer

small very high irregular

Business
Middle
Management,
Officers

large low
highly
regular

Algorithmic
IT Professional,
Various

middle low regular

Table 2.1: Summary of different spreadsheet types in terms of users, average size,
computational complexity and regularity

2.1.2 Spreadsheets in Programming

Some authors (see e.g. Casimir [Cas92], Orvis [Orv98]) state that spreadsheets
are powerful programming tools because they unify the concepts of procedural
and functional programming languages with a powerful user interface.

Considering these prerequisites spreadsheets should also be applicable for the
solution of typical programming problems. Indeed, Casimir [Cas92] introduces
spreadsheets for the calculation of Fibonacci-Numbers, the factorial of an arbi-
trary number, the simulation of finite automatons and the game of life, a selection
sort algorithm, and, among others a solution for the Towers of Hanoi problem.
As spreadsheets are not capable of expressing recursion, recursion is substituted
by iterative solutions. In order to avoid circular references, for each iteration a
new area is used on the spreadsheet (see Table 3.2 on page 38). Therefore, a
regular geometrical pattern of formula-usage on the spreadsheet is generated.

Table 2.1 summarizes the different types of spreadsheet applications in terms
of their users, average size, average computational complexity and the regularity
of formula usage. This table states average values that are typical for represen-
tatives of each class.

2.2 Spreadsheets in Business

In order to introduce the thesis’ subsequent focus on the application of spread-
sheet systems in business, in the course of this section the importance of spread-
sheets in organizations will be outlined.

14 CHAPTER 2. SPREADSHEETS IN PRACTICE

2.2.1 Spreadsheets as Management Information Systems

Spreadsheet programs are considered strategic software (see Table 2.3 on page 16
and Tampoe and Taylor [TT96]). Therefore, they are widely used as a means
of performing important analysis tasks and internal communication in the enter-
prise. Chan and Storey [CS96] found out that about 80% of spreadsheets created
in companies are used as reports to the superiors in the organization; 14% find
their way up to the desks of the vice-presidents.

These findings are somehow surprising considering the attitude of manage-
ment towards the usage of IT as management tool. From 1991 to 1993, O’Brien
and Wilde [OW96] interviewed 265 Australian upper and middle managers about
their IT-usage. Generally, only 193 of them had a computer in their office. How-
ever, as will be shown later in this section, the remaining 72 are still confronted
with spreadsheets or the results of spreadsheet programs.

On the other hand, O’Brien and Wilde [OW96] found out that amongst 261
representatives of 226 distinct organizations (this time, not at the management
level) 238 have spreadsheet systems available on their desktop1. These findings
were also confirmed by Chand and Storey [CS96].

European studies (see Vlahos et al. [VF92, VFK00]) showed similar figures,
although the general level of IT-usage by managers is higher, which may be due
to the fact that the interviewed managers where younger and had IT-education.
However, spreadsheet applications are used by 62% (sample of [VF92]) and 71%
(sample of [VFK00]) of the interviewed managers. This is remarkably high, bear-
ing in mind that in the year 2000 only 59% made use of e-mail and only 24% of
a web browser.

A study that was carried out in 1986 by Summer and Klepper [SK86] showed
that the application of spreadsheet programs made up to 74% of the IT-usage of
decision makers in companies. Although the study is not current, the experience
that was gained during a large field audit (see Clermont et al. [CHM02]) supports
these findings. Additionally, other remarkable findings of the study that are of
qualitative nature and are still up to date, involve that

• the typical end-user application has more than 1 user.

• the scope of these end-user applications is either single- or multi-departmental.

• depending on the economic sector of the surveyed companies, the volume
of processed data per application ranges between 100 and 1, 000 records
for strategical operating companies or more than 1, 000 for manufacturing
companies.

• the typical end-user program has a total lifetime of more than two years.

1Only the omnipresence of word-processors- available on 254 desktops- was superior to the
spreadsheet applications

2.2. SPREADSHEETS IN BUSINESS 15

Cost range Respondents Percentage

< $1, 000 6 2.5%
$1, 000− $10, 000 10 4.2%
$10, 000− $100, 000 7 2.9%
$100, 000− $1, 000, 000 8 3.3%
> $1, 000, 000 11 4.6%
unknown 141 58.8%
cannot disclose 57 23.8%

Total 240

Table 2.2: spreadsheet users estimates of the cost of an error in the spreadsheet.
Taken from Table 13 in [CS96].

Though, this study examined end-user programs in general, they still found
out that spreadsheet programs are the most important end-user programs in the
surveyed companies. Therefore, the above mentioned properties can be general-
ized to spreadsheet programs.

As the analytical capabilities of spreadsheets have increased since 1986 by
adding diagram-features and equation solving, it is argued that the importance
of spreadsheet programs has increased, as well. Summer and Klepper [SK86]
assumed that spreadsheets can be used for simple analysis. Up to now, studies
have reported that spreadsheets are employed for very complex analysis tasks,
since the domain specialist is familiar with them (see Chan and Storey [CS96] or
[Orv98]).

Although 41% of the spreadsheet users are generally aware of the importance
their spreadsheets have for the organization (see Table 2.2), most of them are self-
taught and have no formal spreadsheet training or IT skills. Additionally, the
majority of 58.8% has no idea of the potential damage an erroneous spreadsheet
might entail.

Another interesting result by Chan and Storey [CS96] was the fact that the
better the spreadsheet expertise of a certain user is, the less this user esteems the
value of his word-processor. Therefore, it is assumed that these users start to use
the formating capabilities of the spreadsheet systems to lay out documents.

Despite some quality problems spreadsheets are still considered trustworthy.
The reasons are different and depend on the age structure of the management:

1. The old generation of managers have used the paper-and-pencil ’spread-
sheet’ themselves. As they do not tend to have terminals in their offices
at all (see O’Brien and Wilde [OW96] and Chan and Storey [CS96]), they
are only confronted with printouts. Hence, they are not aware that their
decisions are based on highly complex programs that are created by end-
users. Often, the spreadsheet printout is considered the output of a word-

16 CHAPTER 2. SPREADSHEETS IN PRACTICE

Strategy applications Packages used

Mergers, acquisitions and divestments Shareholder value model,
Spreadsheets

Diversification Shareholder value model,
Spreadsheets

New product development Hiview
Risk assessment Spreadsheets, Risk, Hiview
Technology forecasting None
Opportunity appraisal Spreadsheets
Consensus building Hiview and custom made soft-

ware
Restructuring and turnaround Spreadsheets
Strategic alliances Spreadsheets
Investments in capital projects Spreadsheets
Joint ventures Spreadsheets
Assessing the business environment Custom made software,

Spreadsheets
Evaluation of alternatives Custom made software,

Spreadsheets
Simulations Spreadsheets, Scenarios, P&L,

Balance Sheet
Process modeling IDEFF
Financial modeling Spreadsheets
Creative thinking Vensim, Blank sheet of Pa-

per, Lotus AMIPRO, I-Think,
Hiview

Voting on propositions None
Making qualitative judgments Custom made software,

Spreadsheets
Forecasting Spreadsheets, SPSS, Regression

Models
Logic diagrams, decision trees or preference dia-
grams

Freelance

Table 2.3: ”Strategy software” in companies. Taken from Figure 2 in [TT96].

2.2. SPREADSHEETS IN BUSINESS 17

processor.

2. The new generation starts to use spreadsheets at university2. Therefore,
they take the use of spreadsheets for granted. However, they have no IT-
training and are, therefore, not aware of the dangers of writing straightfor-
ward unstructured and complex spreadsheet programs.

The forthcoming generation change in management is supposed to make the
second argument more important, while argument one will gradually vanish (see
O’Brien and Wilde [OW96]).

2.2.2 Spreadsheets as the Organization’s Interface

Another important task of spreadsheets is to support communication not only
within the organizations, but also between subsidiary companies and their parent
companies (see Clermont et al. [CHM02]), and between companies and official
agencies, such as tax-offices (see Butler [But00]).

Hence, erroneous spreadsheets do not only bear strategic risks, they can even
entail law-suits. The decision on whether a spreadsheet is ’only’ erroneous or was
deliberately manipulated is difficult to be made and often whithin the discretion
of some auditors.

Therefore, the spreadsheet programmer must be able to assess the risk of his
spreadsheets. Depending on the risk different quality assurance means have to be
employed. Even non-IT experts get insight into the necessity of careful testing
or checking of spreadsheets seeing consequences of failures such as the economic
bankruptcy or a prison sentence for tax fraud.

2.2.3 Errors and Consequences

Table 2.2 on page 15 shows the user’s estimate for potential damage due to
spreadsheet errors. At this point, the question arises whether there is a safe-
guard against the damage likely to occur. By giving some famous examples from
literature (see Panko’s spreadsheet web site [Pan02a] and [But00]) in Table 2.4 on
the following page this question can be answered with No!

The cited examples represent only a fraction of the spreadsheet errors that
tend to occur. On the one hand, only a small number of spreadsheet errors
is discovered at all. Spreadsheet users tend to blame the unpredictability of
events for inaccurate forecasts rather than erroneous models. On the other hand,
discovered spreadsheet errors are for the sake of the reputation of the spreadsheet

2In this university, business administration students are trained in spreadsheet usage since
1987. Alexander [Ale96], Kovar and Evans [KE01] and Janvrin and Morrison [JM00] give
further examples for the teaching of spreadsheet programming or the bias spreadsheet training
had on spreadsheet development studies.

18 CHAPTER 2. SPREADSHEETS IN PRACTICE

user or the company itself rather silently corrected than published. Bankruptcy
because of erroneous spreadsheets might have happened in several cases, but
spreadsheets were seldom declared to be the cause.

The causes for the reported errors vary. Amongst others, common sources
are modeling errors, rounding errors, typographic errors, or handling errors. At
any rate, the result can be very unpleasant. Table 2.4 on the next page gives an
overview of famous errors, their source, and the estimated damage.

2.3 Terms and Concepts

Obviously, this work deals with spreadsheet related issues. The terms used in
this context are already overloaded with different meanings, that is why possible
ambiguities have to be eliminated by defining a spreadsheet-related vocabulary.
As spreadsheets are an end-user programming tool, this work will basically not
distinguish between the programmer and the user. Generally, the term user will
be used. Only in special situations the role of groups of people is stressed by
calling them programmers or writers.

2.3.1 Basic Building Blocks

In this section the terms cell, spreadsheet, formula and the cell reference mech-
anism will be introduced. These terms form the baseline of spreadsheet under-
standing.

Static Structure

For the spreadsheet user, a cell is a rectangular area on the user interface that
displays a value according to specific format rules. It has basic editing capabilities.
As formatting issues are not important for our further definitions, we will neglect
this issue in our definitions. As each cell is either empty or contains a value, the
domain of cell values is outlined as follows:

Definition 1: Values
The set of values, V , that is referenced by the subsequent definitions, is defined
by V = Q ∪ Strings ∪ {Error} ∪ {Undefined}. �

Q denotes the set of rational numbers, Q = {a
b
|a ∈ N, b ∈ N \ {0}}. Each cell has

a unique cell address.

Definition 2: Cell Address (CA)
The cell address is an n-tuple (c1 : N, · · · , cn : N). �

In two-dimensional spreadsheets, the cell address is given by a pair (r, c), with
r denoting the horizontal and c the vertical distance of a cell to the upper left
corner of the spreadsheet UI. The reader might be familiar with the A1-notation
for cell addresses. Nevertheless, we will use the R1C1 style for addressing cells.

2.3. TERMS AND CONCEPTS 19

Description Damage Category

Old data source for automated ordering spreadsheet
used. 30, 000 units at $4 each instead of 1, 500 units
ordered.

$114, 000 handling

Spreadsheets were used to project the market for CAD-
equipment. Numbers were rounded to whole dollars. As
the inflation multiplier was neglected, $1.06 became $1.
The market was underestimated by $36, 000, 000

crucial rounding

Discounted cash flow was used to evaluate investment
proposals. The spreadsheet had been implemented by
a programmer who left the company long ago and did
no documentation. Although the prime rate rose from
8% to 20% between 1973 and 1981, the spreadsheet was
kept at 8%.

severe modeling

A Florida construction company used @sum to total num-
bers in a range. The range was not changed when an
item was added, so the added item was not summed.
This made the company to underbid the project by a
quarter of a million dollars. The company sued Lotus.

> $250, 000 modeling

At the Fidelity mutual fund, a spreadsheet was used
to report distributions for various funds. For the huge
Magellan fund, a $4.32 per share capital gains distribu-
tions was forecast in November, and investors were no-
tified. However, in december the company announced
that there would be no distribution. A clerical worker
put the wrong sign in front of a $1.2 billion ledger entry.
This ”created” a $2.3 billion gain instead of the real $0.1
billion loss.

severe handling

In a North Carolina election, incorrect results of an elec-
tion were about to be posted. Mr. Woodbury, using a
calculator, detected an inconsistency. Examination re-
vealed an incorrect cross-tabulation in the spreadsheet
being used to post the results.

severe modeling

In 1992, among 131 tested tax-calculation spreadsheets,
that were sent to British tax officers 14 contained mate-
rial errors. The examined spreadsheets were for rather
simple calculations of value added tax.

5, 000, 000 various

Table 2.4: Reports of spreadsheet errors in practice (see [Pan02a, But00])

20 CHAPTER 2. SPREADSHEETS IN PRACTICE

In the more common so-called A1-notation the letter specifies the column (A for
1, B for 2, and so on) and the number specifies the row address of the cell.

The R1C1 address specifies the row-coordinate of the cell after the letter R and
the column-coordinate of the cell after the letter C. The R1C1 style is used in the
internal formula representation of most of the spreadsheet systems.

The cell is the atomic unit of a spreadsheet user interface. We need to address
the concept that a cell is the holder of all information of a spreadsheet.

Definition 3: Cell (C)
A cell is defined by a triple (c : CA, v : V, f : (· · ·) → V). c specifies the cell
address of the cell. v is the value that is displayed in the cell. v can either be
entered as a constant value or it is calculated by the formula that is specified by
the formula f (see Definition 9 on page 22). �

Other aspects of cells, e.g. editing or formatting rules, can usually be inspected
only on a cell-by-cell basis via the standard interface.

The spreadsheet itself is a collection of cells. The user interface displays the
cell values in the assigned positions. So, there are two views on the spreadsheet:

Definition 4: Spreadsheet (S)
Spreadsheet S = {Ci|i = 0, 1, . . .} is a set of cells. �

Definition 5: Spreadsheet UI
Spreadsheet UI is an n-dimensional array of cells. The spreadsheet UI is the
tabular user interface that renders the values of certain cells. �

Generally, the term spreadsheet refers to Definition 4. Otherwise we will use
the term spreadsheet UI.

Although our definition for the cell and the spreadsheet dealt with a gen-
eral, n-dimensional spreadsheet, we will limit n to the value of 2 in our further
considerations, because we assume that the typical spreadsheet tends to become
very complex in two dimensions already. Moreover, only few more-dimensional
calculations are performed. Furthermore, the UI is bound to two-dimensional
displays, anyway.

Computational Structure

The function to calculate a cell’s value is not limited to constant operands. The
user can use the value of other cells as input to the function. The values will be
looked up dynamically by the spreadsheet system, whenever the cell’s value is
calculated.
In the following definition ⊕ denotes the vector-addition that is defined by
(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2).

2.3. TERMS AND CONCEPTS 21

Definition 6: Cell-Referencing Function
The relative cell-referencing function cref(src : CA, id : CA) → V returns the
value that is associated with the cell address src ⊕ id. cref(src, id) = v, with
(src ⊕ id, v, f) ∈ S. src usually denotes the address of the referenced cell, id is
considered the origin of the coordinate system. �

Definitions 7 and 8 introduce two conceptually different ways to invoke the cell
referencing function.

Definition 7: Relative Cell Reference
A call to the cell referencing function cref(src, id) with id 6= (0, · · · , 0) is called
a relative cell reference. �
The cell address of the referenced cell is passed as id to the referencing function,
and the source address src is specified by its distance along the coordinates of
the spreadsheet relative to the referencing cell. Hence, the value that is returned
by the cell-referencing function will depend on the cell address of the referencing
cell.

The relative referencing mechanism has the advantage that the context of a
formula is dependent on the cell address that it is attached to, thus it is location
dependent. Therefore, copying or moving the cell will also update the addresses
of the referenced cells.

Definition 8: Absolute Cell Reference
A call to the cell referencing function cref(src, id) with id = (0, · · · , 0) is called
an absolute cell reference. �
Hence, an absolute cell reference will globally return the same value regardless of
the cell address of the referencing cell, Therefore, it is location independent.

The cell address of the referencing cell does not have to be fully specified. In
this case only certain parts of the cell reference behave relative. E.g., it is possible
that the column address of the referenced cell is fixed, whereas the row address
is relative, by specifying the arguments of the relative cell reference function
id = (0, c) and src = (AbsRow − 0, AbsCol − c), with c denoting the column
address of the referencing cell, AbsRow and AbsCol the row and column address
of the referenced cell.

A partially relative cell reference shares the main characteristics of relative
references, and it does not meet the definition for absolute cell references: the
result depends on where the reference is stated. Therefore, partially relative cell
references are considered relative cell references.

Example 1: Cell References
In the syntax of the most popular spreadsheet systems, i.e. Excel, the $ sign
denotes a reference to be absolute. Thus, referencing A1 will always yield the
the value that is displayed in the upper-left cell of the spreadsheet UI, regardless
of the cell, where the reference is stated. A reference to A1 entered in a specific
cell, for instance B1, will be adjusted to A2 if it is moved or copied into the cell B2.

22 CHAPTER 2. SPREADSHEETS IN PRACTICE

However, in the R1C1-style, it will always be R0C-1. A partial relative reference,
e.g. $A1 in cell B1, will always reference a cell in the first column. However, if it
is stated in B2, C2 or K2, it will always return the value displayed in the cell A2.
♦

Cell referencing is the fundamental construction mechanism for spreadsheets,
because it enables the linkage between values and functions of different cells. A
cell can be referenced regardless of its contents.

The function that can be specified to calculate the value that is associated
with a cell is called the cell’s formula if it contains either absolute or relative cell
references.

Definition 9: Formula
A formula is an expression in the spreadsheet system’s formula language. The
formula is a function f(cref+) → V . f has to be specified by a string of finite
length. �

Constants in the formula are not considered to be part of its input, as they are
definitely static and cannot be changed without re-writing the formula. The
result of the formula is directly bound to the cell. However, the displayed value
might be different as it is subject to formatting rules. Nevertheless, a reference
to the cell will always yield the exact result of the formula.

Most of the modern spreadsheet systems offer means to use simple control flow
concepts in formulas. However, the control flow cannot be specified outside the
formulas. Iteration or recursion are usually not supported, only IF-Statements
are widely available.

If a cell is defined by ((c1, · · · , ci), v, f) with f 6= ∅, v = eval(f), the cell’s
formula is evaluated and its result is the cell’s value. If f = ∅, v is either specified
by the user or v = undefined. In the latter case the cell is considered empty and
appears blank on the spreadsheet UI.

2.3.2 Spreadsheet Programs and Spreadsheet Instances

In addition to the basic building blocks we want to introduce the concepts of
spreadsheet program and spreadsheet instance. Basically, a spreadsheet program
consists of the calculation directive and constant values that are needed to prop-
erly specify the formulas. The spreadsheet instance is a spreadsheet program plus
the expected input values.

The concept of the spreadsheet program corresponds to the term program in
conventional programming, whereas the spreadsheet instance can be compared
to the execution of a program, i.e. it is the program plus the input data.

However, there is a number of important differences between spreadsheet con-
cepts and conventional programming concepts (see Section 3.2 for a more detailed
discussion):

2.3. TERMS AND CONCEPTS 23

• There are no declared constants, as the user is free to enter constant values
in any cell,

• each cell is a potential input and output cell,

• the program is stored together with the input,

• therefore, a formula can be part of the input, because the user can enter a
requested input either as value or as a formula, and,

• there are no loops.

Hence, we have to employ heuristics to classify cells in a spreadsheet to the
spreadsheet program or to the spreadsheet input data. Roughly speaking, it is
assumed that each cell that contains a formula (see Definition 9 on the facing
page), is part of the spreadsheet program. As absolute cell references are widely
used to bind constants into formulas we consider any cell that is referenced by
absolute cell references also part of the spreadsheet program. Pure input data is
generally not absolutely referenced, because if formulas are copied throughout the
spreadsheet, they have varying input data. Thus, any other cell in the spreadsheet
that is referenced by a cell in the spreadsheet program belongs to the spreadsheet
input data.

Apart from these heuristics, there are also some techniques to specify a spread-
sheet program as a data flow program or by means of an object-oriented pro-
gramming language (see Paine [Pai97a] Du and Wedge [DW90] and Ronen et al.
[RPL89], further descriptions are given in Chapter 5).

Definition 10: Spreadsheet Program (SSP)
The spreadsheet program is a subset of the spreadsheet, containing all cells
with non-empty formulas or cells that are absolutely referenced by cells in the
spreadsheet program. Formally, the spreadsheet program is the union of cells
containing formulas and cells that are absolutely referenced by these formu-
las, SSP = FC ∪ AR, with FC = {c|c ∈ S ∨ (c = (ca, f, v) ∨ f 6= ∅} and
AR = {cj|cj ∈ S ∨∃ck = (cak, fk, vk) ∈ FC • fk absolutely references cj}. �

From Definition 10 follows that a cell that is absolutely referenced by a single
formula is considered to be a part of the spreadsheet program, even if it con-
tains only a constant value and is relatively referenced by an arbitrary number
of formulas. Of course, this is not true for cells that are only partially absolutely,
i.e. partially relatively referenced. They are only considered a part of the SSP if
they either contain a formula, or if they are also the target of an absolute cell
reference.

24 CHAPTER 2. SPREADSHEETS IN PRACTICE

Definition 11: Spreadsheet Input Data (SID)
The spreadsheet input data SID ⊆ S \ SSP is the set of all cells that are
not part of the spreadsheet program, but referenced by cells in the spread-
sheet program: SID = {cj|cj ∈ S, cj 6∈ SSP, ∃ck = (cak, vk, fk) ∈ SSP •
fk relatively references cj}. �

The spreadsheet program is a finite set, since it contains only cells with for-
mulas that are specified by the programmers. As each of the cells’ formulas is
programmer specified, too, it can only contain a limited number of calls to the
cell referencing function. Consequently, SID is a finite set.

Definition 12: Spreadsheet Instance (SSI)
The spreadsheet instance SSI = SSP ∪ SID is the union of the spreadsheet
program and the spreadsheet input data. �

Cells that are not empty but are neither referenced by any other cell nor
reference any other cell, are called dead cells. Dead cells are in the spreadsheet
but are not part of the spreadsheet instance.

The following conditions hold:

1. SSP ∪ SID ∪Dead Cells = S

2. SSP ∪ SID ⊂ S

3. SSP ∩ SID = ∅.

Changes in the spreadsheet input data are considered to be a re-execution
of a spreadsheet program with different input, whereas changes in the spread-
sheet program are considered to be maintenance. Thus, two spreadsheets with
different spreadsheet input data are considered to be equal if they have the same
spreadsheet program.

2.3.3 Graph Representations

Cell-references represent dependencies between cells. The data dependency graph
reflects the kind of inter-cell dependencies that have to be resolved in order to
evaluate the cells’ formulas.

Definition 13: Data Dependency Graph (DDG)
The data dependency graph (DDG) of a spreadsheet is a directed acyclic graph
DDG = (V, E), where each cell c = (cai, vi, fi) in the spreadsheet is represented
by a vertex v ∈ V , if vi 6= Undefined ∨ ∃(caj, vj, fj) ∈ S|fjreferencesc There is
an edge (v1, v2) ∈ E, if the formula in v2 references v1. �

Only those cells that do not have an Undefined value or are referenced by any
other cell are taken into consideration in the DDG. This restriction is necessary,
because the potential number of cells in a spreadsheet is not bound. However,

2.3. TERMS AND CONCEPTS 25

only a finite number of cells will be part of the spreadsheet instance and, conse-
quently, of interest.

If a cell c1 depends on a cell c2, and c2 is transitively dependent on c1, a
so-called circular reference occurs. In this case the spreadsheet system cannot
transform the dependency graph into an acyclic graph and will either remove
some edges, as it is the case in many modern spreadsheet systems, or report an
error (in Excel only for the first circular reference).

Definition 14: Set Relation Graph (SRG)
The set relation graph (SRG) of a spreadsheet is a directed acyclic graph SRG =
(Vs, Es). Vs contains subsets of the node-set V of the DDG. Based on the DDG =
(V, E), the set of inter-set-edges Es is defined by Es = {(s1 : PV, s2 : PV)|∃v1 ∈
s1 | ∃v2 ∈ s2 • (v1, v2) ∈ E}. �

In the SRG each node ns represents a set of nodes from the DDG. There is an
edge between two nodes n1 and n2 in the SRG if there is an edge in the DDG
between an elements of n1 and an element of n2. Thus, the SRG is a useful aid
to handle the data dependencies in spreadsheet abstractions (see Chapter 6), as
it gives a representation of relations between different parts of the spreadsheet
program that is not based on a cell-by-cell resolution. The semantics of the
nodes of the SRG is usually denoted by a suffix, e.g., SRGLA denotes a SRG
with logical areas as nodes, SRGSC denotes a SRG with semantic classes as
nodes and in the SRGDM the nodes represent data modules (see Chapter 6).

2.3.4 Different Views on the Spreadsheet

Apart from the different formal representations of a spreadsheet program, there
are also different ways to perceive a spreadsheet. If users limit their view to the
spreadsheet UI, they see only the values that are rendered by cells at a given
location. Thus, the perception of the spreadsheet is a geometrical one.

The geometrical or spatial model of the spreadsheet is based on this perception.
To describe a geometrical model, it is sufficient to specify the values displayed at
a specific location. Usually, the design of a spreadsheet program is based on this
model.

The algorithmical model of the spreadsheet is in contrast based on the DDG
only. Hence, the DDG specifies the algorithmical model. Obviously, the algo-
rithmical model does not have to correspond to the geometrical model, i.e. a cell
and its dependents in the DDG can be located in totally different places on the
spreadsheet UI.

The conceptual model of the spreadsheet manifests in the way the spreadsheet
users assume that a given spreadsheet program works. Factors like formatting
styles and geometrical distances as well as labels generally have a strong influence
on the conceptual model. Although the geometrical model has a strong influence
on the conceptual model because it is easy to notice, the conceptual model is

26 CHAPTER 2. SPREADSHEETS IN PRACTICE

independent from both former models.
While the geometrical and the algorithmical model are easy to specify by

means of cell coordinates and values and the DDG, the conceptual model is
subject to the individual viewpoint of a user and, thus, not formally described.
Nevertheless, the users can be supported in the process of building the conceptual
model by offering comprehensive representations of the spreadsheet that are not
totally influenced by the geometrical model.

2.3.5 Area concepts

The spreadsheet user tends to group cells into areas, either

1. by placing them next to each other on the spreadsheet UI, or

2. by using them as input for an aggregation function3, or

3. by calculating their values with a similar formula.

A physical area is a set of cells located within a rectangular area on the spread-
sheet UI. A physical area is specified by the absolute or relative coordinates of
the cells in the upper-left and lower-right corner. All cells in the rectangular area
thus specified are part of a physical area.

There are transient physical areas that arise during spreadsheet development,
when a set of cells is selected by the user in order to perform an operation,
e.g. copy and paste. Non-transient physical areas are usually the input for ag-
gregation functions in formulas. As the segmentation of the spreadsheet into
physical areas depend on formulas, the following properties are true:

1. Physical areas are spatial areas on the spreadsheet UI.

2. Physical areas can overlap, i.e. a cell can be part of more than one physical
area.

3. A cell does not have to be in a physical area.

Apart from the physical areas there are also cells that are somehow related but
not spatially adjacent. Therefore, we introduce the concept of logical areas (see
Mittermeir et al. [MCA00] and Chapter 6 for a more complete discussion). A
logical area is a set of cells that are related in the conceptual model of the user.
Typical symptoms for this kind of relatedness are similar formulas, or a neighbor-
hood on the spreadsheet UI. As there are different criteria for the partitioning,
logical areas can overlap.

3An aggregation function is a function that will calculate a single scalar value for an arbitrary
set of input values, e.g. SUM, MAX or AVG.

2.3. TERMS AND CONCEPTS 27

2.3.6 Further Terms

The terms that are subsequently defined are important for the understanding of
most spreadsheet systems, but they are not used for the spreadsheet auditing
technique presented in Chapter 6.

The spreadsheet editor supplies the user with important aids for creating and
modifying spreadsheets. Among the common tools, there are copying and pasting
formulas, applying format guidelines to cells, simple audit tools and the presen-
tation of results of the spreadsheet execution. Usually, the spreadsheet editor is
embedded in the spreadsheet UI and is invoked, whenever the user selects a cell.

The spreadsheet system consists of the spreadsheet editor, a specific spread-
sheet formula language and spreadsheet UIs. The reader might be familiar with
some spreadsheet systems, like EXCEL, LOTUS-1-2-3 or Gnumeric.

Most spreadsheet systems support the creation and usage of macros. There
are two kinds of macros that are used in different fields for different purposes:

1. The recorded macro is generated by recording the actions the user executes
to achieve a certain goal. The recorded steps can be repeated for other
cells or groups of cells. The result of the execution of a recorded macro is
similar to copying the group of cells that were initially created for recording
the macro. The usage of this kind of macro cannot be observed in the
spreadsheet program.

2. The procedural macro is a small user defined subroutine that is written in
the spreadsheet macro-language, which is usually an imperative program-
ming language. The procedural macro accepts a list of parameters and will
return a single result value to the caller. Procedural macros in formulas are
treated like built-in functions of the spreadsheet system. A special kind of
procedural macros does not produce a scalar result, but it can manipulate
arbitrary cells of the spreadsheet. Thus, they can change the spreadsheet
programm, too.

It is obvious that the second kind of macros has to be tested and examined care-
fully. However, testing procedural macros is similar to testing conventional soft-
ware, and therefore not part of the work presented here (see the relevant software-
engineering literature, e.g. Preston [Pre92], Beizer [Bei90] or Myers [Mye79]).

The expressive power of procedural macros is not limited to support-functions
for spreadsheet programs. Procedural macros can even totally change the typical
spreadsheet usage to data structures and data storages for conventional software.
This programming approach is often put in practice by spreadsheet experts with
little IT-training.

28 CHAPTER 2. SPREADSHEETS IN PRACTICE

Summary

The following issues have been addressed in this chapter:

• The basic concept of spreadsheets is a very natural one (paper, pencil,
calculator).

• Spreadsheets are used in different application areas.

• Therefore, there are, roughly speaking, two kinds of spreadsheets:

1. the small, but computationally very complex one, consisting of some
input data and a few mathematically complex formulas.

2. the large one, consisting of uniform patterns of data and relatively
simple formulas.

• Spreadsheets of the second kind are very common in business-use.

• Spreadsheets evolved from two-dimensional tables that were common in
accounting before computers were used.

• Only superficial evolution has taken place since the introduction of com-
puterized spreadsheet systems.

• Spreadsheets are an important tool for decision making and reporting in
business.

• Spreadsheet errors are a threat to the economic survival of companies.

• In order to discuss spreadsheets, we need an accurate vocabulary.

Chapter 3

Characteristics of Spreadsheet
Programs

This chapter aims to point out the differences between spreadsheets and other
kinds of software. Due to these differences many software engineering techniques
cannot be applied in a directly to spreadsheet development.

A distinction can be made between social differences, structural differences
and evaluation strategy differences. Social differences (see Section 3.1) mainly
arise because of the fact that spreadsheet programs are end-user programs.

The comparison of spreadsheet programs with other kinds of programs yields
interesting differences in the program structure that are surveyed in Section 3.2.
The evaluation strategy of a program generally influences error propagation and
runtime performance. Hence, it is important to understand the evaluation strat-
egy of spreadsheet programs. Intuitively, spreadsheet programs seem to corre-
spond to data flow programs. Though, this is not as shown in Section 3.3, this is
not true. Finally, this chapter will define some criteria that have to be fulfilled
by successful spreadsheet development techniques.

3.1 Social Differences

The most important characteristic of spreadsheet programmers is that they do
not consider themselves programmers at all. Although spreadsheet systems pro-
vide the most successful end-user programming environment, some of the main
features of traditional end-user languages are not implemented, e.g. visual pro-
gramming is not supported by spreadsheet systems. Users have to literally spec-
ify the arithmetic expression for each cell. However, as it is stated by Nardi and
Miller [NM90a], despite this apparent drawbacks, spreadsheets are wide spread
throughout the desktops of end-users. (see Brancheau and Brown [BB93] for a
discussion of end-user computing).

Spreadsheet systems provide end-user programming, but not in the classical

29

30 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

sense. Nardi and Miller [NM90a] point out that the typical features of end-user
languages, like visual representation of the program, are not part of spreadsheet
systems. According to them the success of spreadsheet systems is due to the
absence of control flow in the large [NM90a]. Of course, each formula has a
local control flow1, as if-statements are part of most of the spreadsheet systems’
formula languages. However, there is no way to explicitly specify control flow
outside the formulas, since control flow is replaced by the more intuitive concept
of global data flow.

3.1.1 Spreadsheets and end-user computing

As stated above, spreadsheet systems are very popular although they cannot be
considered typical end-user languages. Nevertheless, Nardi and Miller [NM90a,
NM90b] came up with the following properties that support the end-user.

The tabular user interface

The tabular user interface is not only common to the end-users in business (see
Section 1.2), it also supports users in modeling the problem space. In general,
making models has to start with the development of an initial model structure.
In discussions with people who do not have any modeling experience it turned out
that one of the difficulties is to find a starting point, which is how to structure the
model. The spreadsheet system already provides a common and useful structure,
i.e. the tabular grid. The end-users only have to deal with making the model of
their domain.

Locality

The hiding of complexity is another important feature. Spreadsheet programmers
consider each cell an independent unit of the spreadsheet. Therefore, a local view
on each cell is sufficient to create a spreadsheet program. Nevertheless, the hidden
complexity is still present and emerges in correcting, testing and maintaining
spreadsheet programs. Additionally, the programmers do not have to care about
the control flow in the spreadsheet program, as they only specify data flow. The
order of evaluation is subject to the spreadsheet system.

High-level constructs

The high-level constructs of the spreadsheet language provide domain specific
functionality. Widely used spreadsheet systems provide, for instance, functions
for the calculation of interests. Hence, programmers do not have to break down
complex functions into the low-level constructs of a programming language.

1The local control flow can also be interpreted as case differentiation.

3.1. SOCIAL DIFFERENCES 31

Learning Rate

There is only a small number of both domain specific and spreadsheet specific
constructs an individual spreadsheet writer has to be aware of in order to create
successful spreadsheet programs. Therefore, only little initial training is nec-
essary to begin with spreadsheet programming. As their experience of grows,
programmers learn new constructs which fit their specific needs and interests.

3.1.2 Organizational matters

In spreadsheet development projects the domain knowledge of the spreadsheet
programmer should be efficiently transformed into spreadsheet programs. So, to
develop important spreadsheets, domain experts can often benefit from the sup-
port of IT-specialists. However, the survey reported by Nardi and Miller [NM90b]
points out that this support is hardly accepted. Spreadsheet programmers pre-
fer the help of other, more sophisticated spreadsheet programmers in their own
domain.

Although spreadsheet systems generally do not support cooperative work,
Nardi and Miller [NM90b] found out that the co-development of spreadsheet
programs is the rule. Therefore, programmers share both their domain knowledge
and their programming knowledge. Fuller et al. [DAFP93] outline a spreadsheet
with change-management to support collaborative work.

The success of the spreadsheet paradigm might also have its roots in the
fact that no IT-professionals have to be involved in order to create even very
important spreadsheets. This is based upon the fact that

• in many organizations, IT and other departments do not tend to cooperate,

• spreadsheet programmers do not want to give away their domain knowledge,

• spreadsheet programmers do not have to explain their complex, domain
specific requirements to novices and

• when requirements change, spreadsheet programmers have the freedom to
modify their spreadsheet programs without limitations.

The main difference between spreadsheet and conventional programmers is
that the former are domain experts and the latter IT-specialists. For spreadsheet
programmers problems often seem clear and simple. That is why they do not
understand why to put any overhead in the application of software-engineering
techniques. Conventional programmers are methodologically trained and should
know about the complexity of programming. However, they do not have the
domain specialists’ deep insight into the matter.

32 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

Category Concept SP IP

Social High Level Constructs 5 3
Self-adjusted learning rate 5 2
Given Framework for modeling 5 2
Well founded analysis and design 2 5

Structural Control Flow 2 5
Interfaces ∅ 5
Subroutine invocation 3 5
Composite data types ∅ 4
Variables, Constants, Functions ∅ 5
Local Variables, Scoping ∅ 5

Layout afferent, processing, efferent parts ∅ 5
Influence of presentation on algorithm 5 2

Table 3.1: Summary of differences between spreadsheet and imperative programs.
The importance of a fact or concept is rated from ∅ (=not present) to 5 (=very
high). (SP = Importance in spreadsheet programs, IP = importance in imperative
programs)

3.2 Structural Differences

Spreadsheet programs are usually end-user programs, whereas imperative pro-
grams are generally developed by IT-professionals. The resulting differences in
the development have been summarized in the previous section. However, there
are some fundamental differences in the paradigms used. Subsequently, only clas-
sical spreadsheet programs which do not include procedural macros, are taken
into account. The most important differences between spreadsheet and impera-
tive programs are summarized in Table 3.1.

Structural differences between imperative and spreadsheet programs are due
to the fact that spreadsheet programs look like functional programs considering
a cell reference to be a function call.

Wilhelm and Maurer [WM97] consider the following three characteristics for
functional languages:

1. There is no separation between statements and expressions.

2. Names are identifiers for expressions, not for memory addresses.

3. Functions can be arguments and results of other functions.

The first two properties are true for most of the spreadsheet systems. Hence, the
spreadsheet paradigm incorporates principles of the functional paradigm. Some
special constructs and extensions to the classical spreadsheet paradigm which

3.2. STRUCTURAL DIFFERENCES 33

is surveyed here will fulfill the third requirement as well. However, there are
also some fundamental differences. If a formula is considered a function, the
spreadsheet paradigm does not support nested functions.

Additionally, a functional program has a well defined output that can be input
for another function. If we consider the displayed values in the cells the output of
a spreadsheet program, it can be argued, that another spreadsheet program can
freely reference this output, i.e. use it as input. Thus, the requirement of a well
defined output seems to be met on first sight. A closer look at the output vector
will reveal that the values in the output vector are not mutually independent. As
a consequence, the above stated requirement is not met.

Control Flow

The global control flow of a spreadsheet program is not specified by and generally,
not known to the spreadsheet programmer. It is up to the spreadsheet system
to determine an efficient way to evaluate the spreadsheet program. The spread-
sheet programmer can only specify control flow on the cell-level. In imperative
programs the programmer must specify the global control flow throughout the
system.

No interfaces

The concept of defining interfaces in order to support modular design and data-
abstraction in imperative programming languages is unknown to any spreadsheet
system. Therefore, in order to make use of the functionality of a certain spread-
sheet program, the program’s implementation has to be shown to its user.

Subroutines by copying

In imperative programming the concept of subroutines is very important to reduce
the complexity and to raise the understandability of programs. However, as
spreadsheet programs pass arguments to cell formulas by specifying the relative
distance from the cell, the cell’s content has to be copied and pasted at another
location in order to invoke its formula-calculation with different arguments a
second time. In contrast to the concept of subroutines, the copy-paste mechanism
does not reduce complexity at all, because the programmer is free to modify or
overwrite each of the copies individually. Additionally, two identical formulas
need not necessarily be the result of a copy-and-paste operation.

Subroutines have a scalar result

The result of the cells’ formula is displayed in the cell and can be accessed by
other formulas by referencing a cell. However, the fact that the result is dis-
played in the cell restricts the possible output to a displayable one. Therefore,

34 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

only values (numbers, text, date or boolean values) are valid results of a formula.
Composite data types, such as arrays or records, that are common to most im-
perative programming languages are not supported by any spreadsheet system
whatsoever.

Data access via cells

In imperative programming, different ways to access and store data are common:

• Data can be the result of an expression, and thus results from a parametrized
function call.

• Data can be read out of a variable and can be written into a variable.

• Data can be read out of a constant.

Spreadsheet programs do not support these different kinds of data sources. Ac-
tually, there is only a single data-source: the cell. The value can be computed
by a formula or entered by the user. It is not possible to distinguish between
program constants and values that are supplied by the user.

