
 1

Adaptive Testing in E-Learning – the Veval Approach

David Ahlström1, Martin Hitz2, Karin Hodnigg3

University of Klagenfurt, Department of Informatics-Systems

Key words: web based examination, self assessment, test generation, test evalua-
tion

Abstract:

This paper presents Veval, an Internet based assessment tool under development. It is
designed for integration into Velo, a virtual electronic laboratory system. Veval helps
to utilize the manifold possibilities of self assessment and examination via Internet. It
provides a test generating module for the tutor and an examination or self assessment
environment for students as well as a component responsible for statistical evalua-
tions. Based on an analysis of several existing assessment tools, the requirements for
Veval are discussed. An overview of the flexible and portable system architecture and
a short presentation of the graphical user interface are provided.

1 Introduction

Why considering an online assessment tool? In [1], McCormack and Jones present several
advantages of using a web based assessment tool. Next to aspects of time (time to prepare a
test as well as time to evaluate it are remarkably reduced) and convenience, the reductions of
costs and resources are pointed out as major benefits. Moreover, the information gained by
executing a test can be used to further tailor and adapt the contents of a course (electronic or
traditional) according to students’ needs. Nevertheless, there are some critical factors for suc-
cess: The assessment environment has to provide a thread running through the whole assess-
ment process. Basically, students have to be prepared for the application of such a tool – both
comprehensiveness and a well-defined feedback are necessary for acceptance among students.
Also, a comfortable and concise authoring tool to generate tests has to be available for tutors.

Based on an analysis of several commercially available assessment tools, this paper presents
the concepts behind Veval (Velo Evaluation Tool), an assessment tool under development.
Veval aims to help utilize the manifold possibilities of self-assessment and examination via
Internet. It provides both, a test generating module for tutors and an examination or self-
assessment environment for students.

Veval is a part of a larger e-learning system developed in the Velo (Virtual Electronic LabO-
ratory) project [9], funded by the Austrian government. Velo was initiated to improve the
situation at technical universities and universities of applied sciences. For students of engi-
neering sciences, laboratory exercises are important in order to transfer acquired theoretical
knowledge into practical skills and thus to obtain a more profound knowledge. Unfortunately,
the setup, administration and usage of educational laboratories are often very cost and time
expensive. Furthermore, they can only be used by a limited number of students under a lim-
ited time and therefore laboratory time becomes rare and treasured. The Velo project aims to
improve this situation by developing an “electronic laboratory”, which can be used any time
and anywhere from an Internet access point. By simulating electronic experimental equip-
ment, Velo makes it possible to substitute certain real laboratory exercises. Although Veval is

 2

designed to primarily meet the requirements for assessment in the area of electronic engineer-
ing, the design is made flexible so that adaptations to other areas are possible.

The following section presents a brief overview of some available assessment tools and their
functionality. In Section 3, the most important functional and non-functional requirements of
Veval are described. Section 4 deals with implementation issues and system architecture and
also presents the graphical user interface. The paper ends with a brief description of the future
work to do.

2 Survey of Existing Assessment Tools

E-learning and thus online testing have not yet undergone a standardisation process. So a va-
riety of different tools and applications with different features, different source and destina-
tion applications and different benefits is available. As the research area of e-learning
emerges, we are confronted with very different ways of assessment and evaluation of a stu-
dent’s progress. Tutors as well as their students prefer a variety of methods and techniques.
Consequently, there are many applications and e-learning suites that try to meet these re-
quirements. The following presentation of some available assessment tools is extracted form
an analysis conducted at the beginning of the development of Veval in fall 2001, as a part of
the specification process and serves as an overview.

Hot Potatoes [3] is an authoring tool to create different types of interactive web-based exer-
cises with underlying concepts like HTML and JavaScript. This tool consists of six different
applications, which can provide six different types of questions. To the disadvantage of this
tool, the only feedback provided is an e-mail message either to the student or the tutor. A
question can be answered multiple times – with no adverse effects to the resulting score.
Moreover, Hot Potatoes has the answers in the HTML/JavaScript source code accessable for
the user - this tool is just for personal use and cannot be used as a serious test environment.

