
A Meta Model for Structured Workflows

Supporting Workflow Transformations

Johann Eder and Wolfgang Gruber

Department of Informatics-Systems,
Univ. Klagenfurt, A-9020 Klagenfurt, Austria

{eder,gruber}@isys.uni-klu.ac.at

Abstract. Workflows are based on different modelling concepts and are
described in different representation models. In this paper we present a
meta model for block structured workflow models in the form of classi-
cal nested control structure representation as well as the frequently used
graph representations. We support reuse of elementary and complex ac-
tivities in several workflow definitions, and the separation of workflow
specification from (expanded) workflow models. Furthermore, we pro-
vide a set of equivalence transformations which allow to map workflows
between different representations and to change the positions of control
elements without changing the semantics of the workflow.

1 Introduction

Workflow management systems (WFMSs) improve business processes by au-
tomating tasks, getting the right information to the right place for a specific job
function, and integrating information in the enterprise [6, 9, 7, 1]. Here, we con-
centrate on the primary aspects of a process model [12], the control structures
defining the way a WFMS would order and schedule workflow tasks. We do not
cover other aspects like data dependencies, actors, or organizational models.
Numerous workflow models have been developed, based on different mod-

elling concepts (e.g. Petri Net variants, precedence graph models, precedence
graphs with control nodes, state charts, control structure based models) and on
different representation models (programming language style text based models,
simple graphical flow models, structured graphs, etc.). Transformations between
representations can be difficult (e.g. the graphical design tools for the control
structure oriented workflow definition language WDL of the workflow system
Panta Rhei had to be based on graph grammars to ensure expressiveness equal-
ity between text based and graphical notation [4]).
In this paper, we consider in particular transformations, which do not change

the semantics of the workflow. Such transformation operations may be applied
to a process model SWF to transform it into SWF’ such that SWF and SWF’
still maintain underlying structural relationship with each other.
Equivalence transformations are frequently needed for workflow improve-

ments, workflow evolution, organizational changes, and for time management in

katja
published in: Proceedings of the Sixth East-European Conference on Advances in Databases and Information Systems (ADBIS 2002), Springer Verlag, LNCS 2435, pp 326-339

2. WORKFLOW MODELS

WFS1:WF-Spec A1:Activity A2:Activity A3,A4,A5:Activity
 sequence sequence conditional elementary
 O1:A1 O2:A2 O5:A4 end
 end O3:A3 O6:A5
end O4:A2 end
 end end
 end

Fig. 1. Workflow specification example (control structure)

workflow systems [2, 13]. E.g. for time management it is important to compute
due dates for all activities. The algorithms for that are typically more efficient
in graph based representations. Equivalence transformations are e.g. necessary
for generating timed workflow graphs [3]. For other purposes (e.g. transactional
workflows [5]), control structure based representations are preferred.
The main contributions of this paper are: we present a workflow meta model

for capturing structured workflows. This meta model supports hierarchical com-
position of complex activities. Activities, both elementary and complex activities
can be used in several workflow definitions, definition of complex activities. We
present a notion for equivalence of workflow models and introduce a series of
basic transformations preserving the semantics of the workflows.

2 Workflow Models

2.1 Structured workflow definition

A workflow is a collection of activities, agents, and dependencies between ac-
tivities. Activities correspond to individual steps in a business process, agents
(software systems or humans) are responsible for the enactment of activities, and
dependencies determine the execution sequence of activities and the data flow
between them. In this paper, we concentrate on the activities and the control
dependencies between the activities.
We assume that workflows are well structured. A well-structured workflow

consists of m sequential activities, T1 . . . Tm. Each activity Ti is either elemen-
tary, i.e., it cannot be decomposed any further, or complex. A complex activ-
ity consists of ni parallel, sequential, conditional or alternative sub-activities
Ti

1, . . . , Ti
ni , each of which is either elementary or complex. Typically, well

structured workflows are generated by workflow languages with the usual control
structures which adhere to a structured programming style (e.g. Panta Rhei [4]).
Fig. 1 shows an example of a workflow definition. The control structures

define complex activities. Within a complex activity a particular activity may
appear several times. To distinguish between those appearances, we introduce
the notion of occurrences [5, 10]. An occurrence is associated with an activity and
represents the place where an activity is used in the specification of a complex
activity. Each occurrence, therefore, has different predecessors, and successors.