Only single assignment variables

For the user, each cell is a possible input variable, but from the viewpoint of for-
mula cells any other cell is a constant, and thus, it must not be changed. There-
fore, formulas cannot deliberately change any other cell on the spreadsheet, as
there is no explicit assignment operation. A formula may only read out the values
of other cells and process these values in its calculation. But then, certain cells
will be changed because they depend on the result of the formula. Nevertheless,
dependencies are controlled by the depending formulas, not by their data source.

Only global variables

In contrast to the mechanisms of blocks and scoping in imperative programming
languages, spreadsheet systems do not support modularity. Accordingly, each
cell’s value can be accessed by any other cell. This is one of the reasons for the
inherent complexity of spreadsheet programs.

Intermediate results are visible

Imperative programs transform a specific input into an output. Intermediate re-
sults and variables are not visible to the user. Opposingly, spreadsheet programs
depend on the cell as the only possible data store. As cells are generally visi-
ble2, all intermediate results of the spreadsheet program are visible. Hence, the

2Although columns or rows can be hidden, they are not absolutely invisible, as the user can
still reference them or re-display them by commands in the spreadsheet system’s menu.

3.3. EVALUATION STRATEGY DIFFERENCES 35

cells can be accessed by other formulas and further decrease the modularity of
a spreadsheet program. However, the visible intermediate results are of benefit
to debugging. In convential software special tools that are more or less difficult
to apply are necessary in order to trace the value of variables at run-time. For
spreadsheet programs, this feature is part of the concept.

Layout influences calculation

In imperative programs there is no influence of the result presentation on the
algorithm at all. Imperative programs usually consist of an afferent, a processing
and an efferent part that is responsible for the presentation of the results. How-
ever, as intermediate results of spreadsheet programs are visible, the processing
part is also efferent. Though this could be helpful in order to find erroneous
parts of a certain algorithm, unfortunately the complexity of spreadsheet pro-
grams is usually increased by that. Actually, there are two ways in which visible
intermediate results influence the calculation:

1. The spreadsheet programmer has a geometrical model of the spreadsheet
program that deviates from the algorithmic model. Things that would
belong to each other from an algorithmic point of view, are not related
in the domain view. Thus, the corresponding formulas will be placed at
different locations in the spreadsheet UI and a relation is only hard to
discover.

2. The spreadsheet programmer complicates the calculation in order to obtain
an additional intermediate result.

3.3 Evaluation Strategy Differences

From the viewpoint of IT-specialists spreadsheet programs share many features
with data flow programs (see Kavi et al. [KBB86]). Nevertheless, some of the
key concepts, such as the consumption of tokens, cannot be found in spreadsheet
programs. Besides, it is to the same extent reasonable to consider spreadsheet
programs graph reduction programs.

However, none of these concepts seem to totally cover the evaluation strategy
of spreadsheet programs. This conceptual mismatch is due to the interactivity
of spreadsheet programs. Both data flow and graph reduction programs are
conventional software. Hence, they are fully specified and then executed. A
spreadsheet program is subject to a permanent cycle of changes and re-evaluation
of the concerned cells.

It is argued that the spreadsheet program is mainly a functional program
with an eager evaluation strategy. The re-evaluation is propagated by a data
flow mechanism through cells that are adjacent in the DDG to the changed cells.

36 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

3.3.1 Experiments on Spreadsheet Evaluation Strategy

This section has two objectives. On the one hand it should support the argu-
ments about spreadsheet evaluation strategy in the following sections. On the
other hand, it demonstrate the impact of the evaluation strategy on spreadsheet
program testing.

Furthermore, the results of two experiments are to be reported; the first one
is about change propagation through the spreadsheet, and the second one about
the influence of circular references on the change propagation.

Change Propagation

This experiment was performed on a Linux desktop computer with the Gnumeric
spreadsheet system. The open-source spreadsheet system is used because it has
a built-in debug mode that prints out which cells are evaluated.

The experimental spreadsheet program consists of an if-statement in cell A5,
that returns either the sum of A1:A2 or B1:B2, depending on the value in the cell
A4. The cell’s A6 and B6 further process the result. The value in A4 is 1, therefore
A5 will sum up A1:A2. In Figure 3.1 on the facing page, (a) and (b) show the
experimental spreadsheet program. As the user changes the value in B2 from 6
to 7, a re-evaluation of B6 and A6 is triggered (see (c) and (d) in Figure 3.1 on
the next page), although B2 has no direct influence on any of the cells’ values.

Apart from the fact that the change propagation is obviously eager3, i.e. all
cells that could be affected by a change are re-evaluated, this experiment shows
another interesting feature: the evaluation starts at B6 and A6, which are both
sinks in the spreadsheet programs DDG.

Furthermore, A5 is evaluated when its result is requested for the first time by
B6. The second time, when its result is needed by A6, the result is immediately
passed on without re-evaluation.

The calculation of a result when it is needed for the first time does not sup-
port the assumption that the spreadsheet program is a data flow program (see
Subsection 3.3.4).

Circular references

Some authors claim that spreadsheets are capable of complex algorithms like
quicksort or the Tower of Hanoi problem (see Casimir [Cas92]). However, these
algorithms require either iteration or recursion, both concepts that are apparently
not available in spreadsheet formula languages.

The obvious solution is loop-unfolding (see Figure 3.2 on page 38): instead of
a multiple execution of the same block, the block is copied n times, where n is
the number of required iterations. The output of the ith computation is the input

3It cannot be but eager, since all intermediate results are visible.

3.3. EVALUATION STRATEGY DIFFERENCES 37

(a) Numerical View

(b) Formula View

(c) Numerical View after change to B2

(d) Debug trace of gnumeric after changing B2

Figure 3.1: Screen shots of the change-propagation experiment in the Gnumeric
spreadsheet system

38 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

(a) Numerical view (b) Formula view

Figure 3.2: Loop Unfolding is used in order to simulate iteration. In our example
we calculate 6! by two formulas. In B the result of the preceding row is multiplied
by the value in column A in the same row. The value in column A is calculated
by adding 1 to the cell in the preceding row. Except for A2 and B2, all formulas
in one column are copies of the same source.

for the i + 1th computation. However, in order to calculate the result of n + 1
iterations, e.g. 7! in Figure 3.2, a further row has to be added to the spreadsheet
program. Thus, loop-unfolding works only for a given number of iterations.

Loop-unfolding must not induce loops, i.e. circles, in the DDG of the spread-
sheet program. Circular references, i.e. a formula is transitively dependent on
its result, would induce circles in the DDG. Circular references are either er-
roneously introduced into a spreadsheet program, i.e. in an attempt to model
iteration, or they result from a conceptual error.

The circular-reference experiment (see Figure 3.3 on the next page) was car-
ried out with the Excel spreadsheet system, because different spreadsheet systems
do not consistently deal with circular references. Excel issues an ignorable warn-
ing to the spreadsheet writer. However, as the Excel spreadsheet system evaluates
the spreadsheet program on the basis of a dynamically constructed DDG, circu-
lar references in the not executed branch of an if-statement do not influence the
evaluation order. As soon as the DDG becomes circular, e.g. because of a change
in the pre-conditions of an if-statement, the formula that states the circular refer-
ence is considered a sink node of the DDG, and thus, the evaluation stops at this
place. This behavior often confuses spreadsheet users, since no further warnings
are issued.

In the experiment with the Excel spreadsheet system (see Figure 3.3 on the
facing page) an erroneous formula is specified for cell A4. Depending on the value
in B1 the error is either propagated into A6 and further into B6 or it does not
influence any result. Obviously, the circular reference occurs only when the value
in B1 is above zero.

When the erroneous formula in A4 was specified, Excel reported an ignorable

3.3. EVALUATION STRATEGY DIFFERENCES 39

(a) Formula View

(b) Numerical View,
No Cycles

(c) Numerical View,
Cycles

A1

A2

A3

A4

A6

B6

B1

B2

(d) Cyclic DDG

Figure 3.3: The circular reference experiment. Figure (a) is the formula view of
the spreadsheet program. In Figure (b) B1 is changed to −1. The formulas in A6

and B6 are not re-evaluated. (c) shows a correct output for A6 and B6, because
the loop in the DDG is bypassed by the if-statement in A6. Figure (d) shows the
initial cyclic DDG.

40 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

Figure 3.4: The salary-accounting spreadsheet in formula view. Circular reference
in E10.

warning. As it is true for any end-user, the warning was ignored. At first, a value
< 0 was entered in B1. Despite the ignored error message, correct results (see
Figure (b) in Figure 3.3 on the page before) were displayed.

Then, the value in B1 was modified to be above zero. Although no additional
error was reported, the spreadsheet’s result was erroneous, as the cells that de-
pend on A4 were not re-evaluated any more (see Figure (c) in Figure 3.3 on the
preceding page).

Apparently, the spreadsheet system changed the DDG of the spreadsheet
program in order to keep it free of cycles (see Figures (c) and (d) in Figure 3.3 on
the page before).

Effects of the Evaluation Strategy

These experiments were motivated by the analysis of an erroneous accounting
spreadsheet. Although the spreadsheet system gave an initial circular-reference
warning, the user did not recognize corrupt results.

After the precondition for an if-statement had changed, some checksums
showed critical results. Although, the corrupt cells’ formulas were not erroneous,
the user found out that the formulas were not re-evaluated when values of cells
they depend on changed.

It was found out by means of model visualization (see Chapter 6) that a sum-
formula referenced itself. The sum’s expected result was 0, so nobody recognized
the fault, and only the failure puzzled the user.

The example spreadsheet consists of a regular part for data-accumulation and
a computational part for salary calculation. In Figure 3.5 on the facing page the
computational part (below row 10) has been simplified. In the first part, in
column A the name of the worker and in column B his total working hours are

3.3. EVALUATION STRATEGY DIFFERENCES 41

Figure 3.5: The salary-accounting spreadsheet. No error is visible

entered. In column C and D two categories of overtime are calculated. The first
20 hours of overtime have to be paid with a 50% surcharge, more than 20 hours
of overtime lead to a bonus of 100%.

In the second part, users can select the categories of overtime they want to
consider. As there are no entries in the 100% overtime category , it is legitimate
to turn this feature off by entering the value 0 in the cell C14. However, in Fig-
ure 3.6 on the next page worker F has 5 hours of 100% overtime. In Figure 3.7 on
page 43 the 100% feature is turned on. At this time the mismatch between the
total-hours and the checksum cell is critical.

The mismatch occurs because of the circular reference in cell E10, where a
sum-formula references itself. However, the circular reference influences the eval-
uation only when the 100% feature is turned on (see Figure 3.4 on the preceding
page). No additional error is reported and the evaluations of all cells depending
on the circular reference, i.e. reachable in the DDG from the circular reference,
are frozen.

Although the impact of the evaluation strategy can be ignored unless errors
occur, it is argued that it has a severe impact on understanding spreadsheet
programs. Therefore, it is necessary to understand it.

3.3.2 Graph Reduction Semantic

Graph reduction is an efficient evaluation strategy for functional programs. For an
in-depth discussion of the functional paradigm (see Winston and Horn [WH93] or
Hudak [Hud89]). Treleaven [TBH82] discusses graph reduction as an evaluation
strategy for demand driven programs, and Amamiya [Ama92] shows that any
functional program can be specified as a graph reduction program.

Generally, a functional program is evaluated by performing reduction steps,

42 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

Figure 3.6: The salary-accounting spreadsheet. There are 5 hours of 100% over-
time. An error is visible only in E10

until none of the symbols in the functional program can be reduced any further.
A reduction step consists of the replacement of a function call and its arguments
with the function itself. In the end, the generated expression consists of atoms
and basic operations only and can easily be evaluated.

If this reduction is performed by literally replacing the function call with
the function, string reduction is performed (see right-hand side of Figure 3.8 on
page 44). String reduction is inefficient if we assume that the result of the reduced
function is used more than once. In this case, the same subexpression occurs more
than once and has to be evaluated at each occurrence.

To overcome these drawbacks graph reduction does not perform the literal
replacement of function calls with the associated expression. A function call is
replaced by a link to the function (see left-hand side of Figure 3.8 on page 44).
When the function’s result is requested for the first time, it is evaluated and the
result is stored. When the result is requested the next time, the stored result is
forwarded to answer the request.

3.3.3 Basic Differences to Reduction Semantics

In this section the assumption that a spreadsheet program is not a pure graph
reduction program will be justified. Therefore, the two main differences between
graph reduction and spreadsheet programs are discussed: loops and change prop-
agation.

Sequential Loops

Sequential loops are not part of the functional concept (see Manna and Amir
[MA70]) and, therefore, not part of graph reduction. However, recursion is native

3.3. EVALUATION STRATEGY DIFFERENCES 43

Figure 3.7: The salary-accounting spreadsheet. There are 5 hours of 100% over-
time. An error is noticed by matching checksums.

to functional programs and iteration can be expressed by means of tail-recursion.
Nonetheless, there is no means of implementing loops in spreadsheet pro-

grams, except for loop unfolding as shown in Figure 3.2 on page 38. Recursion
or loops would violate the following properties of spreadsheet programs:

All intermediate results are visible: Recursion, i.e. re-evaluation of a cell
until a stable state is reached, would entail multiple evaluation cycles of
a cell. However, the intermediate results that were produced in this cell
before reaching the stable state, cannot be displayed. So only the result of
the cell ’survives’ the recursion.

There is no global control flow: Recursion, or sequential loops, are a kind of
control flow. The user has to deal with a stopping condition and has to
have a mental concept of the order of evaluation.

As loops or recursion are a violation of the evaluation semantics of spreadsheet
programs, the accidental usage entails odd results (see Subsection 3.3.1) that vary
from one spreadsheet system to the other.

Change Propagation

Generally, a functional program has one defined result. A change to a function
that influences the final result has no impact on the result until the program is
re-evaluated. As stated above (see Figure 3.9 on page 47), the interactivity of
spreadsheet programs implies a sophisticated change propagation technique. A
change to any formula will automatically lead to

1. its re-evaluation,

44 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

String−Reduction:
i1 = (3²), i2 = (2* 3 * 6), i3 = (2*3*6)
i4 = ((3²) + (2 * 3 * 6))
i5 = (((3²) + (2*3*6)) − (2*3*6)) = 9

Functional Program:

Graph Reduction:

9 36
i1: a i2:(a b

)

i4 i2

2 * __ * __(__²)

3

i4:(i1 i2__ + __

45

9

__ − __

a² + 2ab − 2ab

Figure 3.8: Evaluation of the expression a2 + 2ab − 2ab with a = 3, b = 6. Left-
hand side uses graph reduction, right-hand side string reduction

2. the re-evaluation of depending formulas, and

3. the re-evaluation of transitively depending4 formulas.

The change propagation mechanism is mainly data flow controlled.

3.3.4 Basic Differences to Data Flow Semantics

The preceding section pointed out a couple of differences between the spreadsheet
evaluation strategy and graph reduction. These facts tempt to neglect the reduc-
tion semantics of spreadsheet evaluation and to classify a spreadsheet program
as a data flow program.

As the foregoing considerations sketched a combined evaluation strategy for
spreadsheet programs, it has to be pointed out, why a spreadsheet program is no
pure data flow program. Data flow programs show different behavior in evaluation
triggering, data flow specification and loops.

Before elaborating the differences between data flow evaluation and spread-
sheet evaluation, the foundations of data flow semantics will be briefly discussed.

Data Flow Semantics

Data flow programs divide a complex computation up into a set of elementary
calculations and their interconnections. As each of the calculations can be per-

4A formula f1 is transitively dependent on a formula f2, if f1 uses the result of a formula
f3 that depends on f2 (or is transitively depending on f2)

3.3. EVALUATION STRATEGY DIFFERENCES 45

formed as soon as all of the required input values are available, data flow programs
offer a high level of parallelism. Data flow programs are usually specified through
a data flow graph (see Treleaven [TBH82], Ang [Ang93] and Ackermann [Ack82]).

The term data flow graph denotes a directed graph. The nodes represent the
computations of the data flow program. Each computation node can be the target
of several edges, and it is the source of exactly one edge. Tokens are markings of
edges that represent output values of their source node. When all of the edges
that target a specific node, n, are marked, the computation of n is executed. The
tokens are consumed and the edge that leaves n is marked with a token. If there
is an edge (n, m) from n to m, n is called the data source of m.

Sources of the data flow graph are nodes that are not target of any edge.
If a source represents a constant value, the edge that leaves the source node is
permanently marked. Correspondingly, a sink node is a node that is not source
of any edge. Sink nodes usually represent results of data flow programs.

There are additional, special kinds of nodes, namely selector and multiplier
nodes, that are the source of more than one edge. The computation of a selector
node s will evaluate a condition, and, depending on the condition, mark one of
the edges that leave s with the token. A multiplier node m is the target of one
edge. All edges that leave m are marked with the token that arrives at m.

These special nodes, that are considered extensions to the general data flow
model, allow the implementation of sequential loops in data flow programs (see
Ang [Ang93] and Kavi et al. [KBB86]).

Evaluation triggering

Roughly speaking, a calculation of a node n in a data flow program is performed as
soon as all of the edges that point to n are marked with a token. The calculation
will consume these tokens. In order to re-evaluate n, all of the edges have to be
marked again.

In a spreadsheet program SP that is represented by a DDG = (V, E), a node
v ∈ V is re-evaluated as soon as one of the edges e = (x, v) ∈ E is marked.
Hence, there is a marking of edges, but not with the data flow semantics. The
tokens are rather evaluation-triggers than input values for a calculation.

Data Flow Specification

In a data flow graph, each computational non sink node is left by exactly one
edge5. The nodes are not aware of their data sources, but only of the tokens that
arrive.

In a spreadsheet program the data flow is specified bottom-up, i.e each node
specifies its data sources. Each node can be the data-source of an arbitrary

5An exception of this rule is introduced by multiplier nodes, that are the target of one edge
but the source of an arbitrary number of edges.

46 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

number of nodes. Conditional data flow is not part of spreadsheet programs.
This shortcoming is patched by basic control flow in the nodes, which is not part
of data flow concepts.

Loops

By means of extensions to the data flow concept, namely selector and multiplier
nodes, sequential loops can be implemented by data flow programs.

As it was already stated in Subsection 3.3.3, loops are not part of the con-
cept of classical spreadsheet programs. However, procedural macros or similar
extensions, can implement loops.

3.3.5 Spreadsheet Evaluation Strategy

As it has been stated above and supported by experiments, spreadsheet programs
are considered partially a graph reduction program, and partially a data flow
program. Therefore, the evaluation of a spreadsheet program has to be described
from two viewpoints:

Locally, a cell evaluates its formula by reducing it. As a cell’s value can be
accessed by more than one cell, graph reduction is performed (see Treleaven
et al. [TBH82] and Amamiya [Ama92]. The reduction graph corresponds
to the DDG of the spreadsheet (see Definition 13 on page 24).

Globally, it has to be decided, which cells have to be re-evaluated when a change
occurs. Therefore, a change in a cell will produce change tokens that are
distributed by a data flow graph that is similar to the DDG, too.

The evaluation strategy is illustrated by Figure 3.9 on the next page. Vertexes
in the figure correspond to cells, thin edges represent the DDG-edges. Cell C is
subject to a change by the user. It can be assumed that there is a formula in C,
as C depends on two other cells. After the change has taken place, the value of C
is recalculated by reduction (local viewpoint).

In order to propagate any changes, the successors of C have to be re-evaluated,
too. Therefore, a change token is passed along the dashed line (global viewpoint).
As soon as a change token arrives at a cell, the cell will be re-evaluated by
reduction and pass the change token on to its successors.

However, as a graph reduction program is a functional program, its evaluation
strategy is lazy evaluation, i.e. a node is only evaluated when its value is requested.
In contrast, spreadsheet program evaluation is usually globally eager, i.e. a node is
evaluated as soon as possible. Nevertheless, lazy evaluation is performed locally,
because only those parts of a formula are evaluated that contribute to its result.

3.4. CRITERIA FOR SUCCESSFUL METHODOLOGIES 47

Rest of Spreadsheet Program

C
Reduction

Step

change
Change
Token

Figure 3.9: Spreadsheet evaluation strategy

This divergence is caused by the fact that a functional program is defined to
have one specific result. Only those functions or nodes in the reduction graph
that influence the result are evaluated.

As shown in Section 3.2, the spreadsheet program has no dedicated output.
Each intermediate result is considered output, and, therefore, each potentially
affected cell has to be evaluated.

Apparently the spreadsheet program unifies some concepts of data flow and
graph reduction. However, the dualism in the classification is only true at first
sight. Sharp et al. [Sha92] discuss similarities between data flow languages and
functional languages. They state that

many languages developed by data flow workers are in essence func-
tional languages. This is not surprising, since such languages fit nat-
urally on the data flow execution model. Data flow is in fact viewed
by some as just another implementation technique for functional or
applicative languages.

Hence, the classification of a spreadsheet program as a graph reduction program
entails its classification as a data flow program.

3.4 Criteria for Successful Methodologies

The different evaluation strategy and a different group of users make conventional
testing approaches unsuitable for spreadsheet programs. In this section some
important criteria for successful spreadsheet auditing and testing methodologies
will be introduced.

48 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

Reichwein, Rothermel and Burnett [RRB00] introduce three important con-
straints on spreadsheet-related testing methodologies:

Accompanying deployment: Spreadsheet development is not divided into dif-
ferent phases, i.e. programming, compiling, execution. Thus, it is suggested
that spreadsheet programmers need to be accompanied by tool support.

No specialized vocabulary: As argued in Section 3.1, spreadsheet users are
domain experts. Although they gradually build up spreadsheet exper-
tise, they are generally not willing to study IT-related terms and concepts
(see Nardi and Miller [NM90a]). Thus, a spreadsheet auditing or testing
methodology should hide technical details and rely only on concepts the
spreadsheet programmers are familiar with.

Minimal overhead: Spreadsheet systems offer immediate feedback to the spread-
sheet users. Hence, a change in the input values is immediately reflected
in new results. An integrated spreadsheet auditing or testing methodology
must not hinder the interactivity of a spreadsheet instance.

Additionally, five further constraints, namely fault localization, qualitative errors,
scalability, integration, and freedom of layout are worth looking at.

Fault Localization

Most of the spreadsheet testing methodologies have to deal with the localization of
detected errors (see Ayalew [Aya01] or Rothermel et al. [RLDB98]). Quite often,
the cell that displays a faulty value, does not contain an erroneous formula. Thus,
it is argued that a successful spreadsheet auditing approach must be capable of
detecting errors and showing their source. Otherwise, the burden of correcting
errors in a consistent way will be left to the spreadsheet programmer.

As some field audits have shown (e.g. [CHM02]) users tend to perform the
correction of errors with unknown source by overwriting the cell that displays
the faulty value with a constant value. Obviously, this strategy will deteriorate
further spreadsheet maintenance.

Qualitative Errors

Qualitative errors are errors that are not immediately visible by inspecting the
output of a current spreadsheet instance (for a more detailed discussion, see Teo
and Tan [TT00]). Nevertheless, qualitative errors are errors spreadsheet program
that might turn up on the value level in future spreadsheet instances.

This kind of error is very dangerous for long-living spreadsheets, because
ongoing modifications of spreadsheets tend to introduce qualitative errors and
transform qualitative errors into quantitative errors, i.e. errors on the value level.

3.4. CRITERIA FOR SUCCESSFUL METHODOLOGIES 49

Hence, qualitative errors are an important issue in many large economic spread-
sheets (see Clermont et al. [CHM02]). However, recognizing a qualitative error
requires IT-skills.

Fault localization usually deals with the detection of qualitative errors that
have already manifested in quantitative errors at another location of the spread-
sheet UI. Thus, valuable support for the spreadsheet programmer includes the
detection of qualitative errors.

Scalability

Spreadsheet auditing is often doomed to fail due to high costs and long duration.
This is already true for medium-sized spreadsheets (see Panko [Pan97]), but much
worse for large spreadsheets that are commonly used in business applications (see
Section 2.2, Clermont et al. [CHM02]).

There are two common obstacles to the scalability of spreadsheet-related tech-
niques. The first one is the employment of the spreadsheet UI as user interface.
Thus, the visible clipping is limited by the size of the screen and the size of a cell
on the spreadsheet UI.

The second obstacle is of conceptual nature: usually, the unit to be examined
is the cell. Hence, most of the techniques fail for large spreadsheets with more
than 1, 000 cells.

Integration

As spreadsheet development is an incremental process (see Reichwein et al. [RRB00],
Nardi and Miller [NM90a] and Brown and Gould [BG87]) that is embedded into
the spreadsheet system, the auditing or testing toolkit should also be integrated
into the spreadsheet system. This integration should increase the availability of
the toolkit and minimize the difficulty of employment.

Freedom of Layout

There is a couple of techniques and style guides that promise to increase the
efficiency and decrease the error probability of spreadsheet development. A more
detailed discussion is given in Chapter 5. Unfortunately, many of these techniques
restrict the spreadsheet programmers’ freedom of using the spreadsheet UI in the
way they want to.

As a matter of fact, these techniques are not accepted by spreadsheet pro-
grammers, because they do not recognize the necessity of reducing the complexity
of their programs. On the contrary, spreadsheet programs are often deliberately
complicated in order to meet some layout requirements.

50 CHAPTER 3. CHARACTERISTICS OF SPREADSHEET PROGRAMS

Summary

The following issues have been addressed in this chapter:

• Spreadsheet development is different from conventional software develop-
ment.

• Spreadsheet programmers are end-users.

• There are conceptual differences between spreadsheet programs and con-
ventional programs that require different testing and auditing approaches.

• Spreadsheet programs have no user specified control flow. The spreadsheet
programmer specifies the data flow.

• Spreadsheet programs are neither pure data flow programs nor pure reduc-
tion programs. Indeed, they are a mixture of both of them.

• Evaluation is triggered by a data flow like mechanism and performed by
graph reduction.

• Certain spreadsheet errors are due to ambiguities in the spreadsheet evalu-
ation strategy.

• Successful auditing and testing techniques have to take these facts into
account.

Chapter 4

Spreadsheet Error Studys

The importance of spreadsheets to organizations is obvious (see Section 2.2). Al-
though some features of spreadsheet programs are undesirable from the software
engineer’s point of view, this does not imply that these programs are more error
prone than other software artifacts.

In order to show the need for sophisticated spreadsheet auditing and testing
techniques, this chapter summarizes the results of past spreadsheet audits and
development experiments. To get a better understanding of these results, an
approach to define a spreadsheet error taxonomy is introduced beforehand.

4.1 A Taxonomy of Spreadsheet Errors

The variety of sources for spreadsheet errors calls for a taxonomy of spreadsheet
errors. As in natural sciences, where taxonomies have been invented by Carolus
Linnaeus in 1737 [Lin37] (summarized by Asimov [Asi84]), taxonomies should
support research in handling manifold phenomena.

A taxonomy for spreadsheet errors has to meet the fact that there are differ-
ent ways to make errors and that a spreadsheet error can be caused either by
corrupt input data or by an erroneous spreadsheet program. However, extensive
categorizations of spreadsheet errors can be built with different intentions, and,
thus, will give a different perspective on spreadsheet errors.

There are a couple of error categorizations (see Panko [Pan98b], Panko and
Halverson [PH97], Teo and Tan [TT00] or Ayalew et al. [ACM00]), but none of
them meets the requirements for a taxonomy to categorize all possible kinds of
errors in a hierarchic system.

Rajalingham et al. [RKC00] present a quite complete taxonomy of spread-
sheet errors1. They divide spreadsheet errors into 29 hierarchically organized
categories that contain all work that has previously been done on categorization

1Some extensions are suggested in Section 4.2

51

52 CHAPTER 4. SPREADSHEET ERROR STUDYS

Omission

Alteration

Duplication

Omission

Alteration

Duplication

Omission

Alteration

Duplication

Spreadsheet Errors

System Generated

Quantitative

User Generated

Accidental

Developer (SP)

End User

Data Inputter (SI)

Interpreter (SI/SP)

Reasoning

Domain Knowledge

Implementation

Real− World

Mathematical

Logic

Syntax

Qualitative

Semantic

Maintainability

Structural

Temporal

Figure 4.1: Taxonomy of spreadsheet errors (taken from [RKC00]). The cate-
gories with gray background are extended by area-related errors in Section 4.2.

(see Figure 4.1). For each leaf error category an example is given in [RKC00].
Subsequently, the most important error categories will be briefly discussed.

4.1.1 System Generated versus User Generated Errors

As in conventional software, the spreadsheet program is not the only potential
error source. Of course, the spreadsheet system that evaluates the spreadsheet
program or the floating point unit of the computer system can be erroneous. An
example for system generated errors in the context of circular references is given
in Figure 3.3 on page 39.

4.1. A TAXONOMY OF SPREADSHEET ERRORS 53

4.1.2 Quantitative versus Qualitative Errors

User generated errors are categorized into quantitative and qualitative errors.
This distinction is made by most of the error categorizations. However, the mean-
ing of the term quantitative error is not unambiguously defined. Panko [Pan98a]
and Rajalingham [RKC00] define quantitative errors as errors that produce an
incorrect value in at least one bottom line value.

This definition is obviously too restrictive, as two cells with erroneous out-
put that nullify each other in a result cell, are not considered. As a matter of
fact, other authors (e.g. Teo et al. [TT00], Clermont et al. [CHM02]) define a
quantitative error as an error that produces an incorrect value in any cell of the
spreadsheet.

In contrast, qualitative errors cannot be revealed by testing a spreadsheet on
the value level, as they are usually caused by incorrect formulas that accidentally
produce the correct result for a specific spreadsheet instantiation. However, when
maintenance is performed, they usually turn into quantitative errors, i.e. they
produce erroneous values.

Usually, qualitative errors are introduced by overwriting a cell’s formula that
produces an unexpected result with a constant value or a superficially modified
formula. It is easy to see that a modification of cells the original formula was
depending on, will cause a quantitative error.

In software engineering terms, qualitative errors can be considered faults that
do not lead to failures, whereas quantitative errors are failures. As in conventional
software, the fault that causes a failure can be at a different place. The same
is true for quantitative errors that might be caused by a qualitative error at a
different location.

Accidental versus Reasoning Errors

Accidental errors are a common phenomenon in human error theory, as it is
shown by Rasmussen [RPG94], Gilmore [Gil90] and Ormerod [Orm90]. On his
human-error research website [Pan02b] Panko states that programmers usually
produce an error rate of 2 – 5% in their code. Empirical studies of program error
rates show a range from 0.6% [BP93] to 15% [ZZ93], depending on the task and
the environment of the development.

These errors happen, although people are aware of the risk of accidental errors.
As it is stated not only by Reason [Rea90], but also by Cicero, for humans to err
is inevitable- errare humanum est.

As their name suggests, accidental errors can be either typographic errors,
misplaced formulas, or logical errors. The difference between the category of
accidental and the category of reasoning errors that contains syntax and logical
errors, too, is the way the errors are produced.

Rasmussen [RPG94] distinguishes between

54 CHAPTER 4. SPREADSHEET ERROR STUDYS

Errors, i.e. the right conception is incorrectly put into practice, and

Mistakes, i.e. users have a wrong concept that is correctly put into practice.

The inevitable accidental errors fall into the first category, whilst reasoning errors
can usually be considered mistakes. Accidental errors will occur automatically
even if users carefully check their programs.

A similar distinction is also common in conventional software engineering,
where the terms bug, error, mistake and fault are used. As it is stated by Beizer
in [Doe99], in software there might be programmer errors that lead to faults.
However, in the further discussion that is reported by Doernhoefer [Doe99], it
is pointed out that there can be multiple reasons for faults, e.g. problems with
requirements, hardware or test cases.

For the sake of simplicity, the term error is used throughout this thesis to
denote errors and mistakes. Whenever a distinction has to be made, it is stated
explicitly.

Reasoning Errors

Reasoning errors are usually the result of a mismatch between the programmers’
perception of the real world and the problem they want to solve. Usually, pro-
grammers build models of the problems they want to solve (see Hoc [HNX90]).
Errors in this model are usually the result of reasoning errors that can be caused
by

• misunderstanding the Real-World

• wrong transformation of the real-world problem to a mathematical repre-
sentation

• misunderstanding the spreadsheet’s internal logic,

• misunderstanding the spreadsheet system’s formula language.

As reasoning errors do not occur accidentally, they are usually made repeatedly,
whenever the incorrect part of the model occurs in the spreadsheet program. A
special kind of reasoning error is overspecialization.

Overspecialization is usually introduced as qualitative error when spreadsheet
programmers do not consider absent special cases in their models. However,
during maintenance these special cases tend to become important and result in
arbitrary changes of the spreadsheet program. Thus, former regular structures,
i.e. repeatedly used formulas, are torn apart.

It is easy to see that these maintenance operations cause the introduction of
a special kind of qualitative errors that are summarized by the category main-
tainability.

4.1. A TAXONOMY OF SPREADSHEET ERRORS 55

Some of the so introduced
quantitative errors are
identified and corrected.
Because of misunder−
standings of the model,
new qualitative errors are
introduced.

without effects
Qualitative Errors

Quantitative Errors
Qualitative and

Maintenance

TestingNumber of
Qualitative Errors
Increased

Due to misunderstandings

errors turn into quantitative
errors

of the model, some qualitative

Figure 4.2: The vicious cycle of spreadsheet maintenance. The testing effort and
the probability of remaining quantitative errors increases in each cycle.

4.1.3 Qualitative Errors

So far, the error-taxonomy has dealt with errors that have an immediate im-
pact on the displayed values of cells. The definition of quantitative errors is
consistent with errors in conventional software that are defined as a mismatch
between the expected and the delivered output of a software system (a more
detailed discussion of the testing process is given in the software engineering lit-
erature, e.g. Beizer [Bei90], Harrold [Har00], Kan [Kan95], Kaner [KFN93] or
Perry [Per95]).

However, qualitative errors are also an important issue for spreadsheets, espe-
cially when they are subject to evolutionary changes. For conventional software
the term qualitative error is not widely used, however, the aging of software due to
evolutionary changes is subject to research (see Rajlich [BR00], Parnas [Par94]).
As stated above, changing the spreadsheet instance might make formerly correct
spreadsheet programs deliver incorrect output when qualitative errors turn into
quantitative errors.

Field audits have shown that qualitative errors tend to be introduced when a
spreadsheet is adapted to a changed environment or when errors are corrected.
In a large field audit it has been shown that most of the errors in real world
spreadsheets are qualitative errors [CHM02]. As they accumulate throughout
the maintenance cycles, the testing effort increases, too. Unfortunately, the cor-
rection of errors thus discovered will usually introduce new qualitative errors (see
Figure 4.2).

Hence, qualitative errors can be considered a time-bomb hidden in the spread-
sheet. They do not show on the value level until they turn into quantitative errors;
and sometimes quantitative errors do not even show in the same cell where the
qualitative error is located. Therefore, it is rather a symptom of the error that
has to be traced back to the error. Most of the sophisticated spreadsheet testing

56 CHAPTER 4. SPREADSHEET ERROR STUDYS

techniques (see Ayalew [Aya01], or Rothermel et al. [RRB00, RLDB98]) employ
certain error-tracking heuristics.

Reasons for Qualitative Errors

In the previous sections it was pointed out that quantitative errors are the product
either of inevitable accidental errors or of reasoning errors. Qualitative errors are
sometimes reasoning errors, too, but as we have stated above, they are often
invented during maintenance or by superficial error corrections.

Qualitative errors are supported by the following shortcomings of the spread-
sheet development process (see [CHM02]):

1. Tests are performed on the value level, and error corrections take place
mainly on the value level, too.

2. Spreadsheet writers do strongly identify with their spreadsheets and are
heavily overconfident in their personal spreadsheet programming skills. Thus,
documentation is considered unnecessary.

3. Maintenance cycles date between one month and one year.

The first property obviously supports the introduction of qualitative errors by

• overwriting formulas with constant values, or,

• correcting only one instance of multiple copies of an incorrect formula.

The latter two properties of the development process lead to an ongoing dete-
rioration of the spreadsheet model’s clarity. Spreadsheet writers often consider
documentation work to be useless overhead [CHM02], so it is often neglected.
Thus, maintenance has to take place based on assumptions of how the spread-
sheet works.

However, even the creators of a spreadsheet often forget the internal logic
of a spreadsheet program. If someone who is considered to be responsible for a
certain spreadsheet leaves the company or merely changes the department, the
spreadsheet is often useless for the successors.

4.2 Area Related Errors

The taxonomy that was discussed in the previous section can be stated more
precisely in the category of reasoning errors. As it is mentioned in Subsection
4.1.2, reasoning errors can show as quantitative or as qualitative errors2. However,
they are always the result of a misunderstanding or a misconception.

2We are aware of the fact that this behavior is not consistent with the taxonomy of spread-
sheet errors shown in Figure 4.1 on page 52.

4.2. AREA RELATED ERRORS 57

Figure 4.3: Reference to a blank/wrongly typed cell.

Figure 4.4: Physical area specification error.

The powerful concepts of physical and logical areas (see Subsection 2.3.5) is
often the source for reasoning errors. If the internal logic of the spreadsheet has
already been blurred by previous maintenance operations, the danger of reasoning
errors will further increase.

In [ACM00] five categories of errors that are caused by misuse of physical or
logical areas were defined:

1. Physical area related errors

Reference to a blank/wrongly typed cell occurs if a physical area in-
cludes cells of different types, e.g. empty or text cells in a sum-
formula’s area. As long as these cells are not accidentally filled or
the label does not change to a numeric label, this error is a qualitative
error (see Figure 4.3).

Physical area specification errors can occur if the user defines a phys-
ical area over a rectangular area of cells. If new cells are inserted into
the rectangular area, the physical area is automatically re-adjusted.
However, if the new cells are prepended or appended, the area is not
readjusted. The new cells are part of the geometrical area but not of
the physical area. (see Figure 4.4).

Physical area mix-up problems occur if two different physical areas in-
terfere (see Figure 4.5 on the next page). This is often the case for
subtotals and causes at least one of the involved physical areas to be

58 CHAPTER 4. SPREADSHEET ERROR STUDYS

Figure 4.5: Physical area mix-up problem. On the left hand side the areas are
separated. On the right hand side, because of the overlapping physical areas, the
grand-total must not be calculated by the built-in sum-function of the spreadsheet
system.

removed3.

2. Logical area related errors

Overwriting a formula with a constant value is a common qualita-
tive error that is usually caused by superficial error corrections (see
Subsection 4.1.3).

Copy Misreference is another qualitative error. A constant value or an
absolute cell reference is specified in a formula instead of a relative
reference. This error turns into a quantitative error, when the formula
is copied into another cell. The same kind of error occurs vice-versa if
a constant value is erroneously specified by a relative cell reference.

Depending on the effects, these errors can be categorized either as structural or
as logic errors, and thus, they may or may not show on the value level.

4.3 Results of Field Audits and Experiments

This section gives a brief summary of the results of field audits and so-called lab-
oratory experiments. Field audits usually analyze spreadsheets that are already
in use (or shortly before deployment), whereas laboratory experiments are care-
fully designed exercises that aim to find out the influence of certain environment
conditions, e.g. previous experience, time pressure, training, education, on the
total error rate of developed spreadsheet programs.

Moreover, for experiments a solution of the problem is known, and thus,
the developed spreadsheets can be checked against a given solution. Hence, all
errors can be revealed in development experiments, whereas spreadsheet programs

3Only as physical area - the conceptual unit still remains.

4.3. RESULTS OF FIELD AUDITS AND EXPERIMENTS 59

that are analyzed in field audits behave like conventional software. This means,
Program testing can be used to show the presence of bugs, but never to show their
absence! [DDH72] [Har00].

4.3.1 Metrics

Although many audits have taken place (see [Pan02a, Pan98a] or Tables 4.1 and
4.2 for a summary of results), there is no general agreement on a metric for
spreadsheet errors. The following metrics are usually applied (the first three are
described in detail by Panko and Halverson [PH96], the latter ones by Clermont
et al. [CHM02]).

As erroneous input data is not an issue in this thesis, all metrics deal with
measuring corrupt formulas. The first two metrics are rather coarse-grained and
do not consider individual errors, but deal with the overall impact of errors on a
spreadsheet program. Cell error rate, formula error rate and the absolute num-
ber of errors, make statements about the error ratio or the number of errors in a
spreadsheet program, whereas the last two metrics are developed to make state-
ments about the number of errors compared to the number of different formulas
in a spreadsheet.

Subsequently, each of the metrics is briefly described:

Percentage of erroneous models specifies the relative amount of erroneous
spreadsheet programs that have been analyzed.