QuestionMark Perception [4], consisting of various applications, helps the tutor to develop
and deliver tests. With its wizards, this tool does not require programming knowledge on the
part of the tutor. A question can hold information in a variety of data types, including images,
hyperlinks or multimedia. Moreover, QuestionMark Perception offers a very flexible feed-
back- and reporting unit. Since it offers a so-called Perception Secure Browser and a flexible
session manager for adapting the tests to the author’s needs, it is a very substantial product.

Macromedia Coursebuilder [5] allows the user to define a complete web-based learning
interaction. It offers a so called Action Manager to subsume the results, a Tracking System
with a Knowledge Track that supports the evaluation of a student’s progress by offering valu-
able information about a test: the time needed to react and the time needed to answer a ques-
tion, the number of trials etc. One can save the test – with all its additional information – in a
database. Yet, programming knowledge is required to be able to take advantage of all its fea-
tures.

WebCT [6] is an Internet course management software that also offers the possibility to cre-
ate and attend tests in a password protected Internet environment. Three different test modes
are supported: self test mode, quiz mode (which results in detailed reports and statistics for
the tutor) and poll mode (which allows anonymous surveys). WebCT provides a flexible scor-
ing system.

 3

Quandary [7] is an application for creating action mazes, which are a kind of interactive case
study. The user is confronted with a situation upon which he/she has to react and has to
choose one of several given alternatives. Based on his/her decision, the next situation is pre-
sented, and so on. In this sense, only multiple choice questions which can be dependent on
preceding question(s) are possible. The fact that this is the only supported question type con-
siderably limits the scope of the application and makes it an inadequate tool for generating
self assessment tests and quizzes with varieties.

e-Cadamy [8] is an emerging platform for creating tests online. It offers multiple possibilities
regarding creation, execution and analysis of tests including several question types, with the
options to include images, hyperlinks or other multimedia content. This environment supports
the grouping and reuse of questions and tests, making it possible for every tutor to keep track
of his/her data.

2.1 Deficiencies

The analysed tools are listed in Table 1 that compares them with respect to some characteris-
tic features of assessment tools.

Features

Hot
 Potatoes

Question-
Mark

Perception

Macromedia
Course-
builder

WebCT Quandary e-Cadamy

authoring
environment

stand-alone
application

application application/
Dreamweaver

browser application browser

examination
environment

browser browser/
application

browser browser browser browser

types of questions - MC*
- text entry
- mixed words
- crossword
- cloze
- matching

- essay
- cloze
- hotspot
- matrix
- MC
- numerical
- matching

- various MC
- drag’n’drop
- button
- slider

- MC
- text entry
- matching
- short

essay

- MC - MC
- hotspot
- cloze
- drag’n’drop

results/feedback yes yes yes yes no yes
persistence of
results

no yes yes yes no yes

statistics/analysis no yes yes yes no yes
tracking a stu-
dent’s progress

no no yes yes no yes

user administration no no yes yes no yes
import of questions no yes yes no yes yes
security none high medium high none medium
group questions by
(any) criteria

no yes no no no yes

integration of an
external database
possible

no yes yes no no no

flexible test gen-
eration (with ran-
domized questions)

no yes no yes no no

grading static flexible static flexible none flexible

* multiple choice question
Table 1: Comparative survey of web based assessment environments.

