
Representing Temporal Data in Non-Temporal OLAP Systems

Johann Eder
University of Klagenfurt

Dep. of Informatics-Systems
eder@isys.uni-klu.ac.at

Christian Koncilia
University of Klagenfurt

Dep. of Informatics-Systems
koncilia@isys.uni-klu.ac.at

Abstract

Multidimensional data warehouses and OLAP systems
do not provide adequate means for dealing with changes in
dimension data, changes appearing frequently in dynamic
application areas as current business systems. As data
warehouses and OLAP tools serve as decision support sys-
tems they have to reflect such changes. Temporal data ware-
houses propose sophisticated modelling tools for covering
any changes in dimension data but cannot be used with cur-
rent OLAP systems. In this paper we show some techniques
to incorporate temporal dimension data into multidimen-
sional OLAP systems. In particular we show how to su-
perimpose conventional multidimensional data warehouses
with temporal master data, enabling queries to span multi-
ple periods and to return correct answers.

1 Introduction

A data warehouse (DWH) is an integrated repository for
data stemming from several heterogenous database systems
[3] This source data may be structured, semi-structured or
unstructured. They are mainly used for On-Line Analyti-
cal Processing (OLAP), typically using a multi-dimensional
view of the data. OLAP tools then allow to aggregate and
compare data along dimensions relevant to the application
domain. Typical dimensions frequently found in business
data warehouses are time, organizational structure (divi-
sions, departments, etc.), space (cities, regions, countries)
and product data.

Data warehouses are well prepared to deal with modi-
fications in transaction data, e.g. the changing values of
the factTurnoverover time can be covered by introducing
a dimensionTime. Surprisingly, data warehouses are not
well prepared for changes of the structure of dimensions in
spite of their requirement for serving as long term memory.
Furthermore, they cannot adequately represent changes in
units, e.g., from ATS to EURO, changes in formulas com-
puting derived data, or schema changes.

For an example: In a data warehouse that stores infor-
mation about diseases for all European countries along the
dimensionsTime, Geography, DiagnosisandFactsAt least
two dimensions changed over time:

Geography: Reunification of Germany in 1990 or the
independence of Slovenia in 1991 have to be represented.

Diagnoses: Diagnoses for patients are represented with
the “International Statistical Classification of Diseases and
Related Health Problems” (ICD) code. However, codes for
diagnoses changed from ICD Version 9 to ICD Version 10.
E.g. the code for “malignant neoplasm of stomach” has
changed from151 in ICD-9 to C16 in ICD-10; diagnoses
were regrouped, e.g. “transient cerebral ischaemic attacks”
has moved from “Diseases of the circulatory system” to
“Diseases of the nervous system” [6]; etc.

How can we get correct results for queries like “did dia-
betes increase over the last 5 years” or “number of patients
with cancer in Germany over the last 25 years”? Ignorance
of the above changes will lead to incorrect results.

In [4] we present an architecture for aTemporal Data
Warehousethat enables users to get correct results for
queries spanning multiple periods by introducing time
stamps to represent the valid time of objects.

Contribution. In this paper, we discuss approaches to
map temporal data warehouse structures to current non-
temporal multidimensional OLAP systems superimposing
dimensions and aggregation hierarchies such that current
non-temporal OLAP technology can also be used for pro-
cessing of changing dimension data.

Related Work. We first presented the problem and a
concept for solution for simple data warehouses by trans-
formation functions in [3]. Other approaches for temporal
data warehouses are [9, 1, 8, 2]. To our best knowledge,
only [8] deals with both schema and instance modifica-
tions. However, the approach proposed in [8] supports only
schema/instance evolution and no versioning. Furthermore,
in contrast to our temporal data warehouse approach [3, 4]
none of the papers mentioned supports a mechanism to in-
troduce relationships between instances in different struc-
tural versions, i.e., transformation functions.

katja
Proceedings of the VLDWH Workshop 2002 (Dexa 2002), Aix-en-Provence, IEEE No PRO1668, ISBN 0-7695-1668-8, pp 817-821