Error magnitude is a measure for the impact of spreadsheet errors on the
model. Panko and Halverson [PH96] define the error magnitude as the
percentage of correct bottom line values. Another interpretation offered
deals with the question whether decisions that are based on the spreadsheet
are influenced by the errors. However, the error magnitude is usually not
reported in spreadsheet field audits.

Cell Error Rate (CER): The CER is calculated as ratio of none empty cells
to erroneous cells (see Panko and Halverson [PH96]). Of course, the cell
error rate is only a relative statement on the spreadsheet program’s quality.
One wrong formula that is copied very often, will raise the CER over-
proportionally, although it will be easy to find the errors. Additionally,
cells that are part of the spreadsheet instance are usually considered for the
calculation of the CER. Thus, the number of input values can influence the
CER.

Formula Error Rate: The formula error rate is the ratio of the number of
formula cells to erroneous cells. This measure is an improvement of the
CER, as input values are not taken into account anymore.

60 CHAPTER 4. SPREADSHEET ERROR STUDYS

Absolute Number of Errors: This metric is easily available. However, it is
not suitable for comparing the quality of spreadsheets of different size.

Absolute Number Of Error Classes: Error classes consider the fact that for-
mulas are often copied multiple times during spreadsheet development.
Thus, errors are multiplied by copying erroneous formulas. Errors that
occur multiple times because of such a copy-operation, are grouped into
one error class.

Error Classes per Copy Equivalence: This measure is a normalization of
the formula error rate, as the ratio of error classes to unique formulas is cal-
culated. A copy equivalence class consists of identical formulas (see Chapter
6 for a more precise definition).

Unfortunately, none of these metrics can be used to give either an objective
statement about the quality of a spreadsheet or to compare the quality of different
spreadsheet. The only metric that takes the severeness of errors into account
is error magnitude. However, there is no objective way to evaluate the error
magnitude of a given spreadsheet.

4.3.2 Findings

Apart from the field audits and spreadsheet development experiments that are
summarized in Tables 4.1 and 4.2, a more recent spreadsheet field audit is de-
scribed in [CHM02]. In the remaining section the main findings of the latter
audit will be briefly summarized.

Auditing Environment

Auditing was performed from April until August 2001 by a third-year computer
science student supervised by the author and one of the supervisors of this thesis.
The auditor was assigned to the accounting department of an international coop-
eration with headquarters in Vienna where he could work desk-to-desk with the
spreadsheet producers. The contact with the tool developers was kept by e-mail
and by regular visits. He examined three voluminous Excel workbooks that are
mainly used for consolidation. The three workbooks consisted of 78 worksheets
with 60,446 non-empty cells.

Before the audit started, the auditor who had only little bookkeeping ex-
perience, discussed the basic idea and functionality of each workbook with the
respective author. Additionally, the author was interviewed about the lifespan of
the workbook, the usual maintenance cycle and the number of users.

Then, for each spreadsheet in the workbook, the following characteristics were
documented: dimension, number of non-empty cells, number of formulas, con-
stants, and literals. At first, the correctness of the displayed values was checked.

4.3. RESULTS OF FIELD AUDITS AND EXPERIMENTS 61

Study Year # Sheets % w. Errors CER

Davies & Ikin [DI87] 1987 19 21%
Cragg & King [CK93] 1992 20 25%
Hicks 1995 1 100% 1.2%
Butler [But00] 1992 273 11%
Coopers & Lybrand 1997 23 91%
KPMG 1997 22 91%
Lukasic 1998 2 100% 2.5%
Butler [But00] 2000 7 86% 0.38%

Total 367 24%
Total since 1997 54 91%

Table 4.1: Results of field audits in the last 15 years, summarized by Panko
[Pan00]. # Sheets denotes the number of examined spreadsheets, % w. Errors
the relative number of spreadsheets with at least one error, and CER is the cell
error rate.

Study # Sheets % w. Errors CER

Brown & Gould [BG87] 27 63%
Olson & Nilsen [ON88] 14 21%
Lerch 21 9.3%
Hassinen 92 55% 4.3%
Janvrin & Morrison (1) [JM00] 61 7%–14%
Janvrin & Morrison (2) [JM00] 8%–16%
Kreie et al. [KCPR00] 73 42% 2.5%
Teo & Tan [TT00] 168 42% 2.1%
Panko & Halverson [PH96] 42 79% 5.6%
Panko & Halverson 35 86% 4.6%
Panko & Sprague [PS99] 26 35% 2.1%
Panko & Sprague [PS99] 17 24% 1.1%

Table 4.2: Results of development experiments, summarized by Panko [Pan00].

62 CHAPTER 4. SPREADSHEET ERROR STUDYS

Special attention was paid to wrong sums, wrong formatting and errors that were
reported by Excel.

After these routine checks in the value domain a prototype of the toolkit
described in Chapter 7 was applied. The irregularities thus discovered were then
discussed with the spreadsheet authors to find out if the detected irregularities
were deliberately introduced or whether they had to be corrected and counted in
the error statistics.

Thus, the auditor had a lot of discussion with the domain specialists who
created the spreadsheets. All documented errors have been acknowledged by the
spreadsheet creators. The identified errors were collected in an error database.
For each error information about the location, the kind of error and its impact
was gathered. Additionally, a short description was stored.

Examined Spreadsheets

The audit examined three large Excel workbooks. Each of them was used to
gather data from various departments of the company and to calculate different
financial ratios at the corporate level. These financial ratios are an important base
for strategic decisions. The workbooks analyzed served the following purpose.

RAT-2001 calculates a financial statement. Data is aggregated from sub-sheets
that correspond to the enterprise’s organization. Hence, there are work-
sheets for different business-units and corporate sectors. These worksheets
are aggregated to calculate the financial statement of each division. The
spreadsheet has been in use for one year so far. There is extensive main-
tenance each month. The company’s annual budget processed by these
spreadsheets is about $150,000,000.

TP-Report was in use for three months when examined. The lifespan of the
spreadsheet was considered to be unlimited. When audited, the author
was the only user, but it was planned to delegate maintenance of particular
worksheets to other employees. The sheet accumulates data from four other
workbooks that are maintained by four different persons. During our study
the workbook has been fundamentally changed, so we re-audited it. The
results reported only reflect the latest version audited.

AB-Market performs material costs analysis. It has been in use since 1999 and
was modified each year, before budgeting is done. A copy of the workbook
is sent to each branch office where its input cells are filled in by at most
three employees. The completed/updated workbooks are sent to the au-
thor again, who then merges the copies into a single workbook. The data
obtained by this procedure is used to analyze cost of raw material of the
various factories. For the analysis, additional information, such as current
and fore casted volume, costs, price per unit, and average prices are added

4.3. RESULTS OF FIELD AUDITS AND EXPERIMENTS 63

WB #Cells #Occ. #Form. #CE #Lit. #EC Errors
RAT-2001 56, 485 19, 444 12, 382 7, 062 814 21 257
TP Report 69, 835 23, 502 16, 873 6, 629 950 83 1, 561
AB-Market 66, 385 17, 500 7, 174 10, 326 95 5 14
Total 192, 705 60, 446 36, 429 24, 017 1, 859 109 1, 832

Table 4.3: Absolute error distribution. WB denotes Workbook, Occ. Occurences,
Form. Formula, Lit. Literal, EC error-classes, CE copy-equivalence classes.

WB #Cells #Occ. #Form. #Lit. CE
Formula #EC Errors

RAT-2001 56, 485 34.00% 64.00% 36.00% 66% 21 1.30%
TP Report 69, 835 34.00% 72.00% 28.00% 56% 83 6.70%
AB-Market 66, 385 26.00% 41.00% 59.00% 13% 5 0.08%
Total 192, 705 31.37% 60.27% 39.73% 51% 109 3.03%

Table 4.4: Error distribution, relative (Error-% is given relative to occupied cells).
Abbreviations are the same as in Table 4.3.

to the workbook. This information is extracted from the companies’ SAP-
based information system. The workbook calculates a budget target for
each factory that can be compared to the planned budget. The calculated
budgets’ values are about $13,000,000 each.

Overview of Results

In 78 audited spreadsheets, 109 error classes with 1,832 occurrences were iden-
tified (see Table 4.3 on the facing page). As the workbooks usually consisted
of similar spreadsheets, the occurrence of one error class is not limited to one
spreadsheet. We identified several error classes that were copied into different
spreadsheets of the same workbook.

The workbook TP-Report was still under construction when the study finished
and so many of the identified problems were immediately corrected. This explains
why so many error classes were detected in this workbook. The workbook AB-
Market was re-designed a short time before the audit took place. Hence, there
was only a small amount of errors in the model.

The distribution of errors in the audited workbooks is given in absolute num-
bers in Table 4.3, whereas Table 4.4 gives the relative distribution as a percentage.

By classifying the errors and error classes into quantitative and qualitative
errors, we obtained the distribution given in Table 4.5. The classification into
the error-categories listed in Section 4.2 is given in Table 4.6 on the following
page. The category Others consists of a wide diversity of error classes with
patterns more or less unique for the individual instances.

64 CHAPTER 4. SPREADSHEET ERROR STUDYS

Workbook Error Category Error Classes Errors

RAT-2001 qualitative 7 84
quantitative 14 183

TP Report qualitative 73 1, 503
quantitative 10 58

AB-Market qualitative 5 14
quantitative 0 0

Total qualitative 85 1, 591
quantitative 24 241

Table 4.5: Error classification into qualitative and quantitative errors

Error Category Error Classes Errors

Constant instead of formula 16 1222
Constant instead of reference 8 78
Reference to empty cell 8 78
Formula copied to far 24 215
Other 53 239

Table 4.6: Error distribution by error category

WB #Form. #CE EC CE/Form. EC/CE / Err./Form.
RAT-2001 12.382 811 21 6, 6% 2, 6% 2, 07%
TP-Report 16.837 950 83 5, 6% 8, 7% 9, 25%
AB-Market 7.174 95 5 1, 3% 5, 2% 0, 19%
Total 36.429 1.859 109 5, 1% 5, 9% 5, 02%

Table 4.7: Error class (EC) distribution, relative to copy-equivalence classes (CE)

4.3. RESULTS OF FIELD AUDITS AND EXPERIMENTS 65

The Copy-Equivalence to Formula ratio, i.e. the average size of each copy
equivalence class was calculated. In the average, each copy-equivalence class
contains 5.1 formulas. Thus, only every fifth formula cell of the spreadsheet had
to be checked in detail. Of course, this measure is blurred, as there are certain
formulas, e.g. check-sums or other validation formulas, that occur only once,
whilst others occur more than 20 times. For multiple occurrences of the same
formula it had only to be checked if they are used in the right place.

The frequency of occurrences of error classes relative to copy-equivalent classes
is obviously related to the frequency of errors relative to formulas. This seems to
support our assumption that errors are likely to be multiplied by copy & paste.
However, as it is shown by Table 4.7, the workbook AB-Market does not follow
this trend. It is argued that this is due to the ’youth’ of this workbook. The
errors detected seem to be mainly in check-sums and thus, not copied over many
cells.

Discussion of the Audit’s Result

The quality of the company’s spreadsheet was surprisingly good at first sight. The
audit did not reveal tremendously wrong results. This might be due to the fact
that the spreadsheets have been properly tested in the developers’ perspective,
i.e. on the value level. However, the corrections were usually made on the value
level, which made the spreadsheet model inconsistent. This bears the danger of
spectacular errors to turn up in future evolution steps. However, the audit still
discovered 241 quantitative errors in the spreadsheets.

The company’s representatives were very concerned about the audit’s result.
They stated that better spreadsheet development practices are going to be intro-
duced. The representatives were also interested in guidelines to decide whether a
specific application should be realized by a spreadsheet or by a database applica-
tion. Among of the suggested improvements were better documentation and the
application of systematic testing and auditing approaches.

Summary

The following issues have been addressed in this chapter:

• There are various kinds of spreadsheet errors.

• Accidental errors cannot be avoided.

• Mistakes are caused by wrong concepts, whilst

• Errors are typical slips of the human brain.

• There are quantitative and qualitative errors/mistakes.

66 CHAPTER 4. SPREADSHEET ERROR STUDYS

• Development experiments showed cell error rates between 1% and 14%

• As qualitative errors are not recognized on the value level,

• They accumulate during evolution cycles.

• Superficial error correction and lack of documentation are the main reasons
for qualitative errors.

• Qualitative errors usually turn into quantitative errors in future evolution
cycles.

Chapter 5

Survey of Spreadsheet
Development, Auditing and
Testing Methods

So far it was pointed out that spreadsheet errors are as widespread as spreadsheet
applications and that they can have remarkable impact. In order to get the
attention of managers, it is important to provide some drastic examples of the
impact of errors and show the statistical evidence1. As a matter of fact, the
negative arguments as such are usually not sufficient to convince decision makers.

In order to improve spreadsheet error rates, a way out of the chaos must be
shown. Some researchers who deal with spreadsheet related issues, like Grossman
[Gro02], call for a new discipline, the so-called spreadsheet engineering, to develop
an integrated approach to support spreadsheet development.

It is considered important to stress the positive impact of a professional ap-
proach to spreadsheet development, i.e. shorter development time, less errors and
a higher overall productivity. As stated by practitioners and researchers2, these
advantages of a defined process are even more suitable for gathering the attention
of the decision-makers in commercial enterprises than the threat of errors.

Although there has been no widespread discipline of spreadsheet engineering
yet, the remaining chapter will discuss spreadsheet development techniques that
have been proposed up to now. Therefore, a categorization into techniques consid-
ering the development process as a whole (Section 5.1), layout-design guidelines
(Section 5.2, logical design and implementation (Section 5.3), testing (Section
5.4) and visual spreadsheet auditing techniques (Section 5.5) is made.

1The same scene could be observed in the early days of software engineering, too [BBL76,
Bro95, CK02]

2during a panel discussion at EUSPRIG 2002

67

68 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

Real− World− Problem

Spreadsheet Program

Immediate
Feedback

Trial & Error
Repetition

Figure 5.1: The spreadsheet development process as described by Nardi and
Miller [NM90a] is similar to a code & fix life cycle of conventional software (de-
scribed by Boehm [Boe88]).

5.1 The Spreadsheet Development Process

In Chapter 3 the differences between spreadsheets and conventional software were
summarized. Putting the focus on the development process and trying to divide
the process into the steps of a waterfall model (see Boehm [Boe88] for a discussion
of software life cycle models) the following assumptions can be made:

Analysis: Apart from the fact that typical spreadsheet users are not aware that
they are writing programs at all, they are also often not aware of the actual
real-world problem to solve. Nardi and Miller [NM90a] state that the ab-
straction step that is performed by implementing a spreadsheet program is
generally an important step for the users to get a better understanding of
the real-world problem. As there is no explicit analysis step in the spread-
sheet development process (see Figure 5.1), the problem is analyzed and
understood by an iteration of trial and error steps.

Design: According to software-engineering literature (see e.g Budgen [Bud94])
designing conventional software deals with identification of components,
their functionality and their interfaces. The design phase of spreadsheets is
often driven by the desired geometrical design, not by the conceptual design
(see e.g. Nevison [Nev87]). There is no specification of the spreadsheet
program nor of the formulas of the cells. The spreadsheet writers try to
find an allocation for values in a way that corresponds to the geometric
model they have in mind.

Implementation: The implementation of a spreadsheet program differs from

5.1. THE SPREADSHEET DEVELOPMENT PROCESS 69

the implementation of conventional software, because of the trial-and-error
iterations that we have already mentioned. This approach is also supported
by the fact that the users immediately see the impact of their modifications
to the spreadsheet. The missing design and specification also influences the
implementation part. Furthermore, the techniques for reducing the com-
plexity of programming conventional software, e.g. modularization, local
variables or parameters, are not supported by spreadsheet systems. Mul-
tiple worksheets in a workbook are usually not suitable to introduce mod-
ularization. It turned out that the error rate of spreadsheets consisting of
multiple worksheets increases (see Janvrin et al. [JM00]), because spread-
sheet users are not forced to define interfaces. However, in the hands of a
disciplined spreadsheet programmer, multiple worksheets can decrease the
overall complexity of a spreadsheet program.

Testing: Considering conventional software testing gets a lot of attention. Test-
ing spreadsheet programs deals with some extra problems. There is no
specification, the people who test the spreadsheet are often those who im-
plemented it. Consequently, there is no risk-awareness although a spread-
sheet program is generally astonishingly complex. Long-term studies (see
Chapter 4) stated that errors were found in a high number of the exam-
ined spreadsheets. The conclusion is that the explicit testing phase in the
spreadsheet development process is either neglected or not performed with
enough care, even if crucial decisions are based on the results of a spread-
sheet.

Maintenance: Maintenance of spreadsheet programs is a rather tricky task.
There are no design documents and normally there is also no documenta-
tion. Nevertheless, spreadsheets are often modified to solve problems that
are related to the one they were designed for. Even when these modifica-
tions are done by people who are aware of the conceptual model behind the
spreadsheets, this is a very error prone task.

Summarizing the statements above, the spreadsheet development process seems
to consist of a design phase that deals with the layout of the spreadsheet pro-
gram, a combined analysis and implementation phase and a neglected testing
phase. Maintaining spreadsheets is very difficult but at the same time a common
task.

The spreadsheet life cycle outlined so far corresponds with the findings of most
of the studies that have been introduced in Chapter 4. However, it has also been
shown that many errors can be avoided by a better planned process. Therefore, a
structured spreadsheet development approach, the so-called R.A.D.A.R life cycle,
is suggested by David Chadwick in [CR98, CRKE99].

70 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

5.1.1 The R.A.D.A.R Spreadsheet life cycle

The R.A.D.A.R Spreadsheet Life Cycle, developed by the University of Green-
wich, divides spreadsheet development into five phases that sound familiar for
software engineers:

1. Requirements

2. Analysis

3. Design

4. Acceptance

5. Review

However, the similarity is only superficial. Having a closer look at each of the
phases reveals that some important differences appear that reflect the differences
between spreadsheets and conventional software.

Requirements Phase

The requirements phase of the R.A.D.A.R life cycle model is very similar to the
initial stage of the various life cycle models for conventional software. This phase
is meant to answer the following questions:

• What is the purpose of the spreadsheet?

• Which staff are to be consulted?

• How long to do? What cost to do?

Although this phase is the only stage to collect requirements, these ques-
tions do not deal with requirements in the first place- in conventional software
development cycle, this phase resembles the feasibility study.

However, the lack of an explicit requirements analysis is not as negative as it
sounds considering the fact that spreadsheet writers are usually domain experts
and write spreadsheets for their special needs. Nevertheless, later phases of this
life cycle suggest the idea that the spreadsheet program is developed by a pro-
fessional programmer for a customer (see the Acceptance and Review phases). In
this case, the requirements phase appears to be insufficient.

5.1. THE SPREADSHEET DEVELOPMENT PROCESS 71

Analysis Phase

The analysis phase that is attached to the requirements phase contains the fol-
lowing analysis, design and implementation tasks:

• Gather Data: interviews, documents

• Define Row and Column Titles,

• Define Modules: Data, Simple and Complex functions

• Identify Title Links

• Create Functions

• Create Lookup Data Modules

• Identify Data Links

Again, the analysis tasks are not what would be expected in the analysis stage
of a life cycle for conventional software. The term modules that is used by Chad-
wick [CR98] refers definitions that are given by the structured methodology for
spreadsheet design, a spreadsheet development technique that was developed at
the University of Greenwich by Knight and Rajalingham [KCR00, RCKE00] (see
Subsection 5.3.3). Although the life cycle model recommends this development
technique, it is not restricted to it.

Linked to the structured spreadsheet design approach, the tasks of the analysis
phase of the R.A.D.A.R life cycle are rather design and implementation than
analysis tasks in the classical sense. However, spreadsheet writers usually do
not comprehend the term design the way software engineers do. For spreadsheet
writers, design rather refers to the geometrical layout of the spreadsheet. Thus,
to avoid any ambiguities the term design is not used at this stage.

Design Phase

The design phase deals with finding the final layout for the spreadsheet program.
The layout restrictions of the structured methodology for spreadsheet design (see
Subsection 5.3.3) have to be considered. Surprisingly, additional tasks of this
phase test the spreadsheet instance for correctness and develop a user guide.

Obviously, the spreadsheet program is instantiated in the design phase and,
therefore, the first chance for testing it is at this stage. However, if the program
is developed separately from the geometrical design (see the corresponding tasks
in the analysis phase), the opportunity should be used for testing the program
independently of the layout, as well.

Nevertheless, considering spreadsheet writers end-users, it is obvious that they
do not distinguish between the spreadsheet program and the spreadsheet UI.

72 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

Acceptance and Final Review Phase

The last two phases are similar to deployment and maintenance phases in life
cycles for conventional software. In the acceptance phase, the users should be
trained, another testing phase, this time together with the spreadsheet users3, is
carried out, and eventually, the handover to the client takes place.

The final review phase had better be called the operation and maintenance
phase, because it contains the following two steps:

• Let it operate for a while

• Does it satisfy the client? If not, then start again.

Evaluation and discussion of the R.A.D.A.R model

The R.A.D.A.R model has been taught at university courses for business students
at Greenwich since 1998. Chadwick [CR98, Cha02] claims that the overall quality
of the spreadsheets that are developed in graduate courses has significantly im-
proved since then. As students have to write spreadsheet programs as main part
of their exams, Chadwick argues that average increments between 3 and 6 points
in the examination results are a proof for the efficiency of the R.A.D.A.R life
cycle model. Chadwick [CR98] argues that common influences on examination
grades, like well-motivated and well-trained teaching staff or a higher number of
students attending the course, do not apply for this specific experiment, since

• only one of several courses was directed by a person involved in the develop-
ment of the R.A.D.A.R life cycle. The other staff had to make themselves
familiar with the technique during teaching. Thus, advantages in motiva-
tion might have been compensated by less experience of the teachers, and

• statistics have not shown higher student numbers in the courses.

However, the results have to be read with care, as there are many implicit in-
fluences on course results and an increase between 3 and 6 points, i.e. 3 and 6
percent, is, though significant, not revolutionary high.

The approach has also remarkable drawbacks. At first, the findings of Nardi
and Miller [NM90a] on the nature of spreadsheet writers are ignored (see Section
3.1). In the R.A.D.A.R approach it is assumed that they are willing to submit
to a rigorous life cycle and development methodology.

Additionally, the testing phase that should be paid specific attention to, be-
comes a sub-task of the geometrical design. This proceeding will encourage super-
ficial testing with all its drawbacks (see Section 4.3). After all, having a look at
the tasks in the requirements and acceptance phase of the process, it is obviously
assumed that a client is involved in the development process. There are a few

3Chadwick[CRKE99] literally uses the term user/client

5.1. THE SPREADSHEET DEVELOPMENT PROCESS 73

Definition of model
outcome/decision
variables

Construct the
model

Test the spreadsheet

Documentation

Prepare a user−manual

Training

Problem identification

Installation

Errors

Errors
models and structure
Audit the spreadsheet

Figure 5.2: The spreadsheet development life cycle, suggested by Ronen [RPL89].
The dashed phases are optional.

spreadsheets that are developed by professional programmers for some clients,
but as empirical research (see Chapter 2 and Chapter 4) has pointed out, most
of the spreadsheets are developed by the person in charge in the organization.

5.1.2 Spreadsheet Analysis and Design

An alternative to the life cycle model described above is presented by Ronen et
al. [RPL89]. Again, the suggested spreadsheet development life cycle considers
many particularities of spreadsheet programs and their creators (see Figure 5.2).

Nevertheless, the life cycle model is intertwined with a spreadsheet develop-
ment technique that imposes restrictions on the layout and forces the spreadsheet
writers to introduce a design of the spreadsheet program by means of an extended
data-flow graph. Ronen et al. [RPL89] recommend different approaches for the
development of spreadsheet programs that depend on the context of use and the
complexity. For spreadsheets that are intended for personal use only, an ad-hoc
approach is suggested, whereas complex spreadsheets that are meant as company
wide information sources should be implemented by using formal methods.

As a matter of fact, Ronen et al. do not pay enough attention to the evo-
lution of spreadsheets. Although the life cycle model basically supports multi-
ple iterations through the life cycle, the change of the importance and usage of
spreadsheets is not taken into account. Not all the parameters that are required

74 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

to make a decision about a spreadsheet program’s importance are known in ad-
vance. Many spreadsheet programs are initially intended for short life cycles and
personal usage, and eventually become important for the organization. Hence,
the suggested development technology will not be the optimal one.

A more detailed description of the specific phases of the life cycle model will
not be given at this point. However, these phases incorporate tasks that are
very similar to the R.A.D.A.R model. Indeed, the R.A.D.A.R model seems to
be another formulation of Ronen’s ideas, replacing the specific data-flow-oriented
design approach with other restrictions.

5.2 Layout-Design Guidelines

This section summarizes the guidelines for good spreadsheet design that are given
in the literature. The guidelines presented here consider only the geometrical
layout of the spreadsheet and thus, have to be separated from layout restrictions
based on the formula structure that will be surveyed in Subsection 5.3.3.

Subsequently, different style guides, i.e the 10 Tips to Improve Spreadsheet
Style guide [Pfa01], Spreadsheets with Style [Nev87] and the recommendations of
Ronen[RPL89] will be briefly discussed.

5.2.1 Improving Spreadsheet Style

Pfaffenberger [Pfa01] gives 10 rather simple recommendations to make spread-
sheets more readable. Although they are rather simple-minded at the first glance,
to obey these recommendations will effectivley increase the readability of spread-
sheets. Nevertheless, as spreadsheet programs are often based on predetermined
layouts, spreadsheet writers are not willing to follow the recommendations. Ad-
ditionally, some of the given recommendations obviously contradict other style-
guides. So, Nevison’s style-guide [Nev87] recommends to make blocks for con-
stants, input and formulas, whereas Pfaffenberger recommends to keep related
things locally together.

The following recommendations are given:

Write a spreadsheet like a report

Thus, write from the left to the right, and from bottom to top. Indeed, there are
also some spreadsheet auditing tools (e.g. Chan [CC00, Cha01]) that bank on
such regularities of spreadsheet programs.

Put formulas and related constants together

Pure input-blocks should be avoided. It is argued that this improves the spread-
sheet user’s understanding of the context of a formula. This is surely the case.

5.2. LAYOUT-DESIGN GUIDELINES 75

However, the maintenance of the spreadsheet program, and even the (re-)instan-
tiation of a spreadsheet program becomes more difficult, as the spreadsheet user
has to be aware whether he is allowed to overwrite a formula or not.

Protecting the formulas is no solution, as it has been observed that the spread-
sheet users tend to override cell-protections that they consider useless. Addi-
tionally, some of the formulas might actually be input-data and only used for
convenience.

The three crayon rule

It is argued that people cannot remember the meanings of more than three differ-
ent colors. This suggestion seems reasonable. However, psychologists argue that
the short-term memory is able to store 4–5 different colors (see Lee and Chun
[LC01]).

The glowing formula rule

This rule suggests that the used formulas should be marked by a special color.
Although this might increase the understanding of where formulas are, this rule
is surely not applicable in domains where the meaning of figures depends on their
color (e.g. bookkeeping).

Put it all on one sheet

It is argued that the usage of multiple worksheets significantly increases the
overall error rate of spreadsheet programs (see Janvrin [JM00]). Additionally,
it is stated that the user still has a chance to comprehend the structure of a
spreadsheet program by using the built-in zoom function if it is presented on a
single sheet.

However, very large spreadsheets, that are often found in commercial appli-
cations, consist of up to 70, 000 cells (see Clermont et al. [CHM02]). On a single
spreadsheet, this would take at least 270 × 270 cells without a single blank cell
in between. Thus, it is questionable if this suggestion is applicable for large
spreadsheets.

The remaining tips are more or less common sense, e.g. unambiguous labels
should be used, leave the grid as it is, cells with a formula must not look blank,
be concise, and so on.

Although each of the suggestions can be put in question either by empirical,
psychological or domain-specific findings, following them will definitley improve
the spreadsheet’s readability. As readability influences the spreadsheet’s quality
in the long term, many maintenance errors that are introduced due to misunder-
standings of the model can be avoided.

76 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

Identification: Owner,
 Developer, User
Date Revised
File Name

Macros
Menus

Map of Model

Parameters
(Assumptions)

Model
Formulas / Matrix
Input Vectors
Decision Vectors
Parameter Vectors
Output Vectors

Figure 5.3: Spreadsheet structure recommended by Ronen et al. [RPL89]

5.2.2 Further Style Guides

Many other style guides (see e.g. Nevison [Nev87], Ronen [RPL89] and Berry
[Ber86]) recommend a different arrangement of the spreadsheets’ contents (see
Figure 5.3). The spreadsheet is split up into different parts with different tasks.
In contrast to Pfaffenberger’s recommendation, the geometric distance between
input values, constants and the concerned formulas can be rather large, as there
is a section for the input values, one for formulas and another one containing the
constants.

Although the self-explanatory powers of such a spreadsheet are usually not
very high, such an arrangement ressembles much to conventional software that is
structured similarly. Thus, maintenance and re-instantiation of a given spread-
sheet program can be performed far more efficiently and less error prone. The
locations of formulas are obvious, and the spreadsheet users are aware of which
cells can be provided with input data (even in the form of simple formulas).

Nevertheless, the connection between input values and the corresponding for-
mulas is not clear anymore and the spreadsheet users might not be aware of
the overall influence that changes in the input can have on the output of the
spreadsheet program (yet, this is similar to conventional software, too).

In order to increase the spreadsheets’ comprehensability, a large part of the

5.3. LOGICAL SPREADSHEET DESIGN 77

spreadsheet (the map of model in Figure 5.3) is dedicated to explain how the
model works and where on the spreadsheet UI a certain part of the model is
implemented. The parameter-block contains the constant values that are used in
the formulas. Finally, in the model-block, the input, formula and output vectors
are placed. It is suggested to consider whole columns or rows to be such vectors.

In fact, many users intuitively come to a spreadsheet layout that conforms
to such a style guide. However, the clear separation tends to blur over time, as
some of the entries in the input vector become formulas themselves, or new pa-
rameters are introduced (or some others replaced by formulas) without adjusting
the spreadsheet programs documentation.

5.3 Logical Spreadsheet Design

As spreadsheet writers often sense a spreadsheet as a modeling tool (see Nardi
and Miller [NM90a]), the layout-design guidelines aim to reduce their models’
complexity by restricting the number of possible layouts. Similar to software
engineering there are also some approaches that try to reduce the complexity of
spreadsheet programs even further by introducing a certain design paradigm that
can be data-flow-oriented (e.g. Ronen [RPL89]), layer-oriented (e.g. Isakowitz
[ISL95]), structure-oriented (e.g. Knight and Rajalingham [KCR00, RCKE00,
CRKE99] or constraint-based (e.g. Stadelmann [Sta93] and Wilde [Wil93]).

Generally, each of these approaches goes beyond simple limitations of the lay-
out. They introduce an explicit design4 and modeling step into the spreadsheet
development lifecylce. Hence, the tasks of implementing, testing and maintaining
a spreadsheet program will be supported by the explicitly stated design. Never-
theless, following these approaches also imposes restrictions on the spreadsheet
layout.

Subsequently, each of the above stated spreadsheet design paradigms will be
presented and discussed.

5.3.1 Data Flow Oriented Spreadsheet Design

In Subsection 3.3.5 the spreadsheet evaluation strategy was widely discussed. It
has been shown that a spreadsheet program appears at the first glance as a data
flow program. Data-flow-oriented spreadsheet design techniques build up upon
this view on the spreadsheet. Usually, the spreadsheet designer is offered an
enriched data flow modeling technique in order to visually model the DDG (see
Definition 13 on page 24) and the formulas.

For larger spreadsheets the DDG is a complex graph. Thus, a visual model of
the pure DDG is not of much gain for the spreadsheet’s maintainers. Therefore,
Ronen [RPL89] offers a more compact modeling technique. Instead of modeling

4This time, the term design does not denote geometrical or layout design, but logical design

78 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

I

(a)
Input Vector

O

(b)
Output Vec-
tor

D

(c)
Decision Vec-
tor

P

(d)
Parameter
Vector

(e)
Formulae
(Model)

Figure 5.4: Elements of the spreadsheet flow diagram notation, introduced by
Ronen [RPL89].

the data flow on a detailed level, they suggest to model relationships. Therefore,
the so-called Spreadsheet Flow Diagram (SFD) (see Figure 5.4) is defined. In this
notation, formulas with equal semantics are represented by a single node, which
also applies for their input and output.

In order to visually model a spreadsheet with the spreadsheet flow diagram,
five different node types are available: input vector, output vector, Decision Vec-
tor, parameter vector and formulae. Each of these nodes is briefly described in
the following.

Formulae

Formulae are the place where data manipulation is performed. Thus, they are
targeted by edges from all node types. An arbitrary number of formulas with the
same semantic are represented by one formula node. Each of these formulas may
consume only one value from each targeting node and supply only one output.

A formula node can be further decomposed into less complex formula nodes.
Thus, the formula node might have more than one corresponding cell on the
spreadsheet UI for each of the elements (see Example 2).

Input Vector

The input vector models cells that are referenced by a formula. In the graphical
notation, an edge is placed between the input vector and formula node. Although
the input vector contains a set of semantically related cells, only one element of
the vector serves as the input for one formula. It is suggested to place cells
that are modeled by the same input vector adjacent as rows or columns on the
spreadsheet UI.

Only user supplied input is modeled by the input vector. If the results of
another formula serve as input for a computation, this is modeled by an edge
between the two formula nodes.

5.3. LOGICAL SPREADSHEET DESIGN 79

Output Vector

The notion of an output vector is not clear and not further defined by Ronen
et al. It seems that they distinguish between intermediate results, that are only
represented by a formula node, and final results. Cells that belong to a result that
is obviously interesting for the user, are represented by such an output vector. To
model the origin of the result, an edge is placed from the corresponding formula
to the output vector.

Decision Vector

The decision vector is similar to the input vector. However, cells in a decision
vector are only used for conditions in if-statements in the formula vector.

Parameter Vector

The parameter vector contains cells that contain variables the calculation depends
on, but are not supplied by the user, e.g. tax-rates. Parameters are often used
by more than one formula. As opposed to inputs, the same parameter can be
used by more than one formula.

In [RPL89] the following example for the illustration of spreadsheet flow diagrams
is given.

Example 2: Spreadsheet Flow Diagram
In Figure 5.5(a) on the following page a spreadsheet for predicting sales of a new
product is introduced. The upper part, containing information about release, au-
thor as well as brief documentation of the spreadsheet’s model has been skipped.
The supplied parameters are used by the formulas of the model via absolute cell
references, whereas all other references are relative ones (the formula view of the
spreadsheet’s model part is given in Figure 5.5(b) on the next page).
In Figure 5.6(a) on page 81 a high level spreadsheet flow diagram is given. The
input vector has a subscript t to indicate that the model is predicting values over
a time period. In Figure 5.6(b) on page 81 the formula is exploded into a lower
level of detail. ♦

Obviously, the SFD of a spreadsheet is a helpful means of understanding a
spreadsheet program. The logic of the spreadsheet program is explicitly stated,
and thus, easier to comprehend. However, the SFD notation is not widely ac-
cepted amongst spreadsheet programmers and no further evaluation was done.
One of the drawbacks of the technique is that it forces the user to make a data-
flow-oriented (or, as Ronen argues, a relationship-oriented) model of their prob-
lem, before they start writing the spreadsheet program. Thus, the great value of
the spreadsheet as modeling tool (see [NM90a]) is neglected.

80 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

(a) The spreadsheet

(b) Formula view of the model part

Figure 5.5: Example spreadsheet for the SFD modelling technique.

5.3. LOGICAL SPREADSHEET DESIGN 81

Sales t

I

P

Variables

Sales −
Expense

Profit =t
t

t

Profitt

O

(a) High-level SFD for the model

Expense

t
t

t

Sales −
Profit =

Sales =
Units *

Price

Expense =
Fixed +
Promotion +
Variablet

t
t

(b) More detailed SFD for the
profit-formula

Figure 5.6: Example SFD model of a simple spreadsheet (see Figure 5.5(a) on
the preceding page)

82 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

Additionally, the mapping from the SFD to a specific spreadsheet program is
not as clear as it seems. Elements of a specific vector have to be mapped to a
spatial area of the spreadsheet. Although the membership in a specific vector is
due to semantic criteria, it does not explicitly require a sameness of the formula.
In Example 2, Salest is represented by the formula Salest = Unitst∗Price. However,
having a look at Figure 5.5(b) on page 80, it is recognized that the units for 1998
are a constant value, whereas those for 1999 and 2000 are calculated by a formula.

Another ambiguity of the suggested modeling technique is the assumed clas-
sification of cells into input, formula and output cells. Although this structure
seems reasonable at first sight, the nature of spreadsheet programs does not allow
an unambiguous classification of cells into one of these categories. Each cell is
displayed, hence each cell might be an output cell. Each cell can be referenced
by formulas, and the user is free to supply an input by specifying a formula, thus
each input cell can be a formula cell and vice-versa. The criticized ambiguities are
also shown in Example 2. In Figure 5.6(a) on the page before Salest is modeled
as an input vector, whereas a look at the model in more detail reveals that Salest
is a formula.

Although the nature of spreadsheet programs and spreadsheet writers makes
it very hard to introduce an explicit design step in the spreadsheet development
life cycle, the SFD notation obviously supports the comprehension of a given
spreadsheet program. In Chapter 6, an approach is introduced that can reverse
engineer spreadsheet programs into a notation that is very similar to the SFD.

5.3.2 Relational Spreadsheet Modeling

Usually the software’s logical model is treated separatley from the input data.
However, spreadsheet’s are different in this request, too. The spreadsheet writers
are encouraged by the user interface of the spreadsheet system to intertwine
the spreadsheet program nearly inseparably with the input data. Although the
approaches described so far postulate the introduction of any kind of logical
design for a spreadsheet, no distinction between model and input data can be
made after the spreadsheet has been instantiated.

Therefore, Isakowitz et al. [ISL95] suggest to view a spreadsheet separated
into a logical and a physical view. The physical view of a spreadsheet instance is
defined as a set of triples that relates cells with values and formating rules.

Definition 15: Physical View
The physical view of a spreadsheet instance is a set of triples: SSI =
{(CA, Definition, formatting rules}. CA denotes a cell’s address, the definition
specifies the value that is displayed at the given address, and can be either a
calculated or a constant value. �

Thus, Isakowitz et al. [ISL95] argue that the spreadsheet UI can be con-
structed by rendering the physical view of the spreadsheet instance. As only

5.3. LOGICAL SPREADSHEET DESIGN 83

values are rendered, formulas are not part of the physical view. However, this
does not capture the essence of spreadsheet programs. Therefore, the logical view
is introduced.

The logical view of a spreadsheet consists of so-called functional relations.
Functional relations are defined similarly to relations in relational databases, as
they consist of attributes and can have one or more tuples (see [EN94, Vos00] for
a discussion of relations and their use in relational database systems), but they
can contain either data attributes, i.e. constants, or functional attributes that are
bound to functions that are calculated as needed.

Isakowitz et al. denote the set of functional relations that are stated to build
the skeleton of a spreadsheet5 with the letter S. As a spreadsheet also consists
of some constant values and editorial remarks, e.g. labels, the data property D
holding all constant values and an editorial property E for labels and formatting
issues are introduced. In order to map such a logical view of a spreadsheet to a
physical view, a binding property B is specified, too. Thus, a spreadsheet can be
defined in the following way:

Definition 16: Spreadsheet
A Spreadsheet is the (symbolic) sum of S + D + E + B. �

Although this definition is not similar to Definition 4 on page 20, there is no
contradiction. On the one hand, we argue that the spreadsheet is a set of cells,
on the other hand, in [ISL95] some implicitly given semantics of these set of cells
are factored out.

In order to clarify the terms and concepts, Example 2 is resumed.
Example 3: Extracting the logical model from a spreadsheet
The spreadsheet that is presented in Figure 5.5 on page 80 consists of two sepa-
rate relations, one for the parameters and the second for holding the model for
prognosis. While the parameter section contains only constants, in the model
section several cell values are calculated by formulas. Thus, the functional rela-
tion S (see Figure 5.7(a) on the next page) also contains the two relations. In the
relation parameters only references to numeric entries are made, whereas relation
New Product Projections, i.e. the model part, contains both formulas that are
stated in the functional relation, and references to numeric entries.

The data relation D (see Figure 5.7(b) on the following page) contains all the
remaining numeric values. Calculated values are represented by the letter ’c’. ♦

It is remarkable that the representations of S and D are stated independently

from the spreadsheet UI. In [ISL95] it is argued that the data for D can be easily
read out from any relational database. It is only a matter of the binding B to
map the so stated logical model to a spreadsheet.