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 327

2. WORKFLOW MODELS

Occurrence

Name
[OccName]

Name
Structure
OccName

Activity

Name
[Structure]

Control Element

Part ofDependency Hierarchy

Fig. 2. Graphical elements

The distinction between an activity and its (multiple) occurrence(s) is impor-
tant for reuseability, i.e. an activity is defined once and it is used several times
in workflow definitions. Also for maintenance, it is only necessary to change an
activity once, and all its occurrences are changed too. This allows that new work-
flows can easily be composed using predefined activities. Such a composition is
also called a workflow specification.

2.2 Workflow graphs

Structured Workflows can also be represented by structured workflow graphs,
where nodes represent activities or control elements and edges correspond to de-
pendencies between nodes. An and-split node refers to a control element having
several immediate successors, all of which are executed in parallel. An and-join
node refers to a control element that is executed after all of its immediate pre-
decessors finish execution. An or-split node refers to a control element whose
immediate successor is determined by evaluating some boolean expression (con-
ditional) or by choice (alternative). An or-join node refers to a control element
that joins all the branches after an or-split.

The graph representation of a workflow can be structured in a similar way as
workflow definitions in text based workflow definitions in block-structured work-
flow languages. Directed edges stand for dependencies, hierarchical relations, and
part-of relations between nodes. Figure 2 shows the graphical elements.

Activity- and occurrence nodes are represented by a rectangle, in which the
name of the representing activity or occurrence is indicated. An activity node
features in addition the structure (only in complex activities) of the representing
activity. The structure indicates the control structure (’seq’, ’par’, ’cond’ or ’alt’)
of a complex activity. At the model level, nodes feature the name of the related
specification occurrence that is encapsulated between round brackets. Control
elements are represented by a circle in the graph, in which the name and the
structure of the control element is indicated. Furthermore, any existing predicate
of a node will be depicted between angle brackets below the graphical element.

Figure 3 shows the workflow defined above in graph notation.

328 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

2. WORKFLOW MODELS

O2
(A2)

O4
(A2)

O3
(A3)

O5
(A4)

O6
(A5)

A3 A2
cond A4 A5A1

seq

O1
(A1)

WFS1
seq

Fig. 3. Workflow specification graph example

A workflow graph is strictly structured , if each split node is associated with
exactly one join node and vice versa and each path in the workflow graph origi-
nating in a split node leads to its corresponding join node.
For the purpose of allowing more transformations (see section 4) and the

separation of workflow instance types in the workflow model we also offer a
less strict notion. Here a split node may be associated with several join nodes,
however, a join node corresponds to exactly one split node. Each path originating
in a split node has to lead to an associated join node. Such graphs are results of
equivalence transformations necessary e.g. for time management.
Both representations of workflows can be freely mixed in our approach which

we call hybrid graph or graph-based workflow representations. It is possible to
use graph based structures as complex activities, and use structured composite
activities in graph based representations on the other hand.

2.3 Workflow model

In the workflow specification, the concept of occurrence helps to distinguish
between several referrals to the same activity within a complex activity. When
a complex activity is used several times within a workflow, we also have to
distinguish between the different appearances of occurrences. Therefore, a model
is required that corresponds to the specification, so that for the definition of the
dependencies between activities, an occurrence of an activity in a workflow has to
be aware of its process context. Therefore, we transform the design information
(specification) contained in the meta model into a tree-like structure. In such a
tree-like structure different appearances of the same activity are unambiguously
distinguished, such that we can define the dependencies between activities on
basis of these occurrences. We call these items model elements, and the workflow
consisting of model elements the workflow model.
Fig. 4 shows the workflow model for the workflow specification in Fig. 1. In

the following example, the model elements M2 and M4 have their own contexts
with M5 and M6, respectively M7 and M8 and they are built up like a tree.
Fig. 5 shows the workflow model in graph notation, in the upper half the full
unflattened model and in the lower half the full flattened model.