2 Temporal Data in a Temporal Warehouse

Our concept calledCOMETproposed in [3] and [4] ex-
tends the well known data warehouse approach with aspects
of temporal databases and schema versioning. The changes
we have to cope with are not only schema changes, but also
changes in the dimension data (also called master data).
The dimensionTime ensures to keep track of the history
of transaction data, i.e., measures. Nevertheless, for correct
query results after modifications of dimension data we have
to track modifications of these data [3], and therefore, we
extend data warehouses with [3]:

• Temporal extension: dimension data has to be time
stamped in order to represent theirvalid time. The
valid time represents the time when a “fact is true in
the modeled reality” [7].

• Structure versions: by providing time stamps for di-
mension data our system is able to cope with different
versions of structure.

• Transformation functions: Our system supports
functions to transform data from one structure or
schema version into another.

All dimension members, i.e., instances of dimensions,
and all hierarchical links between these dimension members
have to be time stamped with a time interval[Ts, Te] repre-
senting the valid time whereTs is the beginning of the valid
time,Te is the end of the valid time andTe ≥ Ts. Accord-
ing to [7] a time interval “is the time between two instants”
and it “may be represented by a set of contiguous granules”.
Furthermore, we timestamp all schema definitions, i.e. di-
mensions, categories and their hierarchical relations, in or-
der to keep track of all modifications of the data warehouse
schema [4].

If we represent all time stamps of all modifications
within our data warehouse on a linear time axis the interval
between two succeeding time stamps on this axis represents
a structure version. Therefore, within a structure version the
structure of dimension data on both the schema level and on
the instance level is stable.

The data returned by a query may originate in sev-
eral (different) structure versions. Transformation functions
make correct analysis over changes in the dimension data
and dimension structure possible.

3 Temporal Data in OLAP Systems

The approach discussed in section 2 stores temporal data
in a temporal data warehouse model. However, frequently
the need arises that temporal data should be represented in
a non-temporal data warehouse, i.e. a non-temporal OLAP
system.

In this section we will discuss how to deal with tempo-
ral data in a non-temporal OLAP system, like Oracle Ex-
press or Cognos PowerPlay. In particular, we will discuss
how to store temporal data in Hyperion Essbase Version 6.0
(http://www.hyperion.com ), a popular and widely-
used multidimensional database management system (with-
out focusing on it’s specific nuts and bolts).

3.1 Modifications of Master Data

In [3] we identified (beside the basic operationsINSERT
andDELETE) the following types of modifications:

Move: The hierarchical position, i.e. the parent of a di-
mension member changes. For instance, in our running ex-
ample “transient cerebral ischaemic attacks” (ICD-10 code
G45) has moved from “Diseases of the circulatory system”
(ICD-9 code390−459) to “Diseases of the nervous system”
(ICD-10 codeG00−G99).

Change: The key of a dimension member changes. For
instance the code for “malignant neoplasm of stomach” has
changed from151 in ICD-9 toC16 in ICD-10.

Split: A dimension member splits up into several other
dimension members. For instance, the ICD-9 code for
“Chemotherapy”V 58.1 split up into Z51.1 “Chemother-
apy session for neoplasm” andZ51.2 “Other Chemother-
apy”. Another example is the code175 that split up into ten
different ICD-10 codes, namelyC50.0 to C50.9.

Merge: Several dimension members merge into one di-
mension member. In our running example, the ICD-9 codes
2350 and2351 merged into the ICD-10 codeD37.0.

3.2 Representing Versions in Unique Dimensions

The technically simplest and most naive way to repre-
sent temporal master-data in non-temporal OLAP systems
would be to represent each structure version for each di-
mension in a unique dimension. However, the volume con-
sumed by a data cube grows proportional to the number
of elements, i.e. dimension members stored in the cube.
Hence, this approach would lead to enormous cubes. Fur-
thermore, navigating through the data stored in the cube
would not be intuitive and easy for the end-user. More-
over, it is only possible to compare the different versions
of a dimension member by manually comparing the various
versions.