5This corresponds to our findings in Definition 10 on page 23 where the spreadsheet program
is defined to be essentially formed by the cells that contain formulas.

84 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

relation parametersalias a type vector
SalesGrowth: numeric
Interest: numeric
Price: numeric
VariableCosts: numeric
TaxRate: numeric
AssetsDeprec: numeric

relation New Product Projections alias p
Unnamed1: numeric key

Sales(Units): if n = 1 then numeric
else pn−1.Sales(Units) ∗ (1 + a.SalesGrowth)

Revenue: pn.Sales(Units) ∗ a.Price
VariableCost: pn.Sales(Units) ∗ a.V ariableCosts
FixedCost: numeric
Promotion: numeric
GrossProfit: pn.Revenue− pn.V ariableCost− pn.F ixedCost− pn.P romotion
Deprecation: numeric
Taxes: if(pn.GrossProfit− pn.Deprecation) > 0

then (pn.GrossProfit− pn.Deprecation) ∗ a.TaxRate
else 0

NetProfit: pn.GrossProfit− pn.Deprecation− pn.Taxes

(a) Schema S

a
SalesGrowth Interest Price VariableCosts TaxRate AssetsDeprec
0.45 0.12 350 75 0.35 500000

p
U1 SU RV VC FC Promo GP Deprec. Taxes NP

1998 5000 c c 900000 1000000 c 25000 c c
1999 c c c 900000 1000000 c 25000 c c
2000 c c c 900000 1000000 c 25000 c c

(b) Data D

Figure 5.7: Factorization of the spreadsheet given in Figure 5.5 on page 80 into
functional (Schema) and data relations. In Figure 5.7(b) the names of the at-
tributes were abbreviated.

5.3. LOGICAL SPREADSHEET DESIGN 85

The so stated logical model supports maintenance as well as testing, since the
complexity of the spreadsheet is reduced, because formulas become visible and
the data flow is stated in a more explicit way. However, this approach is based
very much on mapping a spreadsheet instance to relations. But spreadsheet
writers who are usually end-users (see the detailed discussion in Section 3.1) lack
background knowledge about the relational paradigm, that is nowadays taught
to every computer science student. Thus, it is questionable if they benefit from
a logical, relational representation of a spreadsheet.

Additionally, the separation between formulas and data, although highly ap-
preciated by software engineers6, might make it harder for end-users to com-
prehend the spreadsheet. A certain kind of spreadsheet writers, namely IT-
professionals or consultants that specialize in spreadsheets, are of course sup-
ported by this approach.

Testing of formulas becomes much easier, as the spreadsheet program can be
tested independently of the layout. In constrast, many of the spreadsheet testing
methodologies that will be presented in this chapter only support the testing of
a specific spreadsheet instance.

Forward and Reverse Engineering

For most of the spreadsheet programs that are in use today, the S, D, B and E
relations or properties are not explicitly stated. Thus, Isakowitz also presents a
set of Excel- macros that allow users to visually select parts of the spreadsheet
and supply some extra information in order to automatically extract the S, D,
B and E and the FRL representation from a spreadsheet instance. Therefore,
in a first step a map is extracted. The map is a triple of the logical address,
the physical address and either a formula, a constant value or a string. For an
example of a map, see Table 5.1 on the next page.

Having the map and the bounds of the relations, D and S have to be ex-
tracted7. Therefore, a factoring algorithm with the following steps is introduced
by Isakowitz et al. Subsequently, the abbreviation CA denotes the cell address
(see Definition 2 on page 19)

1. For each constant map entry of the form r[i].x : CA, constant, rewrite the
entry as r[i].x : CA, data type, where data type denotes the constant’s data
type.

2. For each formula map entry of the form r[i].x : CA, formula, rewrite the
entry as r[i].x : CA, formula′, where formula′ results from replacing the
addresses of all referenced cells in formula with their map label. Absolute

6However, the object-oriented paradigm breaks this separation.
7As the extraction of B and E is more or less straightforward, a detailed description is not

considered necessary. A brief description is given by Isakowitz in [ISL95].

86 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

p1.Unnamed1 B12 1998 p1.P romotion B17 1000000
p2.Unnamed1 C12 1999 p2.P romotion C17 1000000
p3.Unnamed1 D12 2000 p3.P romotion D17 1000000
p1.SalesUnits B13 5000 p1.GrossProfit B18 =B14-B15-B16-B17
p2.SalesUnits C13 B13 ∗ B3 p2.GrossProfit C18 =C14-C15-C16-C17
p3.SalesUnits D13 C13 ∗ B3 p3.GrossProfit D18 =D14-D15-D16-D17
p1.Revenue B14 B13 ∗ B5 p1.Deprecation B19 25000
p2.Revenue C14 C13 ∗ B5 p2.Deprecation C19 25000
p3.Revenue D14 D13 ∗ B5 p3.Deprecation D19 25000
p1.V ariableCost B15 B13 ∗ B6 p1.Taxes B20 IF · · ·
p2.V ariableCost C15 C13 ∗ B6 p2.Taxes C20 IF · · ·
p3.V ariableCost D15 D13 ∗ B6 p3.Taxes D20 IF · · ·
p1.F ixedCost B16 900000 p1.NetProfit B21 B18-B19-B20
p2.F ixedCost C16 900000 p2.NetProfit C21 C18-C19-C20
p3.F ixedCost D16 900000 p3.NetProfit D21 D18-D19-D20

Table 5.1: The map for the New Product Projection (p) relation in Fig-
ure 5.7(a) on page 84.

p[1].SalesUnits numeric
p[2].SalesUnits p[n− 1].SalesUnits ∗ a[0].SalesGrowth
p[3].SalesUnits p[n− 1].SalesUnits ∗ a[0].SalesGrowth

Table 5.2: Map entries for relation p, attribute SalesUnits. The factoring algo-
rithm has been applied up to step 5.

5.3. LOGICAL SPREADSHEET DESIGN 87

cell references are marked by writing a $ sign before the tuple index in
formula′.

3. Remove CA from all map entries.

4. Collate map entries r[i].x in clusters,
so that each cluster contains entries that have identical relation names (r)
and attribute names (x). Whithin each cluster, sort the entries by the tuple
index (i).

5. Convert absolute tuple references into relative tuple references.
For each map entry r[i].x, with an associated formula containing a reference
to r[j].y, i.e. within the same relation, let d = i− j.

(a) If d < 0, replace j with n− d,

(b) if d > 0, replace j with n + d,

(c) if d = 0, replace j with n.

where n denotes literally the character ’n’. Thus, the target of intra-relation
references is now given by the attribute name and the distance within the
relation.
For each attribute reference of the form r[$j].z, i.e. for each absolute at-
tribute reference, rewrite the reference as r[j].z.

6. Contract the map.
Subsequently, the term cluster denotes a set of map entries with an equal
right-hand side of the entry. In order to aggregate a set of map entries into
a cluster, they must

• denote the same attribute within the same relation, and

• have consecutive tuple indices.

E.g. in Table 5.2 on the preceding page, p2.SalesUnits and p3.SalesUnits
are a cluster. p1.SalesUnits has a different right-hand side, hence it is not
in the same cluster. Having constructed the clusters,

(a) for each cluster eliminate all but the first entry (i.e. the entry with
the lowest tuple index) from the map. The map label of the first entry
is subsequently denoted cluster entry label and

(b) compute tuple index ranges for each cluster. Let cluster entry labels
be r[k1].x, r[k2].x, · · · , r[km].x, with kj ∈ N. For each cluster, rewrite
the entry labels as r[k1 ≤ n < k2], r[k2 ≤ n < k3], · · · , r[n ≥ km].

(c) If a rewritten entry becomes r[j ≤ n < j + 1], rewrite it again as
r[n = j].x.

88 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

(d) If a cluster consists of only one entry, rewrite its single label as r[n].x.

7. Consult the user supplied information about the spreadsheet’s structure to

• get the name for all relations,

• find out the relations’ cardinality,

• identify the keys.

This algorithm results in a representation of D and S, independent from the
spreadsheet UI (see Figure 5.7 on page 84). Given such a representation, as well
as the B and E properties of a spreadsheet, forward engineering from the logical
towards the physical model of a spreadsheet can be done by a synthesis algorithm
that is also proposed in [ISL95]:

1. Let the logical schema of relation r consist of one or more lines of the form
(x : definition), where x is an attribute name.

(a) If x’s definition contains no case structures, rewrite the line as (r[n].x :
definition).

(b) If x’s definition contains linews of the form conditionj → definitionj,
rewrite the lines as (r[conditionj]).x : definitionj.

2. For each attribute reference that occurs in the definition part of each line,
rewrite the references in an extended FRL-syntax8.
If an attribute reference becomes r[j].x for some constant j, rewrite it fur-
ther as r[$j].x.
Eliminate the header r from the schema.

3. Let m be the number of tuples in r, i.e. the cardinality of r.

(a) Replace each line of the form (r[n].x : definition) with a series of m
lines of the form (r[1].x : definition), · · · , (r[m].x : definition).

(b) Replace each line of the form (r[k1 ≤ n ≤ k2].x : definition) with a
series of k2 − k1 + 1 lines of the form (r[k1].x : definition), (r[k1 +
1].x : definition), · · · , (r[k2].x : definition).

(c) Replace each line of the form (r[n ≥ k].x : definition) with a series of
m−k+1 lines of the form (r[k].x : definition), · · · , (r[m].x : definition).

(d) Replace each line of the form (r[n = j].x : definition) with a single
line of the form (r[j].x : definition).

8FRL is a formula-relational-language. A detailed definition is beyond the scope of this work
and can be found in the appendix of [ISL95].

5.3. LOGICAL SPREADSHEET DESIGN 89

4. Let r[i].x be the label of a line, and r[n + j].y is a related (i.e. within the
same relation) attribute reference in the line’s definition. For each such
line, rewrite its related references as r[d].y, with d = i + j.

5. Construct the physical map. For each logical map entry of the form (r[i].x :
definition) and a matching binding entry, create a physical map entry of
the form (r[i].x : CA, definition).

6. Convert relational references to cell addresses. For each map entry of the
form (r[i].x : CA, formula), replace formula with formula′ which is the
same as formula, except that each attribute reference p[j].y that appears
in formula is subsituted with the cell address of the map, whose entry label
is p[j].y.

7. Add editorial entries. Merge the list of map entries produced by now with
the list of editorial entries from E.

Discussion

This approach offers many promising features for spreadsheet programmers.
Amongst them are

• a logical model that is independent of the physical layout of the spreadsheet
instance,

• a neat separation between data and formulas,

• easy integration of spreadsheet programs and relational databases,

• data dependencies become obvious through the FRL language for formulas,
and

• the overall complexity of the spreadsheet might be reduced, because repeat-
edly used formulas are collapsed into so-called clusters.

The last issue supports testing, maintenance and the evolution of spreadsheets.
However, the suggested methodology did not break through in practice, be-

cause of numerous reasons. As it is already stated above, spreadsheet writers are
not familiar with the relational paradigm this approach builds upon. As spread-
sheet writers are end-users, the abstraction of the spreadsheet into relations tends
to puzzle them.

The abstraction that can be generated from a given spreadsheet instance is
indeed helpful, but not sufficiently coarse-grained to support the comprehension
of large spreadsheet instances. Relations that are repeatedly used throughout
a spreadsheet are not recognized as being of the same kind. Thus, for each
instance of a relation, a separate FRL representation is calculated. Isakowitz et

90 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

al. are aware of this problem and argue that an algorithm operating on the FRL

program might help.
In the given context the term relation covers rather semantic relations, i.e. what

the user considers to be related. In fact, each tuple in such a relation can have
another structure of (potentially different) formulas and constants. They are
grouped into relations by the user who selects areas on the spreadsheet UI and
assigns names. Hence, finding similar relations is obviously very hard, when the
internal structure of the tuples in the same relation is very heterogeneous. To
sum up, in order to have an advantage of this approach, the spreadsheet writer
must

• understand the relational paradigm,

• be familiar with the FRL language, and

• be disciplined in order to generate homogenous relations.

Obviously, these requirements will be hard to meet for end-users.

A Spreadsheet Compiler

Isakowitz et al. did not resume their work. However, others have picked up
the thread. Paine [Pai97b, Pai97a, Pai01] introduced an approach to specify a
spreadsheet program via an object-oriented language, thus supporting inheritance
and specialization. Hereby, the relations that are described in [ISL95] are the
objects. However, Paine does not primarily aim to generate spreadsheets. What
he really wants is to take advantage of a spreadsheet like user interface. However,
some features of spreadsheet systems are not supported by ModelMaster, which
is the official name of the spreadsheet compiler.

ModelMaster compiles the program stated in the spreadsheet specification
language to HTML-code that can be viewed with a web browser. The interactivity
of spreadsheet programs is, of course, not present any more. Spreadsheet users
cannot browse through the program and have a look at formulas or change them.
Of course, sometimes this is exactly what spreadsheet writers desire.

Additionally, a spreadsheet specification can also be extracted from a spread-
sheet. Therefore, an algorithm that is similar to Isakowitz’s factoring algorithm
is applied. The so generated specification can then be presented as a read-only,
numbers-only document on the world wide web. An on-line demonstration of
ModelMaster is available at [Pai02], for the fundamental functioning of Model-
Master see Figure 5.8 on the preceding page.

The improvement compared to [ISL95] is obvious: no user interaction is neces-
sary to translate a spreadsheet to an HTML-page. The partitioning into relations
is rather based on heuristics that are based on the geometrical orientation and
neighborhood of cells, as well as on equality of the cell’s formulas.

5.3. LOGICAL SPREADSHEET DESIGN 91

Spreadsheet Program

ModelMaster HTML
Code

Spreadsheet Specification

Figure 5.8: ModelMaster compiles either a spreadsheet specification in a specific
language into a html-page, or extracts the spreadsheet specification from a given
spreadsheet instance

5.3.3 Structured Spreadsheet Modeling

Obviously, Isakowitz et al. [ISL95] relate the logical design of spreadsheets to
databases and therefore, suggest a relational approach. Of course, spreadsheets
can also be seen as software that manipulates data rather than a data store.
Thus, relating the logical design of spreadsheets to structured program design,
as it was described by Jackson [Jac75] is legitimate.

Rajalingham et al. [RCKE00, RCK02, KCR00] suggest to design spreadsheets
like programs. They embedded their design approach into the analysis stage of
the R.A.D.A.R life cycle model for spreadsheets that has been described in detail
in Subsection 5.1.1.

The structured spreadsheet design approach is top-down oriented, i.e. the de-
sign starts by defining the desired output of the spreadsheet program. Each of the
identified outputs are then decomposed into parts that are again analyzed and
disassembled until the spreadsheet writer does not consider a further fragmenta-
tion to be useful. If a specific unit is used by more than one superordinate unit,
it is duplicated. In order to keep the design simpler, only the unit is duplicated,
but not its subordinates.

Each of the parts is then analyzed in terms of whether it is iteratively repeated,
one part of an alternative decision or one step in a sequence. Thus, the outcome
of this design-step is a tree structure, representing the relationship of cells.

Implementation

Once the logical design is completed, it is suggested to figure out the formulas
that correspond to each node in the structure tree. In order to keep things clear,
there is a predetermined rule of how to map the logical design to a geometrical
design:

• For each row, only 2 columns are filled in.

92 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

• A label has to be filled in into the outer left column.

• Each level of the structure tree is assigned to a specific column on the
spreadsheet UI. The formula of the structure tree’s root has to be placed in
the second column in the first row9, the formulas of the subordinate levels
emerge from left to right in the consecutive rows.

• Each formula may only reference inputs that are placed in a specific spatial
area, and cells that are geometrically:

– exactly one column to the right, and

– below the referencing formula, and

– there must not be another entry in the column of the referencing for-
mula that is above the referenced cell.

• Nodes in the structure tree that were created by a duplication of a specific
unit are resolved by a formula, referencing the result of the source formula.

This very strict mapping of the logical design to a geometrical design has the
advantage that the logical design is not buried anyhow in the layout but still
transparently present. However, for the spreadsheet users the predetermined
layout might not conform to the way they want to have the results presented.
Thus, Rajalingham et al. recommend to distribute a spreadsheet program over
three different sheets, the first one consisting of only input cells, the second one of
the spreadsheet program itself and the third one properly formatting the desired
output.

In Example 4, a structure tree for the spreadsheet program that was intro-
duced in Example 2 is developed. For the sake of the example, it is assumed that
the spreadsheet writer also wants to calculate the overall profit or loss.
Example 4: Structured Spreadsheet Design
For the analysis only the model part of the spreadsheet has to be considered, as
the parameters section consists only of user supplied values (see Figure 5.5(a) on
page 80). Assuming the desired output to be overall profit and each year’s
net profit, the following considerations reveal the spreadsheet program’s inter-
nal structure: the overall profit is calculated by summing the net profit of three
years.

The net profit, again, can be split up into gross profit, taxes and a user supplied
input. As a matter of fact, the calculation of tax debit references the gross profit
twice: once to evaluate a condition, the second time only optionally depending
on this condition. Hence the unit gross profit will be duplicated. Gross profit
itself is split up into revenue, variable cost and two user inputs. Having a look at
column B of Figure 5.5(b) on page 80, no further meaningful decomposition can
be done.

9The first column already contains the labels

5.3. LOGICAL SPREADSHEET DESIGN 93

However, columns C and D are different, because the sales(units) entry is not
user supplied. It results from a formula. Thus, the sales(units) part of column
C has to be tripled, because it is used by the revenue and variable cost parts
of column C and by the sales(units) part of column D. The sales(units) part of
column D has to be doubled, as it is used for calculating revenues and variable
costs.

The result of this considerations is the structure chart presented in Fig-
ure 5.9 on the following page. Although the structure of the three net profit
nodes seems very similar, there is no iteration because of the differences in calcu-
lating each year’s revenues and variable costs that are due to the running adaption
of the sales per units figure. The spreadsheet program that is generated from the
structure chart is shown in Figure 5.10 on page 95.

♦

The example gives insight into the main advantage of structured spreadsheet
design: the layout reflects the underlying data flow. It can even be stated that
the semantic relations between the distinct formulas and figures can be found out
by examining the geometrical layout of the spreadsheet.

Nevertheless, the way this implementation methodology is designed pleases
software engineers and programmers, but not end-users. Apart from the im-
portance of the spreadsheet as modeling tool, the approach offers the following
advantages:

• As intermediate results are not visible anymore, the spreadsheet program
can be clearly separated into an afferent part, a processing, and an efferent
part.

• By projecting the spreadsheet program into a more or less one-dimensional
user interface, complexity is taken out of the representation. The remaining
second dimension can be used to reflect the spreadsheet program’s struc-
ture.

• Taking input cells out of the program makes at the same time clear which
parameters are allowed to be adjusted. Spreadsheet users are prevented
from overwriting formulas with constant values.

• The spreadsheet program itself is clearly separated from cells that are nec-
essary for its instantiation. Thus, maintenance and testing the program is
supported.

However, as every coin has two sides, the advantages bear also significant draw-
backs:

• Intermediate results are not visible anymore. They are virtually blinded out
on a separate spreadsheet. The visual presentation of intermediate results
is often a very desirable feature of spreadsheet programs.

94 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

G
ro

ss
 P

ro
fi

t 9
8

N
et

 P
ro

fi
t 9

8

G
ro

ss
 P

ro
fi

t 9
8G
ro

ss
 P

ro
fi

t 9
8

T
ax

es
 9

8

R
ev

 9
8

V
C

 9
8

G
ro

ss
 P

ro
fi

t 9
9

N
et

 P
ro

fi
t 9

9

G
ro

ss
 P

ro
fi

t 9
9

Sa
le

s
99

Sa
le

s
99

T
ax

es
 9

9

G
ro

ss
 P

ro
fi

t 9
9

R
ev

 9
9

V
C

 9
9

G
ro

ss
 P

ro
fi

t 0
0

G
ro

ss
 P

ro
fi

t 0
0

Sa
le

s
00

Sa
le

s
00

G
ro

ss
 P

ro
fi

t 0
0

R
ev

 0
0

V
C

 0
0

Sa
le

s
99

T
ax

es
 0

0

N
et

 P
ro

fi
t 0

0

O
ve

ra
ll

Pr
of

it

Figure 5.9: Structure chart of a spreadsheet program

5.3. LOGICAL SPREADSHEET DESIGN 95

Figure 5.10: Fragment of the spreadsheet program resulting from Figure 5.9 on
the preceding page. Input and dedicated output data is placed on different work-
sheets.

• By projecting the spreadsheet program into a one-dimensional user inter-
face, spreadsheet development does no longer benefit from the ingenious
user interface, i.e. the tabular grid that spreadsheet writers are familiar
with.

• Moreover, the tabular grid is still there, but has a different semantic as it
is not domain specific but implementation specific10.

• The strict separation between input cells and formulas has certain advan-
tages. However,

– it tends to conceal the context of formulas (see Subsection 5.2.1).

– surveys, e.g. by Janvrin and Morrison [JM00], have shown that spread-
sheet programs that are distributed over more than one worksheet tend
to be more error prone.

Additionally, spreadsheet writers have to deal with concepts as modules, iteration
and alternatives that are usually not common in their application domain. For
large business spreadsheets that have been reported to consist of nearly 17, 000
formula cells, this approach would yield spreadsheets consisting of 17, 000 rows
and up to 10, 000 input cells (see Table 4.1 on page 60). It is questionable if the
so generated spreadsheet program would be any clearer than the original ones.

Thus, although the methodology’s name suggests so, structured spreadsheet
engineering is not able to significantly reduce the complexity of size for a given

10In fact, [RCK02] denotes columns in the spreadsheet program as virtual columns.

96 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

spreadsheet program. In Example 4, the minimal differences in calculating the
number of the sold units prevent the application of iteration. Thus, although
all formulas for calculating the net profits are textually equal, except for the
formulas for revenues and variable costs, they have to be copied and information
about their sameness is consecutively lost.

It is argued that the sameness can still be detected from the similar row labels
throughout the years. However, this is not really true, as revenues or variable
costs have the same row label, but different formulas for each year. In this case,
the maintenance and error correction in formulas is not supported.

5.4 Testing Methodologies

So far this chapter has dealt with techniques and methodologies to increase the
spreadsheet quality by preventing the introduction of errors. Subsection 4.1.2
pointed out that an overall error rate of 2–5% has to be expected in software
due to human errors. Testing software, and thus, testing spreadsheet programs,
deals with the identification and correction of errors. Although a controlled
development process, accurate design and documentation clearly increase the
overall software quality, they are no substitute for testing.

Conventional software is usually tested by supplying test cases and comparing
the system’s actual output to the expected output, that is generated by a test
oracle. However, as it is pointed out by Huang [Hua75] or Dijkstra [DDH72], the
large set of possible test cases calls for a carefully selected sample of test cases in
order to obtain statistically significant test results.

Currently, two approaches for spreadsheet testing are documented in litera-
ture, i.e. spreadsheet testing using interval analysis (see Ayalew [Aya01]) and
the what you see is what you test (WYSIWYT)- approach (see Rothermel et al.
[RLDB98, RCB+00, RRB00]).

The latter approach requires the spreadsheet writer to supply a sufficient num-
ber of relevant test-cases for each formula. Furthermore, for each formula a degree
of testedness is calculated. Therefore, spreadsheet writers have to state for each
formula cell that it is considered tested. Additionally, the degree of testedness of
formulas that the current cell depends upon is also taken into account.

The degree of testedness for each cell is shown on the spreadsheet UI by
changing the cell’s border color from red (untested) to blue (tested). Thus, the
more blue the cell’s border is shaded, the higher is its degree of testedness. Al-
though this testing technique is tightly embedded in the spreadsheet system that
the end-users are familiar with, it has significant drawbacks, as it depends on the
selection of good or relevant test cases. End users usually do not have a mental
model of the control flow in the formula, so they tend to select test cases that are
relevant only for the application domain, and thus, the overall coverage11 of the

11Coverage is discussed by Zhu et al. [ZHM97], in terms of statement coverage, branch

5.5. VISUAL SPREADSHEET AUDITING 97

test cases will be too small. These findings correspond with the fact, that the
empirical evaluation for the testing approach by Reichwein et al. [RRB00] has a
sample group of professional programmers.

Interval testing, as an alternative approach, does not force the spreadsheet
writer to supply test cases. For each cell, that is subject to testing, spreadsheet
writers supply a range that they assume to be correct. Ayalew [Aya01, ACM00,
MAC00] denotes this range as the expected interval E. This interval is meant to
embrace many test cases of a conventional testing approach and thus, increase the
overall coverage of the testing approach. For each formula a bounding interval E
is calculated by applying the formula to the expected intervals of its input values
with the rules of interval arithmetic.

Finally, some cross checks are performed to ensure that the expected interval
E is contained within the interval of possible values B and that the cell’s value
is within E. A toolkit for interval testing is introduced in [Aya01]. Compared
to the WYSIWYT approach interval testing is more user centered. Coverage is
not in the users’ responsibility but can be increased by executing the formulas as
interval-formulas.

Of course, testing large spreadsheet programs with either approach is expen-
sive. This fact is true for conventional software, too. Perry [Per95] states: Too
little testing is crime- too much testing is sin. Obviously, the impact and the
probability of errors has to be considered when deciding upon the right amount
of testing. As shown in Table 2.2 on page 15, many spreadsheet writers are aware
of the cost of errors, and thus, should be willing to take the extra effort of testing
into account.

5.5 Visual Spreadsheet Auditing

In order to overcome the problems of testing spreadsheets, i.e. the lack of suffi-
cient test data and the lack of testing skills, visual auditing has become a popular
review method for spreadsheet programs. The rationale of spreadsheet visualiza-
tion is to reduce the inherent complexity of spreadsheet programs to a magnitude
that is easier to understand for the human auditor (see e.g. Nixon et al. [NO01]).
Usually visual auditing tools color cells that share certain characteristics, i.e. sim-
ilar formulas, a certain data type or spatial neighborhood, with the same color
on the spreadsheet UI. Thus, the auditor does not have to check the spreadsheet
on a cell-by-cell basis any more but can check larger units.

5.5.1 Commercial Visualization Toolkits

Commercially distributed spreadsheet visualization toolkits, such as SpACE [But00],
the Spreadsheet Detective [Sof02b] or the Operis Analysis Kit [Sof02a], are avail-

coverage and path coverage.

98 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

able as Excel-Plug-ins. The basic functionality of these auditing tools is the
same:

• The user selects a certain grouping criterion, e.g. data type, a unique for-
mula, no dependents.

• All cells that correspond to the grouping criterion are shaded in a specific
color.

• The spreadsheet auditor looks for inconsistencies.

Although the visualization is a worthwhile help in understanding and debugging
spreadsheets, important issues are neglected. To use the spreadsheet UI to display
the colored cells corresponds to the requirement of a maximal integration of the
methodology into the spreadsheet system (see Section 3.4), but also imposes
crucial limitations: the spreadsheet auditors’ view on the spreadsheet is limited
by the resolution of the display. Thus, they can check only a specific part of the
spreadsheet program at a time. For large spreadsheets, this visualization often
turns out to be inconvenient, as there are usually connections between cells that
are spatially scattered.

Thus, a look at the spreadsheet program as a whole is not supported by these
techniques. However, as Nixon et al. [NO01] or Davis [Dav96] pointed out, they
offer a better support for the spreadsheet writers as the built-in auditing tools of
a spreadsheet system. The built-in auditing tools can usually be used to visualize
the data dependencies in a spreadsheet program on a cell-by-cell basis, and thus,
are helpful for locally tracking bugs. Excel and Gnumeric, for instance, offer a
basic functionality for showing the successors and the precedents of a given cell
in the DDG.

5.5.2 S2 and S3 Visualization

Sajaniemi [Saj00] introduces two technique for the visualization of spreadsheet
programs based on the sameness of the cell’s formulas, the S2 and S3 Visualiza-
tion. Cells that are recognized as related are grouped into an area (see Subsection
2.3.5). In contrast to the previously described approaches, the grouping criteria
are not exactly similar formulas and spatial neighborhood, but some evolution of
the cells’ formulas in the identified areas is allowed. The S2 and S3 Visualization
require that each area has an orientation, depending on the data flow in the area;
either top-down, bottom-up, left-right or right-left. As the formulas in the areas
have to be strictly similar, only minor modifications that are explained in the
next paragraph, are allowed. Additionally, there is a unique orientation of the
data flow in the area. An area can only grow in one dimension, i.e. a vertically-
oriented area has a width of one cell and a horizontally-oriented area a height of
one cell on the spreadsheet UI. Thus, there is also an ordering of the cells in the
area, as in a top-down area the uppermost cell is the 1st one, and so on.

5.5. VISUAL SPREADSHEET AUDITING 99

Figure 5.11: Example for calculating a guided-sum.

The expressions in cells in the same area do not have to be exactly equal,
i.e. they are allowed to evolve. However, it is necessary that the formula in the
nth cell contains the expression in the (n − 1)th cell either as suffix or as prefix.
This feature is meant to support counting, e.g. in the first cell the expression
= 1 is stored in order to initialize the counter, in the further cells the formula
= cell before + 1 automatically increases the counter.

In order to belong to the same area, the cells’ formulas have to meet the re-
quired similarity criterion. Additionally, cells are required to be spatial neighbors
on the spreadsheet UI. There are only minor exceptions to this rule, i.e. if two
areas intersect, there is one cell that should belong to each of the areas. In this
case, one of the areas is interrupted and the intersecting cell is added to the other
area. However, this interference does not tear any areas apart.

This technique offers a better abstraction of the spreadsheet program as it
will decompose the spreadsheet into abstract units, consisting of cells with equal
formulas. Thus, the auditor can check the spreadsheet by analyzing the interac-
tions and patterns of occurrence of these abstract units. Apparently, the effort
for auditing is decreased compared to other visualization techniques that can only
trace the occurrence of specific formulas, one at a time.

A drawback of this technique is that it considers only physical areas with a
fixed homogeneity criterion. If such an area is separated by an inconsistency,
this will be highlighted. However, the approach cannot distinguish between an
inconsistency and a regular substructure, such as a sub-total. It will be broken up
into unrelated pieces, and the connection between the subtotals and the overall
sum will be difficult to identify since the subtotals are not necessarily arranged
in a contiguous physical area.

The very strict homogeneity criterion can lead to further problems. Imagine
a spreadsheet program where column A holds a value, column B holds another
value that should control if A’s value should be copied either into column C or
into column D (see Figure 5.11). Although columns C and D appear to have a
very similar formula, and they operate on the same data, the S3-Visualization
that is introduced in [Saj00] will not recognize them as related.

5.5.3 Data Flow Based Visualization

Chan et al. [CC00, Cha01] introduce another interesting visualization and debug-
ging approach. It is mainly data flow based and offers support for local and global

100 CHAPTER 5. SURVEY OF DEVELOPMENT METHODS

debugging. However, both debugging strategies are again tied to the spreadsheet
as visualization tool. Therefore, the user can only audit/debug a section of the
spreadsheet that corresponds to the size of their screen at a time. In brief, it
is assumed that the data flow in a spreadsheet program should correspond to a
text: the data should flow from cells that are situated on the upper left corner
of the spreadsheet UI to cells on the bottom-right corner of the spreadsheet UI.
Data flow that does not correspond to this rule is considered dangerous and will
thus be reported to the auditor by colorizing the concerned cells.

However, as the spreadsheet UI is the user interface of the auditing toolkit,
the linkage between spatially widespread parts of the spreadsheet is still very
hard to understand, and zooming can only be done by adjusting the display size.

Summary

The following issues have been addressed in this chapter:

• There are systematic approaches to spreadsheet development.

• Spreadsheet life cycle models are suitable for spreadsheet development by
well-trained users.

• Techniques, such as logical spreadsheet design, relational spreadsheet mod-
eling, and structured spreadsheet modeling introduce conceptual design into
spreadsheet development.

• None of these technologies leads to a break-through, although development
is simplified and error rates may be reduced.

• Systematic testing of spreadsheet programs suffers from problems: lack of
test data, large and complex programs, localization of errors.

• Spreadsheet visualization reduces the complexity of spreadsheet programs
and thus can improve the comprehension of spreadsheet programs.

• Visual spreadsheet auditing toolkits are already commercially distributed
and widely used.

• Still there are some major drawbacks, as the visualization is tied to the
spreadsheet UI and the criteria for grouping cells usually contain spatial
constraints.

Chapter 6

Model Visualization

In the previous chapter spreadsheet visualization was characterized as a successful
technique for reducing the overall complexity of spreadsheet programs that have
to be tested and comprehended. The visualization techniques introduced so far
have turned out to work sufficiently well for rather small spreadsheet programs, or
for the decomposing of large spreadsheet programs into smaller parts. However,
they do not scale up to very large spreadsheets.

This chapter will present alternative approaches for the visualization of large
spreadsheet programs. These approaches are more flexible as the techniques
described in Section 4.3, as there are different grouping criteria for cells depending
on the desired degree of similarity between cells in the same area or the data
flow between cells. Furthermore, the visualization is not exclusively tied to the
spreadsheet UI. Similar cells are aggregated into logical areas (see Section 6.2),
semantic classes (see Section 6.3) or data modules (see Section 6.4) and the SRG
(see Definition 14 on page 25) is offered as a comprehension aid.

6.1 Rationale

Spreadsheet programmers are assumed to have a conceptual model of the spread-
sheet programs they create. This conceptual model usually determines how cer-
tain cells can be grouped into units. The fact that spreadsheet programmers are
not forced to indicate these units complicates the reconstruction of the spread-
sheet model.

Important tasks in reconstructing the spreadsheet model are to detect homo-
geneous areas in the spreadsheet [Saj00], to analyze the data flow in order to find
regularities, and to find logical relationships between cells that are not physically
adjacent. When the spreadsheet model is reconstructed, it must be presented to
the auditor in a comprehensive way.

Considering the widespread application of spreadsheet programs (see Section
2.1) and the different kinds of spreadsheet programs in different application areas,

101

102 CHAPTER 6. MODEL VISUALIZATION

Figure 6.1: A block of a typical business spreadsheet

there is obviously not a only a single effective strategy to increase the overall
quality of spreadsheet programs. However, field audits (see Section 4.3) pointed
out that spreadsheet programs in business applications can become very large
and usually consist of sets of unique formulas that are copied throughout the
spreadsheet and then often slightly modified.

Very often, the structure of these spreadsheets consists of multiple blocks that
start with certain cells that contain some initialization values and procedures, a
large block of repeatedly used formulas, that might be slightly modified, and a fi-
nal part where some overall figures and checksums are calculated (see Figure 6.1).
Usually, the middle part tends to grow and become very large over time, whereas
the top and bottom parts are stable in size.

Thus, it becomes important to reduce the number of formulas in the large
middle-part (shaded in dark gray in Figure 6.1) that have to be tested and com-
prehended. Apparently, spreadsheet visualization reduces the testing effort, as
only one instance of multiple copies of a formula have to be tested, whilst the
remaining copies have only to be checked for whether they are placed at the right
location in the spreadsheet UI. If copying was done properly, visual auditing tools
identify and highlight spatial areas with homogeneous formulas by changing the
color of the cells in the spatial area on the spreadsheet UI.

These approaches do not take into account that equal formulas are often not
placed in a self-contained spatial area but repeated in a regular pattern through-
out the whole spreadsheet program. Thus, with very large spreadsheets, visualiza-
tion becomes an important issue. The limits that are imposed by the spreadsheet
UI hinder the presentation of inter-cell relations that span over large geometrical
distances on the spreadsheet. But even with smaller sheets, the internal complex-
ity might warrant to display ”recoverable design information”, i.e. information
that might be considered important for modularization in conventional software
systems.

6.1. RATIONALE 103

Hence, the approach presented in this section aims to support the spreadsheet
programmer in revealing the initial conceptual model of a spreadsheet program
by

1. reducing the overall size-complexity of the spreadsheet program,

2. identifying cells that users considers semantically related,

3. grouping them into units,

4. finding other units that are related by the spreadsheet programs data flow,

5. finding regular geometrical patterns of occurrences of cells in the same unit,
and

6. presenting the identified units and patterns in a comprehensive way to the
programmer.

The second point deals with recovering what the spreadsheet programmer consid-
ers to be related. One heuristic to identify relationships is to compare formulas.
Most auditing toolkits available so far are capable of grouping adjacent cells with
equal formulas into a unit. However, as it has been stated above, this grouping
criterion is not sufficient. Spreadsheet programmers often copy formulas through-
out the spreadsheet but slightly modify them afterwards.

In fact, formulas that are meant to fulfill the same task have to be considered
similar. These formulas tend to be the result of a copy and paste operation,
usually carried out by the built-in copy and paste functionality of the spread-
sheet system, sometimes by simply retyping the same formula into different cells.
Sometimes the formulas are slightly modified, in order to change constants or
adjust relative references.

Alternatively, formulas are not copied into adjacent cells. The spreadsheet
programmer may consider a block of geometrically adjacent cells to be a unit and,
thus, copy the whole unit. Hence, there will not be a self-contained geometrical
area of cells with similar formulas, but rather a regular pattern of re-occurrences
of these cells. Thus, an efficient visual auditing technique

• has to recognize the relatedness of similar formulas, and

• must not take the geometrical distance between related cells into account,
but

• has to figure out regular geometrical patterns of related cells and highlight
disruptions of that pattern.

As it is stated by Mittermeir et al. [MC02], the core idea behind the definition
of logical areas rests on the spreadsheet development process. Computations to be

104 CHAPTER 6. MODEL VISUALIZATION

performed within a cell are specified by filling in a formula. It was stated above
that if computations in other cells are to follow the same “logic”, spreadsheet
programmers will usually copy the formula over those cells. This copy operation
usually extends over a physical (dense, rectangular) area. However, once done,
this step in the development process is recorded nowhere. Thus, to economize
typing spreadsheet programmers can copy a complex formula over a large area
and than break this area by redefining some of the formulas that were in this
physical area initially. Another spreadsheet writer might be less concerned about
typing, and in consequence re-type the formulas in these physically unconnected
parts of the sheet. The effect on the final sheet is identical.

Considering logical areas, the assumption is that having the same formula
at different portions of the sheet is not something that happens by accident.
It is rather due to a virtual conceptual model an application expert has about
the problem to be solved. Hence, such patterns of regularity should be recov-
ered. Distortions in such patterns of regularity indicate hot-spots that have to
be subject to accurate testing.

However, it has to be considered, how “having the same formula” is to be
understood in a spreadsheet context. Spreadsheet formulas do not use variables in
the way variables are used in either mathematics or in conventional programming.
Instead of res := x + y with res, x and y being variables, one rather writes

= a1 + b2 with a1 and b2 being the addresses of cells containing the values
supposed to be bound to the variables x and y and “ ” is not given explicitly.
It stands here for the address of the cell into which this expression is written,
i.e. the cell where the computed value for res will eventually show. Thus, the
“sameness” of a formula has to be seen in the different ways copy-operations or
copy-and-modify-slightly-operations are to work.

Consecutively, three approaches to spreadsheet visualization are presented.
The first two, namely logical areas and semantic classes, focus on the similarity
of formulas and support auditors to group similar cells into more abstract units.
Therefore, a logical area consists of similar cells, that are distributed over the
spreadsheet. Semantic classes are an advancement of logical areas, as they iden-
tify similar areas on the spreadsheet. Thus, they are more scalable. Logical areas
are discussed in Section 6.2, semantic classes in Section 6.3.

The third approach, i.e. data modules, do not focus on the similarity of for-
mulas but figure out cells that are related by data flow. Broadly speaking, a data
module is a set of cells that contribute to the same result of the spreadsheet.
Data modules are discussed in detail in Section 6.4.

6.2 Logical Areas

In order to cover the relationship between formulas that have a similar function-
ality in the spreadsheet program, but are not physically related or not exactly

6.2. LOGICAL AREAS 105

equal, the concept of the logical area was introduced by Ayalew et al. [ACM00]
and Mittermeir et al. [MCA00, MC02]. Briefly, a logical area is a set of cells
with similar formulas. In contrast to all the other visualization techniques pre-
sented in the previous chapter, the positions of cells on the spreadsheet UI are
not considered. As formulas can be slightly modified, there are different degrees
of similarity that are introduced in the next section.

6.2.1 Terms and Concepts

A logical area is a set of formula cells with pairwise equivalent formulas. Subse-
quently, the suggested equivalence criteria are defined. Definitions 17 to 19 focus
on the structure of formulas, i.e. the order of operators and operands. As these
are properties of cells, i.e. of nodes in the data dependency graph, they are re-
ferred to as node equivalence classes. The notion of node equivalence is basically
based on a static perception of the spreadsheet. Hence, in order to partition a
spreadsheet program into logical areas that are based on a node equivalence class,
structural patterns in the formulas are looked for.

