
Finding High-Level Structures in Spreadsheet Programs

Roland Mittermeir and Markus Clermont
Institut für Informatik-Systeme

Universiẗat Klagenfurt
Universiẗatsstrasse 65–67

A-9020 Klagenfurt
Austria

{roland, mark}@isys.uni-klu.ac.at

Abstract

Spreadsheets are a common tool in end-user program-
ming. But even while important decisions are based on
spreadsheet computations, spreadsheets are poorly docu-
mented software and the differences between simple one-
shot computations and large, long-living sheets are not well
understood. Like other software, production spreadsheets
are subject to repeated maintenance cycles. Consequently,
as with conventional software, short maintenance cycles
and poor documentation tend to decrease their quality.

We introduce an approach to help maintainers under-
stand the structure of large spreadsheets as well as to zoom
into certain parts of the spreadsheet. To cope with large
sheets, our approach features two levels of abstraction: log-
ical areas and semantic classes. These abstractions are
based on different degrees of relatedness of cells according
to the formulas they contain.

1. Introduction

The 20th anniversary of the personal computer, cele-
brated in the summer 2001, was also the anniversary of one
of its most successful application systems: the spreadsheet-
system. The widespread use of personal computers is highly
intertwined with the success of spreadsheets as end-user
programming language. The spectrum of spreadsheet us-
age is almost as wide as the spectrum of PC-usage. It ranks
from simple ad-hoc calculations, with the PC substituting
for a pocket-calculator to highly involved computations in
business, industry, and science.

Admittedly, most spreadsheets might be of ad-hoc na-
ture and thrown away right after their initial use irrespec-
tive of the importance of the decisions based on them. A
substantial portion of spreadsheets, however, is large and

long-living. These sheets are subject to similar evolution-
ary patterns of possibly staged maintenance [3] as conven-
tional software of comparable strategic importance. The
processes of producing and evolving such complex and/or
large sheets, however, does not reach a state-of-the-art-level
of software-professionalism. To close this gap, one could
either propose spreadsheet-writers to follow software engi-
neering practices or to provide methods and tools that leave
end-user programming in the hands of end-users while help-
ing them to (literally!) see at least some potentially danger-
ous spots in their system. We follow the latter approach.

The research reported in this paper is based on experi-
ence gained in an industrial case study. 78 sheets, compris-
ing some 200.000 cells have been checked with a prototype
of the tool presented in section 3.3. While this study [6]
demonstrated the overall usefulness of ”logical areas” iden-
tified by this tool, it also showed its limits on very large
sheets. To overcome these limits, we are proposing ”se-
mantic classes” as a generalization of logical areas.

In the sequel, we briefly mention the background of our
research and introduce some spreadsheet-related terminol-
ogy. Section 3 provides an introduction to the concept of
logical areas as needed for the ensuing discussions. A small
example summarizes this approach and motivates exten-
sions needed for very large sheets. Section 4 takes up this
challenge. It presents semantic units and semantic classes
as higher level abstractions. Resuming the example, we
show how these concepts can help to understand very large
spreadsheets. Before concluding, we relate our work to
other spreadsheet visualization and testing approaches.

2. Basic Ideas

Various studies (see [20] for an overview) have shown
that spreadsheets are quite error loaded. The apparent mis-
match between spreadsheet quality and the importance of

spreadsheet-based decisions might be due to the fact that
spreadsheet-programmers are domain experts but not IT-
professionals. However, we agree with [16] that training of
spreadsheet-programmers would be only a partial solution.
Well trained spreadsheet-programmers tend to make about
the same number of errors in their sheets because they tend
to use more complicated and thus more error-prone formu-
las. Hence, part of the problem might be in the very nature
of spreadsheets and spreadsheet-programming.

The divergence between what is seen on the surface
of a sheet and what constitutes the actual “spreadsheet-
program” leads to cognitive complexity notably with non-
trivial formulas. IT-professionals might recognize the
data-flow-like nature of spreadsheet computations. The
spreadsheet-writer, though, might perceive them as com-
puter supported proxy for such every-day tools as pencil,
paper and (cleverly interlinked) pocket-calculator(s).

Visibility is another core issue: As opposed to con-
ventional programming where intermediate results are not
displayed, spreadsheets do show these results. Data- and
control-flow are, however, not made explicit. At least not
in a way that exceeds the confinement of single cells. This
increases the complexity of understanding (and testing). In
order to obtain intermediate results, complicated calculation
might be necessary. The layout of results is an additional as-
pect that might distribute a calculation over different parts
of the spreadsheet and thus make it more difficult to under-
stand.

Strange enough, the aspects we mention as potential dan-
gers bear only with large sheets. With simple sheets, they
serve to hide complexity and have thus been instrumental
for the success of spreadsheets. The spectrum mentioned in
[4, 8, 13] shows that some of these applications exceed the
limits, spreadsheets have been conceived for. The applica-
tions we studied, corporate cost accounting and profit center
monitoring, are within the original domain of spreadsheets.
But with sheets in the order of 2.000 to 20.000 cells, limits
are reached, notably if these sheets have to be considered to
be living, evolvable software.

2.1. Ideas and Assumptions

Among CS-colleagues, we have been confronted with
hand-waving arguments such as “Spreadsheet-writers are a
helpless community of ’software amateurs’. The tool they
are using is far too powerful for them anyway”.

We do not agree with such prerogative statements.
Spreadsheet-writers are professionals in some non-CS dis-
cipline. When doing complex tasks, they tend to resort to
structure as much (or as little) as we do. But they structure
their ideas possibly in a way different from ours, since they
did not (and possibly should not) have the same training
we had. Nevertheless, in organizing figures on the tabular

layout of a spreadsheet, and consequently in organizing the
computations leading to such figures, they follow what we
might call aconceptual model. Only, this conceptual model
will not be laid down in some box-and-arrow-notation. And
even if it were, the relationship between such a conceptual
sketch and the final spreadsheet (after some modification
cycles) might be even worse than the relationship between a
requirements analysis document and delivered code. There-
fore, we postulate the existence of such a truly conceptual
(i.e. mental) model and try to recover it from the spread-
sheet, materialized as a set of cells related by formulas.