 4

For a self assessment tool, a dynamic test generation would be appreciable, so a student can
test himself multiple times on a subject, without being confronted with the same questions
again and again, and without forcing the tutor define multiple tests. This demand results in the
following requirement: it should be possible to group questions concerning the same topic and
pose them at random. Moreover, the tool should support self assessment as well as examina-
tions of students in a monitored test environment, so a very flexible and adaptable grading
system should be offered. To ease the tutor’s work, question sharing between tutors should be
made possible. E.g. tutors define some questions concerning some topic, and they would
probably like to exchange them among each other with minor effort. To be able to track a
student’s progress, some sort of user administration is needed. A tool used for self assessment
as well as for examination should also provide a mechanism for data persistence. Having per-
sistent data, statistical evaluation and reporting is possible.

3 System Requirements

The examined and previously described tools partly offer features which are required for an
assessment and evaluation tool in the domain of electronics. Because none of them meets all
of the requirements identified so far and detailed below and fulfil the desired functionality, the
development of Veval was initiated. For sake of brevity, the requirements are listed below in
indicative mood.

3.1 Functional Requirements

Veval is easy and intuitive to use for students as well as for tutors and provides a broad set of
question types in order to create a diversified and stimulating environment that can be used in
self-assessment mode as well as for supervised examinations. For clarification purposes, a
picture can be added to all different question types. The question types required to emulate
conventional (paper) exams and tests in the domain of electronics are:

1. multiple choice question,
2. numerical value question and
3. keyword matching question.

The numerical value question type requires a numerical value as answer. A numerical value
question can be evaluated in either of two ways:

1. exact match (the submitted value has to exactly match the value specified as answer)
and

2. deviation tolerance (at creation time, an admissible deviation range is specified, an-
swers within this range are considered correct).

In its first application domain (electronic engineering), Veval is employed as part of Velo.
Velo represents primarily technical and mathematical modules, so a specific variant of the
numerical value question is provided which allows parametric definition of formulas with
variables which are assigned a numerical value during run-time.

To ensure flexible, logical and efficient creation, storage, retrieval and re-use of questions,
they are organised in question pools with several classification attributes. Question pools are
sets of equivalent (but different) questions concerning a specific topic. The question pools are
also used to generate random question combinations for individual tests. At test creation time,
the tutor specifies a set of question pools from which the questions for each test are to be

 5

taken. For every individual test, at run time, a question from each one of the previously speci-
fied question pools is selected randomly.

A student carrying out a test, is presented with all the questions simultaneously (i.e., he/she
can skip back and forth between the questions at will). The presentation of the correct answers
and the resulting score can take place immediately after finishing a test. If prior at creation
time of the test the tutor has chosen to grade the test, the grade, based on a scale predefined by
the tutor, is presented as well. Since Veval is not going to be used for self-assessment pur-
poses only but also for supervised examinations, the option of reconstructing the whole test
event is necessary. For each individual test taken by a student, the randomly selected ques-
tions are saved together with the given answers and their scores. This allows for later recon-
struction of the test event and also for statistical evaluations. The latter help the tutor to iden-
tify strengths and weaknesses of his or her students and subjects that might need additional
elaboration. By providing detailed statistical visualisations, a well-defined feedback loop is
established for both students and tutors. An additional and valuable source of feedback is the
comments about a test that students can submit after having attended it.

The services provided by Veval can be summarised according to user roles as follows:

1. A tutor can
• define individual questions,
• define question pools,
• assemble tests,
• query test results (including predefined statistics),
• reconstruct individual tests,

 and
• notice comments from the students about a test.

2. A student can
• attend tests,
• query his/her own results,
• query predefined statistics (aggregated information only) and
• comment tests.

3.2 Optional and Non-functional Requirements

Functionality planned to be implemented in later versions of Veval include:

1. support for Internet Browsers other than Internet Explorer 6.0,
2. complementing the current German version of the graphical user interface with an

English version,
3. a utility to import/export questions and their answers from/to other applications and
4. embedding the current statistical functionality into a more complex and expressive re-

port generation component.

In its current version, Veval cooperates with HIS (“Hyperwave Information Server”) [2], an
object oriented web server and is integrated into the HIS-based e-learning platform eLS (“e-
Learning Suite”) [2]. But to meet the high prioritised requirement of high portability, the cou-
pling to HIS and eLS is fairly loose, therefore, the implementation of Veval is based on a
flexible three pillar architecture described in Section 4.