Likewise, one might assume a dynamic perception. This dynamic perception
will only examine the data flow between different cells. As the data flow is
reflected in the edges in the DDG, this class of equivalence criteria is called
link equivalence classes. It contains source, sink and aggregation equivalence, as
presented in definitions 20 to 23. Again, it can be stated that there is a certain
pattern that is looked for, but this time it is not a pattern which is directly in
the formula, but in the data dependency graph.

It is assumed, as it is true for patterns in general (see e.g. Coplien [Cop00]
or Appleton [App97]), the re-occurrence of a pattern is used to solve the same
or at least a related problem. Hence, finding formulas that conform to a specific
pattern one can assume that these formulas are somhow related.

Additionally, there are two special equivalence criteria that are needed in
order to deal with empty cells and computationally dead cells, i.e. cells that do
not partake in the spreadsheet programs calculation, presented by definitions 24
and 25.

Node Equivalence Classes

Definition 17: Copy Equivalence
Cells c1 and c2 are copy equivalent (ce(c1, c2) = true) if their formulas are iden-
tical. Relative references are compared in the R1C1-notation (see Example 1). �

As defined in [Saj00], two cells are copy-equivalent, if they have the same for-
mat, and their formulas are equal. This is the strongest form of equivalence. A
common concept behind copy equivalent cells is assumed, irrespective of whether

106 CHAPTER 6. MODEL VISUALIZATION

they are topologically adjacent or not.
Example 5: Copy Equivalence
Let the formula = A1 + A2 be in the cell A3 and the formula = B1 + B2
in the cell B3. In the R1C1 notation both formulas can be written as =
R0C− 2 + R0C− 1, and thus they are copy equivalent. ♦

Definition 18: Logical Equivalence
Cells c1 and c2 are logically equivalent (le(c1, c2) = true) if their formulas differ
only in constant values and absolute references. �

This relaxation allows for several patterns that are generally repeated, but exhibit
different fixed parameters. Categorizations of input values might be as good an
example as computations of sales tax with different tax rates.
Example 6: Logical Equivalence
If = A1+A2 is placed in the cell A3 and = B1+F4 is the formula in cell
B3, the R1C1 notation is = R0C− 2 + R$1C$2 in A3 and = R0C− 2 + R$4C$6
in B3. Because the relative references are still equal in the R1C1 notation, A3
and B3 are considered logically equivalent. ♦

Definition 19: Structural Equivalence
Cells c1 and c2 are structurally equivalent (se(c1, c2) = true) if their formulas
contain the same operations in the same order. �

Two formulas which are structurally equivalent can have different constant values
as well as different absolute and relative references. Nevertheless, the same opera-
tors and functions are applied in the same order to different data. This is a direct
extension of the concept of logical equivalence. In general, structural equivalence
can be seen as proxy for macro insertion in low level procedural programming
languages. In more elaborate spreadsheet programs it might even amount to
something close to a subroutine concept.
Example 7: Structural Equivalence
The formulas = A1+B4− 5 and = B7+B2−B3 are structurally equivalent.
♦

Link Equivalence Classes

Definition 20: Source Equivalence
Cells c1 and c2 are source equivalent (src(c1, c2) = true), if all their relative

references have equal coordinates. Absolute cell references are not considered. �

Here, the concrete operation used in the respective formulas is immaterial as long
as the formulas have the same arity and the relative distance to the arguments
of the operation remains stable. It is important to note, that logically equivalent
nodes would satisfy this criterion, but not vice-versa. Here, the focus is on links.

6.2. LOGICAL AREAS 107

Figure 6.2: Formulas that are copy-, logical, structural and source equivalent to
the formula R0C1 + R1C0− $R1$C1. The cell addresses on the right hand side of
each entry correspond to cell addresses in Example 8.

Hence, the concrete operations might be different. Definitions 18 to 20 obviously
loosen the strict equivalence criterion of copy equivalence, as copy equivalence
cells are also logical, structural and source equivalent. Thus, there is a partial
order within the equivalence criteria (see Figure 6.4 on page 110).

By means of this partial order, the difference between node and link equiva-
lence classes can be demonstrated by the following example (see also Figure 6.2).
Example 8: Node vs. Link Equivalence
Having the formula R0C1+ R1C0− $R0$C4 in cells B1 and B2, the formula R0C1+
R1C0 − 4 in cell B3, the formula R0C1 + R1C− 1 − 5 in B4, the formula R0C1 +
R0C1 ∗ $R0$C4 in B5, the following equivalence criteria will hold:

• Eqce(B1) = {B1, B2}

• Eqle(B1) = {B1, B2, B3}

• Eqse(B1) = {B1, B2, B3, B4}

• Eqsrc(B1) = {B1, B2, B3, B5}

The formula in B5 is source equivalent to B1, because the relative cell references
have the same coordinates. Thus, source equivalence can be determined by ana-
lyzing only the edges that point to a node in the DDG. In contrast, B4 references
totally different cells. However, it is structural equivalent to B1, as it contains the
same operators in the same order. B3 is logical equivalent, as the only difference
to B1 is the replacement of an absolute cell reference by a constant value. ♦

In order to define sink equivalence, the function reldist : Cells×Cells→ Z×Z
that is explained in Section 6.3 on page 122, is used. In brief, reldist computes
the relative distance between two cells.

108 CHAPTER 6. MODEL VISUALIZATION

Figure 6.3: The formulas from Example 8 in the A1 notation.

Definition 21: Sink Equivalence
Cells c1 and c2 are sink equivalent(sink(c1, c2) = true), if there exist
two cells c3 and c4, with src(c3, c4) = true ∧ relatively references(c3, c1) ∧
relatively references(c4, c2) ∧ c3 6= c4 ∧ reldist(c3, c1) = reldist(c4, c2). �

Sink equivalence is the mirror image of source equivalence. Again, the focus is
on the link and the cells related by sink equivalence need not have anything in
common on their own right. Their communality stems from the fact that they
are used by source equivalent cells. Hence, from the users’ perspective they are
related since their values are used by other cells in a related way.

Definition 22: Aggregation Equivalence
Cells c1 and c2 are aggregation equivalent (agg(c1, c2) = true), if there exists a
cell c3 that references c1 and c2 in an aggregation operation. �

Aggregation equivalence is a variation of the idea expressed in sink equivalence in
so far as it groups cells according to their usage pattern. However, the common
usage is not stereotypically spread out in the tabular plane but aggregated to an
individual cell. The physical area(s) over which summation operations range are
typical examples of aggregation equivalent cells.

For further considerations, a third category of relationships between nodes is
defined.

Definition 23: Data Equivalence
Cells c1 and c2 are data equivalent (de(c1, c2) = true), if ∀ci :
Cell|references(c1, ci)↔ references(c2, ci). �

Two formulas are data equivalent if they reference identical cells. This is the
converse of structural equivalence. Not the same macro or subroutine is executed
with different data, but the same data is treated by different subroutines. What-
If analysis might serve as typical pattern for this case. The general pattern will
be: compute an intermediate result and use it in various computations.

Definition 24: Empty Cells
Cell c1 is in the equivalence class empty cells (ec(c1) = true, if it neither contains
a formula nor a value. �

Definition 25: Computationally Dead Cells
Cell c1 is in the equivalence class computationally dead cells (cd(c1) = true), if it
is neither referenced by any other cell nor contains references to other cells. �

6.2. LOGICAL AREAS 109

Computationally dead cells do not partake in the calculations of the spreadsheet.
They are generally used as descriptive labels for values computed in neighboring
cells or cells in the column below or in the respective row. For the definition of
empty cells or dead cells, singletons suffice. However, in real sheets this equiva-
lence class is quite populated.

Computationally dead cells do not necessarily have to be empty cells, e.g.
cells containing labels or cells containing some input data that is not referenced
because of errors in other formulas. An empty cell, in contrast, does not have
to be computationally dead. It has been shown by field audits of spreadsheet
programs (see [CHM02]), that referencing blank cells is a common error in real-
world spreadsheet programs1. However, empty cells that are not computationally
dead have to be considered a symptom of an error, whereas computationally dead
cells that are not empty are not that suspicious.

In the context of equivalence classes the equivalence class generator is defined
as a function:

Definition 26: Equivalence Class Generator
The equivalence class generator is a function Eqind(c) = {cj|ind(c, cj)}, with
ind ∈ {ce, le, se, src, sink, agg, de}. It returns the set of cells satisfying the spec-
ified binary equivalence relation with cell c. �

As it can be seen by Definition 26, the equivalence class generator returns a set
of cells that are in the same logical area with a given cell and with respect to
a certain equivalence criterion. The equivalence class generator is an important
aid for to define semantic units in the subsequent section.

6.2.2 Examples for Logical Areas

In this section, the relationships between the different equivalence criteria are
explained by means of examples.

Example 9: Node Equivalence Classes
In Figure 6.5 on the following page Eqce(B1) = {B1, B2} and Eqce(D1) = {D1, D2}.
Eqle(B1) = {B1, B2, D1, D2}, because D1 and D2 absolutely reference D4, whereas
B1 and B2 absolutely reference B4. The difference in the relative references, E1 and
E2 instead of C1 and C2, would not violate copy equivalence, as the R1C1-notation
of the address of the referenced cells is R0C1 in all cases.

At last, Eqse(B1) = {B1, B2, C1, C2, D1, D2}, as logically equivalent cells are
also structurally equivalent. ♦

1Indeed, referencing blank cells is often not considered an error, as formulas that reference
blank cells often do not show any results. For a more detailed discussion of the problem, see
[ACM00].

110 CHAPTER 6. MODEL VISUALIZATION

Figure 6.4: Partial order of equivalence criteria. Solid edges denote a relation
due to the partial order, dotted edges represent a conceptual relation.

Figure 6.5: The thick borders (B1 and B2, and D1 and D2) indicate two logical
areas based on copy equivalence. B1 and B2 are not copy equivalent to D1 or D2,
because of the absolute cell reference to B4 or D4. Nevertheless, the grey shaded
area (B1, B2, D1 and D2) is a logical area of logical equivalent cells. Cells B1,

B2, C1, C2, D1 and D2 are structural equivalent.

Example 10: Link equivalence classes
Figure 6.6 on the next page illustrates link equivalence classes. Although there is
no node equivalence between any cells (except for structural equivalence between
D5 and D6), link equivalence classes can be used to create an abstraction of the
spreadsheet program. The sum-formula in B5 aggregates the cells B1, B2, B3,

D1, D2 and D3. Thus, Eqagg(B1) = {B1, B2, B3, D1, D2, D3}.
The cells D5 and D6 are data equivalent, as they reference exactly the same

cells. It is important to note, that the relative coordinates of the references differ:
in the R1C1-notation, the formula in D5 is (R − 4C0 + R − 3C0) ∗ 0.2, whereas
D6’s formula is (R − 5C0 + R − 4C0) ∗ 0.14. However, it is the same cells that
are the target of the reference, and thus Eqde(D5) = {D5, D6}.

In contrast to data equivalence, source equivalence requires cells to have equal
relative references, not equal targets for the references. The formulas in the cells
D1, D2 and D3 relatively reference R0C − 2 and R0C − 1. As none of the cells’
formulas contains any other relative reference, Eqsrc(D1) = {D1, D2, D3}. The
order of the relative references in the formula is taken into account neiter by

6.2. LOGICAL AREAS 111

Figure 6.6: The areas that are surrounded by a thick border are taken together
a logical area of aggregation equivalent cells that are aggregated by the sum-
formula in B5. The light-grey shaded cells D5 and D6 are data-equivalent. The
dark-grey shaded cells D1, D2 and D3 are source-equivalent. As they reference
the cells with white text-color, the latter are sink-equivalent.

source equivalence, nor by data equivalence.
Whenever a source equivalence class can be identified, a logical area of sink

equivalent cells can be identified, too. In the example, D1, D2 and D3 relatively
reference B1, B2, B3, C1, C2 and C3. Eqsink(B1) = {B2, B3, C2, C3}, because
these cells are referenced by D2 and D3, i.e., cells that are source equivalent with
D1, the cell that references B1. ♦

In both examples stated above, logical areas are often also spatial areas on
the spreadsheet UI. However, this does not have to be the case, as it can be seen
for Eqle(B1) in Figure 6.5 on the facing page or for Eqagg(B1) in Figure 6.6.

6.2.3 Auditing Strategies for Logical Areas

The abstraction of the spreadsheet program that is generated by logical areas can
be used in different ways to understand and debug a given spreadsheet program.
The spreadsheet auditor can either focus on a data driven view of the spreadsheet
(i.e., by examining the link equivalence classes) or rely on the static structure of
the formulas. As it can be seen in Figure 6.4 on the facing page, the partial
order of equivalence criteria is more complete for the node equivalence classes.
Hence, there is a higher potential for generating hierarchic representations of the
spreadsheet program with node equivalence classes.

Thus, the auditor can start to inspect a spreadsheet program on the most
abstract level of structural equivalence classes. If a certain structural equivalence
class attracts the interest of the auditors, they can examine the contents by having
a look at its members that can be either cells, logical equivalence classes or copy
equivalence classes.

The auditing itself can be

• pattern driven,

112 CHAPTER 6. MODEL VISUALIZATION

• SRGLA driven and

• structure driven.

Usually, a combination of all three approaches will be employed for auditing a
real word spreadsheet program. In the next part, each of the approaches will
be explained based on an example that was first published by Panko [Pan97].
The example spreadsheet (see Figure 6.7 on the next page and Figure 6.8 on
page 114) can be used by students to do some annual accounting tasks and
consists of 108 non-empty cells, including 57 cells with formulas. However, the
spreadsheet contains a couple of seeded errors. Thus, auditing this spreadsheet is
an acknowledged measure for the efficiency of a spreadsheet auditing approach.

Although the spreadsheet program looks correct at first sight, the following
errors are hidden:

E19: + should be -

D20: 20 should be B20.

F5: Cells in sum should be F14− F20

B17: should be 12 ∗ 30

F8: should reference F5 instead of E5.

There are further omission errors, e.g. parental gifts and parking expenses,
both being relevant factors for a students budget, which are not taken into ac-
count. However, these errors are not obvious on the value level, and a written
specification of the spreadsheet’s task has to be available in order to find them.

Pattern Driven Auditing Strategy

For the pattern driven auditing strategy the following steps are performed:

1. Identify logical areas,

2. map logical areas back to the spreadsheet UI,

3. find geometrical patterns for the members of each logical areas, and

4. take irregularities in the pattern as hint for a hot-spot in the spreadsheet
program, i.e. a place that needs to be accurately tested or changed.

Coloring cells in the same logical area with the same background color will
result in Figure 6.9 on page 115. As the number of available grey-scales is limited,
not all logical areas are colored. In fact, the spreadsheet auditor will not color
all the logical areas at the same time, but focus on one at a time.

6.2. LOGICAL AREAS 113

Figure 6.7: Example spreadsheet for evaluation of auditing approach, value level.

Nevertheless, it is obvious that D20 and E19 break an otherwise regular pattern
of cells. The same is true for F5 and F8, as the other cells in column F in the
upper half of the spreadsheet program are copy-equivalent with cells in column
E. Thus, 4 of 5 areas can easily be spotted as irregularities in the geometrical
pattern of cells in logical areas.

The formula in B17 only occurs once, and thus is isolated in a logical area. In
this case, the pattern driven auditing strategy is not helpful.

Another drawback of this strategy is that the spreadsheet auditor has to see
all the cells in a logical area. This is not possible for large spreadsheets, where
not all of the cells in a logical area fit on the screen. In this case, the auditor
might not be aware of irregularities in the pattern. If the spatial distance between
cells in a logical area is that large, that only one of the cells can be shown on the
screen at a time, the auditor will not be able to recognize any pattern.

SRGLA Driven Auditing Strategy

A SRG driven auditing strategy banks on inspecting the spreadsheet programs
SRGLA, i.e., an abstraction of the data dependency graph of the spreadsheet
program, with logical areas representing nodes (see Definition 14 on page 25
for a formal definition of the SRG). This auditing strategy is based on the
assumption that the spreadsheet program is a kind of data flow program. As a
data flow program can be inspected by inspecting the data flow graph, the same
is possible for a spreadsheet program, too. However, spreadsheet programs tend
to become very large, and thus the data flow graph might be too complex to be
comprehended by a human.

114 CHAPTER 6. MODEL VISUALIZATION

Figure 6.8: Example spreadsheet for evaluation of auditing approach, formula
level.

In order to reduce the complexity of the data flow graph (the DDG), cells
in the same logical area are collapsed into a single node. Thus, the spreadsheet
auditor has to deal with a reduced number of nodes and edges in the SRGLA,
and thus, incorrect nodes and edges will attract the attention of the auditor much
faster.

In this auditing strategy selecting an appropriate level of abstraction is an
important issue. In the example (see Figure 6.10 on page 116 and Figure 6.12 on
page 119) there is an SRGLA with logical areas that are based on structural
equivalence classes and another one based on copy equivalence classes. Whilst
the first one is inconspicous, the second one reflects all errors that were built into
the spreadsheet program.

SRGLA driven auditing does not bank on the spreadsheet UI for the visualiza-
tion of the program. Thus, the spreadsheet auditors’ capabilities are not limited
any more by the size of the screen and auditing can be performed in the context
of the whole spreadsheet program.

However, the SRGLA for a large spreadsheet program still tends to become
complex, e.g. in [CHM02] SRGLAs with more than 30 nodes and up to 100
edges were inspected. Although this representation is much less complex than
the DDG and can be handled by a professional auditor, it is too complex to be
comprehended by an end-user.

6.2. LOGICAL AREAS 115

Figure 6.9: Example spreadsheet with colorized logical areas

Structure Driven Auditing Strategy

Finally, spreadsheet auditing can be performed based on the static structure of the
formulas. This auditing strategy exploits the hierarchy of equivalence criteria that
has been introduced in Figure 6.4 on page 110. It is assumed that certain errors
occur because of minor modifications in the targets of relative references. Thus,
cells that were copy or logical equivalent before, become structural equivalent
due to an error.

As there is a hierarchy between the equivalence criteria, a logical area based
on structural equivalence could be further decomposed into logical areas based
on logical equivalence or copy equivalence, or into unique cells. Thus, logical
areas can be organized as a tree, starting with structural equivalent cells that
are further grouped into logical equivalent cells on the next level. The logical
equivalent cells can then be grouped into copy equivalent cells. Logical areas of
copy equivalent cells can only be decomposed into unique cells.

Of course, a structural equivalence class can contain only one logical equiva-
lence class that contains only one copy equivalence class. In the latter case, it is
assumed that the structural equivalence class cannot be further decomposed. The

116 CHAPTER 6. MODEL VISUALIZATION

Figure 6.10: SRGLA of the example spreadsheet. Structural equivalent cells are
represented by a single node. The examination of the SRG together with the
information given in the structure browser (see Figure 6.11 on the facing page)
will not reveal any irregularities.

same is true for logical equivalence classes that contain only one copy equivalence
class.

For structure driven auditing, the auditors examine the tree of logical areas. If
a structural equivalence class contains a high number of logical or copy equivalent
cells with a few outliers, these outliers have to be carefully examined. The same
is true for logical areas based on logical equivalence. If they consist of logical
areas and a few unique cells, these unique cells might be outliers because of some
modifications that erroneously occurred.

The assumption is that spreadsheets usually have a regular structure, and
thus, a formula is usually copied into several places. Only a limited number of
formulas, e.g. check-sums, will not be copied throughout the spreadsheet program.
The same is true for modifications of formulas that take place after they being
copied. In both cases, there will be no copy equivalent (and maybe, also no
structural equivalent) cells. Thus, the cells modified in this way will be outliers
on a high level of the tree of logical areas.

6.2. LOGICAL AREAS 117

Figure 6.11: Hierarchy of logical areas in the example spreadsheet

In Figure 6.11 the hierarchy of logical areas is shown for the example spread-
sheet (see Figure 6.7 on page 113). Logical areas with only a single member are
skipped in the tree. Logical areas based on structural equivalence are labeled
with SE followed by a unique number, copy equivalent cells are labeled with CE
followed by a unique number. SE 28 consists of 6 cells that can be assigned to
three different copy equivalence classes. However, there are no outliers in SE 28.
In contrast, SE 29 contains two logical areas and one unique cell, i.e. F5. Indeed,
F5 is one of the erroneous cells in the example spreadsheet. The same is true for
F8 in SE 31.

E19 and D20, the other erroneous cells, are not structural equivalent with any
other in the spreadsheet program. As they are located immediately beneath the
root of the tree of equivalent cells, they will also attract the attention of the
auditor.

6.2.4 Discussion

Obviously, logical areas are a promising approach to support spreadsheet users in
auditing and understanding spreadsheet programs. Each of the auditing strate-
gies presented was tested and found hot-spots that the authors of the example
spreadsheets have deliberately introduced. In practice, spreadsheet programs are,

118 CHAPTER 6. MODEL VISUALIZATION

of course, less clear to the auditors. Hence, they will have to combine the three
auditing strategies to obtain reasonable results. However, the example spread-
sheet has also certain properties that favor logical areas:

1. It is highly regular: there were only 6 logical areas, and 3 single cells.

2. The whole spreadsheet fits the screen.

3. There is no check-summing and data analysis part.

Because of the small number of logical areas, an advanced auditor was able
to check the spreadsheet and find all the errors in less than 5 minutes. As the
whole spreadsheet fits on the screen, the search for irregularities in the geometrical
pattern of cells in the same logical area is supported. Checksum and data analysis
parts of a spreadsheet program usually contain complex formulas that only occur
one or two times. Thus, they tend to increase the number of logical areas with
only little gain for the spreadsheet auditor.

Additionally, the geometrical extension of logical areas is opposed to the con-
ceptual model of the spreadsheet user. When the user builds the spreadsheet
program by copying the contents of a row into the next one, or by copying a col-
umn into the next one, as in the example, the logical areas will extend row-wise
(if columns are copied) or column-wise (if rows are copied). Thus, in a small
example with a limited number of logical areas, the auditor can reconstruct the
conceptual model by means of logical areas. However, if there are many logi-
cal areas, or if the conceptual units of the spreadsheet programmer cannot be
displayed on a single screen any more, this reconstruction is hindered.

Hence, a higher level of abstraction that corresponds to the users’ conceptual
model is called for. In Section 6.3 the concept of semantic classes is introduced.
Semantic classes are based on logical areas but offer a higher level of abstraction,
and the resulting model of the spreadsheet program consists of entities with
a geometrical extension that corresponds to a coarser perspective on the users
conceptual model.

Semantic classes fit large spreadsheets. However, as they offer an abstraction
of logical areas, good results will require an analyzed spreadsheet program with
a regular structure. Spreadsheets with many different formulas and no regular
usage of similar formulas call for an other approach, that does not examine formu-
las in order to generate abstract units but is based on the spreadsheet programs
DDG. The technique supporting this feature is presented in Section 6.4.

6.2. LOGICAL AREAS 119

Figure 6.12: SRG of the example spreadsheet. Copy equivalent cells are repre-
sented by a single node. Together with the information given by the structure
browser (see Figure 6.11 on page 117), for instance, the following irregularity
can be revealed: there is an edge from CE2 to F8, i.e. the living costs in either
fall or spring are taken into account for the calculation of the cash at the end of
the summer (although they already influenced the cash at the beginning of the
summer, as there is a connection from CE2 to CE0 via CE5).

120 CHAPTER 6. MODEL VISUALIZATION

6.3 Semantic Classes

As stated above, logical areas reach their limits when very large spreadsheets
are analyzed. To cope with them, the principle of fully automatic structure
recognition is left and users are allowed to specify whether related areas are
spread out column-wise, row-wise, or in patterns taking full advantage of the
(two-)dimensional nature of a sheet. Thus, instead of exclusively focusing on the
content of formulas to define logical equivalence classes, now spatial situations
are taken into account and it is checked, whether the semantic content of these
areas is of repetitive nature.

Thus, it is called for a way to identify groups of cells whose member cells
are at most a given, user defined distance apart and that form (irrespective of
the actual number of cells involved) a repetitive pattern. The cells within such
a weakly contiguous group are considered candidates for semantic units. If such
groups are replicated on the sheet, these replications are identified and grouped
into a common semantic class.

Conceptually, the notion of semantic class is related to the notion of node
equivalence dealt with in Subsection 6.2.1. Thinking about the spreadsheet devel-
opment process it might be assumed that the semantic class results from copying
not a single cell but a whole spatial area instead. But again, there is no infor-
mation about the development process, and “relatedness” is as vague a concept
as “sameness” was when comparing individual formulas. There, the problem was
solved by defining node equivalence in terms of three concepts, rooted in copy
equivalence which was then successively relaxed to logical equivalence and struc-
tural equivalence. Now, a unit generator is postulated to formalize “relatedness”.

To grasp the idea, one might assume that the unit generator demands copy
equivalence among different spatial areas, i.e. cells located on identical relative
position within the areas are copy equivalent. If so, those areas could be col-
lapsed into a common semantic class. As will be shown through the definitions,
the actual concept is less rigid. For practical reasons, it allows even different
relationships between the origin, i.e. the upper left cell of a semantic unit, and
the rest of the cells in semantic units forming a class.

As there is no access to the spreadsheet writers’ presupposed conceptual
model, semantic units are only built upon an assumed semantic relatedness.
Hence, the term “semantic” might be slightly too optimistic. As will be seen
later, the algorithm to identify semantic classes just attempts to locate the largest
possible patterns where replication or relatedness can be postulated. It seems fair
to assume that such replications in general do not occur by chance. At least it
can be stated that the probability of identifying spurious large semantic classes
is far less than the probability of finding unrelated iterators (= neighbor + 1)
that would be grouped into the same copy-equivalent logical area, irrespective of
what they are iterating over.

This approach extends the concept of logical areas by taking the users’ view

6.3. SEMANTIC CLASSES 121

of the spreadsheet more explicitly into account. Therefore, it is necessary to
consider the way users mentally group cells (row-, column- or block-oriented).
Thus, semantic classes are defined by combining geometrical constraints with the
notion of node equivalence.

Detailed definitions of semantic units and semantic classes are given in Sub-
section 6.3.1. Informally, a semantic class consists of semantic units satisfying
the following constraints:

1. All semantic units in a semantic class satisfy the same geometric constraints.

2. All cells in semantic units of a given semantic class residing on positions
with the same relative distance to the upper left corner of their semantic
unit are in the same logical equivalence class.

The size of the semantic unit is given by the number of cells it contains.
Semantic units of size 1 will generate semantic classes that correspond to logical
areas. If the size of the semantic unit (number of cells encompassed) increases,
the size of the generated semantic classes (number of units encompassed) tends
to decrease. However, up to a certain size b the decrease of the class size is not
significant. b is a measure for the size of the semantic blocks the spreadsheet
programmer had in mind and hence a measure of the size of semantic units
to identify as recovered semantic blocks. Although b is not considered by the
definitions stated in the subsequent section, it is an important parameter for the
algorithm that identifies the semantic units.

6.3.1 Formal Definition

The geometrical constraints users can impose on the unit define the direction
and maximal distance of cells that might partake in the same semantic unit.
Hence, semantic units can be forced to have an extent only in one dimension,
by specifying 0 as the maximal distance for all other dimensions. Moreover, to
be consistent with the notion of multi-dimensionality, distances can be indicated
over several dimensions. For the two-dimensional case this implies three distance
parameters: dh, dv and dm with dh denoting the maximal horizontal distance
allowed between two cells in a semantic unit, dv the maximal vertical distance
allowed, and dm the maximum Manhattan distance between two cells in the
unit without cells not belonging to the unit in-between. By adjusting these
parameters, users can restrict the semantic units to consist of cells in the same
row (dv = 0) or in the same column (dh = 0). Distance constraints greater one
would allow gaps. E.g. a distance vector (dh, dv, dm) = (2, 3, 4) would allow
cells in a semantic unit to be separated by at most one empty column or by a
column containing labels. Furthermore, blocks might be separated by two lines.
However, blocks must not be broken by both, a foreign (say empty) column and
two foreign rows. In the rest of this chapter, (dh, dv, dm) will be referred to as the

122 CHAPTER 6. MODEL VISUALIZATION

distance vector ~d.

Definition 27: Cells
Cells denotes the set of non-empty, non-label cells in a spreadsheet program. �

The difference between empty cells and label cells, i.e. computationally dead cells,
is discussed in Definition 24 on page 108 and Definition 25 on page 108. For the
formal definition of semantic units and classes on two-dimensional spreadsheets
the following functions are introduced:

• absPos : Cells→ N×N returns the absolute coordinates of the cell on the
spreadsheet.

• relDist : Cells×Cells→ Z×Z returns the distance between two cells. It is
given by relDist(c1, c2) = absPos(c2)−absPos(c1), with “ −” representing
the subtraction of the respective address vectors.

• top : PCells→ N×N returns the absolute coordinates of the upper-left cell
in a set of cells.

• near : Cells×Cells×N×N×N→ {True, False} is true if the two argument

cells are not separated by a distance larger than ~d in the respective distance
category. Formally, this is:
near(c1, c2, ~d)↔ (relDist(c1, c2) = (h, v)∧
~d = (dh, dv, dm) ∧ h ≤ dh ∧ v ≤ dv ∧ h + v ≤ dm)
Semantic classes are sets of sets of mutually near cells. Therefore, the
reflexive transitive closure of near to identify semantic units as such sets of
mutually near cells is defined as:

• dense : PCells×Cells×Cells×N×N×N→ {True, False} is a function
checking whether the set of cells cs (first argument) contains only cells ci

and cj that are not separated by a distance larger than ~d in the respective
distance category without containing also all cells ck needed for bridging
this gap. Thus dense(cs, c1, c2, ~d)↔
(near(c1, c2, ~d) ∨ ∃ c3 ∈ cs | near(c1, c3) ∧ dense(cs, c3, c2, ~d)
Figuratively, one could say that all cells in cs can be placed on a graph with
edges defined along the coordinate system of the spreadsheet UI. If the cells
are mapped to nodes of this grid, the cells are considered to be dense with
respect to each other, if there is a sequence of nearest neighbors in which
each neighbor can be reached by crossing at most dr edges in the respective
direction r. It should be noted, though, that this sequence has no defined
relationship whatsoever with the data flow graph introduced earlier.

With the help of these functions, the definitions for semantic units, semantic
classes, and unit-generators can be given. The first definition deals with the se-
mantic support, i.e. the set of densely located cells, out of which semantic units

6.3. SEMANTIC CLASSES 123

are to be selected.

Definition 28: Semantic Support
The maximal set of cells satisfying the spatial constraints ~d is referred to as
semantic support. It is defined as the set

SS ~d = {cs : Cells|
∀ci, ck ∈ cs • (dense(cs, ci, ck, ~d)∧

∀cj ∈ S \ cs|¬dense((cs ∪ {cj}), ci, ck, ~d))}

S denotes the spreadsheet. �

Thus, the non-empty, non-label cells of a given spreadsheet program can be par-
titioned into a set of semantic supports. Each of the semantic supports is dense
and maximal with respect to its geometrical extent. However, the semantic sup-
ports are only blocks that bear nothing but geometrical semantics. In the next
step each of the semantic supports is examined on whether there are dense sub-
sets of the semantic supports that can be founded on more than one place in the
spreadsheet program. This leads to the definition of semantic units.
Example 11: Semantic Support
In Figure 6.13 on the following page, the spreadsheet introduced in Subsection
6.2.3 is partitioned into semantic supports, with ~d = (1, 0, 1). In Figure 6.14 on

page 125, ~d = (0, 1, 1). Obviously, the cells’ content is not taken into account, it
is only checked that all the cells have to be non-empty and do not contain labels.
♦

A semantic unit is a set of spatially related cells. This set is further checked
for whether it is replicated in the spreadsheet program, i.e. whether it exhibits a
pattern of replication so that each replication satisfies the semantic constraints
of a unit generator.

Definition 29: Semantic Unit
A semantic unit Ui satisfying the spatial constraints ~d is defined as a dense subset
of its semantic support, generated by its unit generator.

Ui ⊆SS~d ∧
(∃X : P Cells| GenSS,EqStart,EqRest

= (ld, X) ∧ |X| > 1 ∧ Ui ∈ X) ∧
∀ ci, ck ∈ Ui • dense(Ui, ci, ck, ~d).

�

124 CHAPTER 6. MODEL VISUALIZATION

Figure 6.13: Example spreadsheet with semantic supports framed, ~d = (1, 0, 1)

As mentioned above, the semantic support comprises a set of cells that have
just from their spatial proximity the potential to form a meaningful semantic
unit. If they actually do that, will depend on whether replications satisfying the
unit generator Gen, which is defined next, can be found2. It is to be noted that
the denseness criterion defining the support needs to hold also within the unit
itself. Thus, near-relationships have to be maintained in building the respective
subset. Only in this case, one of the units making up the class might be labeled as
base unit of the semantic class. One should also note that a given support might
furnish several different, non-overlapping units. Subsequently, EqStart denotes
an equivalence relation that has to hold among the upper left cells of semantic
units in the same semantic class, and EqRest the equivalence relation among the
remaing cells in the semantic units (see Definition 30 on page 126).

2There has to be more than one such set of cells X in the powerset of cell-sets cs.

6.3. SEMANTIC CLASSES 125

Figure 6.14: Example spreadsheet with semantic supports framed, ~d = (0, 1, 1)

Example 12: Semantic Units
Assuming the semantic supports according to ~d = (0, 1, 1) (see Figure 6.14), a
possible decomposition of the spreadsheet program into semantic units is given by
Figure 6.15 on the following page. For Eqstart and Eqrest structural equivalence
has been chosen. The grey-shaded cells are semantic units that consist of single
cells. Areas with a thick border are semantic units consisting of multiple cells. ♦

A unit generator consists of a set of local coordinates that identifies the set of
cells to be related according to the relatedness-criterion mentioned in the intro-
duction of this section and of the set of semantic units generated. The strictest
form of relatedness would be to require copy equivalence to hold among all cells
assuming identical relative positions within the semantic units to be compared.
In higher order abstractions, less rigid constraints seem to be desirable, though.
Therefore, any of the criteria defined by the equivalence class generator (see Defi-
nition 26) are allowed. Since the origins of the semantic unit might play a special
role, a distinction is made between the equivalence classes for top(Cells), denoted
by EqStart, and EqRest, the equivalence relation to hold among cells on other po-
sitions in related semantic units.

126 CHAPTER 6. MODEL VISUALIZATION

Figure 6.15: One possible decomposition of the example spreadsheet into seman-
tic units, ~d = (0, 1, 1)

Definition 30: Unit Generator
For a unit Ui ⊆ SS~d the unit generator GenSS~d

,EqStart,EqRest
is defined as

GenSS~d
,EqStart,EqRest

= {(ld : P (N× N), X : P Cells) |
∃Ui ⊆SS~d• (

∀ci, cj ∈ Ui • dense(Ui, ci, cj, ~d)∧
∃T : Cells | (T = EqStart(top(Ui)) ∧

∀cs ∈ X • top(cs) ∈ T) ∧
∀dd ∈ (ld \ {(0, 0)} | ∃ Rdd : Cells |

dd = relDist(cdd, absPos(top(Ui))) ∧
Rdd = EqRest(cdd))∧
(∀cs ∈ X | ∃cj ∈ cs•

relDist(cj, absPos(top(cs))) = dd ∧ cj ∈ Rdd) ∧
(
⋃

j(Uj • Uj ∈ X) ⊆ ((
⋃

dd Rdd) ∪ T)) }.

�The complexity of this definition is due to the fact that it maps the sets of
elements defined on the basis of some node equivalence criterion on sets defined
on the basis of some spatial criterion in a way that the involved “transposition”
covers all elements of the respective sets. The definition also highlights that Def-

6.3. SEMANTIC CLASSES 127

inition 28 provides only the framework out of which actual semantic units are
to be isolated, by finding sets of cells that match according to the equivalence
criterion EqStart. This minimal unit defines but a mere logical area restricted by
additional spatial constraints. It can be extended when cells of equal relative dis-
tance dd to the start cells can be grouped into sets Rdd according to equivalence
criterion EqRest so that the union of the top-set with all rest-sets cover the sets
contained in X related by the unit generator. Due to this construction, any of
the sets contained in X forms a semantic unit and X itself is the semantic class
from which those units are drawn.
Example 13: Unit Generator
Assuming the decomposition of a spreadsheet into semantic units shown by Exam-
ple 12, and the assignment of cells to logical areas that is given by Figure 6.11 on
page 117, the tabular presentation for the unit generator for the semantic unit
with the cells E3 to E8, with structural equivalence for EqStart and EqRest, is as
follows:

Coordinates Set of Members

(0, 0) {E3, E14, E15, F3, F14, F15}
(0, 1) {D4, E4, F4, D5, E5, F5}
(0, 2) {D4, E4, F4, D5, E5, F5}
(0, 3) {Numeric constants}
(0, 4) {D7, E7, F7}
(0, 5) {D8, E8, F8}

A more formal notation for the unit generator specifies the unit generator by two
sets, with the first set denoting relative coordinates within each semantic unit and
the second set consisting of sets of cells that are in a specific equivalence relation.
In the table above, the first column contains all possible relative coordinates, and
each row in the second column is a set of equivalent cells. It can be seen that
another semantic unit with cells F3 to F8 has the same unit generator. Thus,
both units share a semantic class. ♦

To relate semantic units back to the conceptual notion of a set of spatial
blocks spreadsheet writers might have had in mind when designing the sheet, the
semantic class is defined as the set of semantic units that have the same unit
generator.

Definition 31: Semantic Class
Let SCUi

be the semantic class that contains the semantic unit Ui ⊆ SS~d.

SCUi
= {Uj|GenUj ,EqStart,EqRest

= GenUi,EqStart,EqRest

∧(Ui = Uj ∨ Ui ∩ Uj = ∅}

�
It is easy to see that SCUi

is exactly the set X constructed by the generator. The

128 CHAPTER 6. MODEL VISUALIZATION

semantic unit in the topmost, leftmost position can be particularly distinguished
by referring to it as base unit of the class.

It is to be noted that these three definitions are interrelated and indeed still
contain a degree of freedom not yet bound. Semantic units are drawn from an
arbitrary set of cells meeting the specified spatial constraints. Hence, a straight-
forward partitioning of the spreadsheet into semantic units will not result in a
helpful abstraction. To produce a useful classification of cells into semantic units,
the quality of the resulting semantic classes has to be considered.

A semantic unit with a singleton as unit generator is not useful for abstraction.
Therefore, semantic units should be defined in a way that the resulting semantic
class contains a high number of other related semantic units. Admittedly, it
could be argued that breadth of the base unit is as important a characteristic of
powerful semantic units as depth of replication.

The algorithm to identify unit generators has to consider both issues. It offers
two options to be controlled: the user can influence the breadth versus depth issue
to a certain extent by properly specifying the distance vector. On the other hand,
the very construction of the algorithm rests on the availability of logical areas.

Indeed, logical areas can be considered semantic classes with cells as semantic
units. Thus, the algorithm has to merge portions of different semantic classes,
satisfying the spatial constraints defined with the semantic support, until no
further merging can be done that will not result in semantic classes that consist
only of single semantic units.

This is not a strict merge though, since a merger can take place only if the
local distances ld match. Therefore, merging involves also filtering on intersecting
local distances. An additional parameter b is introduced, indicating the cutoff-
percentage that halts the merging process in case the filtering part of the opera-
tion would drop more than (100− b) % of the set serving as base for the merger.
To avoid unnecessary complexity, b is not included in definition 30. However, this
additional explanation might indicate that T has algorithmically a distinct role
in comparison to the adjungated sets Rdd.

6.3.2 An Algorithm for the Identification of Semantic Units

As already mentioned above, those semantic units have to be found that lead to
a partitioning of the spreadsheet that is usable for the spreadsheet auditor.

Heuristics

Of course, there are many possible ways to partition the spreadsheet program into
valid semantic units, but most of them do not match the users’ model. However,
it is assumed that a helpful abstraction of the spreadsheet can be generated by
means of the following heuristics:

6.3. SEMANTIC CLASSES 129

1. Build large semantic units, i.e. semantic units with a maximum number of
cells in them.

2. Prefer unit generators that yield semantic classes with a high number of
semantic units in them.

The criteria given above are partially contradictory, and thus have to be weighted.
The second criterion is necessary to avoid the pathological case of one big seman-
tic unit that covers all non-empty cells in the spreadsheet. This would be possible,
if users allowed semantic units to extend on the horizontal and the vertical di-
mensions of the spreadsheet UI.