Our initial approach [14] was based on defining equiva-
lence classes among cells on the basis of the formulas they
contained. It is briefly reviewed in section 3. This ap-
proach basically lead to a reduction in the number of con-
cepts to be inspected. Assuming a conceptual model or
at least a consistent strategy to place computations on the
sheet, it points also to hot spots for quality assurance, as
demonstrated in section 3.4. The approach presented here
rests fundamentally on the existence of at least a layout-
strategy. The QA-analyst or the reverse engineer has to tell
the system, whether this strategy is rather row-, line-, or
block-based. Based on this strategy, the system will look
for semantically consistent repetitive portions on the sheet,
grouping them into semantic classes. Consistency need not
be within these portions but across portions. This allows
the concept to be used repetitively. Thus, hierarchies of in-
creasingly larger, consistently replicated portions of a sheet
can be identified. This allows highly focussed analysis of
even very large spreadsheets.

3. Logical Areas

This section presents a succinct introduction to the no-
tion of logical areas, equivalence classes based on the cells’
formulas. A more complete presentation of these and re-
lated equivalence classes is given in [14].

The core idea behind the definition of logical areas rests
on the spreadsheet development process. Computations to
be performed within a cell are specified by filling in a for-
mula. If computations in neighboring cells are to follow
the same “logic”, spreadsheet writers usually copy the for-
mula over those neighboring cells. This copy operation ex-
tends over a physical (dense, rectangular) area. However,
once done, this step in the development process is nowhere
recorded. Thus, spreadsheet-writers can, to economize typ-
ing, copy a complex formula over a large area and than
break this area by redefining some of the formulas that were
initially in this physical area. Another spreadsheet writer
might be less concerned about typing and re-type the for-
mulas in these physically unconnected parts of the sheet.
The effect on the final sheet is identical. Our assumption
is, that having the same formula at different portions of the

sheet is not something that happened by accident. It is rather
due to a virtualconceptual modelan application expert has
about the problem to be solved. Hence, we want to recover
such patterns of regularity. As our original intention was to
find hot-spots for quality checking, we were specifically in-
terested in finding distortions in such patterns of regularity.

To reach this goal, we have to consider though, how
“having the same formula” is to be understood in a spread-
sheet context. Spreadsheet formulas are not using variables
in the way variables are used in either mathematics or in
conventional programming. Instead ofres := x + y with
res, x andy being variables, one rather writes= a1 + b2
with a1 andb2 being the addresses of cells containing the
values supposed to be bound to the variablesx andy and
“ ” is not given explicitly at all. It stands here for the ad-
dress of the cell into which this expression is written, i.e.
the cell where the computed value forres will eventually
show. Thus, the “sameness” of a formula has to be seen
in the different ways copy-operations, or copy-and-modify-
slightly-operations are to work. To focus on this, we first
introduce some terminology.

3.1. Terminology

Most of the terms we use are familiar with spreadsheet
users. However, we (re-)define them here, since most
spreadsheet manuals resort in crucial situations to the read-
ers intuition. This is of course insufficient for the formal-
izations needed when building a tool.

A cell is the smallest unit of a spreadsheet. It can be
empty, contain aformulaor aconstant value. The way the
cell’s content is displayed depends on someformating rules
These are not subject of our current considerations.

The cell’spositionon the sheet is specified by its coordi-
nates. The origin of the coordinate system is defined by the
uppermost-leftmost cell.

The arguments used informulasare specified byrefer-
encingcells. In the user interface, these references are indi-
cated as the cells distance to the origin (absolute reference).
Internally, however, absolute referencing is rather the ex-
ception. When explicitly demanded by the user, this has to
be highlighted by a special symbol such as “$”. The norm is
that operands are referred to byrelative reference. It spec-
ifies the distance between the referencing cell (containing
the formula) and the referenced cell (argument of formula)1.
This allows copied formulas to be identical (as formulas)
while operating on different values. “Sameness”, as dis-
cussed above, obtains therefore a precise meaning. But as
copied cells might also contain absolute references (or ref-
erences that are absolute in some coordinate, but relative in

1Which “absolute” address is used as referenced cell therefore depends
on the position of the referencing cell. The power of the copy- (as well as
move-)operation depends on the concept of relative references.

another), we had to define equivalence classes of different
strength [14].

A spreadsheetis ann-dimensional array of cells. For
sake of explanation, we will focus in the sequel on2-
dimensional spreadsheets. The ideas presented are more
general though. The concept of Excel-folders could be con-
sidered as an extension of the model into a third dimension.

With spreadsheet programwe refer to a spreadsheet with
formulas. In case of long-living spreadsheets, one would
consider the reusable part to be the spreadsheet program.
Those cells that are newly instantiated with “input” data on
each of the periodic re-evaluations of the sheet are consid-
ered its input section though2. A spreadsheet program com-
pleted with the actual data it is to process is referred to as
spreadsheet instance.

The environment that supports instantiation, editing, and
displaying spreadsheet programs is calledspreadsheet sys-
tem.

3.2. Node Equivalence Classes

The assignment of cells tological areas is based on
equivalence classes. In [14] we defined9 equivalence
classes, based either on structural criteria of formulas or on
equivalences with respect to usage of data. Here, we fo-
cus on structural criteria and start with the strongest defini-
tion, the one that might result directly from copy operations
(copy equivalence). Logical and structural equivalence are
relaxations needed for practical reasons. Empty cells and
dead cells form equivalence classes on their own, in order
to completely partition the (in righthand, bottom-side direc-
tion potentially infinite) space of a spreadsheet. This leads
to the following definitions:

Definition 1: Copy Equivalence
Cells c1 andc2 are copy equivalent (ce(c1, c2) = true) if
their formulas are identical.

A source cell of a copy-operation and all the copied cells
are copy-equivalent. But copy-equivalence holds irrespec-
tive of how the identity in the formulas has been obtained.
One might assume a kind ofmentalcopy-operation hav-
ing nothing to do with the copy/paste operation of the
spreadsheet-system. Copy equivalence, like all other equiv-
alence classes, is established on an as-it-is basis, irrespec-
tive of the spreadsheet’s past development history.

Definition 2: Logical Equivalence
Cellsc1 andc2 are logically equivalent (le(c1, c2) = true)

2This distinction is rarely made in practice (except with some design
approaches, such as [17]). It is a bit problematic as the distinction between
input cells and cells containing constants that are part of the program can
be made only on a heuristic basis (differences in the referencing mecha-
nisms). However, the repetitive use of re-instantiated sheets calls for such
a separation.

if their formulas differ only in constant values and absolute
references.

