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Abstract. Already Ovid claimed that everything is in flux and we see continuing 
metamorphoses. Knowledge about changes is essential for Knowledge 
management in particular for the correct interpretation of data stemming from 
different periods. Data Warehouses are increasingly deployed in public 
administrations to provide analytical data for decision making, for monitoring 
or for revisions. 
Changes in transaction data are recorded in data warehouses and sophisticated 
tools allow to analyze these data along time and other dimensions. But changes 
in master data and in structures cannot be represented in current data 
warehouse systems impeding their use in dynamic areas and leading to 
erroneous query results. For an example: if the definition of "unemployment 
rate" changes, then the figures cannot be compared to those of previous years. 
Trend calculations on basis of the available data is irrelevant or severely 
misleading. 
We propose a temporal data warehouse architecture named COMET to 
represent structural changes and permit correct analysis of data over periods 
with changing structures. 

1. Introduction 

Data Warehouses are structured collections of data supporting controlling, 
decision making and revision. Data Warehouses build the basis for analyzing 
data by means of OLAP (online analytical processing) tools which provide 
sophisticated features for aggregating, analyzing, and comparing data and for 
discovering irregularities [14],[10]. 

Data Warehouses are designed and tuned for answering complex queries 
rather than for high throughput of a mix of updating transactions, and they 
typically have a longer memory, i.e. they do not only contain the actual values 
(snapshot data) but also historical data needed for the purposes outlined above.  
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The most popular architecture for data warehouses are multidimensional 
data cubes, where transaction data (called cells, fact data or measures) are 
described in terms of master data hierarchically organized in dimensions.  

Surprisingly, data warehouses are not well prepared for changes in spite of 
their requirement for serving as long term memory. Of course they are very well 
designed for dealing with changes in transaction data, which are represented in 
the cells of multidimensional data cubes. However, they cannot adequately 
represent changes in master data which span the dimension structures of such 
cubes, with changes in units, changes in formulas computing derived transaction 
data, or schema changes. 

Consider the following example: Diagnoses for patients were represented in 
a data warehouse using the “International Statistical Classification of Diseases 
and Related Health Problems” (ICD) code. However, codes for diagnoses 
changed from ICD Version 9 to ICD Version 10. Even worse, the same code 
described different diagnoses in ICD-9 and ICD-10. Other ICD-10 codes are a 
subset of ICD-9 codes, i.e. the granularity of codes changed. Let us say that in 
ICD-9 we a code X for the diagnose D and in ICD-10 we have two codes X1 for 
diagnose D1 and X2 for diagnose D2 where D1 and D2 are subsets of D. The 
question is now: how can we get correct results for queries like "did liver cancer 
increase over the last 5 years". Without knowing the above changes we will end 
up with incorrect results. 

Data Warehouse and OLAP tools are increasingly employed to provide 
access to large data collections and to automate and distribute reports derived 
from these data collections. This proliferation of reports and OLAP statistics 
unfortunately does not go hand in hand with the proliferation of knowledge 
about the data in these statistical data nor with knowledge about their sources. 
Frequently, we find that legends and other informative texts accompanying 
usually statistical tables are missing from quickly available  OLAP reports, and 
of course are typically missing in ad-hoc query results. This lack of knowledge 
causes wrong information of even well-minded receivers of these data. 

The problems associated with this lack of information is very severe in 
governmental information systems. On one hand government agencies are 
collecting enormous amounts of data and provide these data to the public, on the 
other hand these collected data are under closer observation and frequently are 
used by parties, media and other participants in public debates. 

The goals of our research described in this paper are to make data 
warehouses more useful, and to improve the correctness of OLAP-results. For 
this purpose we need provisions to correctly answer queries for data in a 
particular point in time (snapshot data), and for retrieving data stemming from 
different periods in a way that they can be compared or commonly processed 



further on. As a direct consequence, it is not sufficient to just maintain schema 
and structure of a data warehouse to represent the “new” view, since this would 
result in the loss of the ability to answer queries regarding previous periods 
correctly, restricting the value of data warehouses for revision purposes. On the 
other hand, just keeping the correct master data and units for the transaction data 
is not sufficient either, since aggregation over data from different periods would 
give wrong results. 

We propose an architecture for representing the changes of a data warehouse 
schema and of the dimension data in a way that correct analysis of data is made 
possible. Since this means recognizing that the shape and content of a Star-
Schema may change over time we call this a COMET schema. This COMET 
schema not only contains the information about the structure of a data 
warehouse, but also about all the changes and serves as knowledge base for the 
interpretation of query results. 