 6

4 System Architecture

The implementation of Veval is based on three pillars: the Web based user interface, a data-
base system as a persistence layer as well as an interface between the database and the Web
GUI as sketched in Figure 1.

As Hyperwave and its e-Learning Suite have been chosen as software platforms for Velo,
Veval’s user interface needed to be integrated into the e-Learning Suite. Although this could
be achieved in several different ways, we opted for a servlet-based Web GUI.

In order to keep data management as independent as possible from the persistence layer cho-
sen, a middleware layer responsible for the communication between the GUI and the data
management layer was introduced. It implements Veval’s entire main functions as well as
data transportation between the user interface and the data storage based on the Hyperwave
Information Server. This layer ensures that

• a different persistence platform (in particular, a relational database system such as
Oracle).

• a standard Web GUI (outside the Hyperwave eLS)
can be employed in the future.

With this architecture the system remains fairly flexible with regard to further use within dif-
ferent environments, to maintenance and to modification.

Figure 1 A simplified architecture of Veval.

4.1 Data Management

The central components of the Veval data model can be divided into three main parts:

• a test generation part, consisting of the question and its answer, the question
pool and the test itself,

• a test execution part, which consists of evaluation records and the test
configuration and

• a test analysis part, consisting of the concrete tests already executed by stu-
dents and their answers, potential feedback and statistical information.

In Figure 2 we show an excerpt of the UML class model focusing on the test generating part.

 7

Figure 2 Extract from the conceptual data scheme.

A test is defined by a tutor. It holds parameters like configuration details or scoring informa-
tion and authoring information of the test. In fact, test refers to a test frame, not to the exe-
cuted test, which is represented by a class test_completed. test_evaluation_record consists of
attributes describing the grading scale, veval_test_configuration holds configuration informa-
tion for a test, e.g. flags which indicate the time the score is to be presented to the user, or if a
feedback text field should be shown.

A test consists of various question pools, with a question_pool finally keeping the questions
of a test. This class describes the basic information of a question pool, e.g. its name, its de-
fault question type and its default score. All questions belonging to one question pool have to
have the same score, but the score itself can be changed (e.g. by multiplication), if the tutor
decides to reduce a question’s significance in a test. A question pool is defined by a tu-
tor_class that allows the sharing and reuse of questions among a well-defined group of tutors
(and only among them).

 8

Finally, a question is the object that holds the inquiry information and its solution. There are
four different basic types of questions, numeric value, formula value, keyword and multiple
choice questions. From the numeric value question type a subclass is derived to implement
questions with imaginary numbers. Within a question_value the tutor can define a deviation
range for the solution value that means a range in which the student’s answer is still consid-
ered correct (or partly correct). A question_keyword consists of different keywords, their rele-
vance and correctness (negative keywords are allowed). A question_multiple_choice consists
of a set of phrases or statements (question_multiple_choice_phrase) whose correctness the
student has to determine. A question_formula consists of in- and output parameters represent-
ing the mathematical variables used in the formula. At runtime, these variables are assigned
numeric values within the specified range (between low_value and high_value).

On the Hyperwave Server, this UML scheme, as shown in Figure 2, has to be adapted to the
Hyperwave Information Server object paradigm, which basically relies on the JavaScript ob-
ject paradigm. There are three types of objects, which can be implemented: collections (quite
the same as directories), documents (containing content like images, texts, presentations, etc.)
and objects (which are mainly pairs of attribute names and their values). These types of ob-
jects can be enriched by parameters and attributes and entailed to the user’s needs in so-called
Document Classes. Document Classes allow the Hyperwave user to add own functionality to
the Server. In fact, without going to deep into the implementation details, tests, question pools
and questions are collections. So we can remain quite flexible, with new functionalities added
just by re-implementing some functions of the interface without major changes of the data
model.