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 329

3. WORKFLOW META MODEL

WFM1:WF-Model M1:ModelElem M2:ModelElem M4:ModelElem M3,M5,M6,M7,M8:
 sequence sequence conditional conditional ModelElem
 M1:O1 M2:O2 M5:O5 M7:O5 elementary
 end M3:O3 M6:O6 M8:O6 end
end M4:O4 end end
 end end end
 end

Fig. 4. Workflow model control structure example

M3
(O3)

M5
(O5)

M2s
or-split
(O2)

M2j
or-join
(O2)

M1e
seq-end

(O1)

M1s
seq-start

(O1)
M6

(O6)

M7
(O5)

M4s
or-split
(O4)

M4j
or-join
(O4)

M8
(O6)

M1
(O1)

M2
(O2)

M3
(O3)

M6
(O6)

M5
(O5)

M8
(O6)

M7
(O5)

M4
(O4)

<PM6>

<PM5> <PM7>

<PM8>

<PM5> <PM6> <PM7> <PM8>

full unflattened model

full flattened model

Fig. 5. Workflow model graph example

3 Workflow meta model

Structure and characteristics of a workflow can be sufficiently described by a
workflow meta model. In this paper, we use UML as meta-modelling language.
The meta model shown in Fig. 6 gives a general description of the static scheme
aspects (the build time aspects) of workflows. The meta model presented in
Fig. 6 is adopted to the purpose of this paper and does therefore not contain
all necessary components of a workflow meta model. We briefly discuss the el-
ements of the meta-model. The important concepts have already be described
with examples in the previous section.

Workflows and activities A Workflow consists of activities which are ei-
ther (external) workflows, elementary or complex activities. Complex activities
are composed of other activities, represented as (activity-) occurrence in the
composition of a complex activity. The type of a complex activities describes its
control structure (seq for a sequential, par or and for a parallel, cond or or for a

330 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

3. WORKFLOW META MODEL

-wfId[1]
-name[1]
-description[1]
-subject[1]
-author[1]
-version[1]
-creation date[1]

Workflow

-aId[1]
-name[1]
-description[1]
-precondition[1]
-postcondition[1]
-duration[1]

Activity

+getFirstChildren()
+getLastChildren()
+getChildren()

-type[1]

ComplexActivityElementarActivity

-oId[1]
-predicate[0..1]
-position[1]
-type[1]

Occurrence

-name[1]

Transition

ExternalWorkflow

1 *

 belongs_to

-sub

*

-super*

parent

0..1

*
consist_of

1

*

 specified_by

1..*

*

wf_uses

1

*

wf_has_Model

+flatten()

ModelActivityOccurrence

-prev

*

-next

*
-name[1]

ModelTransition

+unflatten()

-contrPosition[1]

ModelControlOccurrence

-join*-split 0..1

is_counterpart

+getFirstChildren()
+getLastChildren()
+getChildren()

-meId[1]
-position[1]
-predicate[0..1]
-type[1]

ModelElement

-super

0..1

-sub

* me_parent

-mId[1]
-description[1]
-structureType[1]

WFModel

{disjoint, complete}

{disjoint, complete}

*

1 consist_of

ActivityOccurrence

-contrPosition[1]

ControlOccurrence

-join*-split 0..1

is_counterpart

{disjoint, complete}

-prev * -next*

0..1

*

 belongs_to

childOccurrence

1..*

*

/wf_consist_of

Fig. 6. Workflow Metamodel

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 331

4. WORKFLOW TRANSFORMATIONS

conditional, or alt for an alternative activity). We also register in which parent-
activities an activity appears.

Occurrences As outlined above, the notion of occurrence is central in our
meta model. The attribute predicate represents the condition for child occur-
rences of conditional activities and for occurrences that follow an or-split. The
attribute position indicates the processing position within the scope of the com-
plex activity (values: ’start’, ’between’, ’split’, ’join’, ’end’ or ’start/end’). We
distinguish activity and control occurrences. Each occurrence belongs to exactly
one activity. The association class Transition models the predecessor and suc-
cessor for each child occurrence of a sequence activity. Every child occurrence of
conditional activities and every occurrence that follows an or-split is associated
with a predicate. The class ComplexActivity has the methods getFirstChildren
(returns the child occurrences with the value ’start’ or ’start/end’ in position),
getLastChildren (returns the child occurrences of the complex activity with the
value ’end’ or ’start/end’), and getChildren (returns all child occurrences of the
complex activity). A ControlOccurrence represents a control element (split or
join). cntrPosition distinguishes between split- and join control elements. The
association is counterpart represents which join closes which split.