The first point suggests that abstraction can be increased by merging small
semantic units to larger ones. Thus, the users have to deal with a smaller number
of independent units. However, it is assumed that the number of replications of a
small unit will be higher than the number of occurrences of larger units, as it will
be subject to noise, and accidental replications of large units are rather seldom.

However, it is assumed that the influence of noise and accidental replications
is not too severe, as long as the size of the identified semantic units is beyond
the block size in the users’ conceptual model. Indeed, the merging algorithm
selects two semantic classes, with the highest number of semantic units that are
reachable. Up to a certain size of the participating semantic units, the merging
will involve most of the semantic units in the concerned semantic classes.

Depending on the regularity of the spreadsheet, the spreadsheet auditors will
want to stop the merging process when less than b% of the semantic units in one
of the affected semantic classes can be merged with the semantic units in the
second class. b has to be specified by the auditor.

If it is common for formulas to co-occur with specific other formulas in a
given spreadsheet program, a high value for b is recommended in order to filter
out accidental co-occurrences between formulas. If there are some semantic units
that occur many times, and in combination with different formulas, such as what-
if analysis, a low value for b will still guarantee that the concerned semantic units
are merged.

Thus, the first heuristic drives the merging of small semantic units to bigger
units. As it is stated above, in typical real-world spreadsheets the number of the
semantic classes will increase when smaller semantic units are merged to a larger
one, as the larger the pattern becomes, the smaller the number of the replications
will be. Obviously, a trade-off between the two criteria is necessary.

Currently, two semantic units U1 and U2 are considered candidates for a merge,
if

• GenU1,start,rest 6= GenU2,start,rest, and

• U1, U2 ∈ SS~d → U1 ∪ U2 ∈ SS~d, i.e. the merged semantic unit still satisfies
the geometric conditions, and

130 CHAPTER 6. MODEL VISUALIZATION

• at least b% of the semantic units in SCU1 or at least b% of the semantic
units in SCU2 can be merged. b is the user specified parameter discussed
above.

The first rule will guarantee that the merge is performed only between semantic
units in different semantic classes. It is assumed that there is no additional level
of abstraction introduced if semantic units in the same class are merged. For the
spreadsheet auditor they are already observably related, because they are in the
same semantic class.

The third rule ensures that occasional co-occurrence of formulas in the same
logical area is not sufficient for the formation of a semantic unit.

The rules are iteratively applied on the set of semantic units, until no further
merging is possible. As the order of the merge is relevant for the validity of the
result, semantic classes with a higher co-occurrence should be merged first. It
appears that the bigger the units in a given semantic class become, the higher the
cohesion toward other semantic units will be. When the size of the border of the
semantic unit grows, the number of candidates that become reachable obviously
increases as well.

Rationale of the Algorithm

The selection algorithm that is outlined in Table 6.1 will at first select semantic
classes with a higher probability of co-occurrence.

As Definition 29 implies, each cell is a semantic unit on its own, and definitions
30 and 31 will consider a logical area to be a unit generator and the cells in a
logical area to form a semantic class. Hence, the input to the algorithm is a set
of semantic units, i.e. single cells, with logical areas being their semantic classes.

The selection algorithm selects the two semantic classes with the maximal co-
occurrence and passes them to the merging algorithm. Co-occurrence between
semantic classes is coarsely defined as the percentage of the semantic units in the
first semantic class that are in the neighborhood (i.e. reachable) from semantic
units in the second class. This selection is iteratively repeated on the newly gen-
erated set of semantic units until no further merge is possible. Merging stops
either because no co-occurring semantic units can be found, or because the per-
centage of co-occurrences is beyond the parameter b. See Table 6.3 on page 134
for the algorithm that calculates the co-occurrence between two semantic classes.

SCs denotes the semantic class of the semantic unit s and Gens,start,rest is
the unit generator of the semantic unit s, with start and rest with denoting the
equivalence class generators EqStart and EqRest. Merge Candidates calculates the
absolute number of semantic units in two semantic classes that could be merged,
according to the disctance vector ~d.

The merging algorithm (see Table 6.2 on page 133) is invoked with the selected
semantic classes to merge, the distance vector and the so far identified semantic

6.3. SEMANTIC CLASSES 131

units. For each semantic unit in the first semantic class, a reachable semantic
unit in the second semantic class has to be found. The two units can then be
merged, and the result is added to the set of semantic units.

Obviously, not all of the semantic units in two semantic classes can be merged,
as for some of them there will be no reachable counterparts. To avoid loss of the
not-merged semantic units, the merging will usually invent a new semantic class
containing all the newly merged semantic units, and it will still keep the two
semantic classes, containing the semantic units that were not merged.

The given algorithm is computationally rather complex, as it contains three
nested levels of loops. However, as the input consists only of a small number of
semantic units (in the average spreadsheet 30-50 logical areas can be identified),
computational complexity is not a crucial issue here.

6.3.3 Auditing Strategies Based on Semantic Classes

As semantic classes are an abstraction of logical areas, the same auditing strate-
gies are supported. Nevertheless, due to the higher abstraction that is offered by
semantic classes, the auditor has to care for more parameters. The application
of the pattern driven, SRG- driven and structure driven auditing strategies that
have been introduced for spreadsheet auditing with logical areas in Subsection
6.2.3 will be consecutively discussed in terms of semantic classes.

Pattern Driven Auditing

Pattern driven auditing is a helpful aid to understand spreadsheet programs intu-
itively and will support the spreadsheet auditor in finding errors. Using a pattern
driven auditing approach with semantic classes will involve the following steps:

• identify semantic units and semantic classes,

• interactively map semantic classes and semantic units back to the spread-
sheet UI,

• find geometrical patterns for the occurrences of the member units of a given
semantic class, and

• irregularities in the geometrical patterns are indicators for hot-spots.

However, this time the auditor does not look for regular patterns in the distri-
bution of single cells, but in the distribution of the building blocks of the spread-
sheet. The so generated pattern might be a regular occurrence of a semantic unit
that is a whole row or a large part of a column.

Thus, a single erroneous cell will hinder the membership of the corresponding
building block in a semantic class and will lead to a severe irregularity in the
geometrical pattern that is easy to spot.

132 CHAPTER 6. MODEL VISUALIZATION

Algorithm Select(Set of SemanticUnit S, Set of Cells Cells,
Integer dh, Integer dv, Integer dMan,
index start, index rest,
Integer b)

return Set of SemanticUnits
1 declare
2 Boolean found
3 Real maxCo = 0
4 Cell c, c′

5 Integer max cand
6 SemanticUnit s, s′, m1, m2

7 begin
8 repeat
9 found = false
10 max cand = 0
11 for s ∈ S do
12 for s′ ∈ S do
13 if CoOccurence(SCs,SCs′) > maxCo and
14 Gens,start,rest 6= Gens′,start,rest and
15 Co-Occurrence(SCs,SCs′) > b and Co-Occurrence(SCs′ ,SCs) > b and
16 #Merge Candidates(SCs, SCs′ , dh, dv, dMan) > max cand
17 then
18 m1 = s
19 m2 = s′

20 maxCo =Co-Occurrence(SCs, SCs′)
21 found=true
22 max cand = #Merge Candidates(SCs, SCs′)
23 end if
24 end for
25 end for
26 if found then
27 Merge(SCm1 , SCm2 , S, dh, dv, dMan)
28 end if
29 until not found
30 return S
31 end

Table 6.1: Selection Algorithm

6.3. SEMANTIC CLASSES 133

Algorithm Merge (Semantic Class SC1, SemanticClass SC2,
Set of SemanticUnit S,
Integer dh, Integer dv, Integer dMan)

return Set of SemanticUnit
1 declare
2 SemanticUnit s, s′

3 Cell c, c′

4 begin
5 S = S \ (SC1 ∪ SC2)
6 for s ∈ SC1 do
7 fors′ ∈ SC2 do
8 if ∃c ∈ s |
9 ∃c′ ∈ s′ • reachable(SC1 ∪ SC2, c, c

′, dh, dv, mMan)
10 then
11 S = S ∪ {s ∪ s′}
12 SC1 = SC1 \ {s}
13 SC2 = SC2 \ {s′}
14 break
15 end if
16 end for
17 end for
18 S = S ∪ SC1 ∪ SC2

19 return S
20 end

Table 6.2: Merging algorithm

134 CHAPTER 6. MODEL VISUALIZATION

Algorithm Co-Occurence (Semantic Class SC1, SemanticClass SC2,
Integer dh, Integer dv, Integer dMan)

return double
1 declare
2 Integer sc1 cnt, sc2 cnt
3 Semantic Unit S1, S2

4 Integer cooc = 0
5 Set of Semantic Units Used
6 begin
7 for S1 ∈ SC1 do
8 sc1 cnt = sc1 cnt + 1
9 forS2 ∈ SC2 do
10 ifS2 6∈ Used ∧reachable(S1, S2, dh, dv, dMan)
11 then
12 Used = Used ∪{S2}
13 cooc = cooc + 1
14 end if
15 end for
16 end for
17 ifsc1 cnt > sc2 cnt then
18 return cooc/sc2 cnt
19 else
20 return cooc/sc1 cnt
21 end if
22 end

Table 6.3: Calculating the co-occurence

6.3. SEMANTIC CLASSES 135

Figure 6.16: Pattern of semantic units projected to the spreadsheet UI. Semantic
units are framed with a thick border, units in the same cell are shaded with the
same color. Empty cells are white. This partitioning is result of the merging
algorithm, invoked with the distance vector ~d = (2, 0, 2) and b = 1.

Additionally, the pattern driven auditing strategy will also support the com-
prehension of a spreadsheet program, as building blocks with equal functionality
are highlighted. In the following example, the pattern of semantic units in a part
of a spreadsheet is discussed.

Example 14: Pattern of Semantic Units
In Figure 6.16 a part of a spreadsheet program is shown that has been in use
in a company. It was examined in a field audit (see Clermont et al. [CHM02]).
The spreadsheet deals with the calculation of the returns of a business branch,
and is not trivial at all, although a clear structure is recognizable. There is a
specific calculation that reoccurs in the Umsatz, DB II, DB III and DB IV rows.
However, row 24 looks peculiar at first sight, as it interrupts an otherwise regular
block of semantic units in the same class. Additionally, the semantic units in rows
11 to 14 have to be checked carefully. Although there are no values displayed,
most of the cells have formulas- only the blank cells are empty, and, thus, not
part of any semantic unit. ♦

However, there is an additional dimension the spreadsheet auditor has to
consider: It is not only the pattern of occurrence of semantic units in a semantic
class, but also the extent of each of the semantic units. If there are reachable
semantic units in distinct semantic classes that the auditor considers related,

136 CHAPTER 6. MODEL VISUALIZATION

it has to be checked, why no merging has happened. Usually, this occurs if the
pattern of co-occurrence is distorted, or the parameters for the merging algorithm
have not been chosen carefully.

SRGSC Driven Auditing Strategy

The SRGSC driven auditing strategy banks on an abstraction of the DDG, again.
In analogy to the SRGLA, nodes in the SRGSC are semantic classes, an edge
between two nodes n1 and n2 is drawn if a cell in the semantic class represented
by n1 references a cell in the semantic class represented by n2.

Although this auditing strategy is at first sight very similar to the SRG-
driven auditing with logical areas, there is a fundamental difference. The nodes
present units that are supposed to fulfill a given self-contained task, whereas with
logical areas the nodes in the generated SRG represented sets of cells with equal
formulas. Thus, this time the data flow between different tasks is observable
instead of dependencies on the formula level.

Again, the number of nodes and edges in the SRG is expected to be sig-
nificantly smaller as in the DDG. In the example spreadsheet that has been
discussed in Subsection 6.2.3 the SRG consists of 10 nodes and 20 edges (see
Figure 6.17 on the next page), whereas the DDG consists of some 57 nodes and
91 and edges.

Although the SRG looks complicated at first sight, the auditor has to deal
with a graph representation with a significantly reduced number of nodes and
edges. Additionally, the visualization can be improved by supporting zooming
into certain semantic classes, i.e. replacing the node of the semantic class in the
SRG with a node for each semantic unit in the semantic class. This visualization
technique, also known as fish-eye view, has already been used by approaches for
the visualization and comprehension of conventional software systems, e.g. in the
RIGI- Project (see Mueller et al. [MOTU93, MWT94]).

Part of the RIGI-Project is a visualization tool that visualizes each module of
a software as a node, def-use3 relations or procedure calls will generate an edge
between two modules. However, as this level of abstraction is too high, there is a
possibility for the user to zoom into given nodes and replace them either by their
control flow graph or by the source code.

Nevertheless, in order to keep the complexity of the graph in an order of
magnitude that is still comprehensive for a human reader, the other nodes in the
graph are left at the higher level of abstraction. Thus, the user can concentrate on
the details of a given module without neglecting the context of the module in the
whole system. A detailed discussion of the software visualization toolkit is given
by Tilley et al. [TMO92] the application of fish-eye views for the visualization of
data is outlined by Furnas [Fur86].

3A def-use relation between two statements s1 and s2 is assumed, if s1 assigns a value to a
variable v and that value is read out by the statement s2.

6.3. SEMANTIC CLASSES 137

Figure 6.17: SRG of the spreadsheet presented in Figure 6.7 on page 113. The
numbers the node represent semantic classes. The class assignment of specific
semantic units and cells is shown in Figure 6.18 on the next page. The merging
algorithm was invoked with ~d = (0, 1, 1), b = 70%, Eqstart = se, Eqrest = se.

Applying fish-eye views in the SRG-driven auditing for spreadsheet programs
has the advantage that the spreadsheet auditor can choose an individual level of
abstraction for each part of the spreadsheet program. Thus, the three levels of
abstraction,

1. Semantic Class,

2. Semantic Unit, and

3. Cell

can be individually assigned. E.g., the spreadsheet auditor can choose to replace
a certain semantic class sc1 in the SRG with the units su1, · · · , sun that form the
class. Now, the auditor can decide again, to replace sui, with 1 < i < n in the
SRG with the cells c1, · · · cm that form su1. Thus, the DDG of a given semantic
unit can be examined in the context of the SRG.

Structure Driven Auditing Strategy

There are more ways to vary in the strictness of the similarity criteria for semantic
units and classes, as there are for logical area. Consequently, structure driven

138 CHAPTER 6. MODEL VISUALIZATION

Figure 6.18: Semantic classes and semantic units of the example spreadsheet in
the structure browser.The merging algorithm was invoked with ~d = (0, 1, 1), b =
70%, Eqstart = se, Eqrest = se.

auditing becomes more complicated. Hence, the structure browser for semantic
classes (see Figure 6.18) cannot grasp the hierarchy of different combinations of
EqStart and EqRest any more (see Figure 6.19 on the next page).

However, the spreadsheet auditor can still calculate a partitioning of the
spreadsheet program into semantic classes with a stricter and a weaker combina-
tion of EqStart, EqRest and b. This allows to compare the outcome by coloring the
result of each partitioning on the spreadsheet program, as shown in the following
example:
Example 15: Structure driven auditing with Semantic Classes
In Figure 6.20 on page 140, the partitioning of the example spreadsheet into se-
mantic classes and semantic units with EqStart = se and EqRest = se is shown,
where EqStart = ce and EqRest = ce in Figure 6.21 on page 141. Comparing the
colored spreadsheets, the following inconsistencies can be detected:

6.3. SEMANTIC CLASSES 139

ce ce

ce le

ce se

le ce

le le

le se

se ce

se le

se se

EqStart EqRest

Figure 6.19: Hierarchy of strictness for similarity criteria EqStart and EqRest

for semantic units. Link equivalence classes and b, the boundary parameter,
are neglected here. The gray-shaded combinations have EqStart stricter EqRest,
according to the hierarchy of logical equivalence criteria.

• Obviously, column D is distinct from E and F . Having a closer look at the
logic and the formulas of the spreadsheet (see Figure 6.8 on page 114), this
can be explained by the fact that in D some initialization is performed.

• In the columns E and F the upper parts are structural equivalent, the
middle part consists of cells that are mutually copy-equivalent, and thus not
merged into a semantic unit. The following questions have to be answered:

– Why is there no similarity relation between the bottom of the two
columns?

– Why is the middle part copy-equivalent, whereas the upper part con-
sists of two semantic units that have the same extent, but are only
structural equivalent?

Examining the spreadsheet will reveal 4 of the 5 errors that are hidden in the
spreadsheet. For a correct spreadsheet the coloring of semantic classes with
EqStart,Rest = ce is shown in Figure 6.22 on page 142. ♦

6.3.4 Discussion

Semantic classes introduce a higher level of abstraction into the spreadsheet au-
diting process, and thus, can potentially increase the understanding of complex
spreadsheet programs or enable the auditor to spot irregularities without go-
ing into detail. Again, the irregularities found do only indicate hot-spots that
need further investigation. Some of the identified problems might turn out to be
introduced on purpose.

140 CHAPTER 6. MODEL VISUALIZATION

Figure 6.20: Visualization of semantic classes with EqStart,Rest = se, ~d = (0, 1, 1).
Semantic units are framed with a thick border. Semantic units in the same class
are shaded in the same gray-scale. Semantic units with singleton generators are
not shaded at all. Not framed cells are in semantic units consisting of single cells.

If it were not for spreadsheet auditing, semantic classes are also a powerful
tool for the maintenance of spreadsheet programs. Spreadsheet programmers can
be supervised and warned, whenever a change to the spreadsheet program will
change the structure of semantic classes and units, i.e. when the structure of the
semantic building blocks of the spreadsheet program is likely to become blurred.

Although this technique promises to increase spreadsheet comprehension, it
is not applicable without any special training any more. The spreadsheet auditor
has to be aware of the impact of the decision for a certain distance vector and of
the influence of the boundary parameter on the result.

Nevertheless, no special IT-terminology is necessary in order to train people,
a thorough explanation of the geometrical terms is sufficiemt. Additionally, the
result of the partitioning is well suited to be discussed with untrained domain
experts, as it should correspond to their model of the spreadsheet program.

Thus, this auditing technique violates the claim for no special vocabulary for
spreadsheet auditing technologies that has been stated in Section 3.4 (see Reich-

6.3. SEMANTIC CLASSES 141

Figure 6.21: Visualization of semantic classes with EqStart,Rest = ce, ~d = (0, 1, 1).

wein et al. [RRB00]). For a more sophisticated spreadsheet user who creates
and audits large spreadsheet programs, the support that is gained by the usage
of semantic classes might be a motivation to have a look at the necessary extra
vocabulary, that is still non-IT vocabulary.

However, the other criteria that have been summarized in Section 3.4, namely
seamless integration and minimal overhead, are met by the prototype that im-
plements the analysis technique suggested and is presented in Chapter 7.

As semantic classes build upon the concept of logical areas, they inherit the
characteristic, that they are well suited for large, but regular spreadsheets, or for
the regular parts of a given spreadsheet program. But they will not perform well
with spreadsheets that have a rather irregular formula usage. In sheets like the
one presented in Figure 6.1 on page 102, only the dark-grey shaded part will be
efficiently analyzed with logical areas or semantic classes.

However, the bottom part (shaded in light-grey in Figure 6.1) is also very
often subject to severe errors. Usually, due to the irregularity many unrelated
logical areas are generated and the merging algorithm will not produce a useful
result for this part. In order to overcome this drawback, a second abstraction
technique that does not rely on the cells formulas at all, but operates directly on

142 CHAPTER 6. MODEL VISUALIZATION

Figure 6.22: Visualization of semantic classes with EqStart,Rest = ce, ~d = (0, 1, 1).
The spreadsheet program is the same as in Figure 6.21 on the page before, but
this time the errors are corrected.

the spreadsheet program’s DDG, is presented in the next section.

6.4 Data Modules

In order to get a useful abstraction of parts of a spreadsheet program where no
regular usage of formulas occurs, a technique has to be introduced that does not
rely on the similarity between formulas. An alternative approach is described in
this section. This approach is meant for spreadsheet programs, that consist of
complex calculations, but still show a regular data flow. Figure 6.1 on page 102
is structured like many other spreadsheet programs. Apart from a large part of
repeated formulas, it consists of parts where formulas are used only once in order
to calculate some final figures.

Obviously, patterns of formula usage are no suitable abstraction criteria in
those described cases. However, in each formula there is still information about
the data flow, or the data dependencies, in the spreadsheet program available.
Subsequently, an abstraction technique that operates on the data flow graph of

6.4. DATA MODULES 143

a spreadsheet program, i.e. the DDG, is introduced.
As it was discussed in Section 3.3, a spreadsheet program has some basic char-

acteristics of data flow programs and of graph-reduction programs, too. Thus,
the DDG of a spreadsheet program has an important role for its execution. As
stated by Definition 13 on page 24, in the DDG each cell of the spreadsheet
program is represented by a node, and there is an edge from node n1 to node n2,
if the cell represented by n2 references the cell represented by n1. As the DDG
is a directed, acyclic graph, there are some nodes, that are not sources of further
edges, i.e. sink nodes.

Broadly speaking, a data module is a subgraph of the DDG, that has only
a single sink node (see Definition 32). The sink node of such a data module is
either a sink node of the DDG, i.e. a result cell of the spreadsheet program, or
a node that is connected to more than one data module. To grasp the idea, one
can assume that a data module is a set of cells that has a distinguished result
cell, that is transitively dependent on all cells in the data module. Cells that are
outside the data module may only reference its result cell.

However, before the DDG can be partitioned into such data modules, the
result cells have to be identified. Obviously, not all sink nodes of the DDG have
the semantics of a result of the spreadsheet program, e.g. check-sums.

Subsequently, data modules and their required properties will be formally de-
fined. The identification of result cells and an algorithm for partitioning the DDG
into data modules are discussed. Additionally, some auditing and visualization
strategies will be briefly described and explained by an example.

6.4.1 Formal Definition

As stated above, a data module is a set of cells in the spreadsheet program that
contribute to a specific result or intermediate result.

Definition 32: Data Module
Let (V, E) denote the sets of vertices and edges of a DDG of a given spreadsheet
program. A data module d is a triple (Vd, Ed, n), with Vd ⊆ V , Ed ⊆ E and
n ∈ Vd that fulfills the following requirements:

1. domain(Ed) ⊆ (V \ {n})

2. domain(E \ Ed) ∩ (Vd \ {n}) = ∅

3. n ∈ range(Ed) ∨ {n} = Vd

4. range(Ed) ⊂ Vd

�
In the above definition, a data module is defined as a triple of its member nodes,
the edges and a result node. As a data module is defined as a part of the DDG,

144 CHAPTER 6. MODEL VISUALIZATION

the nodes represent cells of a spreadsheet program. The four specified properties
of a data module guarantee that

1. the result cell of the data module is not referenced by any other cell in the
data module,

2. all edges with a source inside a data module are also part of the data
module, only edges having their source in the result node are excluded,

3. the result of the data module is target of an edge in the data module, or
the data module is a single cell, and

4. a cell in a given data module is only referenced by cells in the same data
module.

Obviously, there are arbitrary subgraphs of the DDG that fulfill these require-
ments, e.g. each single cell can be considered a data module. However, in order
to introduce an abstraction step, maximal data modules have to be identified.

Definition 33: Maximal Data Module
A data module d = (Vs, Es, n) in a DDG = (V, E) is called a maximal data
module, if 6 ∃v ∈ V ∩ Vs that can be added to d without violating any of the
conditions that are required for a data module. �

Hence, a data module is considered maximal if no other cell of the spreadsheet
program (or no other node of the corresponding DDG) can be added.

Nevertheless, so far only the properties of individual data modules have been
described. Additionally, there are some requirements that a valid partitioning
of a given DDG into data modules has to fulfill. On the one hand, it has to
be guaranteed that the union of all data modules is the original DDG, i.e. all
nodes and edges of the DDG have to take part in one data module. On the other
hand, no node of the DDG is allowed to be in more than one data module. As
the DDG on its own, with cells as singleton data modules, already fulfills these
properties, the data modules have to be maximal.

For each DDG there is one partitioning into data modules that fulfills the
above stated requirements. This kind of partitioning is called a valid partitioning.

6.4. DATA MODULES 145

Definition 34: Valid partitioning
The set DMod of data modules over a DDG = (V, E) of a given spreadsheet
program is a valid partitioning if it fulfills the following requirements:

1.
⋃
{Vs|∃n, Es • (Vs, Es, n) ∈ DMod} = V

2.
⋃
{Es|∃n, Vs • (Vs, Es, n) ∈ DMod} = E

3. ∀(V1, E1, n1) ∈ DMod, (V2, E2, n2) ∈ DMod|V1 6= V2 • V1 ∩ V2 = ∅

4. ∀d ∈ DMod|d is maximal

�
The first and the second property ensure that all nodes and edges of the DDG are
assigned to at least one data module in DMod. The third requirement prevents a
node from being assigned to two data modules. The last requirement ensures that
all the data modules in a valid partitioning have to be maximal data modules.

6.4.2 Identifying Data Modules

The identification of the data modules in a given DDG starts with the removal
of unnecessary sink nodes, to eliminate check-sums and other calculations that
do not have the semantics of a result of the spreadsheet program. This step is
necessary, because very often all sections of a spreadsheet are connected by some
calculations that either yield a final sum or a check-sum. However, in this case
each cell of the spreadsheet program is transitively referenced by the final sum
and there will be only one data module.

Thus, the sink nodes of the DDG have to be checked by the users who decide if
a sink node should be removed or not. The users have to prune the DDG until all
the sink nodes are results of the spreadsheet program. All further consideration
in this section concern the pruned DDG.

Of course it can be argued that each cell in the spreadsheet program is visible
and therefore a result of the spreadsheet program. However, it is important to
distinguish between intermediate results that might be only introduced in order
to get insight into the calculation or to rewrite a formula in a simpler way, and
the final result, that is placed on the spreadsheet because the spreadsheet users
really want to see it. Obviously, all sink nodes of the DDG, i.e. cells that are
not referenced by any other cell any more, are placed on the spreadsheet because
the spreadsheet users want to have them there.

The algorithm for the identification of data modules is very straightforward.
It operates on the pruned DDG and starts at the sink nodes. Each sink node is
considered a data module. Nodes that are the source of edges that target only
to one data module are merged with the specific data module. A node that is a
source of edges into more than one data module is considered a data module on

146 CHAPTER 6. MODEL VISUALIZATION

its own. These steps are repeated until all nodes in the DDG are assigned to a
data module (see Table 6.4 on the facing page).

As a data module consists of nodes and edges, all edges targeting to a node
in the data module have to be added. The result node of a data module is
not obvious after the application of the algorithm, but the identification is very
simple, as it is the only sink node in a data module.

6.4. DATA MODULES 147

Algorithm PartitionDDG: (pruned DDG d)
return Set of Data Modules
1 declare
2 nodeset V, DM, JOIN
3 node v, v′, cur
4 edgeset E
5 edge e
6 P node result
7 Integer amount
8 Boolean found = true
9 begin
10 result = ∅
11 (V, E) = d
12 while (found)
13 found = false
14 for v ∈ V
15 if 6 ∃v′ ∈ V • (v, v′) ∈ E
16 cur = v
17 found=true
18 break
19 end if
20 end for
21 amount = 0
22 ∀DM ∈ result
23 if ∃(cur, v) ∈ E • v ∈ DM
24 JOIN = DM
25 amount = amount + 1
26 end if
27 end for
28 if amount = 1
29 result = result \ JOIN
30 JOIN = JOIN ∪ {cur}
31 result = result ∪ JOIN
32 else
33 result = result ∪ {cur}
34 end if
35 V = V \ cur
36 end while
37
38 return result
39 end

Table 6.4: Partitioning of a pruned DDG into node sets of data modules

148 CHAPTER 6. MODEL VISUALIZATION

6.4.3 Auditing Strategies Based on Data Modules

In this section, two auditing strategies and a strategy for fault tracing that em-
ploys data modules are discussed. The first auditing strategy, pattern driven
auditing, examines the spatial pattern of cells in a data module. There is also an
SRGDM driven auditing strategy that assumes that an SRGDM with data mod-
ules as nodes is easier to comprehend than the DDG. The fault tracing strategy
relies on the property of data modules that they have only one distinguished
result node.

Each of the strategies is explained by means of the example spreadsheet that
has already been used in the previous section. The DDG of the example spread-
sheet is shown in figure Figure 6.23 on page 154 and consists of 57 nodes and 91
edges. The sink nodes are shaded gray.

Pattern Driven Auditing

Spatial auditing is similar to the pattern driven auditing strategies that can be
used together with the logical area and semantic class approaches. The identified
data modules are presented to the spreadsheet auditors in a way that is similar
to the structure browser. The selection of a data module in the structure browser
will highlight the member cells in the spreadsheet.

As it was pointed by Chan et al. [CC00, Cha01], the data flow in a spreadsheet
program will correspond to the geometrical layout of the spreadsheet, and major
deviations between data flow and layout often indicate errors.

As there is no check-sum in the example spreadsheet, the DDG is not pruned.
The data modules identified are shown in Figure 6.24 on page 155. In Fig-
ure 6.25 on page 156 the cells that are in the same data module are colored in
the same shade of gray.

Obviously, the whole spreadsheet is member of the data module, the result
cell of which is F8, except for the last row. Major irregularities can be identified
in the last row:

• B20 is not referenced by any data module, although all the other cells in
the column are. This is a symptom of an erroneous formula in C20.

• F20 is a sink node. This is a symptom of an erroneous formula in F5.

In the second case, an important feature of data modules is exploited for auditing.
If a planned cell reference is not part of a formula, the data module will split up
in two different modules. In the opposite case, a cell reference that should not
be part of a formula, might lead to the merge of to unrelated data modules.

Hence, auditors have to watch out for superfluous data modules. Subse-
quently, the cell where the result of the superfluous data module should have
been referenced has to be identified and corrected. The opposite case is more
difficult. If an expected data module is not part of the visualization, auditors

6.4. DATA MODULES 149

have to look for the cell where the missing data module is erroneously referenced.
Although fault tracing is more troublesome, the presence of an error can be easily
detected.

The other errors in the example cannot be identified by this approach. Wrong
operators, e.g. in E19 or mis-references to cells in the same data modules, will
influence the result of a data module, but not the assignment of cells to a data
module, as only the data dependencies are taken into account.

SRGDM Driven Auditing

The SRGDM driven auditing assumes that the SRGDM of a given spreadsheet
program is more comprehensive than its DDG. In the SRGDM each data module
is represented by a single node, that is labeled with the cell address of its result
cell.

However, the SRGDM of large spreadsheet programs is still large and it takes
some effort to comprehend and test it. Additionally, data modules are not appro-
priate for all kinds of spreadsheet programs. Hence, some analyzed spreadsheet
programs, e.g. the example spreadsheet discussed here, generated very compact
and comprehensive SRGDM , e.g. the SRGDM of this spreadsheet has 5 nodes
and 7 edges (see Figure 6.26 on page 156), whereas other spreadsheet programs
yield very large SRGDMs, e.g., an experimental spreadsheet program with an
DDG with 255 nodes and 332 edges was decomposed into data modules result-
ing in a SRGDM with 169 nodes and 246 edges. In the example spreadsheet
SRGDM indicates two result nodes, i.e. F20 and F8. As the spreadsheet should
have only a single result in F8, F20 is obviously an superfluous data module. The
auditor has to check, why the clothing (F20) does not influence the living costs
(F5 in the data module F8). The other data modules might be generated because
of the superfluous data module F20.

A superfluous data module often entails other superfluous data modules, as
the definition of a data module defines a data module as a set of cells that
influences only one result or intermediate result. Hence, the presence of a broken
link in the spreadsheet program due to a missing cell reference, will lead to other
superfluous data modules. In the case of the example, the cell F20 is a result
cell due to a missing reference. E20 will be identified as a data module on its
own, because it is referenced by F20 and transitively referenced by F8. Hence,
the correction of the error that generated the data module F20 will also wipe out
all the other data modules, except F8.

This is also a drawback of the SRGDM driven auditing technique, as it was
only able to find a single error out of five. Again, wrong operators or mis ref-
erences within a data module cannot be detected. However, it supports the
finding of broken and superfluous links between otherwise unrelated cells on the
spreadsheet, as even a single misreference, e.g. not referencing F20, has severe
consequence in the visualization, e.g. four superfluous data modules.

150 CHAPTER 6. MODEL VISUALIZATION

Fault Tracing

Fault tracing is a very common problem in spreadsheet programs, as the symp-
toms of errors often do not occur at the same place as the faults that cause the
wrong results. Hence, most testing techniques also involve techniques for fault
tracing that are usually based on the calculation of error probabilities for the pre-
decessors of the faulty cell in the spreadsheet programs DDG (see e.g. Ayalew
[Aya01] or Reichwein et al. [RRB00]).

The generation of data modules and the usage of the SRGDM are powerful
helps for fault tracing. If an error is detected in the result cell of a data module,
it is not necessary to check all the predecessors in the DDG until the error is
found. If the spreadsheet auditor is aware of the data module where the symptom
of the error occurred, there are only two possibilities:

1. The error occurred inside the data module where it is detected, or

2. the error occurred in a predecessor module in the SRGDM .

It is not difficult to decide on which case applies: the spreadsheet auditor has to
check the result cells of the predecessor data modules in the SRGDM . If they are
correct, the error is buried in the module where the failure occurred. Else it is
assumed that the error is propagated from the erroneous module.

For the first case, the DDG of the data module where the failure occurred
has to be checked by one of the techniques that are suggested in [Aya01, RRB00].
Nevertheless, as a piece of extra information, the auditors are aware that the error
must be in the currently examined subgraph of the DDG, and the bug tracing
can stop at the module boundaries.

In the second case, the same process is repeated: it has to be checked, whether
the fault occurred inside the data module, or in one of its predecessor modules.
Depending on the error source, either the module is checked, or the search con-
tinues upward in the SRGDM .

Obviously, also a combination of error sources is possible, as errors can be
hidden inside the module as well as in several predecessor modules. Nevertheless,
an iteration of several testing and correction phases will finally find all the errors.

6.5 Discussion

In this chapter two orthogonal approaches for auditing spreadsheet programs
have been introduced. The first approach is based upon logical areas that can
be used to group similar formulas into abstract units. The advantages of logical
areas compared to existing spreadsheet visualization techniques (see Section 5.5),
that often group equal formulas into abstract units, are:

• The are varying degrees of similarity. Copy-equivalence, i.e. equality, is
only the strongest one.

6.5. DISCUSSION 151

• The spatial relation among the cells in a logical area is not taken into ac-
count at first. Thus, also patterns of similar cells that are spread throughout
the spreadsheet UI can be exploited for auditing.

A more powerful abstraction technique, based on logical areas, are semantic
classes that group similar cells with similar neighbors into an abstract unit, the
so-called semantic unit.

Nevertheless, in a field audit (see Section 4.3) it was shown that both logical
areas and semantic classes are only applicable to spreadsheets or parts of spread-
sheets with regular formula usage. As this is the case for at least large areas of
vast business spreadsheet applications, this constraint is not a very severe limit
for the approach presented.

Logical areas are very straightforward and can be easily communicated to the
application experts that are often also the spreadsheet programmers. Generally,
no special IT-skills are necessary to understand the concept of logical areas. The
more sophisticated concept of semantic classes requires some special skills from
the auditors in order to choose helpful values for the parameters. However, the
technique can still be explained without IT-vocabulary only in terms of the two-
dimensional tabular user interface.

It is assumed that spreadsheet users who notice that the concept of logical
areas is not sufficient for auditing their vast spreadsheet programs, often will
be willing to take some extra effort into account. Additionally, there are many
spreadsheet consultants who are domain experts with special skills in spreadsheet
testing and auditing. For them, special training is no obstacle.

An additional approach that is based on the data dependencies of a spread-
sheet program is introduced with data modules. Data modules do not require
any regular formula usage in the regions of the spreadsheet to be analyzed, as
they are only based on the DDG. Thus, the strength of data modules is to find
broken links in a spreadsheet program, i.e. parts of the spreadsheet programs
that are not referenced by a final result, although they should be.

For very large spreadsheet programs, none of the approaches presented can
generate a comprehensive abstraction of the spreadsheet program in isolation.
Nevertheless, the combination of two approaches, or by iterative re-applications
of an abstraction technique, even more abstract representations can be generated.
Subsequently, some possible combinations of the approaches are presented:

Iterative Semantic Classes: The input for the partitioning of a spreadsheet
program into semantic classes is the assignment of cells to logical areas.
According to the definitions in Subsection 6.3.1, a cell is a singleton semantic
unit and a logical area is a semantic class. Thus, the partitioning can also
be performed with semantic units that consist of more than one cell. In
this case, the number of semantic classes will steadily decrease, until the
desired level of abstraction is reached.

152 CHAPTER 6. MODEL VISUALIZATION

Iterative Data Modules: The input for the partitioning of a spreadsheet pro-
gram into data modules is the DDG. The output will yield a SRG, i.e. a
directed, acyclic graph. Obviously, the same partitioning as with the DDG
can be performed with the SRG, too.

Data Modules and Semantic Classes: A spreadsheet program often consists
of several large parts, each of them having its own (intermediate) result. By
generating data modules at first, the spreadsheet program can be separated
into smaller and more comprehensive units. These units can than be further
analyzed by the application of logical areas or semantic classes.

Each of these discussed approaches assumes that it is possible, to open an abstract
unit and access its member units for further analysis, i.e. to access the cells in
a data module for the application of semantic classes or the data modules in
an iteratively generated data module in order to see the member cells on the
spreadsheet UI. This resembles the application of fish-eye views that have already
been discussed in Subsection 6.3.3.

Summary

The following issues have been addressed in this chapter:

• There is a large number of spreadsheet programs that consist of a large
part of repetetive formula usage and an irregular part for the calculation of
check-sums.

• Three different abstraction or auditing approaches have been presented:
Logical Areas, Semantic Classes and Data Modules.

• A logical area is a set of cells with similar formulas.

• There are varying degrees of similarity that are either based on the opera-
tors (node equivalence classes) or on the referenced cells (link equivalence
classes).

• There are no spatial constraints for the assignment of cells to logical areas.

• A semantic class is a set of similar cells with similar neighbors.

• There are three auditing and visualization strategies for logical areas and
semantic classes:

– pattern driven,

– SRG-driven, and

– structure driven auditing.

6.5. DISCUSSION 153

• A data module is a set of cells that is referenced only by one (intermediate)
result of the spreadsheet program.

• There are two auditing and visualization strategies for data modules:

– Pattern driven, and

– SRG-driven.

• Data modules support fault tracing and testing of spreadsheet programs.

• Combinations of the abstraction steps, or iterative application of one ab-
straction step are possible.

154 CHAPTER 6. MODEL VISUALIZATION

Figure 6.23: DDG of the example spreadsheet

6.5. DISCUSSION 155

Figure 6.24: Valid partitioning in the structure browser

156 CHAPTER 6. MODEL VISUALIZATION

Figure 6.25: Valid partitioning of the DDG projected back to the spreadsheet
UI by coloring cells in the same data module in the same gray-shade

Figure 6.26: SRGDM of the example spreadsheet program

Chapter 7

The Model Visualization Toolkit

The spreadsheet visualization techniques that have been introduced in the pre-
vious chapter offer valuable support for spreadsheet auditing and spreadsheet
comprehension. However, partitioning a spreadsheet into semantic classes or
data modules is very time consuming if it has to be done manually. Thus, a
tool that is integrated in a spreadsheet system and that is able to identify and
visualize logical areas, semantic classes and data modules is necessary.

In this chapter the prototype implementation of a spreadsheet visualization
toolkit is discussed. The toolkit has been developed as a plug-in for the Gnumeric
spreadsheet system that is integrated into the GNOME-Desktop Environment for
Linux. Gnumeric has been chosen as the host spreadsheet system because the
source code is available, and thus a very smooth integration of the visualization
toolkit and spreadsheet system was feasible.

In the first section, the development and run time environment of the visual-
ization toolkit are introduced and the advantages of the Gnumeric spreadsheet
system compared to Excel as the host spreadsheet system for the visualization
toolkit are discussed. In the next section, the implementation and the function-
ality of the prototype are explained in detail. Finally, the limits and desirable
improvements for the prototype are outlined. A more detailed description of the
required runtime environment and installation guidelines for the visualization
toolkit and the Gnumeric spreadsheet system are given in Appendix A.

7.1 Environment

Although Excel is currently the most popular spreadsheet system, Gnumeric was
chosen as target system for the prototype of the spreadsheet auditing toolkit.
Due to the fact that Gnumeric is subject to the GNU-public license (see [gnu03]
for the details), the source code is public domain, and can thus be modified and
used freely.