An absolute reference often corresponds to the concept of
declaredconstantsin imperative programming languages.
Logical equivalence denotes a copy (either copy/paste, or
mental) with modified constants.

Definition 3: Structural Equivalence
Cells c1 and c2 are structurally equivalent (se(c1, c2) =
true) if their formulas contain the same operations in the
same order.

Therefore, structural equivalence corresponds to a concept
of small subroutines in imperative languages suitable for
various operands.

With these definitions, the notion of load-bearing equiv-
alence classes are covered to the extent currently needed.
We just complete the picture by grouping all those cells that
do not partake in computations into two further equivalence
classes

Definition 4: Empty Cells
Cell c1 is in the equivalence class empty cells (ec(c1) =
true, if it neither contains a formula nor a value.

Definition 5: Computational Dead Cells
Cell c1 is in the equivalence class computational dead cells
(cd(c1) = true), if it is neither referenced by any other cell
nor contains references to other cells.

Computationally dead cells do not partake in the calcula-
tions of the spreadsheet. They are generally used as descrip-
tive labels for values computed in neighboring cells or cells
in the column below or in the respective row. For the defi-
nition of empty cells or dead cells, singletons suffice. How-
ever, in real sheets, these equivalence class is quite popu-
lated.

In the current, reduced context of equivalence classes we
define:

Definition 6: Equivalence Class Generator
The equivalence class generator is a functionEqind(c) =
{cj |ind(c, cj)}, with ind ∈ {ce, le, se}. It returns the set of
cells satisfying the specified equivalence relation with cell
c.

When referring to these equivalence classes collectively, the
termnode equivalence classeswill be used.

3.3. The Toolkit

We try to support the understanding of spreadsheet pro-
grams by checking aspects of the conceptual model against
the geometrical design of the sheet. These aspects corre-
spond to the assignment of cells to logical areas. Informally,
a logical area is a set of cells thatdo the same thing with the

same/similar/different dataor in case of data equivalence,
do different things with the same data.

If the user groups cells in the spatial model of the spread-
sheet according to specific functional criteria, one can ex-
pect some kind of patterns in the distribution of logical ar-
eas throughout the spreadsheet program. Assigning cells to
structural, logical and copy equivalence classes accounts for
identified patterns.

To evaluate this approach we implemented a prototype in
the gnumeric spreadsheet systemand inExcel. Gnumeric
has the advantage that it is open-source software. There-
fore, the formula parser and other components of the sys-
tem can be easily accessed. Further,gnumericcan process
spreadsheets in theExcel file format. For the case study
mentioned, we implemented anα-Version of the prototype
in Visual-Basic. During the experiment, its interface was
not yet sufficiently neat for usage by end-users. However,
it served a technically educated auditor quite well. A more
detailed description of the toolkit is given in [6].

To cope with spreadsheets of more than5000 cells, how-
ever, the need for a further abstraction mechanism became
obvious. We introduce such a mechanism,semantic classes,
in section 4. Before doing so, we highlight the potential of
structural equivalence classes by a small example.

3.4. Simple Project Accounting

This example should demonstrate the concepts intro-
duced so far. It might also serve as basis of the arguments
raised in section 4, even if sheets that gave rise to the ex-
tensions reported are beyond the size to be presented in a
paper.

The sample spreadsheet shown in Fig. 1 is used for
project-accounting of two projects. Spatially it consists of
two parts. The first part (rows2 to 14) deals with collect-
ing data and assigning expenses and revenues to one of the
two projects. The second part (rows16 to 19) calculates
checksums to validate the collected data.

The sheet is representative for many of those larger “pro-
duction sheets” we analyzed, as it consists of a portion that
is directly related to “input data”. This portion might be-
come quite large, but it is relatively homogenous. The other
portion consists of calculations on aggregated values. This
portion is smaller. It exhibits higher structural complexity,
but remains normally stable over successive evaluation in-
stances of the sheet.

The sheet is also quite representative for sheets we have
seen, since its values are apparently correct. At least a
look at the checksum confirms the spreadsheet’s correct-
ness. However, the formula level (see Fig. 2) shows that
rows4 and9 do not correspond with the other rows listing
expenditures. This inconsistency can easily be revealed by
assigning the cells to logical areas (see Fig. 3).

Figure 1. The project accounting spreadsheet in numerical view

Figure 2. The project accounting spreadsheet in formula view

In this view it is obvious that the cells in the spatial ar-
eas fromG5 to G13 and fromH5 to H13 are in the same
logical area. Therefore, they correspond to the same opera-
tions in terms of concepts. Only the cellsG9 andH9 seem
to split the two big blocks. Thus, the auditors attention is
drawn toG9 and toH9. In this particular case, a patch is
highlighted that might cause problems, if a future user as-
sumes lines5 to 13 to be homogeneous.

However, while the mental model of the spreadsheet
writer is almost certainly line-, column-, or block-based,
node equivalence classes are defined free of geometric con-
siderations. This allows to identify irregularities such as
those shown. But it also has some drawbacks:

1. In this example, the logical areas are grouped column-
wise, although the user obviously has a row-wise
model of the spreadsheet.

2. The inconsistency is due not so much to each of the
two logical areas but to the whole row. In all the other
rows the expenses are assigned to only one project, but
in this row they are split. Therefore the user has to
check two logical areas to find one inconsistency in

the spreadsheet.

Further, we might assume that there is a consolidation
sheet aggregating figures from several such projects. These
projects might reside in distinct folders and the consolida-
tion sheet extends over those. A less experienced user might
place these projects below each other and place the com-
putations performing the consolidations somewhere next to
this sequence in a distinct spatial location.

Patterns like the one just highlighted lead to sheets con-
taining regions densely populated by (possibly different)
formulas that figure repetitively on the sheet. Such regions
might be separated by empty and/or computationally dead
cells3. A disciplined spreadsheet writer would make sure,
that such separations have (or are within) a certain standard
distance, even while the vivid sections, those populated with
formulas, might vary in size. Therefore, the writer or an
auditor can quite easily spot what kind of geometric relax-
ations are to be made when looking for such repetitive areas.

3In fact, they might be separated by cells of any nature. We just con-
sider separation as such. Arbitrary separation, though, might be criticized
as poor style.

Figure 3. Cells in the same logical area are shaded in the same gray-scale.