Workflow Model: The attribute structureType in the class WFModel in-
dicates, whether the workflow is a strict block-structured workflow or a hybrid
workflow. A model consists of ModelElements which are specified by exactly one
object of the class Occurrence - either an activity or a control occurrence. Model
elements can have a ModelTransition.
A model occurrence of a complex activity can be represented through a split-

and a join control element(control occurrences), if the model occurrence is flat-
tened. The method unflatten which builds up composition hierarchies is the
inverse method to flatten of the class ModelActivityOccurrence. The association
is counterpart of the class ModelControlOccurrence associates related join and
split control elements.

4 Workflow Transformations

Workflow transformations are operations on a workflow SWF resulting in a
different workflow SWF’. Each workflow transformation deals with a certain
aspect of the workflow (e.g. move splits or joins, eliminate a hierarchy level).
In the following we provide a set of transformations, which do not change the
semantics of the workflow according to the definition of equivalence given below.
Complex transformations can be established on this basic set of transformations
by repeated application. Transformations are feasible in both directions, i.e. from
SWF to SWF’ and vice versa from SWF’ to SWF.

4.1 Workflow instance type

Due to conditionals not all instances of a workflow processes the same activities.
We classify workflow instances into workflow instance types according to the

332 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

4. WORKFLOW TRANSFORMATIONS

actual executed activities. Similar to [11], a workflow instance type refers to (a
set of) workflow instances that contain exactly the same activities, i.e., for each
or-split node in the workflow graph, the same successor node is chosen; resp. for
each conditional complex activity the same child-activity is selected. Therefore,
a workflow instance type is a submodel of a workflow where each or-split has
exactly one successor; resp. each conditional or alternative complex activity has
exactly one subactivity.

4.2 Equivalence of workflows

Workflows are equivalent, if they execute the same tasks in exactly the same
order. Therefore, the equivalence of correct workflows (WF1 ≡ WF2) is based
on equivalent sets of workflow instance types.

Equivalent workflows: Two workflows are equivalent, if their sets of in-
stance types are equivalent. Two instance type sets are equivalent if and only if
for each element of one set there is an equivalent element in the other set.

Equivalent workflow instance types: Two workflow instance types are
equivalent, if they consist of occurrences of the same (elementary) activities with
identical execution order. The position of or-splits and or-joins in instance types
is irrelevant since an or-split has only one successor in an instance type. Fig. 7
shows the instance types of the above workflow in Fig. 4.

4.3 Flatten/Unflatten

The operation flatten eliminates a level of the composition hierarchy in a model
by substituting an occurrence of a complex activity by its child occurrences
and two control elements (split and join element). Between the split control
element and every child occurrence, a dependency is inserted, so that the split
element is the predecessor of the child occurrences. Also between the last child
occurrence(s) and the join control element, a dependency is inserted, so that the
join element is the successor of the child occurrence. Fig. 8 shows an example of
such a transformation. Here, applying the transformation flatten in the workflow
model SWF on occurrence M1 with the child occurrences M2 and M3, results
in the workflow SWF’, where M1 is replaced by the split S1 and the join J1.
S1 is the predecessor of M2 and M3, and J1 is the successor of M2 and M3.
Applying the operation flatten repeatedly on a workflow model so that no further
hierarchy can eliminated, is called total flatten(see Fig.5). The inverse function
to flatten is called unflatten.

4.4 Moving Joins

Moving Joins means changing the topological position of a join control element
(and-, or-, alt-join). This transformation separates the intrinsic instance types
contained in a workflow model. Some of the following transformations require
node duplication. In some cases moving a join element makes it necessary to
move the corresponding split element as well.

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 333

4. WORKFLOW TRANSFORMATIONS

IT1:InstanceT M1:ModelElem M2:ModelElem M4:ModelElem M3,M5,M7:
 sequence sequence conditional conditional ModelElem
 M1:O1 M2:O2 M5:O5 M7:O5 elementary
 end M3:O3 end end end
end M4:O4 end end
 end
 end

IT2:InstanceT M1:ModelElem M2:ModelElem M4:ModelElem M3,M5,M8:
 sequence sequence conditional conditional ModelElem
 M1:O1 M2:O2 M5:O5 M8:O6 elementary
 end M3:O3 end end end
end M4:O4 end end
 end
 end