In contrast, the Excel source code is not available at all. Visual Basic for

157

158 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

Applications (VBA) offers extensive functionality to increase the functionality of
Excel. It turned out that a first prototype of the auditing toolkit that was written
with VBA had massive performance problems, because in order to assign cells
to logical areas, the abstract syntax trees of the attached formulas have to be
compared. As the Excel formula parser is not accessible from VBA, each formula
had to be parsed again by a parser that used to be part of the prototype initially.

7.1.1 Advantages of Gnumeric

Gnumeric plug-ins can be developed in any programming language that seems
appropriate. They just have to register themselves to the spreadsheet systems
by means of a specific plug-in API. As Gnumeric loads plug-ins dynamically
into its address space at runtime, plug-ins can access all internal functions and
data structures of the spreadsheet system1. Thus, not only the integration of
a parser into the auditing toolkit becomes superfluous, but also the parsing of
individual cells for comparing abstract syntax trees needs not be done by the
add-on, because each formula is parsed as soon as it is entered and the abstract
syntax tree is stored in an internal data structure. Hence, the already stored
abstract syntax tree can be used for comparing formulas.

The performance of the prototype had been heavily improved by reimple-
menting it in the Linux and Gnumeric environment, because

1. runtime performance of C is superior to VBA and

2. formulas do not have to be parsed at analysis time.

Further advantages concerning the accessible internal functions of the Gnumeric
spreadsheet system have supported the decision. These internal functions, e.g.
parsing cell references of the A1 style and converting them to the R1C1 style,
managing ranges and evaluating specific cells, saved a lot of development time
and eliminated several potential sources of errors.

7.1.2 Architecture of the Prototype

The prototype has been implemented as a plug-in for the gnumeric spreadsheet
system. Therefore, part of it is also an XML-interface required by Gnumeric, and
that is loaded when Gnumeric is started. In the XML-interface file, the position
of a menu item or a button in the Gnumeric main menu or task bar is specified.
Additionally, the location of a shared library and the name of an initialization
routine are specified that are loaded and invoked whenever the corresponding
menu item or button is selected by the user.

1Another important side-effect of this technique is that plug-ins also have to be subject to
the GNU- public license.

7.1. ENVIRONMENT 159

C
lasses

Main Initialization
Logical Areas

Data Modules

Semantic Classes

Leda / AGD Spreadsheet UI

Data−Structure
Initialize Run−Time

Initialize Run−Tim
e

D
ata−Structure

Data−Structure

Initialize Run−Time

DDG
SRG Select cells

Get selected cells

SRG Select cells

Get selected cells
G

et selected cells

Select cells

SRG
Selected node

Determine EqClasses

True/False

Cell1, Cell2, Similarity Criterion

Figure 7.1: The architecture of the prototype

The prototype itself consists of four components that are only loosely con-
nected. Each of the components uses functionality that is supplied by the spread-
sheet UI, e.g. retrieving the selected cells or selecting cells. The components also
use functionality that is provided by LEDA and AGD for visualizing graphs.

The initialization routine runs the plug-in’s main dialog and connects the
buttons with callbacks that will invoke specific analysis functionality. For each
callback routine, a data structure is initialized that contains references to the
active spreadsheet instance and all dialog elements that are needed to properly
display the results of the analysis. Further initialization, e.g. defining callbacks
for the tree-views, is performed when a given analysis functionality is invoked.

In Figure 7.1, the main components of the visualization toolkit and their in-
terconnections are shown. The component that partitions the spreadsheet into
logical equivalence classes is supported by a component that is capable of deter-
mining similarities between cells. This component is labeled Determine EqClass,
but some additional auxiliary functions for the administration of logical areas are
implemented there, too. The component Logical Areas controls the user interface,
invokes the graph visualization of a SRG and is also able to highlight certain cells
in the spreadsheet UI.

The selection of a node in the graph window of AGD2 will invoke a callback in
this component that leads to the selection of the corresponding entry in the tree-
view and the spreadsheet UI. In order to improve the run time performance this

2As LEDA and AGD have been chosen for the visualization of SRGs and DDGs, the AGD
graph window is denoted by the term graph window through the remaining chapter.

160 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

components also maintains several indices, e.g. to efficiently track the assignment
of a given cell to a logical area and vice-versa.

These indices are also accessed by the Semantic Classes component. The
component controls the user interface, invokes a graphical visualization of the
SRG, and implements the merging algorithm that is presented in Subsection
6.3.2. The result of the merging algorithm is presented in a tree-view, semantic
units and semantic classes that are selected in the tree-view are highlighted in
the spreadsheet UI. As this component accesses the runtime indices of the Logical
Areas component, they must be initialized, i.e. the Logical Areas component has
to be invoked prior to the Semantic Classes component.

The Data Modules component is independent of the previous components.
It uses only the spreadsheet UI for highlighting selected cells and several graph
functions that are implemented by LEDA3 for partitioning the DDG into data
modules. At first, the DDG is visualized in the graph window. The user can
delete sink nodes in the graph window before the data modules are computed.
Additionally, this component supports fish-eye views.

In the next section, each of the components that have been introduced here
are discussed in detail.

7.2 Functionality and Implementation

As the plug-in consists of three more or less independent main components (see
Figure 7.1 on the preceding page) and some support libraries, the main compo-
nents logical areas, semantic classes and data modules will be discussed. For each
component the initial data structure that is passed by the plug-in’s main func-
tion to the callback that invokes the component is explained, a brief insight into
implementation specific details is given and some special features are presented.

7.2.1 Component Logical Areas

The component for partitioning a spreadsheet into logical areas is stored in files
named visualization.h and visualization.c. The initial data structure is
shown in Table 7.1 on the next page.sheet is a reference to the currently opened
spreadsheet instance, tree structure is a reference to the tree-view4 in the user
interface (see Figure 7.2 on page 163). The plug-in’s initial routine connects the
callback function buildEquivalence to the button labeled Analyze, cb expand

is the callback routine of the Graph-button.

3Originally, the open-source graph visualization toolkit DOTTY (see Ganser et al. [GN99])
was used for graph visualization. Due to insufficient integration and performance problems
with DOTTY, LEDA was chosen. LEDA is not subject to the GNU public license.

4In the description of the auditing technique given in Chapter 6 the tree-view is identified
by the term structure browser.

7.2. FUNCTIONALITY AND IMPLEMENTATION 161

typedef struct {
Sheet ∗sheet;
GtkTreeView ∗tree structure;

} CB Data;

Table 7.1: Initial data structure of Logical Areas Component

Implementation Specific Details

The identification of logical areas is performed bottom-up. At first empty cells,
label cells and cells with a numerical constant are filtered out and are assigned to
separate logical areas. This reduces the remaining base of cells to be a traceable
small set of cells. Consecutively, it is tried to merge individual cells to copy
equivalence classes.

Therefore, the following steps are performed:

1. For each cell c

(a) For each existing copy equivalence class ce:

• If c is copy equivalent to the formulas of cells in ce:

– Add c to ce.

– Break.

(b) If c has not been assigned to any copy equivalence class:

• Create a new copy equivalence class cen

• Add c to cen

• Add cen to the set of existing copy equivalence classes.

Obviously, this algorithm will create copy equivalence classes for cells with unique
formulas, too. However, this side effect is desirable, as

• cells with unique formulas will be the only member of their copy equivalence
class, and

• further analysis does not consider individual cells, but only classes of copy
equivalent cells.

Consecutively, a similar algorithm is used to merge copy equivalence classes
into the weaker logical equivalence classes. As mentioned above, the comparisons
are not made on a cell-by-cell level, but on the level of logical areas. As the com-
parison algorithm has a worst-case complexity of O(n2), this additional layer of
hierarchy drastically reduces the number of necessary comparisons between ab-
stract syntax trees. In the example spreadsheet discussed in the previous chapter
a reduction from 3, 136 (on a cell-by-cell level) to 225 comparisons was observed.

162 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

typedef enum {
NONE,
COPY EQUIV,
LOGICAL EQUIV,
STRUCTURAL EQUIV,
SOURCE EQUIV,
SINK EQUIV,
STRING CONST,
NUM CONST,
BLANKS,
ALL,
FORMULA,
CELL} EClass;

typedef struct {
EClass type;
GnmExpr ∗pattern;
EvalPos ∗pos;
GPtrArray ∗members;
GPtrArray ∗ranges;
gint id ;
} EquivClass;

Table 7.2: The data type EquivClass conveniently handles logical areas.

7.2. FUNCTIONALITY AND IMPLEMENTATION 163

Figure 7.2: The user interface of the Logical Areas-Component

A third pass is performed in order to merge the logical equivalence classes into
the even weaker structural equivalence classes.

Thus, the process of identifying logical areas will at first filter out all non-
formula cells to reduce the base of cells that have to be considered and increase
the runtime performance of the algorithm. The next steps will further reduce the
number of elements the merging algorithm has to consider, as individual cells are
merged to copy equivalence classes and in the next step, these are again merged
into logical equivalence classes.

In order to handle logical areas efficiently, a data type EqivClass is defined
(see Table 7.2 on the preceding page). This data type stores a unique identifier,
the member cells, a pattern, and the kind of a logical area.

Depending on the degree of similarity, each logical area is stored in a data
structure, e.g. there is a list of all structural equivalence classes.

As logical areas consist of cells that are pairwise equivalent regarding a specific
equivalence criterion, it is sufficient to compare a formula to one member of the
logical area to decide whether a formula can be added to a logical area. Therefore,
for each logical area a pattern, i.e. the formula-expression of an arbitrary member

164 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

cell5 is stored. When a logical area is compared to a cell, the algorithm is invoked
with the pattern and the cell’s formula-expression. The comparison of two logical
areas is done by a comparison of their patterns.

In detail, the algorithm recursively descends through the nodes in the ab-
stract syntax tree of the two compared expressions. If the two nodes deviate,
the algorithm will return false, otherwise the children of the nodes are pair-
wise compared. If it is checked for logical equivalence, the algorithm will ignore
the children of nodes that represent constants or absolute cell references. If it
is checked for structural reference, the children of all nodes, that are of type
absolute or relative cell reference or constant value are ignored.

In contrast to the partitioning of the spreadsheet into logical areas, the vi-
sualization of the logical areas in the tree-view is generated top-down. The first
and the second level of the tree-view are statically generated, with the root item
representing the whole spreadsheet instance. On the second level, three special
logical areas are inserted in order to increase readability:

Numerical Cells represents all cells that contain a numerical value,

Label Cells represents cell that contain a string value, and

Formula Cells contains all cells that contain a valid formula expression.

Numerical and label cells are identified irrespective of their usage, i.e. they can be
computationally dead or not. The Formula Cells node is the root node for fur-
ther items that correspond to logical areas. The list of all structural equivalence
classes contains the child items of the Formula Cells node. For each structural
equivalence class, those logical equivalent logical areas that it is built up from will
be the child items. The same process is repeated for logical equivalence classes
and copy equivalence classes and for copy equivalence classes and single cells.

The aggregation algorithm generates equivalence classes with only a single
member (e.g. a formula that is not structurally equivalent with any other formula
in the spreadsheet program will lead to the generation of a copy-, a logical- and a
structural equivalence class, that have only one member), too. As these uniquely
occurring equivalence classes will only puzzle the users without bearing any extra
information they can be considered as noise and have to be filtered out in the
visualization.

Hence, only equivalence classes with more than one member6 are left out in
the tree-view.

In order to be able to determine quickly the membership of a given cell in a
logical area, or the logical areas that a cell is member of, there are two indices:

5In the current implementation, the pattern is the formula of the first cell that has been
added to the logical area.

6In this context a member is a logical area with a stricter similarity criterion. Members of
copy equivalence classes are cells.

7.2. FUNCTIONALITY AND IMPLEMENTATION 165

Reverse index is a balanced tree, with the cell coordinates as key and a list of
the logical areas, that the cell is member of as entry, and

Visible nodes is a balanced tree, with the id of a logical area as key and an array
of the member cells as entry. Visible nodes contains only those logical areas
that are displayed in the tree-view. The index is maintained by a callback
function that is attached to the item-expanded event of a tree-item.

The indices are mainly used to give the user feedback of the partitioning of cells
into logical areas by generating a SRG and by selecting the member cells of a
logical area in the spreadsheet UI. The second task is performed by attaching a
callback function to the selection-changed event of the tree-view. To each tree-
item a data structure that contains reference to the represented cells is attached as
so-called user-data. Whenever the user makes a selection, all cells in the pointer
array attached to the selected tree-item are selected.

The user can also request a SRG with logical areas as nodes. Therefore, the
logical areas that are currently visible in the tree-view as leafs will be nodes. The
assembling of the SRG is complicated, as it consists of several look-ups in the
index data structure:

1. The visible nodes index has to be traversed for leaf-nodes, i.e. nodes that
do not have any children that are currently visible in the tree-structure. As
the index consists of nodes that are logical areas, their id and the member
cells can be accessed.

2. To generate the edges in the SRG, for each member of the logical areas
that were selected in step one,

(a) their dependents have to be figured out,

(b) for each dependent,

i. the logical areas that it is member of have to be looked up in the
reverse index,

ii. the logical area that is a node in the SRG has to be selected by
checking the visible nodes index again,

iii. an edge is inserted between the two corresponding SRG-nodes.

Integration from the Users’ Point of View

In order to meet the postulated requirement of seamless integration of an auditing
tool into the spreadsheet system, the following features that are meant to improve
the cooperation between the visualization toolkit and the spreadsheet system have
been integrated into this component:

Selection propagation: The selection of a logical area in the tree-view influ-
ences the spreadsheet UI as well as the graph-window:

166 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

• The cells that are a member of the logical area that users select in the
tree-view will be immediately selected on the spreadsheet UI, and

• the leaf nodes of the tree-view will be the nodes of an SRGLA, when-
ever the Graph-button is pressed.

Cell Restriction: If users select cells on the spreadsheet UI before they start
the analysis, only the selected cells will be further considered.

Graph Feedback: Users can trace back the cells that an SRGLA-node contains
as well as the logical area that corresponds to a given SRGLA node, by
selecting the node in the graph-window.

In this component, the highest level of integration between auditing toolkit,
spreadsheet system and the graph window is implemented. However, due to
some problems with the integration of the graph window, there is no immediate
change of the displayed SRGLA when the user changes the displayed items in the
tree-view. The SRGLA is only generated when the users push the Graph-button.

This technique supports fish eye-views, as the user can expand or collapse
logical areas in the tree-view in order to see their members. As the SRG has the
leaf nodes of the tree-view as nodes, the users can decide, whether they want to
look inside a specific logical area, or whether they want to examine it on a higher
level of abstraction.

7.2.2 Component Semantic Classes

The component Semantic Classes is stored in the files semclass.c and semclass.h

in the plug-in-directory. As the algorithm for detecting the semantic classes of
a spreadsheet program (see Table 6.1 on page 132 and Table 6.2 on page 133)
depend on the parameters dh, dv, dMan, EqStart, EqRest and b, the cutoff percent-
age, the corresponding fields are also part of the component’s user interface (see
Figure 7.3 on page 169) and of the initial data structure (see Table 7.3 on the
next page). The initialization of the data structure is performed by the plug-in’s
main routine. Further callback functions, e.g. when the selection in the tree
control changes, are added by the on btn start start function of the component
that is called to invoke the component.

Control Flow in the Component

The component is invoked by calling the on btn start function. In the function,
the data model of the tree-view is initialized by calling the init model function.
Consecutively, the parameters are read out of the text fields in the dialog.

Depending on the selections made for EqStart and EqRest, pointer arrays that
contain the corresponding equivalence classes are retrieved from the Logical Areas
component. Therefore, the Logical Areas component must have been invoked

7.2. FUNCTIONALITY AND IMPLEMENTATION 167

typedef struct {
Sheet ∗sheet;
GtkEntry ∗hordist;
GtkEntry ∗vertdist;
GtkEntry ∗cutoff;
GtkEntry ∗mandist;
GtkCombo ∗eqstart;
GtkCombo ∗eqrest;

GtkTreeView ∗result;
gboolean first ;
} SC CB Data;

Table 7.3: Initial data structure of the Semantic Classes component

already. In a next step, the information has to be transformed to serve as initial
data for the merging algorithm.

The Logical Area component retrieves a set of logical areas that contains cells.
The input for the merging algorithm has to be a list of semantic classes and the
parameters. As it has been discussed in the previous chapter, a logical area is
a trivial semantic class, with singleton cells as semantic units. Therefore, the
assignments of cells to logical areas (of equivalence criterion EqStart) is rewritten
as assignment of semantic units to semantic classes.

Consecutively, the function merge that is a C implementation of the merging
algorithm discussed in Subsection 6.3.2, is invoked. The function is shown in
Table 7.4 on the following page.

The function consists of two major parts that are repeatedly executed in a
loop:

Selection: From line 13–32, all semantic classes that are known so far are ex-
amined for co-occurence. Therefore, each pair of semantic units in two
semantic classes is examined on whether they are reachable according to
the distance vector. For each pair of semantic classes, a %-value is calcu-
lated that indicates the minimal percentage of semantic units in either of
the classes that would be absorbed by a merged semantic class. The two
semantic classes with a maximal co-occurence will be selected for a merge.
Pairs of reachable semantic units that are members of the candidate classes
are stored in the list merge cands. If the maximal co-occurence between
two semantic classes is below the cutoff-percentage, the function’s main
loop will terminate.

Merging: The actual merging is performed by lines 33–46. Therefore, a new se-
mantic class is created (line 37), and the pairs of semantic units are merged

168 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

1 GList∗ merge(GList ∗∗units, gint dh, gint dv, gint dm, gint cutoff , eqinfo eq) {
2 gboolean found;
3 double maxCo;
4 semunit ∗s1, ∗s2;
5 gint m1, m2;
6 do {
7 guint i ;
8 guint maxsize = 0;
9 GList ∗merge cands = NULL;

10 gint maxid = search maxid(∗units);
11
12 found = FALSE;
13 for (i = 0; i < maxid; i++) {
14 guint j ;
15 for (j = i + 1; j < maxid; j++) {
16 double aktocc = 0;
17 if (i != j) {
18 GList ∗test cands = NULL;
19 aktocc = cooccurence(∗units, &test cands, i , j , dh, dv, dm);
20 if (aktocc > cutoff / 100 &&
21 maxsize < g list length(test cands)) {
22 maxsize = g list length(test cands);
23 my list free (merge cands);
24 merge cands = test cands;
25 m1 = i;
26 m2 = j;
27 } else {
28 my list free (test cands);
29 }
30 if (aktocc > cutoff / 100) {
31 found = TRUE;
32 } } } }
33 if (found) {
34 gint newmax = search maxid(∗units);
35 guint i , j ;
36
37 merge units(units , merge cands);
38 my list free (merge cands);
39 for (i= 0; i < g list length (∗units); i++) {
40 semunit ∗su 1 = (semunit∗) g list nth data(∗units , i);
41 if (su 1−>semclass id == newmax) {
42 for (j = 0; j < g list length (∗units); j++) {
43 semunit ∗su 2 = (semunit∗) g list nth data(∗units , j);
44 if (su 2−>semclass id != su 1−>semclass id && is in class(su 1, su 2, eq)) {
45 su 2−>semclass id = su 1−>semclass id;
46 } } } } }
47 } while (found);
48 return ∗units;
49 }

Table 7.4: The C implementation of the merging algorithm

7.2. FUNCTIONALITY AND IMPLEMENTATION 169

Figure 7.3: User interface of the Semantic Classes component

into one semantic unit that becomes a member of the new semantic class.
The function merge units performs this step and contains some overhead
for memory management. Consecutively it is checked if one of the already
defined semantic classes has become spurious, e.g. if all of the member
units were absorbed by a new semantic class.

The selection is based on the result of the function cooccurence (see Ta-
ble 7.5 on the next page). The function is invoked with the ID of two se-

mantic classes sc1 and sc2 and the distance vector ~d = (dh, dv, dm). It will
return a list with pairs of semantic units (u1, u2) with u1 ∈ sc1, u2 ∈ sc2 and

∀ci, cj ∈ u1 ∪ u2 | dense(u1 ∪ u2, ci, cj, ~d). The size of the semantic classes7 sc1

and sc2 is stored in the variables sc1 cnt and sc2 cnt. For each semantic unit
in sc1 a semantic unit in sc2 is searched that

1. satisfies the denseness criteria, and

2. is not already selected for merge with another semantic unit in sc1.

7The size of a semantic class is given by the number of semantic units it contains.

170 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

1 double cooccurence(GList ∗units, GList ∗∗merge cands, int sc1, int sc2,
2 int dh, int dv, int dm) {
3
4 GList ∗consumed = NULL;
5 unsigned int i,j;
6 int sc1 cnt ;
7 int sc2 cnt ;
8 int cooc;
9 double result;

10
11 cooc = 0;
12 sc1 cnt = 0;
13 sc2 cnt = 0;
14 for (i = 0; i < g list length (units); i++) {
15 semunit ∗su1 = (semunit∗) g list nth data(units , i);
16 if (su1−>semclass id == sc1) {
17 sc1 cnt++;
18 for (j = 0; j < g list length (units); j++) {
19 semunit ∗su2 = (semunit∗) g list nth data(units , j);
20 if (su2−>semclass id == sc2
21 && g list find(consumed, su2) == NULL
22 && g list find(consumed, su1) == NULL) {
23 sc2 cnt++;
24 if (reachable(su1, su2, dh, dv, dm)) {
25 merge cand ∗mc = malloc(sizeof(merge cand));
26 mc−>s1 = su1;
27 mc−>s2 = su2;
28 cooc++;
29 ∗merge cands = g list append(∗merge cands, mc);
30 consumed = g list append(consumed, su1);
31 consumed = g list append(consumed, su2);
32 } } } } }
33 if (sc1 cnt == 0 || sc2 cnt == 0) {
34 result = −2;
35 } else if (sc1 cnt > sc2 cnt) {
36 result = (1.0 ∗ cooc) / sc2 cnt ;
37 } else {
38 result = (1.0 ∗ cooc) / sc1 cnt ;
39 }
40 g list free (consumed);
41 return result;
42 }

Table 7.5: The C implementation of the co-occurence calculation

7.2. FUNCTIONALITY AND IMPLEMENTATION 171

If such a unit is found, both semantic units are stored in the result list and are
marked as consumed. Therefore, they are stored in a list of consumed semantic
units. Finally, in order to calculate the percentage of co-ocurring semantic units,
the size of the result list is divided by the size of the smaller semantic class.

Thus, the function returns a list of semantic units that could be merged and
the percentage of semantic units in the smaller class that would be absorbed by a
new semantic class. It has been decided to calculate the percentage with reference
to the smaller class, because the new semantic class can only have a maximal size
that is equal to the number of semantic units in the smaller semantic class, i.e. a
value of 100% means that all of the possible merges are made. Obviously, this
strategy will preferably select to merge small semantic classes that occur only
in conjunction with a large semantic class with the affected units in the larger
semantic class.

After the merging algorithm, the data is processed for presentation in the user
interface. Currently, three kinds of output are supported:

1. Textual output is provided by the function dump. The textual output
generates a report, with the id of a semantic class as heading and the
member units as detail data.

2. SRG output is provided by the function draw graph. A SRG is generated
with nodes that represent semantic classes.

3. Tree-structured output is provided by the function output. In the tree
control, there is a root node that represents all formula cells. The child-
nodes represent semantic classes. Each semantic class has child nodes that
represent semantic units that constitute the semantic class. A semantic
unit has child nodes that represent its member cells. Similar to the Logical
Areas component, the selected cells that are represented by the selected
node in the tree view will be selected in the spreadsheet UI.

Limitations

The Semantic Class component has been developed to demonstrate the capa-
bilities of spreadsheet visualization and auditing with semantic classes. Other
development aims, e.g. the feasibility of fish-eye based visualization techniques
and the integration of graph-based and structure-based visualization with the
spreadsheet UI that were already met in the Logical Areas component, had a low
priority in this component. Thus, a suggested fish-eye visualization has not been
realized and there is no connection between the graph-window and the tree view
or the spreadsheet UI.

Furthermore, in order to increase the usability the rather rudimentary user
interface needs further improvement. Currently, the cells that the analysis should
operate on, are read out from the Logical Area-component. Thus, if the users want

172 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

typedef struct {
Sheet ∗sheet;
GtkTreeView ∗tree structure;
GtkTreeView ∗cand;
GtkTreeView ∗excl;
void ∗mod graph;
} Mod CB Data;

Table 7.6: Initial data structure of the Data Modules component

to analyze the spreadsheet or a region of the spreadsheet with this component,
the corresponding region of the spreadsheet UI has to be analyzed at first with
the Logical Area-component.

7.2.3 Component Data Modules

The component Data Modules is stored in the files datamod.h and datamod.c.
The implementation of this component is straightforward as no specific algorithm
is applied. The user interface has to support the possibility for users to preprocess
the DDG,in order to remove sink nodes that do not correspond to spreadsheet
results. Therefore, two list fields are supported, i.e. one that contains the current
sink nodes and one that displays the sink nodes so far removed (see Figure 7.4 on
the facing page). Therefore, the two tree views, i.e. cand and excl are stored in
the initial data structure (see Table 7.6) that is initialized by the plug-in’s main
function.

In contrast to the other modules where only a callback that corresponds to
the dialogs’ start button is added by the main function, the main function also
adds callbacks to the left (←) and right (→) buttons of the DDG that will move
list items from the list of sink nodes to the list of excluded sink nodes. The
same callback routine is added as on-node-delete callback to the graph-window
menu. Hence, whenever the user deletes a sink node in the graph-window, it will
be automatically added to the list of deleted nodes in the dialog.

7.2.4 Control Flow in the Component

Analysis is usually started with pruning the DDG. Therefore, the component
generates a graphical representation of the DDG and highlights the sink nodes.
Consecutively, the user is offered opportunities to remove sink nodes. Afterwards,
the partitioning of the DDG into data modules is invoked by the build dmod

function that is a callback attached to the Module-button.
The partitioning itself is performed by the function create modules that is

stored in the file graphs.c. The function has been transfered to an extra file

7.2. FUNCTIONALITY AND IMPLEMENTATION 173

Figure 7.4: User interface of the Data Modules-component

and even an extra shared library, because it is written in C++. The change of
the programming language was necessary, because mainly functions of the LEDA
toolkit have been used to perform the analysis.

In detail, the implementation of the analysis is shown in Table 7.7 on the
following page.

The analysis ranks the nodes in the DDG by a longest path ranking (see
Alberts et al. [AGMN97] for a detailed discussion of graph layout algorithms).
The longest path ranking will assign each node a rank, i.e. a unique ordinal
number, that is calculated by the rank of the predecessors8 +1. Thus, it can
be assumed that there is at least one sink node that has the highest rank and,
if nodes are ordered by their rank, sink nodes, i.e. leaf nodes, will come before
the nodes they depend on. For the analysis, nodes are visited in the order of
their rank. For each node it is checked for if it is referenced by exactly one other
module. If this condition is true, the node will join the module. Else a new
module containing only this node is created (see lines 37–60 in the listing).

Consecutively, the information of the initial DDG is used to reconstruct the
edges of the SRG with data modules as nodes (see lines 61–81). Finally, some

8A predecessor of a node v in the DDG is the source of an edge, heading to v.

174 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

1 void∗ create modules() {
2 graph& G = gw−>get graph();
3 GraphWin ∗g new = new GraphWin(”Data Modules”);
4 graph& GN = g new−>get graph();
5 node array<int> rankN(GN);
6 LongestPathRanking L(true);
7 GraphWinInterface A(∗g new);
8 SugiyamaLayout sugiyama;
9 int i ;

10 node array<int> rank(G);
11 h array<node, int> ∗assignments = new h array<node, int>;
12 node v;
13 edge e;
14 int current rank = −1;
15 int next modid = 0;
16 const char∗ cap;
17
18 g new−>set animation steps(0);
19 free (mod ass);
20 free (modules);
21 free (module);
22
23 text = new h array<int, const char∗>; //Indexing modul# with label
24 rep = new h array<int, node>; //Index von Modul# auf rep. knoten
25 mod ass = new h array<const char∗, list<const char∗>∗ >;
26 modules = new list<const char∗>;
27 module = new node array<int>(G);
28
29 LongestPathRanking(true).call(G, rank);
30
31 //Search highest rank, in order to start collapsing bottom−up
32 forall nodes (v, gw−>get graph()) {
33 if (rank[v] > current rank) {
34 current rank = rank[v];
35 } }
36 //Go through all nodes, start at bottom
37 for (i = current rank; i >= 0; i−−) {
38 forall nodes (v, gw−>get graph()) {
39 //Is node to be examined now?
40 if (rank[v] == i) {
41 int curr mod = −1;
42 int mod cnt = 0;
43 forall out edges (e , v) {
44 node w = gw−>get graph().target(e);
45 //How many nodes in how many different modules reference
46 //the current node?
47 if (curr mod != (∗module)[w]) {
48 curr mod = (∗module)[w];
49 mod cnt++;
50 } }
51 // Only one −> add this node to the dependent’s module.
52 if (mod cnt == 1) {
53 (∗module)[v] = curr mod;
54 } else {
55 //else , lets create a new module, because we
56 //have to deal either with a sink , or an intermediate node.
57 (∗module)[v] = next modid++;
58 //Set the new module’s text to the intermediate node’s label .
59 (∗text)[(∗module)[v]] = (const char∗) gw−>get label(v);
60 } } } }
61 for (int i = 0; i < next modid; i++) {
62 point p;
63 list <const char∗> ∗l = new list<const char∗>;
64 (∗rep)[i] = g new−>new node(p); //Create, for each module, a node that represents the module.
65 g new−>set label((∗rep)[i], (∗text)[i]);
66 modules−>push((∗text)[i]); //put the label into the module−member list.
67 (∗mod ass)[(∗text)[i]] = l ;
68 }
69 forall nodes (v, gw−>get graph()) {//Now, lets have a look at the edges!
70 (∗mod ass)[(∗text)[(∗module)[v]]]−>push(gw−>get label(v));
71 forall out edges (e , v) {
72 node w = gw−>get graph().target(e);
73 //If the module of the target is not equal to the module of the
74 //source, check, if there is already an edge between v’s module
75 //and w’s module.
76 //If not, create an edge.
77 if ((∗module)[w] != (∗module)[v]) {
78 list <node> l= g new−>get graph().adj nodes((∗rep)[(∗module)[v]]);
79 if (l .search((∗rep)[(∗module)[w]]) == NULL) {
80 edge e = g new−>new edge((∗rep)[(∗module)[v]], (∗rep)[(∗module)[w]]);
81 } } } }
82 g new−>display();
83 L. call (GN, rankN);
84 sugiyama.ext call(GN, rankN, A);
85 g new−>zoom graph();
86 return g new;
87 }

Table 7.7: C++ implementation of Data Modules analysis.

7.3. LIMITS AND IMPROVEMENT 175

layout work is done and the graph is drawn. Additionally, in the tree view a
more structured representation of the identified data modules is given. Therefore,
each data module is represented in the tree control as a top-level node. If it is
expanded, all the cells that are contained in the data module are shown as its
children.

Further information that is given in the tree view involves the size of the data
module and if it contains any sink nodes. This information is retrieved from the
data structures that are built up during the partitioning process (see Table 7.7 on
the preceding page). The cells that are represented by the currently selected item
in the tree view will be highlighted on the spreadsheet UI.

There is some basic support for fish eye-views offered by this component. The
buttons btn zoom in and btn zoom out, that are represented by the zoom-in and
zoom-out icons in the dialog, will either expand or collapse the data module,that
is currently selected in the tree view. Expanding a data module, i.e. replacing it
in the SRG with its member cells, consists of three steps:

• replacing the data module by the cells it contains,

• reconstructing the inter-cell edges from the DDG, and

• redirecting the edges that target to the expanded data module to the node
that represents their target cell.

Collapsing an expanded data module in the SRG means to replace the member
cells of the data module by a single node, i.e. the result node of the data module.
This is done in a straightforward manner, as only the nodes that were added
during the expansion have to be removed from the graph, except for the result
node of the data module. As the result node is the only source of edges that
should remain after collapsing the module, only the edges targeting into the
module have to be redirected to the remaining result node.

7.3 Limits and Improvement

The toolkit that is described in this chapter was developed in order to demon-
strate the effectiveness of the auditing strategies suggested in the previous chap-
ter. Thus, it has to be considered merely a prototype that is not targeted to
fit the needs of end-users. However, it was well suited for demonstrating the
feasibility of the visualization approaches.

Of course, there are still some remaining problems. The desired degree of
integration between the plug-in and the spreadsheet system could be reached,
but the integration between the plug-in and LEDA, the graph visualization toolkit,
needs further improvement.

There are also some missing features, because not all of the desired features,
e.g. fish-eye views or the feedback between the components, were implemented

176 CHAPTER 7. THE MODEL VISUALIZATION TOOLKIT

Logical Areas Semantic Classes Data Modules

Coordination graph window
- spreadsheet UI

F - -

Coordination graph window
- toolkit

- - F

Coordination toolkit -
graph window

I I F

Coordination toolkit -
spreadsheet UI

F F F

Coordination spreadsheet
UI - other components

I I I

Coloring of cells - - -

Table 7.8: Special features and implementing components. F stands for the
feature is fully implemented, I for Improvement needed, - for missing

for all components. Fish-Eye views, for instance, are available with logical areas
and data modules, but only to a certain degree with semantic classes. Another
feature that would be nice to have, is automatic coloring of cells depending on
the membership in a logical area, semantic class or data module. In Table 7.8 a
brief summary of implemented features and needed improvement is given.

Summary

The following issues have been addressed in this chapter:

• A prototype has been implemented to show the feasibility of the auditing
techniques.

• The prototype is a plug-in for the gnumeric spreadsheet system.

• It consists of three loosely connected analysis components and a graph
visualization component.

• Each desired feature, e.g. fish eye-views and seamless integration with the
spreadsheet UI, is demonstrated by one or more component(s).

• The prototype is not suitable for end-users yet.

Chapter 8

Outlook

In this chapter, the spreadsheet visualization technique introduced in Chapter
6 is discussed in the broader context of other spreadsheet auditing techniques
(see Chapter 5). Although the visualization technique has been developed as an
auditing technique, possible applications in the fields of spreadsheet maintenance
and spreadsheet development will also be discussed in the following section.

The auditing technique and toolkit have turned out so far to be cost effective
and efficient for finding errors. Its efficiency shows specifically when it is applied
to the kind of spreadsheet programs it has been designed for, i.e. large spread-
sheets with regularly re-occurring patterns of formula usage. The logical areas
and semantic classes are a helpful tool to reduce the complexity of size that is
hidden in large spreadsheet programs. Data modules can support checking of the
DDG of a spreadsheet program by drastically reducing the number of nodes and
edges that have to be considered without losing any information.

Nevertheless, this approach is not suitable for checking spreadsheets with
complicated calculation, where formulas do not reoccur. For this kind of spread-
sheet programs, the spreadsheet testing approaches have to be used. To combine
the spreadsheet visualization approach suggested here with different spreadsheet
testing approaches is also feasible and might be a good idea. Therefore, the for-
mulas in a representative semantic unit (or cell) of each semantic class (or logical
area) are checked by the conventional testing approach, and consecutively au-
ditors check for whether the semantic class (or logical area) occurs in the right
places.

During the practical tests of the auditing technique and several discussions,
possible extensions have been figured out and will be described in Section 8.2.

8.1 Discussion

There are already several tools for the visual auditing and testing of spreadsheet
programs. Usually, the testing approaches will yield good results if the region

177

178 CHAPTER 8. OUTLOOK

to test is small and the spreadsheet tester is familiar with the testing approach.
Spreadsheet testing considers a spreadsheet more or less conventional software
and it is tried to find wrong results by comparing the calculated results to a test
oracle.

8.1.1 Position of the Work

Spreadsheet visualization is a totally different approach to the identification of
errors. The particularities of the spreadsheet program and the spreadsheet pro-
grammers are taken into account by combining the formulas with the layout of the
spreadsheet. Different visualization techniques rely on different kinds of combina-
tions, but they have all in common that their users do not check the spreadsheet
program on a cell-by-cell level, but rather through examining the spreadsheet UI
to find peculiarities in the patterns that the visualization indicates.

Thus, the visualization approaches usually give immediate feedback to the
users on the spreadsheet UI. Although this feature is desirable at first sight, it has
the drawback that the visualization technique does not scale up for spreadsheet
programs that do not fit on a single screen any more. All spreadsheet visualization
techniques that have been examined during the development of this work (see
Section 5.5) share this inconvenience.

Although logical areas, semantic classes and data modules can still be pro-
jected to the spreadsheet UI in order to find patterns, there are some major
differences:

• The auditing approach introduced does not only use the spreadsheet UI for
visualization. There are also SRG and structural views of the spreadsheet
program.

• Visualization is not performed on a cell-by-cell level, but cells are aggregated
to form more abstract units, i.e. logical areas, semantic units and semantic
classes or data modules.

The first property makes the visualization technique suit for large spreadsheets.
Patterns that are larger than the size of the screen become visible and it is
easy to identify ruptures in regular structures. The second feature establishes
scalability of the technique. There are some auditing approaches, e.g. the S2 and
S3 visualization (see Sajaniemi [Saj00]) and SpACE (see Butler [But00]), that
support the aggregation of identical formulas into abstract units.

However, the homogeneity criterion is very strict, i.e. copy-equivalence, and
only geometrical compact areas with homogeneous formulas can form such an
abstract unit. Thus, regular patterns of formulas that repeat e.g. every third
cell, will not be recognized. Furthermore, it has turned out that the cross sec-
tion of different equivalence criteria is a very worthy help. This feature is not

8.1. DISCUSSION 179

supported at all by alternative visualization approaches, but an important part
of the auditing approach introduced.

A further abstraction step, as it is implemented by semantic classes, turned
out to reduce the complexity of auditing large spreadsheet programs. The SRG
becomes much more compact, and there are less entities for the auditor to check.
A corresponding feature has not been offered by any other spreadsheet visualiza-
tion approach so far.

Beside these visualization tools that are based on coloring cells, there are
also tools to visualize data dependencies among cells. Well known examples
are the built-in auditing tools of Excel, that allow users to trace dependents
and predecessors of a given cell, or improvements of this technique (see Davis
[Dav96]). These approaches are suitable for bug tracing, but as a matter of fact,
they are not suitable as auditing tools.

Chan et al. [CC00] presents a data flow based auditing and spreadsheet vi-
sualization toolkit that is suitable for auditing. There are some data flow based
auditing strategies, that are based on the assumption that data flow in the spread-
sheet should be directed the way people read the spreadsheet, i.e. from the top
left to the bottom right corner. Deviations in this direction will be highlighted
to the auditor and are classified as a hot-spot.

A further auditing strategy that is suggested by Chan et al. requires data
flow to be only amongst spatial neighbors. Anomalies are again classified as
an error. The second strategy obviously relates to the structured spreadsheet
modeling approach that is suggested by Rajalingham et al. (see Subsection 5.3.3).
Nevertheless, this technique does not scale up. Both strategies can be easily
transferred to data modules:

1. The data flow in a data module has to be oriented from top-left to bottom-
right, and data dependencies between result cells and other data modules
have to follow the same rule.

2. Members of data modules have to be in a physical area.

Nevertheless, there are some fundamental differences, as data modules are the
more flexible visualization tool. Apart from the strategies suggested by Chan,
there are three further auditing strategies (see Subsection 6.4.3). Here, the users
are not confronted with the spreadsheet on a cell-by-cell level any more. Instead,
they start on the level of data modules, and each data module can be checked
separately. Thus, this approach is more suitable for larger spreadsheet programs.

8.1.2 Further Applications

So far, the advantages and short-comings of this visualization technique have
only been discussed in the context of spreadsheet auditing. Nevertheless, the
identification of structures and patterns could also be exploited in other areas

180 CHAPTER 8. OUTLOOK

of spreadsheet development. Obviously, software maintenance in general, and
spreadsheet maintenance in particular tend to increase the number of errors in
software.

Reverse Engineering and Maintenance

The approach presented here leads to a better understanding of a spreadsheet
program by the spreadsheet programmer and maintainer. Misconceptions are a
very common source of errors (see the results of the field audit in Section 4.3).
They result from missing documentations of both spreadsheets and their changes.
It is common that spreadsheets with a maintenance cycle above 6 months are not
even understood by their creators. Therefore, maintenance is often based on a
conceptual model reconstructed by assumptions of how the conceptual model of
the spreadsheet could have looked like. The visualization of the semantic classes
and the logical areas can be a means of supporting the reconstruction of the
conceptual model of a spreadsheet. Knowing this structure, maintenance might
be done without bluring the structure, i.e. by

• copying and pasting not individual cells, but semantic units,

• correcting errors not in a single cell, but in a logical area,

• considering the pattern of occurrence of members of a semantic class or a
logical area, before modifications are made.