Telling this an analysis tool will allow further aggregation
and hierarchization as mentioned in the next section.

4. Semantic Classes

Next, we introduce an abstraction mechanism for spread-
sheet programs based on node equivalence classes.

As shown, logical areas offer an abstraction from the
granularity of cells, but reach their limits when very large
spreadsheets are analyzed. To cope with those, we leave
the principle of fully automatic structure recognition and al-
low the user to specify, whether related areas are spread out
column-wise, row-wise, or in patterns taking full advantage
of the (two-)dimensional nature of a sheet. Thus, instead of
exclusively focussing on the content of formulas to define
equivalence classes, we now look first at spatial situations
and check, whether the semantic content of these areas is of
repetitive nature.

This calls to identify groups of cells who’s member cells
are at most some given, user defined distance apart and that
form (irrespective of the actual number of cells involved) a
repetitive pattern. The cells within such a weakly contigu-
ous group are considered as candidates forsemantic units.
If such groups are replicated on the sheet, these replications
are identified and grouped into a commonsemantic class.

Conceptually, the notion of semantic class is related to
the notion of node equivalence dealt with in the previous
section. Thinking about the spreadsheet development pro-
cess, one might think, that the semantic class results from
copying not a single cell but a whole spatial area instead.
But again, we have no information about the development
process and “relatedness” is as vague a concept as “same-
ness” was when comparing individual formulas. There, the
problem was solved by defining node equivalence in terms
of three concepts rooted in copy equivalence which was

then successively relaxed to logical equivalence and struc-
tural equivalence. Now, we postulate aunit generatorto
formalize “relatedness”.

To grasp the idea, one might assume the unit generator to
demand copy equivalence among different spatial areas, i.e.
cells located on identical relative position within the areas
are copy equivalent. If so, those areas could be collapsed
into a common semantic class. As will be seen from the
definitions, the actual concept is less rigid. For practical
reasons, it allows even different relationships between the
origin and the rest of semantic units forming a class.

To avoid confusion, we state right away that semantic
classes are built on “assumed semantic relatedness”. Of
course, we have no access to the spreadsheet-writers pre-
supposed conceptual model. Hence, the term “semantic”
might be slightly too optimistic a term. As will be seen later,
the algorithm to identify semantic classes just attempts to
locate the largest possible patterns where replication resp.
relatedness can be postulated. It seems fair to assume that
such replications in general do not occur by chance. At
least we can say that the probability of identifying spuri-
ous large semantic classes is far less than the probability of
finding unrelated iterators (= neighbor + 1) that would
be grouped into the same copy-equivalent logical area, irre-
spective of what they are iterating over.

Before giving the formal definitions, we summarize that
this approach extends the concept of logical areas by taking
the users’ view of the spreadsheet more explicitly into ac-
count. Therefore, it is necessary to consider the way users
mentally group cells (row-, column- or block-oriented).
Thus, semantic classes are defined by combining geomet-
rical constraints with the notion of node equivalence.

Detailed definitions of semantic units and semantic
classes are given in section 4.1. Informally, a semantic
class consists of semantic units satisfying the following
constraints:

1. All semantic units in a semantic class satisfy the same
geometric constraints.

2. All cells in semantic units of a given semantic class
residing on positions with the same relative distance to
the upper left corner of their semantic unit are in the
same logical equivalence class.

The size of the semantic unit is given by the number of
cells it contains. Semantic units of the size1 will gener-
ate semantic classes that correspond to logical areas. If the
size of the semantic unit (number of cells encompassed) in-
creases, the size of the generated semantic classes (number
of units encompassed) tends to decrease. However, up to
a certain sizeb the decrease of the class size is not signifi-
cant. b is a measure for the size of the semantic blocks the
spreadsheet-programmer had in mind and hence a measure
of the size of semantic units we want to identify as recov-
ered semantic blocks.

4.1. Formal Definition

The geometrical constraints the user can impose on the
unit define the direction and maximal distance of cells that
might partake in the same semantic unit. The system can be
forced to look strictly in one direction by specifying0 for all
other directions. Further, to be consistent with the notion of
multi-dimensionality, distances can be indicated over sev-
eral dimensions. For the two-dimensional case this implies
three distance parameters:dv, dh anddm with dv denot-
ing the maximal vertical distance allowed between two cells
in a semantic unit,dh the maximal horizontal distance al-
lowed, anddm the maximum Manhattan distance between
two cells in the unit without cells not belonging to this unit
in-between. By adjusting these parameters, the user can re-
strict the semantic units to consist of cells in the same row
(dv = 0) or in the same column (dh = 0). Distance con-
straints greater one would allow gaps. E.g. a distance vector
(dv, dh, dm) = (3, 2, 4) would allow cells in a semantic unit
to be separated by at most one empty column or by a col-
umn containing labels. Further, rows might be separated say
by a line for computing sums and an empty line. However,
blocks must not be broken by both, a foreign (say empty)
column and two foreign rows.

In the subsequent definitions,Cells refers to the set of
non-empty cells in the spreadsheet. For the formal def-
inition of semantic units and classes on two-dimensional
spreadsheets we introduce the following functions:

• absPos(Cell) → (N × N) returns the absolute coor-
dinates of the cell on the spreadsheet.

• relDist(Cell×Cell) → (Z×Z) returns the distance
between two cells. It is given byrelDist(c1, c2) =

absPos(c2)−absPos(c1), with “ −” representing the
substraction of the respective address vectors.

• top(Cells) → (N × N) returns the absolute coordi-
nates of the upper-left cell in a set of cells.

• near(Cell × Cell × N × N × N) → {True, False}
is true if the two argument cells are not separated by a
distance larger than(dv, dh, dm) in the respective dis-
tance category. Formally, this is:
near(c1, c2, dh,dv, dm) ↔

(relDist(c1, c2) = (h, v)∧
h ≤ dh ∧ v ≤ dv ∧ h + v ≤ dm)

Semantic classes are sets of sets of mutually near cells.
Therefore, the reflexive transitive closure ofnear to
identify semantic units as such sets of mutually near
cells is defined as:

• dense(Cells × Cell × Cell × N × N × N) →
{True, False} is the signature of a function check-
ing whether the set of cellscs (first argument) con-
tains only cells ci and cj that are not separated
by a distance larger than(dv, dh, dm) in the re-
spective distance category without containing also
all cells ck needed for bridging this gap. Thus
dense(cs, c1, c2, dh, dv, dm) ↔
(near(c1, c2, dh, dv, dm) ∨
∃ c3 ∈ cs | near(c1, c3)∧dense(cs, c3, c2, dh, dv, dm)
Figuratively, one could say that all cells incs can be
placed on a graph with edges defined along the co-
ordinate system of the grid holding the spreadsheet-
program. If the cells are mapped to nodes of this grid,
cells are considered to bedense with respect to each
other, iff there exists a sequence of nearest neighbors
in which each neighbor can be reached by crossing at
mostdr edges in the respective directionr.