4.2 Middleware

As shown in Figure 1, the middleware mainly consists of two different modules: One provides
access to the Hyperwave server, the other one access to an Oracle database. Since Veval
should become portable, the decision towards JDBC/ODBC was made. The communication
with the Hyperwave server is based on a software programmer’s API, which allows object
orientation throughout Veval.

The middleware – a Java implemented interface – gets the request form the web based GUI,
processes it, puts or gets required data to/from the database, handles necessary transforma-
tions and finally returns the result data to the web interface. The business logic layer performs
data manipulation e.g. the encapsulation of different information into an object needed by the
Hyperwave server. It also implements the main functions of Veval such as test generation,
user administration, analysis and grading of tests.

4.3 User Interface

The web based graphical user interface of Veval is implemented by using servlets. It consists
of three main modules, an access module for user data, an administration module to provide
an interface where a tutor can create tests, as shown in Figure 4, and a module responsible for
test execution, shown in Figure 3. Since Veval is intended to be installed at Austrian technical
colleges, the first (and current) version of the GUI is only available in German.

 9

Figure 3: Graphical user interface for test execution.

Figure 4: Graphical user interface for test administration.

5 Future Work

The current version of Veval is based on Hyperwave Information Server and is integrated into
the Hyperwave eLS. Future versions should provide an independent data source with preser-
vation of the now implemented features such as user administration, content inclusion or in-
formation sharing.

In the next few months, Veval will be installed at the Carinthia Tech Institute in Villach. Re-
sults form the first test period will show how Veval can be optimised according to students’
and tutors’ needs. A bug fixing phase where all the software errors should be remedied is
planned throughout this first real-time and real-situation test. We will also concentrate on per-
formance and efficiency issues.

The integration of other databases than Hyperwave, primarily Oracle, and the implementation
of this module of the middleware, as well as the implementation of some optional modules
and features should take place at the same time to further improve Veval. The new modules

 10

include a language module, realizing a multilingual Veval, an import/export utility to easyly
exchange or import questions or question pools. The current rather rudimentary statistically
features, are to be widened by a more elaborate reporting unit, implementing complex and
expressive reports.

Although there are several tools available for online assessment, it is hard to find suitable
products that support all the necessary features, which make them adequate for extensive use
in academic settings. The requirements that result in such an academic setting are particularly
considered in the design of Veval. With its test authoring, its test execution and its statistic
module Veval has the potential to satisfy tutors’ and students’ high demands.

Acknowledgement

The authors wish to thank all members of the Velo project team for their fruitful cooperation
and Gerhard Jahn and Alois Reitbauer (who are responsible for implementing the user inter-
face of Veval) for kindly providing screenshots of the current release of the GUI for this pa-
per.

References:

[1] McCormack, C. and Jones, D.: Building a Web-based Education System, Wiley Computer

Publishing, New York, 1998
[2] http://www.hyperwave.com/
[3] http://web.uvic.ca/hrd/halfbaked/
[4] http://www.questionmark.com
[5] http://www.macromedia.com/software/coursebuilder/
[6] http://www.webct.com/
[7] http://www.halfbakedsoftware.com/index.htm?quandary/
[8] http://www.e-Cadamy.at
[9] http://193.171.119.158:8080/velo/

Author(s):
1
Ahlström, David, Mag.
University of Klagenfurt, ISYS
Universitätsstraße 65-67, 9020 Klagenfurt
david@isys.uni-klu.ac.at
2
Hitz, Martin, Univ.Prof. Dipl.Ing. Dr.
University of Klagenfurt, ISYS
Universitätsstraße 65-67, 9020 Klagenfurt
martin.hitz@uni-klu.ac.at
3
Hodnigg, Karin
University of Klagenfurt, ISYS
Universitätsstraße 65-67, 9020 Klagenfurt
karin@isys.uni-klu.ac.at