3.3 Extending the Scenario Dimension

Scenario dimensions are frequently found in multidi-
mensional databases. Typically, they represent different
versions of transaction data, i.e. of measures by introducing
dimension members like “Actual Value”, “Planned Value”
and “Budget”.



However, the scenario dimension could also serve as
a dimension to distinguish between different versions of
master data. This could be accomplished by introducing
a dimension member “Structure Version[TS , TE ]” for each
structure version that should be represented in the data cube.
In contrast to the first approach mentioned this approach re-
quires only small additional resources.

For our running example, we could represent the fact
thatFRG andGDR reunited in1990 by creating two di-
mension members “Structure Version[Start, 1989]” and
“Structure Version[1990, Now]” in the scenario dimension.
Furthermore, we have to create a new dimension member in
the dimensionGeography, namely “Germany”.

The main drawback of this approach is that structural
changes of dimensions members are not obvious for the
user. For instance, all three dimension membersFRG,
GDR and Germany would reside in the dimensionGe-
ographywithout any obviously hints for the user that these
dimension members are in any relation.

Nevertheless, the user is able to detect the implicitly
stored valid time by combining the corresponding dimen-
sion member and the dimension members representing the
structure versions. If the cell selected by this combination
comprises a value not equal toNULL then the dimension
member is valid in the selected structure version.

3.4 Attribute Dimension

The following approach uses a new feature supported by
Hyperion Essbase, namelyAttribute Dimensions. An at-
tribute dimension is a dimensions that contains members
that describe characteristics of members of another dimen-
sion.

Usually, it describes characteristics such as weight, color
or size. All members of an attribute dimension do have the
same type. This type may beBoolean , Text , Numeric
or Date . Each dimension may have several attribute di-
mensions and each attribute dimension has to be assigned
to exactly one dimension.

Attribute dimensions may be used to represent the valid
time of members of other dimensions. The administrator
may introduce an attribute dimension of typeText whose
members look like “[1997− 1999]”, representing the begin
and the end of the valid time as a string. He could also in-
troduce two attribute dimensions of typeDate , where one
attribute dimension represents the begin of the valid time
and the other represents the end of the valid time.

Figure 1 shows how to represent valid time using at-
tribute dimensions. In this example, the attribute “[1997 −
Now]” is assigned to the dimension member “Camera” rep-
resenting that it is valid from1997 until now. “VCR” is
valid from 1997 until 2001 and “Television” is valid from
2002 until now.

Figure 1. Using Attribute Dimensions

The user may now easily analyze the data stored in the
multidimensional database using this attribute dimensions.
He may select all members regardless of their valid time, or
he may select only those members which are assigned to a
specific attribute dimension, i.e. members that are valid in
a specific structure version.

The main drawback of this approach is, that only dimen-
sions marked as “sparse” can have attributes, i.e. assigned
attribute dimensions. Hence, if all dimensions change over
time, all dimensions have to be sparse. This increases the re-
sources needed to store the database and decreases the per-
formance.

Furthermore, each attribute dimension may only be as-
signed to one dimension. Hence, for each dimension whose
dimension members change over time a single attribute di-
mension has to be created. This leads of course to additional
expenses regarding the administration of the cube.

Another drawback is, that modifications of the key of a
dimension member cannot be treated correctly, i.e. their is
no obvious relation for the user between the two versions
of such a dimension member. Hence, it is only possible
to compare the different versions of a dimension member
whose key changed by manually comparing the various ver-
sions.

3.5 Prefix/Suffix Notation

The main idea of this approach is to extend the keys
of dimension members with a prefix or suffix representing
the valid time of the dimension member. Usually, the keys
used in Hyperion Essbase for dimension members are their
names. For sake of readability, only dimension members
that were subject of modifications get time stamped.