IT3:InstanceT M1:ModelElem M2:ModelElem M4:ModelElem M3,M6,M7:
 sequence sequence conditional conditional ModelElem
 M1:O1 M2:O2 M6:O6 M7:O5 elementary
 end M3:O3 end end end
end M4:O4 end end
 end
 end

IT4:InstanceT M1:ModelElem M2:ModelElem M4:ModelElem M3,M6,M8:
 sequence sequence conditional conditional ModelElem
 M1:O1 M2:O2 M6:O6 M8:O6 elementary
 end M3:O3 end end end
end M4:O4 end end
 end
 end

Fig. 7. Workflow instance types

Join moving over activity: A workflow SWF with an or- resp. alt-join
J1 followed by activity occurrence M3, can be transformed to workflow SWF’

through node duplication, so that the join J1 is delayed after M3 as shown in
Fig. 9. Here, M3 will be replaced by its duplicates M31 and M32, so that J1
is the successor of M31 and M32, and M1 is the predecessor of M31 and M2
is the predecessor of M32. This transformation, and all of the following, can be
applied to structures with any number of paths.

Moving join over join: A workflow SWF with a nested or-structure (i.e.
within an or-structure with the split S1 and the corresponding join J1 there is
another or-structure with the split S2 and the corresponding join J2), the inner
join J2 can be moved behind the outer join J1, which requires also to move
the corresponding split element S2 and to adjust the predicates according to
the changed sequence of S1 and S2 by conjunction or disjunction. This change
means that the inner or-structure is put over the outer. An example of this
transformation in the workflow SWF’ is shown in Fig. 10.

Moving or-join over alt-join: For a workflow SWF with a nested alt/or-
structure, i.e. within an alt-structure with the split S1 and the join J1 there
is an or-structure with the split S2 and the join J2 , the inner join J2 can be

334 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

4. WORKFLOW TRANSFORMATIONS

SWF :=

M2
(D)

M3
(E)

SWF' :=
M1
(C)

M2
(D)

S1
par
(C)

J1
par
(C)

M3
(E)

Fig. 8. Flatten

SWF :=

M3
(D)

M1
(B)

S1
cond
(A)

J1
cond
(A)

M2
(C)

SWF' :=

M31
(D)

M1
(B)

S1
cond
(A)

J1
cond
(A)

M2
(C)

M32
(D)

Fig. 9. Join moving over activity

moved behind the outer join J1. This also requires to move the corresponding
split element S2 and to duplicate control elements and occurrences and adjust
the predicates. This change means that the inner or-structure is put over the
outer. An example of this transformation is given in Fig. 11.

Join coalescing: In a workflow SWF with a nested or-structure, i.e. within
an or-structure with the split S1 and the join J1 there is an or-structure with
the split S2 and the join J2, J2 can be coalesced with J1, which requires also to
coalesce the corresponding split element S2 and S1. This change means that two
or-structures are replaced by a single one. The predicates must be adapted. An
example for this transformation is given in Fig. 12. This transformation is similar
to the structurally equivalent transformations represented in [12] considering the
differences in the workflow models.

Moving join over and-join (Unfold): The unfold transformation pro-
duces a graph based structure which is no longer strictly structured and requires
multiple sequential successors, which means that a node, except split, could have
more than one sequential successor in the workflow definition, however, in each
instance type every node except and-splits has only one successor (the other
successors of the definition are in other instance types).

An or-join J2 can be moved behind its immediately succeeding and-join
J1, requiring duplication of control elements. The transformation is shown in
Fig. 13 and Fig. 14. To move J2 behind J1 we place a copy of J1 behind every
predecessor of J2, such that each of these copies of J1 has additionally the same
predecessor as J1 except J2. A copy of J2 is inserted, such that it has the copies
of J1 as predecessor and the successor of J1 as successor. Then J1 is deleted with
all its successor- and predecessor dependencies. If J2 has no longer a successor,

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 335

4. WORKFLOW TRANSFORMATIONS

SWF :=

M3
(E)

S2
cond
(B)

J2
cond
(B)

M4
(F)

SWF' :=

S1
cond
(A)

J1
cond
(A)

M2
(D)

M1
(C)

<PM1>

<PM2>

<PM3>

<PM4>

<PS2>

M1
(C)

S1
cond
(A)

J1
cond
(A)