With the help of these functions, we are ready to give the
definitions for semantic units, semantic classes, and unit-
generators. We first define the set of densely located cells,
out of which semantic units are to be selected.

Definition 7: Semantic Support
The maximal set of cells satisfying the spatial constraints
dh, dv anddm is referred to as semantic support. It is de-
fined as the set

SSdh,dv,dm = {cs : Cells|
∀ci, ck ∈ cs • (dense(cs, ci, ck, dh, dv, dm)∧
∀cj 6∈ cs • ¬dense((cs ∪ {cj}), ci, ck, dh, dv, dm))}

A semantic unitis a set of spatially related cells. This set is
further checked, whether it is replicated in the spreadsheet
program, i.e. whether it exhibits a pattern of replication
such that each replication satisfies the semantic constraints
of aunit generator.

Definition 8: Semantic Unit
A semantic unitUi satisfying the spatial constraintsdh, dv

anddm is defined as a dense subset of its semantic support,
generated by its unit generator.

Ui ⊆SSdh,dv,dm ∧
(∃X : P Cells| GenSS,EqStart,EqRest

= (ld,X) ∧
|X| > 1 ∧ Ui ∈ X) ∧

∀ ci, ck ∈ Ui • dense(cs, ci, ck, dh, dv, dm).

As mentioned in the introduction of this section, theseman-
tic supportcomprises a set of cells that have just from their
spatial proximity thepotentialto form a meaningful seman-
tic unit. Whether they actually do, depends on whether
replications satisfying the unit generatorGen, defined next,
can be found. (There have to be more than one such sets of
cellsX in the powerset of cell-setscs.) It is to be noted that
the denseness criterion defining the support needs to hold
also within the unit itself. Thus,near-relationships have to
be maintained in building the respective subset. Only in this
case, one of the units making up the class might be labelled
as base unit of the semantic class. One should also note
that a given support might furnish several different, non-
overlapping units.

A unit generatorconsists of a set of local coordinates
that identifies the set of cells to be related according to the
relatedness-criterion mentioned in the introduction of this
section and of the set of semantic units generated. The
strictest form of relatedness would be to require copy equiv-
alence to hold among all cells assuming identical relative
positions within the semantic units to be compared. In
higher order abstractions, less rigid constraints seem to be
desirable though. Therefore, we allow any of the criteria de-
fined by the equivalence class generator (see definition 6) in
section 3. Since the origins of the semantic unit might play
a special role, a distinction is made between the equivalence
classes fortop(Cells), denoted byEqStart, andEqRest for
the equivalence relations among cells on other positions in
related semantic units.

Definition 9: Unit Generator
For a unit Ui ⊆ SSdh,dv,dm

the unit generator
GenSSi,EqStart,EqRest

is defined as

GenSSi,EqStart,EqRest
= {ld : P (N× N), X : P Cells |

∃Ui ⊆SSi• (
∃T : Cells | (T = EqStart(top(Ui)) ∧

∀cs ∈ X • top(cs) ∈ T) ∧
∀dd ∈ (ld \ {(0, 0)} | ∃ Rdd : Cells |

dd = relDist(cdd, absPos(top(Ui))) ∧
Rdd = EqRest(cdd)∧
(∀cs ∈ X | ∃cj ∈ cs•

relDist(cj , absPos(top(cs))) = dd ∧
cj ∈ Rdd) ∧

(
⋃

j(Uj • Uj ∈ X) ⊆ ((
⋃

dd Rdd) ∪ T)) }.

The complexity of definition 9 for the unit generator is
due to the fact that it maps the elements sets defined on the
basis of some structural equivalence criterion on sets de-
fined on the basis of some spatial criterion in such a way
that the involved “transposition” covers all elements of the
respective sets. The definition also highlights that definition
7 provides only the framework out of which actual semantic
units are to be isolated, i.e. if sets of cells can be found that
match according to the equivalence criterionEqStart. This
minimal unit defines not more than a mere logical area re-
stricted by additional spatial constraints. It can be extended
when cells of equal relative distancedd to the start cells can
be grouped into setsRdd according to equivalence criterion
EqRest such that the union of the top-set with all rest-sets
cover the sets contained inX related by the unit genera-
tor. Due to this construction, any of the sets contained in
X forms a semantic unit andX itself is the semantic class
from which those units are drawn.

To relate semantic classes back to the conceptual notion
of a set of spatial blocks the spreadsheet-writer might have
had in mind when designing the sheet, we define asemantic
classas the set of semantic units that have the same unit
generator.

Definition 10: Semantic Class
Let SCUi

be the semantic class that contains the semantic
unit Ui ⊆ SSdh,dv,dm

.

SCUi = {Uj |GenUj ,EqStart,EqRest
= GenUi,EqStart,EqRest

∧(Ui = Uj ∨ Ui ∩ Uj = ∅}

It is easy to see thatSCUi is exactly the setX constructed
by the generator. The semantic unit in the topmost, leftmost
position can be particularly distinguished by referring to it
asbase unitof the class.

It is to be noted that these three definitions are interre-
lated and indeed still contain a degree of freedom not yet
bound. Semantic units are drawn from an arbitrary set of
cells meeting the specified spatial constraints. Hence, a
straight-forward partitioning of the spreadsheet into seman-
tic units will not result in a helpful abstraction. To produce
a useful classification of cells into semantic units, we have
to consider the quality of the resulting semantic classes. A
semantic unit with a singleton as unit generator is not useful
for abstraction. Therefore, semantic units should be defined
in such a way that the resulting semantic class contains a
high number of other related semantic units. On the other
hand, one could argue that breadth of the base unit is as im-
portant a characteristic of powerful semantic units as depth
of replication.