According to [7] data models for temporal database man-



agement systems “may represent a time line by a sequence
of non-decomposable, consecutive time intervals of iden-
tical duration.” These intervals are named chronons. A di-
mensionTimeis usually a part of multidimensional database
applications. As this dimension defines the finest level on
which modifications of transaction data are being stored, the
chronon for the time stamp should be equal to the chronon
of the dimension Time.

The chronon and format of the time stamps should be
uniform within the whole cube, i.e., within the database.
The format of the time stamp should comprise both, the start
and the end of the valid time.

Within Hyperion Essbase, the suffix/prefix may be stored
1) within the dimension member name, 2) within the alias
of the dimension member, 3) as a unique User Defined At-
tribute (UDA) or 4) as a combination of the possibilities
mentioned. In Hyperion Essbase, the name of a dimen-
sion member has to be unique throughout the whole cube.
Hence, the suffix/prefix should be stored at least within the
dimension member name. This leads to unique names. Stor-
ing the suffix/prefix within the alias or within an UDA in-
creases the opportunities for analyzing data.

To enable easy multi-period comparisons even after
modifications of dimension members, we propose an im-
plementation for this approach where modifications of di-
mension members are stored in a subordinate hierarchical
level. In other words, we insert a new, artificial hierarchical
level above the level of the dimension member which was
subject of changes.

Figure 2. Incorporating a Subordinate Level

Figure 2 shows an example of such a subordinate level.
In this example, we introduced a new hierarchy level by
inserting a new dimension member named “Chemotherapy
*”. We added this asterisk to inform the user that this hier-
archy is an artificial hierarchy. The children of this member
are both, the old and the new version of the corresponding
dimension member.

The main advantage of this approach is that it allows
multi-period comparisons on the level of the artificial hi-
erarchy for all types of modifications mentioned, except
MOVE.

For a modification of the typeMOVE, no artificial hier-
archy level is necessary. Figure 3 shows how to represent

Figure 3. A Movein Hyperion Essbase

the example mentioned (G45 has moved from390− 459 in
ICD-9 toG00−G99 in ICD-10). In order to avoid to double
the values on the top level, correct consolidation functions
have to be given. Hence, we have to exclude the ICD-9
path from consolidation. In Hyperion Essbase, this can be
done by using the consolidation function˜ (tilde), wherẽ
means “exclude member from consolidation”. In order to
allow comparisons on the upper levels, the corresponding
member has to inserted as ashared member. A shared mem-
ber is a member with multiple parents. In this example, the
memberG45 is a child of both390− 459 andG00−G99.

3.6 Folding Modifications into the Consolidation
Hierarchy

We will now discuss the last and most powerful approach
to represent temporal data in non-temporal, multidimen-
sional database management systems. The main idea of
this approach is that we “fold” modifications of dimension
members into the consolidation hierarchy. This can be done,
by creating a new hierarchical level within each dimension
that was subject of modifications for each structure version.

The main advantage of this approach is that it enables
the user to create multi-period comparisons for all types of
modifications. Furthermore, it requires only a small amount
of additional resources. The main drawback is, that the re-
sulting structure is quite complex, and not easy to under-
stand for the user. Therefore, without training, the user
would be swamped with this approach.

CHANGE : A changing key can easily be represented
by creating a dimension member with the new key whose
child is the dimension member with the old key. Figure 4c)
shows how to represent that the key for dimension member
C1 changed fromC1 to C2.

SPLIT : We are able to represent a dimension member
that splits into several new dimension members by creating



A1 A2

A B1 B2

B

C1

C2

D-New E-New

D-Old

F1 F2 F3 F4

E-Old

+ + +

+

+ +

- +

+

+ +

a) Split b) Merge c) Change d) Move

=A*w1
=A*w2

Figure 4. Folding Different Types of Modifications into the Consolidation Hierarchy

the new members as parents of the old dimension member.
In order to allow multi-period comparisons we need to split
the data stored for the old element. This can either be done
by applying a weighting factor and dividing the stored val-
ues according to the given weighting factor, or (if it is not
possible to find a weighting factor) by aggregating all the
old data into one of the new dimension members.