M2
(D)

S2
cond
(B)

J2
cond
(B)

M4
(F)

M3
(E)

<PS2 * PM3>

<PS2 * PM4>

<PM1>

<PM2>

<PM1 + PM2>

Fig. 10. Join moving over join

SWF :=

M2
(D)

S2
cond
(B)

J2
cond
(B)

M3
(E)

SWF' :=

S1
alt
(A)

J1
alt
(A)

M1
(C)

<PM1>

<PM2>

<PM3>

M1
(C)

S12
alt
(A)

J12
alt
(A)

M3
(E)

S2
cond
(B)

J2
cond
(B)

M2
(D)

M1
(C)

<PM3>

S11
alt
(A)

J11
alt
(A)

<PM2>

Fig. 11. OR-join moving over alt-join

it will also be deleted. Partial unfold as it is described in [3] is a combination of
already described transformations.

4.5 Split Moving

Split Moving changes the position of a split control element. This transformation
separates (moving splits towards start) or merges (moving splits towards end)
the intrinsic instance types contained in a workflow model, in analogy to join
moving. Not every split can be moved. Moving an alt-split is always possible.
For an or-split it is necessary to consider data dependencies on the predicates.
Another considerably aspect of or-split moving is, that the decision which path
of an or-split is selected will be transferred forward, so that uncertainty based
on or-splits will be reduced.

Moving split before activity A workflow SWF with an or- resp. alt-
split S1 with activity occurrence M1 as predecessor, can be transformed in the
workflow SWF’ through node duplication, so that S1 is located before M1 (see
Fig. 15). Here, M1 will be replaced by its duplicates M11 and M12, so that S1

336 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

5. RELATED WORK

SWF :=

M2
(D)

S2
cond
(B)

J2
cond
(B)

M3
(E)

SWF' :=

S1
cond
(A)

J1
cond
(A)

M1
(C)

<PM1>

<PM2>

<PM3>

<PS2>

M2
(D)

M3
(E)

S1
cond
(A)

J1
cond
(A)

M1
(C)

<PM1>

<PS2 * PM2>

<PS2 * PM3>

Fig. 12. Join coalescing

SWF :=

M2
(D)

S2
cond
(B)

J2
cond
(B)

M3
(E)

SWF' :=

S1
par
(A)

J1
par
(A)

M1
(C)

<PM2>

<PM3>

M2
(D)

S2
cond
(B)

J12
par
(A)

M3
(E)

S1
par
(A)

J2
cond
(B)

M1
(C)

<PM2>

<PM3>

J11
par
(A)

M4
(E)

S3
cond
(H)

J3
cond
(H)

M5
(F)

<PM4>

<PM5>

M6
(G)

<PM6>

M4
(E)

S3
cond
(H)

J3
cond
(H)

M5
(F)

<PM4>

<PM5>

M6
(G)

<PM6>

Fig. 13. Join moving over and-join (Unfold) - 1

is the predecessor of M11 and M12, and M2 is the successor of M11 and M3
is the successor of M12. Predicates are adjusted.
There are some more operations like moving and-join over or-join, introduced

in [8], which - as we can show - is also an equivalence transformation. However,
space limitations do not allow discussion of further transformations.

5 Related work

There is some work on workflow transformations reported in literature. In [13]
various workflow patterns for different WFMS with different workflow models
are catalogued. The alternative representations are employing different control
elements and they are thought to be semantically equivalent, but there is no
equivalence criterion nor are there any transformation rules.

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 337

5. RELATED WORK

SWF ' :=

M2
(D)

S2
cond
(B)

M3
(E)

S1
par
(A)

J2
cond
(B)

M1
(C)

<PM2>

<PM3>

J11
par
(A)

M4
(E)

S3
cond
(H)

J3
cond
(H)

M5
(F)

<PM4>

<PM5>

M6
(G)

<PM6>

J31
cond
(H)

J121
par
(A)

J122
par
(A)

J123
par
(A)

SWF :=

M2
(D)

S2
cond
(B)

J12
par
(A)

M3
(E)

S1
par
(A)

J2
cond
(B)

M1
(C)

<PM2>

<PM3>

J11
par
(A)

M4
(E)

S3
cond
(H)

J3
cond
(H)

M5
(F)

<PM4>

<PM5>

M6
(G)