The algorithm to identify unit generators has to be single
minded on this issue. It offers two options to control it: The

user can influence the breath versus depth issue to a certain
extent by properly specifying the distance vector. On the
other hand, the very construction of the algorithm rests on
the availability of logical areas. Thus, it essentially merges
portions of different logical areas satisfying the spatial con-
straints defined with the semantic support. This is not a
strict merge though, since a merger can take place only if
the local distancesld match. Therefore, merging involves
also filtering on intersecting local distances. An additional
parameterp is introduced, indicating the cutoff-percentage
that halts the merging process in case the filtering part of
the operation would drop more than(100− p) % of the set
serving as base for the merger. To avoid unnecessary com-
plexity of the definition, we did not includep in definition
9. However, this additional explanation might indicate that
T has algorithmically a distinct role in comparison to the
adjungated setsRdd.

4.2. Visualization

We focus on large spreadsheet programs consisting of
several large, more or less uniform parts that perform simi-
lar calculations. Such a calculation typically involves a set
of cells that are situated next to each other in a certain ge-
ometrical pattern. Thus, we expect not only to find cells
that are similar, but similar areas. These areas, similar cells
with similar neighbors, are grouped into the same semantic
class. This reduces the resolution of the model, the user has
to understand by orders of magnitude.

As with logical areas, the visualization will be graph
based. But sheets analyzed by this technique are in general
too large to identify areas as patterns on the screen. Hence,
relating this graph back to the original spreadsheet can no
longer be performed directly.

For the visualization a graph will be generated with the
semantic classes represented as vertices. If there is data flow
between cells in semantic units in different classesSC1 and
SC2 or between cells in different unitsU1 andU2 in the
same classSC3, an edge will be drawn fromSC1 to SC2

or fromSC3 to SC3 respectively.
To relate the graphical visualization to the conventional

two dimensional representation of the spreadsheet program,
highlighting the cells of the respective semantic unit can be
made by drawing a frame around them and coloring the cells
on the spreadsheet. This ”link” is necessary to allow the au-
ditor to find irregularities in the geometrical pattern of the
occurrence of units in the same class. As semantic units in
the same class consists of equivalent cells on the same rela-
tive positions, it is possible to offer afish-eye view(see [9])
of one semantic class by displaying the data dependencies
between cells in one of the member units. Fish-eye views
have turned out to be a useful help to understand imperative
software (see [15]). A variation of the use discussed by [28]

seems to be beneficial for our approach.
As spreadsheet comprehension without visualization

aids can only happen on a numeric level, maintainers build
their own model of how the calculations are performed. It
goes without saying that their assumptions will not exactly
correspond to the initial model of the spreadsheet’s cre-
ator. Showing maintainers the semantic classes opens an-
other point of view: They can understand which building-
blocks were used to assemble the spreadsheet, and if they
have opened and understood such a building block, they
can generalize their knowledge to all its occurrences. Like
with distortions in logical areas mapped to physical areas,
irregularities in the geometrical pattern of the occurrences
of semantic units in the same semantic class are a symptom
of a mismatch between the conceptual and spatial model.
Such a mismatch indicates areas where thorough testing or
careful evolution is required.

4.3. Resuming the Example

Here, we resume the discussion about the project plan-
ning spreadsheet introduced in section 3.4. We remember,
that grouping cells into logical areas revealed irregularities
in cellsG10 andH10. In fact, however, these two “faults”
were not independent. The whole line had the irregularity
since in contrast to other lines, here the expenditures had to
be split among projects.

If the user informs the system of the fact that the
sheet follows a row-wise approach and their units do
not have gaps, the following semantic supports can be
identified: SS1,0,1 = {{I4}, {B5}, {G5,H5, I5}, {B6},
{G6,H6, I6}, · · · , · · · , {B13}, {G13,H13, I13}, {E14,
F14, G14,H14}, {F16}, {E17}, {E18}, {F18}, {F19},
{I19} }.

Among those,SS3 = {G5,H5, I5} is particularly
interesting. G5 is in top position in this support. With
EqStart = Eqcp the associated setT is {G5, · · · , G8},
which is the contiguous subset ofG5’s copy-equivalence
class. G9 is not copy equivalent toG5 and no verti-
cal distance is permitted in thisnear-relationship. Hence
one has to check, whether cells neighboring horizontally
can be adjuncted to this pattern. We see thatR0,1 =
{H5, · · · ,H8} can be adjuncted toT . So canR0,2 =
{I5, · · · , I8} ⊆ {I5, · · · , I13}. Hence, the unit genera-
tor for SS3 is {{(0, 0), (0, 1), (0, 2)}, { {G5,H5, I5}, · · ·
{G8,H8, I8}}}.

Another interesting unit generator, will originate at cell
G10. Based on the supportSS5 = {G10,H10, I10}
the generator{{(0, 0), (0, 1), (0, 2)}, {{G10,H10, I10},
· · · , {G13,H13, I13} } } will result.

Note, had the user used the distance vector(2, 0, 2) in-
stead of(1, 0, 1) he would have expressed the desire that
single faulty cells in a semantic block should not sepa-

Class F19

Class I19

Class F18

Class {G5,H5,I5}

Class E14,F14,G14,H14

Class G9,H9,I9

Class {B5}

Class {F16}

Figure 4. Visualization of semantic classes
and data dependencies in the project-
accounting spreadsheet. The labels of se-
mantic classes with more than one unit are
set in brackets.

rate semantic units (even if they obviously do not par-
take in them though). In this case, identifying the unit
generator ofSS3 had the chance to skip line9 and the
resulting semantic category would be the union of the
two categories identified on the basis of(1, 0, 1), i.e.
{{(0, 0), (0, 1), (0, 2)}, { {G5,H5, I5}, · · · , {G8, H8,
I8}, {G10,H10, I10}, · · · , {G13,H13, I13} } }.

The other cells do not find line-wise replication. Hence,
to stay on the highest possible level of abstraction, we are
left with the non-trivial supportsSS4 = {G9,H9, I9} and
SS6 = {E14, F14, G14,H14}. Cells{B5}, · · · , {B10}
are grouped in a trivial unit generated byS2 = {B5}.
The example also contains a somehow irregular gener-
ator emanating atF16. Since F16, E17 and E18 are
copy equivalent, they are grouped into the trivial genera-
tor {{(0, 0)}, {{F15, E17, E18} } }. CellsI4, F18, F19,
andI19 remain singletons.