The drawback that the spreadsheet maintainers’ freedom is restricted if structure-
preserving maintenance is done, is out-weighted by the advantages of a consistent
model throughout several maintenance cycles. Many errors discovered in field
audits (see Chapter 4) that were due to structure destroying maintenance, e.g. the
value instead of formula errors, can be avoided.

Programmer Guidance

As for the application in spreadsheet maintenance, the information about seman-
tic classes and logical areas can be used to guide the spreadsheet programmer
during the implementation stage. The following ways of guidance can be outlined
so far:

• copy and paste on the level of semantic units,

• warning programmers if a new cell or modification does not correspond to
a given pattern, and

• warning programmers, if they are about to introduce formulas that are
structurally or logically equivalent to others, as this might be the introduc-
tion of outliers.

8.2. FURTHER WORK 181

Of course, the programmers can only be warned, because there might be well
founded reasons to break regular structures or to introduce structurally equivalent
formulas.

One open issue that has to be solved before is the automatization of the
parametrization of the semantic class algorithm (see Section 8.2), as the algorithm
has to be re-executed after each change in the spreadsheet program in order to
have a valid abstraction of the structure. Obviously, it is not feasible to force the
spreadsheet programmer to adjust the parameters of the analysis algorithm after
each change.

8.2 Further Work

In this section some extensions of the spreadsheet visualization and auditing
strategies are discussed. One issue commonly criticized to be missing is that
currently labels and formatting information is not considered. Possible ways
to improve the visualization with this extra information are shown in Subsection
8.2.1. As the main application of the visualization technique is spreadsheet audit-
ing, possible improvements of the auditing strategies are suggested in Subsection
8.2.2.

8.2.1 Using Layout Information to Improve the Visual-
ization

As a matter of fact, the users’ model of the spreadsheet is not only determined
by the spreadsheet program, i.e. the set of formula cells and constants. Indeed,
labels and formatting issues bear some additional semantics, too. Users tend
to mark out blocks they consider to be related by certain layout characteristics,
e.g. frames, fonts or format templates.

The same is true for labels. If the same concept is repeatedly used throughout
the spreadsheet program, it is expected that the labels will also be identical.
Having a look at real world spreadsheets furthermore reveals, that final sums are
generally formatted in a specific way, e.g. they are displayed in a bold font or
they are underlined. Additionally, there are some format templates that bear
specific semantics, e.g. a result template.

For the identification of semantic units, the denseness of a geometrical area
on the spreadsheet UI plays an important role. Nevertheless, as the meaning
of labels cannot be automatically determined, label cells are considered to be
empty. However, for users there might be a difference between label cells that
carry certain information, too, and empty cells, that are generally used to separate
different areas on the spreadsheet UI. Considering the assumptions made above,
the layout information can be used for the issues that are discussed subsequently.

182 CHAPTER 8. OUTLOOK

Selecting Parameter Values

One of the crucial issues when spreadsheet analysis is performed by the semantic
classes approach is the specification of the correct parameters for the partitioning
algorithm. End users will need a certain degree of training and/or experience
in order to become familiar with the meaning of each parameter. As this is a
drawback in the quest of creating auditing and visualization tools that are suitable
for end-users, automatically selecting parameters would be a big step forward.

The manual specification of parameters has also a further drawback, as dif-
ferent regions of a given spreadsheet program might require different parameters.
Thus, the upper part that deals with data collection, is column-oriented, whereas
the bottom part, that calculates business figures, is row-oriented. By now, the
spreadsheet has to be manually decomposed in different regions, and each of the
regions is analyzed with different parameters.

The information that is supplied through labels and formatting might be ex-
ploitable to smoothly adjust the algorithms’ parameter. However, labels and
formatting issues also depend on the taste of the spreadsheet programmer. Iden-
tical spreadsheet programs can be formatted in many different ways, without
changing the semantics. Thus, possible heuristics for choosing the parameters
have to be carefully examined and tested before they are used.

Identification of Result Cells

As it has been stated in the introduction of this section, the final sums and
results of a spreadsheet program are usually highlighted by special formats. Thus,
developing heuristics to deduce from the format guidelines to the meaning of a
specific cell, i.e. if a cell is a real result of a spreadsheet, or a check-sum. Hence,
when the spreadsheet auditor decides to decompose the spreadsheet into data
modules, the manual removal of DDG sink nodes can be accelerated.

A system that is aware of certain heuristics might look for those cells that are
near the sinks, and are specifically highlighted. Usually, it can be expected that
a check-sum has some of the real results of the spreadsheet as input. Thus, sink
nodes, depending on many highlighted neighbors, can be considered candidates
for removal. Nevertheless, automatic removal is dangerous, as the spreadsheet
programmer is free to break this conventions, e.g. by highlighting intermediate
results and not highlighting the final result.

Further Considerations

However, in large spreadsheets, cells are sometimes only incidentally similar. The
auditor has to check for each irregularity, whether it has been introduced on error,
on purpose, or there is no irregularity at all, but only an incidental similarity. If
formatting issues are important in the analyzed spreadsheet program, the format-
ting of a cell can also be used to get a better insight into the degree of cohesion

8.2. FURTHER WORK 183

of a semantic class or a logical area. In highly cohesive semantic classes, out-
liers that do not share the formatting of the other members might be considered
incidental members and, thus, not so important.

8.2.2 Automatic Identification of Errors

Automatic error detection in spreadsheet programs is also a very common sugges-
tion. As it was discussed in Chapter 6, irregularities in the geometrical pattern
or the equivalence criteria of members of semantic classes or logical areas are an
important approach towards the identification of errors.

Although the abstract representation of the spreadsheet supports the auditor
in finding irregularities, the so-called hot-spots, it is still a tedious task to check
the distribution of all semantic units of a given semantic class or the members of
a data module. There is a limited number of kinds of irregularities, e.g. ruptures
of the geometrical pattern or outliers in the structural representation.

Surveying these kinds of irregularities and improving the toolkit to check the
abstract representation of the spreadsheet program for these irregularities would
significantly accelerate the auditing process. Nevertheless, there might also be
some drawbacks. If auditors get used to the feature that their attention is drawn
to the hot-spots by the toolkit, they will not check the visualization for themselves
for any unrecognized hot-spots.

Thus, in order to be efficient, a rule base that contains nearly all kinds of
irregularities is necessary. This rule base cannot be supplied in advance, as errors
are partly domain specific. Nevertheless, this support is of course worthwhile and
can surely prevent some errors from being overseen.

Summary

The following issues have been addressed in this chapter:

• The here presented spreadsheet visualization approach

– is well suited for large, regular spreadsheet,

– can reduce auditing effort can when dealing with abstract units, above
the level of single cells, and

– is scalable.

• Further applications in the fields of

– Reverse Engineering and Maintenance, and

– Programmer Guidance

are possible.

184 CHAPTER 8. OUTLOOK

• Possible Improvements include the

– consideration of layout issues in order to

∗ find parameters for the semantic class algorithm,

∗ find a measure for the cohesion of a semantic class or logical areas,
and

∗ identify result cells of the spreadsheet,

– categorization and automatic identification of irregularities.

Chapter 9

Conclusion

The aim of this thesis is to help spreadsheet users to improve the quality of
spreadsheet programs. Although many different spreadsheet development and
testing techniques were developed, they were not widely accepted by end-users.
Often, this is due to the fact that most approaches rely too much on software
engineering methodologies. This contradicts the fact that spreadsheet programs
are not created by a defined process.

However, as it was pointed out in panel discussions between software engineers
and end-users, e.g. during the 1st EuSpRIG symposium, spreadsheet programers
are often not aware of the fact that they are programming at all. Nevertheless,
they are aware that they have to check the results of their spreadsheets.

A group of tools that emerges consider this fact and aim to offer the spread-
sheet programmer support for testing and auditing by visualizing certain struc-
tural aspects of spreadsheet programs. These tools, surveyed in Section 5.5, are
most likely to be accepted by end-users. An indication for the acceptance is that
some visual spreadsheet auditing tools, e.g. the spreadsheet detective or SpACE,
are already commercially distributed.

In Chapter 6 of the thesis, scalable approaches to spreadsheet auditing were
introduced. The three approaches are based on visualizing different structural
aspects of spreadsheet programs and help the spreadsheet auditor to reconstruct a
conceptual model of the spreadsheet. These visual auditing approaches introduce
the following extra benefits:

Scalability: The visualization techniques found in the literature recover certain
structural aspects and highlight them on the spreadsheet UI by coloring
cells. Thus, the part of the spreadsheet analyzed at a time is limited by
the size of the screen. The scalable approaches introduced here offer novel
visualization capabilities that go beyond the spreadsheet UI.

Different degrees of abstraction: Logical areas, semantic classes and data
module aggregate similar cells, whereby the definitions of similarity vary,
into abstract units. Other visualization approaches that were discussed in

185

186 CHAPTER 9. CONCLUSION

Section 5.5 offer only one definition of similarity, usually the one referred
to here as copy equivalence.

Not limited to geometrical areas: Because of the definition of logical areas,
abstract units are not forced to be formed by spatial neighbors anymore.
They can be scattered throughout the whole spreadsheet. Thus, pattern
based auditing can be introduced.

Auditing strategies: For each of the three visualization approaches discussed,
different auditing strategies with a varying focus are suggested. Depend-
ing on the interest of spreadsheet auditors they can use either pattern-,
structure-, or SRG-based auditing strategies.

As it was aimed to support end-users, one of the goals was to keep the auditing
technique simple and free of IT-vocabulary for users without neglecting a solid
theoretical foundation. Effective application of the auditing toolkit should be
possible for end-users without extra training.

Visual auditing with logical areas meets this requirement to a high degree.
Discussions and presentations for spreadsheet users have shown that it is easy
to communicate node equivalence classes and the different auditing strategies.
Although logical areas are not suitable for auditing very large spreadsheets, they
are well suited for the application by end-users with only little experience because
the concept is easy to explain.

The same is true for data modules. Both, logical areas and data modules, can
be applied straightforwardly without any parameters. Thus, spreadsheet users do
not have to deal with any issues specific to the methodology, but can concentrate
on the auditing strategies.

Data modules and logical areas or semantic classes can be combined in many
ways. Not only can they be applied on different regions of spreadsheets, or
spreadsheets of different kinds, but will also point out different aspects when
they are applied to the same part of a spreadsheet. The two concepts can be
considered orthogonal, because logical areas and semantic classes group cells that
repeatedly fulfill the same task, whereas data modules group cells that contribute
to the same task.

Semantic classes evolved out of logical areas. They turned out to be very
efficient for the analysis of large spreadsheets because a high level of abstraction
is introduced. The concept is still simple to explain to end-users, but due to
required parameters, i.e. ~d and b, the benefit of the analysis depends on the
match between parameters and the supposed model. Thus, a certain degree of
training and experimenting is needed.

On the one hand, it can be argued that the required training will hinder
the success of the visualization approach. But on the other hand the efficiency
and the variety of possible applications of semantic classes (see Subsection 8.1.2)
might also justify a certain amount of training required.

187

For semantic classes two different target groups are considered. The first
target group consists of end-users who have already successfully applied logical
areas and data modules. At a given time they might notice that they require the
extra abstraction capabilities offered by semantic classes. As they are already
familiar with the auditing methodology and are also well motivated, it is likely
that they will not shy away from some extra training.

The second target group are professional consultants that examine spread-
sheets produced by other persons. As these consultants are not end-users, but,
to a certain degree, IT-professionals, the additional training will not hinder them.

To sum up, it can be said that the auditing approaches presented here offer
novel abstraction and visualization capabilities. In contrast to other spreadsheet
visualization techniques, spatial limitations due to the spreadsheet UI are not
imposed any more. Cells can be categorized according to different criteria, and
the users can combine different auditing strategies. Although there is a high
degree of flexibility, e.g. different similarity criteria or pruning of the DDG, two
of the three approaches can be applied with a minimum of training.

The three approaches are not suitable for all kinds of spreadsheet programs.
The abstraction technique yields only a minimal benefit for spreadsheet programs
that are computationally very complicated, but small. However, they are well
suited to reduce the complexity of size that is immanent in huge spreadsheet
programs of a certain category. The testing of these spreadsheet programs is
very expensive and usually only done in a superficial way.

By the identification of hot-spots in these huge spreadsheet programs, the
auditing process can be accelerated and costs are reduced. Although there are
already different suggested approaches to improve spreadsheet quality, they all
require changes in the process of developing spreadsheet programs or restrict the
way spreadsheet users layout their spreadsheet programs.

The spreadsheet visualization approach aims to offer a varying degree of help
for spreadsheet users to improve their spreadsheets without changing the way
spreadsheets are created or imposing any restrictions on the spreadsheet pro-
grammers freedom of how to build up a spreadsheet.

188 CHAPTER 9. CONCLUSION

Appendix A

Installation Guide

The spreadsheet visualization toolkit described in this thesis is a plug-in for the
Gnumeric spreadsheet system which is a part of the GNOME-Desktop Environ-
ment for Linux. For the development of the plug-in, the following versions were
used:

• SuSE-Linux 8.0, with the linux-kernel version 2.4.18− 4GB

• GNOME 2.0

• Gnumeric 1.1.9

A.1 Installing and Compiling GNUMERIC and

the toolkit

In order to compile and run Gnumeric properly, other dependent libraries have
to be installed. As the here described plug-in does not depend on them, detailed
instructions can be found on the homepage of the Gnumeric project [Gol03].

The plug-in is integrated into the spreadsheet system by means of a CORBA
interface that is supplied by Gnumeric. A CORBA implementation that is in-
tegrated in the GNOME Desktop Environment is given by the bonobo-libraries,
that have to be installed. As some major changes to these libraries have taken
place, a version higher than 2.0.0 is required. To integrate bonobo support into
Gnumeric, it has to be configured with the option –with-bonobo.

Although it is recommended to compile Gnumeric with a recent version of the
gnu C compiler (gcc), the plug-in does not work properly with gcc 3.0 or later
versions. On the development system, gcc 2.95.3 was used.

In order to compile and install Gnumeric properly, the following steps have to
be followed after installing all the depending libraries, the Gnumeric source code
has been downloaded and copied to the directory gnumeric home:

1. Install AGD and LEDA (see next paragraph).

189

190 APPENDIX A. INSTALLATION GUIDE

2. The plug-in’s source code and makefile have to be copied to the directory
gnumeric home/plugins/vis.

3. In the file gnumeric home/plugins/Makefile.am, the plug-in has to be
added. Hence, the word vis has to be added to the SUBDIRS FUNCTIONS

variable.

4. The plug-in has to registered in the file
gnumeric home/configure. Therefore, the location of the plug-in’s make-
file, i.e. plugins/vis/Makefile, has to be added to the variable
ac config files.

5. The plug-in’s makefile has to be registered as a CONFIG FILE. Therefore,
the line CONFIG FILES=$CONFIG FILES plugins/vis/Makefile has to be
appended to the ac config target section of the file
gnumeric home/configure.

6. Gnumeric has to be configured. Let dest dir be the target of the instal-
lation, e.g. /usr/local. In this case, the directory has to be changed
to gnumeric home and the command ./configure --prefix=dest dir

--with-bonobo has to be executed. If all needed libraries are properly
installed, Gnumeric can be compiled with the command make. In the next
step, make install will copy the executable files to the destination direc-
tory and set the required permissions.

7. Finally, the dialog layouts, i.e. the file
gnumeric home/plugins/vis/dialog.glade of the plug-in have to be copied
manually to the directory
dest dir/share/gnumeric/V ERSION-bonobo/glade. The interface to
AGD, i.e. the file gnumeric home/plugins/vis/libGraphs.so has to be
copied into the user’s library path.

After performing these steps, the Gnumeric spreadsheet system as well as the
plug-in are properly installed on the target system. For further trouble shooting,
either the Gnumeric homepage (see [Gol03]) or the file gnumeric home/README

can be consulted.
Further, the Library of Efficient Datatypes and Algorithms (LEDA), Version

4.4 with AGD has to be installed correctly on the system, before the spreadsheet
visualization toolkit can be executed. LEDA can be purchased from Algorithmic
Solutions.

Bibliography

[Ack82] William B. Ackermann. Data Flow Languages. IEEE Computer,
pages 15–40, February 1982.

[ACM00] Yirsaw Ayalew, Markus Clermont, and Roland Mittermeir. Detecting
errors in spreadsheets. In Spreadsheet Risks, Audit and Development
Methods, volume 1, pages 51–62, AAAAAA, 7 2000. EuSpRIG, Uni-
versity of Greenwich.

[AGMN97] D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD-library:
A library of algorithms for graph drawing. In G. F. Italiano and
S. Orlando, editors, Proceedings of the Workshop on Algorithm En-
gineering (WAE ’97), Sept. 1997.

[Ale96] Robin A. Alexander. Teaching Good Systems Design for Spreadsheet
Projects. Journal of Accounting Education, 14(1):113–122, January
1996.

[Ama92] Makoto Amamiya. A new parallel graph reduction model and its
machine architecture. In John A. Sharp, editor, Data flow computing:
Theory and Practice. Ablex Publishing Corporation, Norwood, NJ,
1992.

[Ang93] Boon Seon Ang. Efficient implementation of sequential loops in
dataflow computation. In Proceedings of the conference on Functional
Programming Languages and Computer Architecture, pages 169–178.
ACM, 1993.

[App97] B. Appleton. Patterns and software: Essential concepts and termi-
nology, 1997.

[Asi84] Isaac Asimov. Asimovs New Guide to Science. Basic Books, Inc.,
New York, 1984.

[Aya01] Yirsaw Ayalew. Spreadsheet Testing Using Interval Analysis. PhD
thesis, Universität Klagenfurt, Universitätsstrasse 65–67, A-9020
Klagenfurt, Austria, November 2001.

191

192 BIBLIOGRAPHY

[BB93] James C. Brancheau and Carol V. Brown. The Management of End-
User Computing: Status and Directions. ACM Computing Surveys,
25(4):437–482, December 1993.

[BBL76] Barry W. Boehm, J. R. Brown, and M. Lipow. Quantitative Eval-
uation of Software Quality. In Proceedings of the 2nd International
Conference on Software Engineering, pages 592–605. IEEE-CS-ACM,
1976.

[Bei90] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold,
New York, second edition, 1990.

[Ber86] T. Berry. How to structure spreadsheets. Business Software, pages
56–58, October 1986.

[BG87] Polly Brown and John Gould. An experimental study of people
creating spreadsheets. Transactions on Office Information Systems,
5(3):258–272, July 1987.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, (4):61—72, April 1988.

[BP93] V.R. Basili and B.T. Perricone. Software Errors and Complexity:
An Empirical Investigation. In Software Engineering Metrics (Vol.
1: Measures and Validation), pages 168–183. McGraw-Hill Interna-
tional, 1993.

[BR00] Keith H. Bennett and Vaclav T. Rajlich. Software Maintenance and
Evolution: A Roadmap. In Anthony Finkelstein, editor, The Future
of Software Engineering, pages 73–87. ACM Press, 2000.

[Bra98] Neil Bradley. The XML Companion. Addison-Wesley, 1998.

[Bra99] Mary Brandel. Technology Flashback – 1983: As Easy as Lotus 1-2-3.
Computerworld, 1999.

[Bri00] Daniel Bricklin. Software arts & visicalc.
http://www.bricklin.com/history/intro.htm, 2000. visited on
6th February 2002.

[Bro95] Frederick P. Jr. Brooks. The Mythical Man-Month: Essays on Soft-
ware Engeering. Addison Wesley Professional, 1995.

[Bro02] Christopher Browne. Linux spreadsheets. http://www.ntlug.org/ cb-
browne/spreadsheets.html, January 2002. visited on 10th January
2002.

BIBLIOGRAPHY 193

[Bud94] David Budgen. Software Design. Addison-Wesley, 1994.

[But00] Ray Butler. Is This Spreadsheet a Tax Evader ? How H. M. Cus-
toms & Excise Test Spreadsheet Applications. In Proceedings of the
33rd Hawaii International Conference on System Sciences - 2000,
volume 33, 2000.

[Cas92] Rommert Casimir. Real programmers don’t use spreadsheets. ACM
SIGPLAN Notices, 27(6):10–16, June 1992.

[CC00] Hock Chuan Chan and Ying Chen. Visual checking of spreadsheets.
In Spreadsheet Risks, Audit and Development Methods, volume 1,
pages 75–85. EuSpRIG, University of Greenwich, 7 2000.

[Cha01] Hock Chuan Chan, editor. Easy Steps to Design & Check Your Excel
spreadsheets. Federal Publications, 2001.

[Cha02] David Chadwick. Training Gamble leads to Corporate Grumble? In
Spreadsheet Risks, Audit and Development Methods, volume 3, pages
2–10. EUSPRIG, 7 2002.

[CHM02] Markus Clermont, Christian Hanin, and Roland Mittermeir. A
Spreadsheet Auditing Tool Evaluated in an Industrial Context . In
Spreadsheet Risks, Audit and Development Methods, volume 3, pages
35–46. EUSPRIG, 7 2002.

[CK93] P. G Cragg and M. King. Spreadsheet modelling abuse: An opportu-
nity for OR. Journal of the Operational Research Society, 44(8):743–
752, August 1993. Summary by R. Panko.

[CK02] Martin Campbell-Kelly. The rise and rise of the spreadsheet. Talk
at EUSPRIG 02, July 2002.

[Cop00] James O. Coplien. Software Patterns. SIGS Books & Multimedia,
New York, 2000.

[CR98] David Chadwick and Kamalasen Rajalingham. Integrity Control of
Spreadsheets: Organisation & Tools. In Proceedings of the IFIP TC11
WG11.5 Second Working Conference on Integrity and Internal Con-
trol in Information Systems, pages 147–168, November 1998.

[CRKE99] David Chadwick, Kamalasen Rajalingham, Brian Knight, and D. Ed-
wards. An Approach to the Teaching of Spreadsheets Using Software
Engineering Concepts. In Proceedings of the 4th International Con-
ference on Software Process Improvement, Research, Education and
Training INSPIRE’99, pages 261–273, 1999.

194 BIBLIOGRAPHY

[CS96] Yolande E. Chan and Veda C. Storey. The use of spreadsheets in
organizations: Determinants and consequences. Information & Man-
agement, 31:119–134, 1996.

[DAFP93] Sergio T. Mujica David A. Fuller and Jos A. Pino. The Design of
an Object-Oriented Collaborative Spreadsheet with Version Control
and History Management. In Proceedings of the 1993 ACM/SIGAPP
symposium on Applied computing: states of the art and practice,
pages 416–423. SIGAPP, ACM, 1993.

[Dav96] J. S. Davis. Tools for spreadsheet auditing. International Journal of
Human-Computer Studies, 45(4):429–442, 1996.

[DDH72] Ole-Johan Dahl, Edsger W. Dijkstra, and Charles A.R. Hoare, edi-
tors. Structured Programming, chapter Notes on structured program-
ming. Academic Press, 1972.

[DI87] N. Davies and C. Ikin. Auditing spreadsheets. Austrialian Accoun-
tant, pages 54–56, December 1987.

[Doe99] Mark Doernhoefer. Surfing the net for software engineering notes.
ACM SIGSOFT Software Engineering Notes, 24(3):15–24, 1999.

[DW90] Weichang Du and William Wadge. The Eductive Implementation of
a Threedimensional Spreadsheet. Software-Practice and Experience,
20(11):1097–1114, November 1990.

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. The Benjamin/Cummings Publishing Company, Inc., Red-
wood City, CA, second edition, 1994.

[Fle02] Adam M. Flemming. Daniel bricklin.
http://ei.cs.vt.edu/BRICKLIN.Flemming.HTML, January 2002.
visited on 10th January 2002.

[Fur86] G. W. Furnas. Generalized fisheye views. In Conference proceedings
on Human factors in computing systems, pages 16–23. ACM, April
1986.

[Gil90] D. J. Gilmore. Methodological Issues in the Study of Programming.
In Psychology of Programming, pages 83–96. Academic Press, Ltd.,
1990.

[GN99] Emden R. Ganser and Stephen C. North. An Open Graph Visualiza-
tion System and its Applications to Software Engineering. Software
Practice and Experience, 1(5), 1999.

BIBLIOGRAPHY 195

[gnu03] The gnu homepage. http://www.gnu.org, January 2003. visited on
25th January 2003.

[Gol03] Jody Goldberg. The gnumeric project. http://www.gnumeric.org,
January 2003. visited on 10th January 2003.

[Gor98] Antonio Augusto Gorni. Spreadsheet applications in materials sci-
ence. In Gordon Filby, editor, Spreadsheets in Science and Engineer-
ing, chapter 8, pages 229–260. Springer, Berlin, Heidelberg, 1998.

[Gro02] Thomas Grossman. Spreadsheet Engineering: A Research Frame-
work. In Spreadsheet Risks, Audit and Development Methods, vol-
ume 3, pages 23–34. EUSPRIG, 7 2002.

[Har00] Mary Jean Harrold. Testing: A roadmap. In Anthony Finkelstein,
editor, The Future of Software-Engineering. ACM Press, 2000.

[HNX90] J.-M. Hoc and A. Nguyen-Xuan. Language Semantics, Mental Mod-
els and Analogy. In Psychology of Programming, pages 139–157. Aca-
demic Press, Ltd., 1990.

[Hua75] J.C. Huang. An Approach to Program Testing. Computing Surveys,
7(3):113–128, September 1975.

[Hud89] Paul Hudak. Conception, Evolution and Application of Functional
Programming Languages. ACM Computing Surveys, 21(3):359–411,
September 1989.

[ISL95] Thomas Isakowitz, Shimon Shocken, and Henry C. Lucas. Toward
a Logical/Physical Theory of Spreadsheet Modeling. ACM Transac-
tions on Information Systems, 13(1):1–37, 1995.

[Jac75] M. A. Jackson. Principles of Program Design. Academic Press, 1975.

[JM00] Diane Janvrin and Joline Morrison. Using a structured design ap-
proach to reduce risks in End user spreadsheet development. Infor-
mation and Management, 37:1–12, 2000.

[Jul98] Frank M. Julian. Using spreadsheets in chemical engineering prob-
lems. In Gordon Filby, editor, Spreadsheets in Science and Engineer-
ing, chapter 6, pages 171–202. Springer, Berlin, Heidelberg, 1998.

[Kan95] Stephen H. Kan. Metrics and Models in Software Quality Engineer-
ing. Addison-Wesley, 1995.

[KBB86] Krishna M. Kavi, Bill P. Buckles, and Narayan Bhat. A Formal
Definition of Data Flow Graph Models. IEEE Transactions on Com-
puters, C-35(11):940–947, November 1986.

196 BIBLIOGRAPHY

[KCPR00] Jennifer Kreie, Timothy Cronan, John Pendley, and Janet Renwick.
Applications development by end-users: can quality be improved?
Decision Support Systems, 29:143–152, 2000.

[KCR00] Brian Knight, David Chadwick, and Kamalesen Rajalingham. A
structured methodology for spreadsheet modelling. In Spreadsheet
Risks, Audit and Development Methods, volume 1, pages 43–50. Eu-
SpRIG, University of Greenwich, 7 2000.

[KE01] Stacy E. Kovar and Kristin Evans. Case: The Bakery, a cross-
functional case study for introductory managerial accounting. Jour-
nal of Accounting Education, 19:113–122, 2001.

[KFN93] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer
Software. Van Nostrand Reinhold, second edition edition, 1993.

[Kok87] Peter Kokol. Some Applications of Spreadsheet Programs in Software
Engineering. Software Engineering Notes, 12(3):45–50, July 1987.

[LC01] Daeyeol Lee and Marvin M. Chun. What are the Units of Visual
Short-term Memory: Objects or Spatial Locations. Perception and
Psychophysics, pages 253–257, 2001.

[Leh98] Stefan Leharne. Spreadsheet applications in aquatic chemistry. In
Gordon Filby, editor, Spreadsheets in Science and Engineering, chap-
ter 5, pages 141–170. Springer, Berlin, Heidelberg, 1998.

[Lin37] Carolus Linnaeus. Systema Naturae. 1737.

[LRO98] Jean Paul Le Roux and R.D. O’Brien. Applications of spreadsheets in
earth sciences. In Gordon Filby, editor, Spreadsheets in Science and
Engineering, chapter 4, pages 115–140. Springer, Berlin, Heidelberg,
1998.

[MA70] Zohar Manna and Pnueli Amir. Formalization of Properties of Func-
tional Programs. Journal of the Association for Computing Machin-
ery, 17(3):555–569, July 1970.

[MAC00] Roland Mittermeir, Yirsaw Ayalew, and Markus Clermont. User
Centered Approaches for Improving Spreadsheet Quality. Technical
Report TR-ISYS-MAC-1, Institut für Informatik-Systeme, Univer-
sität Klagenfurt, July 2000.

[Mat02] Richard Mattesich. Spreadsheet: Its first computerization(1961–
1964). http://www.j-walk.com/ss/history/spreadsh.htm, January
2002. visited on 10th January 2002.

BIBLIOGRAPHY 197

[MC02] Roland Mittermeir and Markus Clermont. Finding High-Level Struc-
tures in Spreadsheets. In Proceedings of the 9th Working Conference
on Reverse Engineering, 2002.

[MCA00] Roland Mittermeir, Markus Clermont, and Yirsaw Ayalew. User
Centered Approaches for Improving Spreadsheet Quality. Technical
Report TR-ISYS-MCA-1, Institut für Informatik-Systeme, Univer-
sität Klagenfurt, July 2000.

[MOTU93] Hausi Müller, Mehmet Orgun, Scott Tilley, and James Uhl. A Re-
verse Engineering Approach To Subsystem Structure Identification.
Software Maintenance: Research and Practice, 5(4):181–204, Decem-
ber 1993.

[MWT94] Hausi Müller, Kenny Wong, and Scott Tilley. Understanding Soft-
ware Systems Using Reverse Engineering Technology. In Colloquium
on Object Orientation in Databases and Software Engineering, vol-
ume 62. Association Canadienne Francaise pour l’Avancement des
Sciences (ACFAS), 1994.

[Mye79] G. J. Myers. The Art of Software Testing. Wiley-Interscience, 1979.

[Neu98] Erich Neuwirth. Spreadsheets as tools in mathematical modelling.
In Gordon Filby, editor, Spreadsheets in Science and Engineering,
chapter 3, pages 87–114. Springer, Berlin, Heidelberg, 1998.

[Nev87] John M. Nevison. The Elements of Spreadsheet Style. Brady Book,
1987.

[NM90a] Bonnie Nardi and James Miller. An Ethnographic Study of Dis-
tributed Problem Solving in Spreadsheet Development . In Pro-
ceedings of the conference on Computer-supported cooperative work
, pages 197–208. ACM, October 1990.

[NM90b] Bonnie A. Nardi and James R. Miller. The Spreadsheet Interface: A
Basis for End User Programming. Technical Report HPL-90-08, HP
Software Technology Laboratory, March 1990.

[NO01] David Nixon and Mike O’Hara. Spreadsheet auditing software. In
Spreadsheet Risks, Audit and Development Methods, volume 2. Eu-
SpRIG, University of Greenwich, 7 2001.

[ON88] J. R. Olson and E. Nilsen. Analysis of the cognition involved in
spreadsheet interaction. Human-Computer Interaction, 3:4:309–349,
1988.

198 BIBLIOGRAPHY

[Orm90] T. Ormerod. Human Cognition and Programming. In Psychology of
Programming, pages 63–83. Academic Press, Ltd., 1990.

[Orv98] Wiliam Jay Orvis. Applying spreadsheets in physics and electronic
engineering. In Gordon Filby, editor, Spreadsheets in Science and
Engineering, chapter 2, pages 37–86. Springer, Berlin, Heidelberg,
1998.

[OW96] Gerald J. O’Brien and W. David Wilde. Australian managers’ per-
ceptions, attitudes and use of information technology. Information
and Software Technology, 38:783–789, 1996.

[Pai97a] Jocelyn Paine. MODEL MASTER: Making Spreadsheets Safe. In
Proceedings of CALECO97. CTI, 1997.

[Pai97b] Jocelyn Paine. Web-O-Matic: using System Limit Programming in a
declarative object-oriented language for building complex interactive
Web applications. In Proceedings of the 8th REXX Symposium. IBM,
1997.

[Pai01] Jocelyn Paine. Ensuring spreadsheet integrity with model master. In
Proceedings of EuSpRIG 2001, volume 2. EuSpRIG, July 2001.

[Pai02] Jocelyn Paine. Modelmaster demonstration.
http://users.ox.ac.uk/p̃opx/, July 2002.

[Pan97] Raymond R. Panko. Applying code inspection to spreadsheet testing.
Working Paper, November 1997.

[Pan98a] Raymond Panko. What we know about spreadsheet errors. Journal
of End User Computing, 10(2):15—21, 1998.

[Pan98b] Raymond R. Panko. What we know about spreadsheet errors. Jour-
nal of End User Computing: Special issue on Scaling Up End User
Development, 10(2):15–21, Spring 1998.

[Pan00] Raymond Panko. Spreadsheet errors: What we know. what we think
we can do. In Spreadsheet Risks, Audit and Development Methods,
volume 1, pages 7–17. EuSpRIG, University of Greenwich, 7 2000.

[Pan02a] Raymond Panko. Spreadsheet research homepage.
http://www.panko.com, July 2002.

[Pan02b] Raymond Panko. Spreadsheet research homepage.
http://panko.cba.hawaii.edu/HumanErr/ProgNorm.htm, July
2002.

BIBLIOGRAPHY 199

[Par94] David Lorge Parnas. Software aging. In Proceedings of the 16th
international conference on Software Engineering, volume 16, pages
279–287. IEEE, IEEE, 1994.

[Per95] William E. Perry. Effective Methods for Software Testing. John Wiley
and Sons, Inc., 1995.

[Pfa01] John F. Pfaffenberger. Improve your spreadsheet.
http://spreadsheetstyle.com/style/10tips.htm, 2001. visited on
1th August, 2002.

[PH96] Raymond R. Panko and Richard P. Halverson,Jr. Spreadsheets on
trial: A survey of research on spreadsheet risks. Proceedings of the
Twenty-Ninth Hawaii International Conference on System Sciences,
January 2-5 1996.

[PH97] Ray Panko and Richard P. Halverson. Are Two Heads Better than
One? (At Reducing Errors in Spreadsheet Modeling). Office Systems
Research Journal, 1997.

[Pow02] D.J. Power. A brief history of spreadsheets.
http://www.dssresources.com/history/sshistory.html, January
2002. visited on 10th January 2002.

[Pre92] R. S. Pressman. Software Engineering: A practitioner’s Approach.
McGRAW-HILL, third edition, 1992.

[PS99] Ray Panko and Ralph H. Sprague, Jr. Hitting the Wall: Errors
in Developing and Code Inspecting a ”Simple” Spreadsheet Model.
Decision Support Systems, 22:337–353, 1999.

[RCB+00] Karen Rothermel, Curtis Cook, Margaret Burnett, Justin Schonfeld,
T. Green, and Gregg Rothermel. Wysiwyt testing in the spreadsheet
paradigm: An empirical evaluation. In ICSE 2000 Proceedings, pages
230–239. ACM, 2000.

[RCK02] Kamalasen Rajalingham, David Chadwick, and Brian Knight. Ef-
ficient Methods for Checking Integrity: A Structured Spreadsheet
Engineering Methodology. Informatica: An International Journal of
Computing and Informatics, 26(1), February 2002.

[RCKE00] Kamalasen Rajalingham, David Chadwick, Brian Knight, and Dil-
wyn Edwards. Quality Control in Spreadsheets: A Software
Engineering-Based Approach to Spreadsheet Development. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sci-
ences 2000, volume 33. IEEE, 2000.

200 BIBLIOGRAPHY

[Rea90] J.T. Reason. Human Error. Cambridge University Press, Cambridge,
UK, 1990.

[RKC00] Kamalesen Rajalingham, Brian Knight, and David Chadwick. Clas-
sification of spreadsheet errors. In Spreadsheet Risks, Audit and De-
velopment Methods, volume 1, pages 23–34. EuSpRIG, University of
Greenwich, 7 2000.

[RLDB98] Gregg Rothermel, L. Li, C. DuPuis, and Margaret Burnett. What
you see is what you test: A methodology for testing form-based visual
programs. In ICSE 1998 Proceedings, volume 20, pages 198—207.
IEEE, April 1998.

[RP00] Cliff T. Ragsdale and Donald R. Plane. On modeling time series
data using spreadsheets. ω-The international Journal of Management
Science, (28):215–221, 2000.

[RPG94] Jens Rasmussen, Annelise Mark Pejtersen, and L. P. Goodstein. Cog-
nitive Systems Engineering. John Wiley & Sons, Inc., 1994.

[RPL89] Boaz Ronen, Michael Palley, and Henry Lucas. Spreadsheet analysis
and design. Communication of the ACM, 32(1):84–93, January 1989.

[RRB00] James Reichwein, Gregg Rothermel, and Margret Burnett. Slicing
spreadsheets: An integrated methodology for spreadsheet testing and
debugging. In Proceedings of the 2nd Conference on domain-specific
languages, volume 2, pages 25–38. ACM, 2000.

[Saj00] Jorma Sajaniemi. Modeling spreadsheet audit: A rigorous approach
to automatic visualization. Journal of Visual Languages and Com-
puting, 11(1):49–82, 2000.

[Sha92] John A. Sharp, editor. Data flow computing: Theory and Practice.
Ablex Publishing Corporation, Norwood, NJ, 1992.

[Sha98] Gerry Shaw. Spreadsheets in molecular biology. In Gordon Filby,
editor, Spreadsheets in Science and Engineering, chapter 7, pages
203–228. Springer, Berlin, Heidelberg, 1998.

[SK86] Mary Summer and Robert Klepper. End-user application develop-
ment : Practices, policies, and organizational impact. In Proceedings
of the conference on Computer Personal Research, pages 102–116.
ACM, 1986.

[Sof02a] Southern Cross Software. Operis group plc.
http://www.operis.com/oak.htm, 2002. visited on 11th September
2002.

BIBLIOGRAPHY 201

[Sof02b] Southern Cross Software. The spreadsheet detective.
http://www.uq.net.au/detective/home.html, May 2002. visited
on 11th September 2002.

[Sta93] Marc Stadelmann. A Spreadsheet Based on Constraints. In Proceed-
ings of the sixth annual ACM symposium on User interface software
and technology, pages 217–224. ACM, ACM, November 1993.

[TBH82] Philip Treleaven, David Brownbridge, and Richard Hopkins. Data-
Driven and Demand-Driven Computer Architecture. Computing Sur-
veys, 14(1):93–143, March 1982.

[TMO92] Scott Tilley, Hausi Müller, and Mehmet Orgun. Documenting Soft-
ware Systems with Views. In Proceedings of the SIGDOC’92, pages
211–219. ACM, 1992.

[TT96] Martin Tampoe and Bernard Taylor. Strategy software: Exploring
its potential. Long Range Planning, 29(2):239–245, 1996.

[TT00] Thompson Teo and Margaret Tan. Spreadsheet development and
’what-if’ analysis: quantitative versus qualitative errors. Accounting
Management And Information Technologies, 9:141–160, 2000.

[VF92] George E. Vlahos and Thomas W. Ferratt. The use of information
technology by managers of corporations in greece to support deci-
sion making. In Proceedings of the conference on Computer Personal
Research, pages 136–151. ACM, 1992.

[VFK00] George E. Vlahos, Thomas W. Ferratt, and Georg Knoepfle. Use and
perceived value of computer-based information systems in support-
ing the decision making of german managers. In Proceedings of the
conference on Computer Personal Research, pages 111–123. ACM,
2000.

[Vos00] Gottfried Vossen. Datenmodelle, Datenbanksprachen und Daten-
bankmanagementsysteme. Oldenburg, München, Wien, 4. korrigierte
und erg. aufl. edition, 2000.

[WH93] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP.
Addison-Wesley, Reading, Massachusetts, third edition, 1993.

[Wil93] Nicholas P. Wilde. A WYSIWYC (What You See Is What You Com-
pute) Spreadsheet. In Proceedings of the 1993 Symposium on Visual
Languages, pages 72–76. IEEE, IEEE Computer Society Press, 1993.

[WM97] Reinhard Wilhelm and Dieter Maurer. Übersetzerbau. Springer, sec-
ond edition, 1997.

202 BIBLIOGRAPHY

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit
Test Coverage and Adequacy. Computing Surveys, 29(4):366–427,
December 1997.

[ZZ93] W.M. Zage and D.M. Zage. Evaluating Design Metrics in Large-Scale
Software. IEEE Software, 10(4):75–81, April 1993.