<PM6>

Fig. 14. Join moving over and-join (Unfold) - 2

SWF :=

M1
(D)

M2
(B)

S1
cond
(A)

J1
cond
(A)

M3
(C)

SWF' :=

M2
(B)

M11
(D)

S1
cond
(A)

J1
cond
(A)

M12
(D)

M3
(C)

<PM2>

<PM3>

<PM2>

<PM3>

Fig. 15. Split moving before activity

Modelling structured workflows and transforming arbitrary models to struc-
tured models has been addressed in [8], based on the equivalence notion of bisim-
ulation. In that paper, the authors investigate transformations based on several
patterns and analyze in which situations transformations can be applied. One of
the specified transformations is moving split-nodes, which is, in contrast to our
work, considered as a non-equivalent transformation. The so called overlapping
structure, which has been introduced in the context of workflow reduction for
verification purposes, is adopted in our work and it is used by the transformation
Moving and-join over or-join (omitted here due to space limitations).

Finally, in [12], three classes of transformation principles are identified to
capture evolving changes of workflows during its lifetime. We are only focus-
ing on the first class, namely on structurally equivalent transformations. In this
work, the equivalence criterion (relationship) for structurally equivalent work-
flows is too restrictive, because the workflows must have identical sets of execu-
tion nodes, which implies that transformations using node duplication can’t be
applied. Considering the differences in the workflow models, we adopted elimi-
nating of join-nodes as join coalescing with different semantics.

338 c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435

6. CONCLUSION

6 Conclusion

We presented a metamodel for workflow definition that supports control struc-
ture oriented as well as graph based representation of processes. Important as-
pects of this meta model are the elaborated hierarchical composition supporting
re-use of activity definitions and the separation of specification and model level
workflow descriptions. Through the notion of instance types we give and define
the (abstract) semantics of process definitions which allows the definition of the
equivalence of workflows. The main contribution of this work is the development
of a set of basic schema transformation that maintain the semantics.
There are several applications for the presented methodology. It serves as

sound basis for design tools. It enables analysts and designers to incrementally
improve the quality of the model step by step. We can provide automatic support
to achieve certain presentation characteristics of a workflow model. A model can
be transformed to inspect it from different points of view. In particular a model
suitable for conceptual comprehension can be transformed to a model better
suited for implementation.

References

1. Work Group 1. Interface 1: Process definition interchange. Workflow Management

Coalition, V 1.1 Final(WfMC-TC-1016-P), October 1999.
2. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows.

Lecture Notes in Computer Science 1021. Springer, 1995.
3. J. Eder, W. Gruber, and E. Panagos. Temporal modeling of workflows with condi-

tional execution paths. Lecture Notes in Computer Science 1873. Springer, 2000.
4. J. Eder, H. Groiss, and W. Liebhart. The workflow management system panta

rhei. In A. Dogac, et. al. (eds.), Advances in Workflow Management Systems and

Interoperability, Springer, 1997.
5. J. Eder and W. Liebhart. The workflow activity model WAMO. In S. Laufmann,

et.al, editors, Cooperative Information Systems, 3rd Int. Conf., CoopIS, 1995.
6. D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of workflow

management: From process modeling to workflow automation infrastructure. Dis-
tributed and Parallel Databases, 3(2):119–153, 1995.

7. D. Hollingsworth. The workflow reference model. Workflow Management Coalition,
Issue 1.1(TC00-1003), January 1995.

8. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. Lecture Notes in Computer Science 1789. Springer, 1999.

9. P. Lawrence. Workflow Handbook. John Wiley and Sons, New York, 1997.
10. W. Liebhart. Fehler- und Ausnahmebehandlung im Workflow Management. PhD

thesis, Universität Klagenfurt, 1998.
11. O. Marjanovic and M. E. Orlowska. On modeling and verification of temporal

constraints in production workflows. Knowledge and Information Systems, KAIS,
vol 1. Springer, 1999.

12. W. Sadiq and M. E. Orlowska. On business process model transformations.
Lecture Notes in Computer Science 1920. Springer, 2000.

13. W. M. P. van der Aalst, et.al. Advanced workflow patterns. Lecture Notes in

Computer Science 1901. Springer, 2000.

c© 2002 Springer-Verlag Berlin Heidelberg, LNCS 2435 339