Taking the relatively topmost, leftmost support as gener-
ator for a semantic unit and raising the various supports and
singletons remaining also to the level of semantic units, the
visualization presented in figure 4 results.

On the left-hand side of figure 4 the upper 37 formula
cells of the spreadsheet are visualized by4 nodes and5
edges. Mapping the semantic class assignments back to the
spreadsheet (see figure 5) the uniformity of rows4 to 13 and
the inconsistency in row9 can be spotted easily.

To visualize the spreadsheet, a graph with8 nodes and
11 edges is generated. At first sight this seems to be rather
much. However, more than half of the nodes and edges are
used for the visualization of the (irregular) checksum part

of the spreadsheet, and1 node and3 edges are due to an ir-
regularity in the upper part of the spreadsheet. Furthermore,
if the projects are resumed and more transactions have to be
accounted for, the number of nodes and edges in the visual-
ization will not increase further.

The same set of arguments can be used for the logical-
area approach, our abstraction technique is based upon. In
the sample sheet, though, there are11 logical areas and
therefore11 nodes in the visualization. If the complexity
of the rows increases by adding more columns with distinct
operations the number of logical areas will increase, and
thus the number of nodes in the visualization will grow.
Consequently, the number of edges might rise exponen-
tially. However, the number of semantic classes will not
increase as long as all rows are extended in the same way.

5. Discussion

The approach presented is suited for giving the spread-
sheet programmer, tester, and maintainer a better under-
standing of a spreadsheet-program. Misconceptions are a
very common source of errors (see the results of the field
audit in [6]). Missing documentations of both spreadsheets
and their changes is a frequent cause of them. It is com-
mon that spreadsheets with a maintenance cycle above six
months are not even understood by their creators. There-
fore, maintenance is often based on a conceptual model re-
constructed by (occasionally too simple minded) assump-
tions of how the conceptual model of the spreadsheet could
have looked like. The visualization of the semantic classes
and the logical areas can be a means of supporting the re-
construction of the conceptual model of a spreadsheet on a
purely factual basis.

Node equivalence classes have been originally developed
for testing purposes. The approach is not a typical test-
ing and debugging approach though. It is rather an ap-
proach supporting inspections and comprehension of legacy
spreadsheets. The merit of the approach for supporting the
correct evolution of long-living sheets and the extension to
semantic classes was rather seen as result of the analysis
of large, repeatedly modified accounting sheets analyzed.
Its suitability for focussed quality assurance as well as for
comprehension has been demonstrated, since some kinds of
errors are manifested in irregularities in the model, while
the computed figures are (by chance) correct. As testing of
spreadsheet programs is very expensive, the approach can
also be part of a two-level testing strategy:

1. At first one semantic unit of each semantic class has to
be tested by applying a spreadsheet testing technique.

2. It has to be checked that the semantic units occur in the
right places in the right patterns.

Figure 5. Visualization of semantic classes linked back to the spreadsheet.

Consequently, the spreadsheet need not to be tested any-
more on a cell-by-cell level as it is suggested by [19] and
required by most of the spreadsheet testing techniques (see
[24, 25, 2, 22]).

Of course, the possible occurrences of irregularities in
the conceptual model can be easily eliminated by restrict-
ing the freedom of the spreadsheet programmer (as it is sug-
gested by [12, 10, 11, 23, 27]) or by generating spreadsheets
from specifications in imperative languages (see [18, 17]).
However, users are reluctant to adopt such advice. Follow-
ing it would imply to give up lots of the flexibility and per-
ceived easyness of spreadsheet-writing. Furthermore one
has to consider that spreadsheet users are domain- and not
IT-experts. Therefore, most of them are not aware of the
fact that they are programming at all. Hence, they often lack
willingness to take the extra-effort of software-engineering
techniques into account.

There are still a lot of other visualization techniques for
spreadsheets [26, 7, 5]. But most of these approaches lack
support for larger spreadsheets and do not offer ways of ab-
stracting from then-dimensional sheet into another form of
visualization.

Although [26] offers a very sophisticated way of visu-
alizing spreadsheet programs, there are still very strict ge-
ometrical and structural conditions for cells to be grouped
together. This approach groups adjacent cells with the same
formulas into areas. The data flow between the areas is vi-
sualized by arcs in the sheet. As the visualization is per-
formed on the spreadsheet and no abstraction mechanism is
offered, the approach is only suitable for local auditing. As
only adjacent cells are grouped (only a certain kind of dis-
tortion is tolerated), patterns of recurring calculations can-
not be found.

In [5] another interesting visualization approach is intro-
duced. It is mainly data-flow based and offers support for
localandglobaldebugging. However, theglobaldebugging
strategies are again tied to the spreadsheet as visualization
tool. Therefore, the user can only audit/debug a section of
the spreadsheet that corresponds to the size of their screen
at a time. The linkage between spatially widespread parts of
the spreadsheet is still very hard to understand. The global
strategy of stratification suggested by [5] corresponds to the

testing strategy described by [25, 1].
After all, our approach has still its limits. Identification

of semantic classes is suitable for identifying large recur-
rent patterns in a large sheet. The larger such patterns and
the more often they are repeated, the more powerful is this
approach. However, there is only little gain in running it on
non-repetitive sections with high internal complexity (c.f.
the lower part of the sheet in Fig. 2 showing a rather irreg-
ular structure of final and checksum calculations). To per-
form analysis of this part, an approach based on regularities
in the data-flow might be more promising.

6. Future Work

Currently we are working on the integration of a tool
into the open-source spreadsheet-system gnumeric. This
tool will offer support for spreadsheet analysis based on the
concepts of logical areas and semantic classes. We aim to
integrate the tool into one of the next gnumeric-releases.

On the theoretical side, different ways of hierarchization
are to be explored. Having freed ourselves from the spread-
sheet GUI, grouping semantic classes to higher level struc-
tures in a similar way as shown here, is called for.

Another topic of research is the development of an anal-
ysis technique for spreadsheets and parts of spreadsheets
with little structural patterns. For them, using the data flow
between cells to arrive at higher level constructs seems to
be a promising avenue that is currently investigated.