Figure 4a) shows how to represent thatA split into A1
andA2. Please note that the consolidation function is not a
simple aggregation or subtraction, but a formula that allows
to divide the data stored forA correctly intoA1 and A2
(within Essbase, this could be done by using so calledCalc-
Scripts). In this examplew1 andw2 are the given weighting
factors.

MERGE : Merging several dimension members into one
dimension member can be represented by creating the new
dimension member whose children are the old dimension
members. The new data will be loaded into the cells refer-
enced by the dimension memberB. The old data loaded for
B1 andB2 will be aggregated intoB. Hence, multi-period
comparisons are possible. Figure 4b) shows how to repre-
sent that the dimension membersB1 andB2 merged into
B.

MOVE : Some complex modifications are necessary in
order to represent that a dimension member has been moved
from one parent to another. Figure 4d) gives an example
of how to represent thatF2 moved fromD to E. In this
example,D had the childrenF1 andF2, andE had the
childrenF3 andF4. At a given timepointF2 moved from
D to E. The outcome of this is thatD now only has one
child F1 andE now has three children,F2, F3 andF4.

We represent this behavior by introducing an old and a
new version for both parent dimension members, namelyD
andE. This versions are taggedD −New, D −Old, E −
New andE −Old. The memberF2 is a child ofD −Old
andE−New. In order to avoid that the values stored in the
cells referenced byF2 are aggregated intoD − New (via
D−Old), we have to subtract those values fromD−New.

INSERT & DELETE : After a new dimension member
was inserted or an old member was deleted multi-period
comparisons for these elements are not possible, simply be-
cause no data exists before the insert or after the delete.

Hence, such newly created or deleted dimension members
can be simply inserted into the corresponding dimension.

4 Conclusions

In this paper we discussed how to represent changes of
master data in data warehouses and in OLAP systems. We
briefly discussed how to represent such changes in our tem-
poral data warehouse approach, calledCOMET.

Frequently the need arises to represent temporal behav-
ior of master data within existing, non-temporal data ware-
houses. We proposed five different approaches to represent
the various types of modifications to master data, e.g.Move,
Split andMerge in non-temporal OLAP systems and com-
pare these approaches mentioned with respect to resource
consumption and the support for multi-period comparisons.

References

[1] M. Blaschka, C. Sapia, and G. Höfling. On Schema Evolu-
tion in Multidimensional Databases. InProc. of the DaWak
Conference, Italy, 1999.

[2] P. Chamoni and S. Stock. Temporal Structures in Data Ware-
housing. InProc. of the DaWak Conference, Italy, 1999.

[3] J. Eder and C. Koncilia. Changes of Dimension Data in Tem-
poral Data Warehouses. InProc. of the DaWak Conference,
Munich, Germany, 2001.

[4] J. Eder, C. Koncilia, and T. Morzy. The COMET Meta-
model for Temporal Data Warehouses. InProc. of the 14th
Int. Conference on Advanced Information Systems Engineer-
ing (CAISE’02), Toronto, Canada, 2002.

[5] O. Etzion, S. Jajodia, and S. Sripada, editors.Temporal
Databases: Research and Practise. LNCS 1399. Springer-
Verlag, 1998.

[6] General Register Office for Scotland. Annual Report of the
Registrar General for Scotland. 2000. URL: http://www.gro-
scotland.gov.uk/.

[7] C. S. Jensen and C. E. Dyreson, editors.A consensus Glos-
sary of Temporal Database Concepts - Feb. 1998 Version.
Springer-Verlag, 1998. in [5].

[8] A. Vaisman.Updates, View Maintenance and Time Manage-
ment in Multidimensional Databases. Universidad de Buenos
Aires, 2001. Ph.D. Thesis.

[9] J. Yang. Temporal Data Warehousing. Stanford University,
June 2001. Ph.D. Thesis.