7. Conclusion

Due to the important decisions taken on the basis of
spreadsheet calculations, which is incommensurate to the
poor documentation and the high amount of maintenance
done on long-living, large sheets, spreadsheet comprehen-
sion becomes an important issue. To support this task we
presented the concept of logical equivalence classes. In
order to evaluate our technique we initiated a spreadsheet-
quality study in the accounting department of a large com-
pany. The results of the study were in line with those of
other field audits of spreadsheets (see [21] for a summary

of results). The study also showed where our approach still
needs to be extended.

Based on the notion of logical areas introduced previ-
ously, a further abstraction step was introduced. The con-
cept of semantic classes is based on logical equivalence
classes but also considers the the spatial arrangement of po-
tentially related cells. By identifying recurring patterns, a
higher level of the writer’s conceptual model can be recov-
ered. Likewise, as with the original concept of logical ar-
eas, regions of irregularity, pointing to potential faults in
the sheet, can be spotted even in large sheets.

References

[1] Y. Ayalew. Spreadsheet Testing Using Interval Analysis.
PhD thesis, Universität Klagenfurt, Universiẗatsstrasse 65–
67, A-9020 Klagenfurt, Austria, November 2001.

[2] Y. Ayalew, M. Clermont, and R. Mittermeir. Detecting errors
in spreadsheets. InSpreadsheet Risks, Audit and Develop-
ment Methods, volume 1, pages 51–62, AAAAAA, 7 2000.
EuSpRIG, University of Greenwich.

[3] K. H. Bennett and V. T. Rajlich. Software Maintenance and
Evolution: A Roadmap. In A. Finkelstein, editor,The Future
of Software Engineering, pages 73–87. ACM Press, 2000.

[4] R. Casimir. Real programmers don’t use spreadsheets.ACM
SIGPLAN Notices, 27(6):10–16, June 1992.

[5] H. C. Chan and Y. Chen. Visual checking of spreadsheets.
In Spreadsheet Risks, Audit and Development Methods, vol-
ume 1, pages 75–85. EuSpRIG, University of Greenwich, 7
2000.

[6] M. Clermont, C. Hanin, and R. Mittermeir. A Spread-
sheet Auditing Tool Evaluated in an Industrial Context . In
Spreadsheet Risks, Audit and Development Methods, vol-
ume 3, pages 35–46. EUSPRIG, 7 2002.

[7] J. S. Davis. Tools for spreadsheet auditing.International
Journal of Human-Computer Studies, 45(4):429–442, 1996.

[8] G. Filby, editor. Spreadsheets in Science and Engineering.
Springer, Berlin, Heidelberg, 1998.

[9] G. W. Furnas. Generalized fisheye views. InConference
proceedings on Human factors in computing systems, pages
16–23. ACM, April 1986.

[10] T. Isakowitz, S. Shocken, and H. C. Lucas. Toward a Logi-
cal/Physical Theory of Spreadsheet Modeling.ACM Trans-
actions on Information Systems, 13(1):1–37, 1995.

[11] D. Janvrin and J. Morrison. Using a structured design ap-
proach to reduce risks in End user spreadsheet development.
Information and Management, 37:1–12, 2000.

[12] B. Knight, D. Chadwick, and K. Rajalingham. A structured
methodology for spreadsheet modelling. InSpreadsheet
Risks, Audit and Development Methods, volume 1, pages
43–50. EuSpRIG, University of Greenwich, 7 2000.

[13] P. Kokol. Some Applications of Spreadsheet Programs
in Software Engineering. Software Engineering Notes,
12(3):45–50, July 1987.

[14] R. Mittermeir, M. Clermont, and Y. Ayalew. User Centered
Approaches for Improving Spreadsheet Quality. Technical
Report TR-ISYS-MCA-1, Institut f̈ur Informatik-Systeme,
Universiẗat Klagenfurt, July 2000.

[15] H. Müller, K. Wong, and S. Tilley. Understanding Software
Systems Using Reverse Engineering Technology. InCol-
loquium on Object Orientation in Databases and Software
Engineering, volume 62. Association Canadienne Francaise
pour l’Avancement des Sciences (ACFAS), 1994.

[16] B. Nardi and J. Miller. An Ethnographic Study of Dis-
tributed Problem Solving in Spreadsheet Development . In
Proceedings of the conference on Computer-supported co-
operative work, pages 197–208. ACM, October 1990.

[17] J. Paine. MODEL MASTER: Making Spreadsheets Safe. In
Proceedings of CALECO97. CTI, 1997.

[18] J. Paine. Web-O-Matic: using System Limit Programming
in a declarative object-oriented language for building com-
plex interactive Web applications. InProceedings of the 8th
REXX Symposium. IBM, 1997.

[19] R. Panko and R. P. Halverson. Are Two Heads Better than
One? (At Reducing Errors in Spreadsheet Modeling).Office
Systems Research Journal, 1997.

[20] R. R. Panko. What we know about spreadsheet errors.Jour-
nal of End User Computing: Special issue on Scaling Up
End User Development, 10(2):15–21, Spring 1998.

[21] R. R. Panko and R. P. Halverson,Jr. Spreadsheets on trial: A
survey of research on spreadsheet risks.Proceedings of the
Twenty-Ninth Hawaii International Conference on System
Sciences, January 2-5 1996.

[22] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spread-
sheets: An integrated methodology for spreadsheet testing
and debugging. InProceedings of the 2nd Conference on
domain-specific languages, volume 2, pages 25–38. ACM,
2000.

[23] B. Ronen, M. Palley, and H. Lucas. Spreadsheet analysis and
design. Communication of the ACM, 32(1):84–93, January
1989.

[24] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you
see is what you test: A methodology for testing form-based
visual programs. InICSE 1998 Proceedings, volume 20,
pages 198—207. IEEE, April 1998.

[25] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green,
and G. Rothermel. Wysiwyt testing in the spreadsheet
paradigm: An empirical evaluation. InICSE 2000 Proceed-
ings, pages 230–239. ACM, 2000.

[26] J. Sajaniemi. Modeling spreadsheet audit: A rigorous ap-
proach to automatic visualization.Journal of Visual Lan-
guages and Computing, 11(1):49–82, 2000.

[27] M. Stadelmann. A Spreadsheet Based on Constraints. In
Proceedings of the sixth annual ACM symposium on User
interface software and technology, pages 217–224. ACM,
ACM, November 1993.

[28] S. Tilley, H. Müller, and M. Orgun. Documenting Software
Systems with Views. InProceedings of the SIGDOC’92,
pages 211–219. ACM, 1992.