In this paper we discuss the use of our temporal data warehouse metamodel 
in public administrations by means of an example. We present a series of 
changes representing the evolution of structures. We show how the knowledge 
about changes can be recorded in the COMET data warehouse model and how 
this knowledge is used for reducing incorrect OLAP results. 

2. Temporal Data Warehouse Architecture 

Changes in dimension data cannot be represented adequately in current data 
warehouse technology because of the implicitly underlying assumptions that the 
dimensions are orthogonal. Orthogonality with respect to the dimension time 
means the other dimensions ought to be time-invariant. The consequences of 
this deficiency are the restricted applicability of data warehouse technology in 
dynamic domains with frequent changes of structural data. The storing of data 
over several periods, foundational for data warehouses is of rather limited use, if 
these data cannot be compared and aggregated over these periods to allow for 
trend computations and multi-period comparisons.  On the other hand we often 
found incorrect data as results of OLAP analysis, sometimes the users were 
aware of the errors stemming from structural changes, more often not. 

In particular, we propose a temporal data warehouse architecture which 
extends multidimensional data warehouses with knowledge about changing 
structures, master data and relationships between master data to achieve the 
following features: 

• representation of changes in master data, units and schema  

• identification of structure versions as changeless periods. 



• provision of mappings of transaction data between structure versions. 

• Support of queries touching data from different structural versions. 

• analysis of data according to new and old versions of the structure 

• detect whether the result of a query might be wrong because of 
changes in structure or schema 

Our concept for a temporal data warehouse model called COMET proposed 
in [4] and [5] builds on the techniques developed for temporal databases 
[1],[8],[9], in particular time stamping information, and temporal selection and 
projection, schema evolution and schema versioning [12],[3],[2],[7],[13] and 
extends and adapts them for the particularities of data warehouses. 

All dimension members and all hierarchical links between these dimension 
members have to be time stamped with a time interval [TS,TE] representing 
the valid time where TS is the beginning of the valid time, TE is the end of the 
valid time and TE ≥ TS. According to [11] a time interval “is the time between 
two instants” and it “may be represented by a set of contiguous granules”. 
Furthermore, we timestamp all schema definitions, i.e. dimensions, categories 
and their hierarchical relations, in order to keep track of all modifications of the 
data warehouse schema [5]. 

If we represent all time stamps of all modifications within our data 
warehouse on a linear time axis the interval between two succeeding time 
stamps on this axis represents a structure version. This means that a structure 
version is a view on a temporal data warehouse valid for a given time period 
[TS,TE]. Within a structure version, the structure of dimension data is stable 
on both schema and instance level. Information about structure versions can be 
gained from our temporal data warehouse using temporal projection and 
temporal selection [11]. 

The data returned by a query may originate in several (different) structure 
versions. Hence, it is necessary to check whether the data needed for answering 
the query (the relevant sub-cube) was affected by structural changes. This is 
important since not all structural changes affect all data. If the data was affected 
by structural changes, it is necessary to provide transformation functions 
mapping data from one structure version to a different structure version. 

Transformation functions enable us to assure that a successful analysis can 
be made when dimension data and dimension structure changed. The 
combination of structure versions and transformation functions enables the user 
to analyze data with dimension data and structures “backward” or “forward” in 
the time axis. 



3. 

                                          

COMET @ work 

In this section, we will show by means of an example how the COMET 
metamodel can be used to deal with modifications in the structure of data 
warehouses, i.e., how it can be used to deal with changing knowledge. 

3.1. Running Example 
Throughout the rest of this paper, we will use the following running 

example. Consider a data warehouse that stores information about the gross 
domestic product (GDP) in the local currency and the number of inhabitants 
(#Inhabitants) of European countries. In the COMET metamodel, facts are 
modelled as a unique dimension. The users stated, that they would like to 
analyze these facts along two dimensions: Geography and Time.  

The dimension Geography has the following structure: Country → 
Province, where “A → B” means that B rolls-up to A. In our COMET approach 
both, Country and Province1 are called Categories. Furthermore, users want to 
store the size of each country in square kilometres (Size). However, they do not 
want to analyze this data, nor do they want to analyze the GDP or the 
#Inhabitants along a unique dimension Size. Therefore, we can treat this 
information as an user defined attribute (UDA) that is applicable to all 
dimension members of the Category Country. 

The data stored in this data warehouse stems from several information 
systems. These systems are able to deliver data once per quarter. Therefore, 
dimension Time has two Categories, namely Year and Quarter.  

Figure 1 shows the resulting cube called “Europe Info” and the user 
interface of the COMET Administration Tool. The right part of the toolbar 
consists of a selection box that allows to select a structure version. As until now 
we did not change any master data within the cube, only one structure version 
exists, namely the structure version valid from 01/01/1980 until NOW. The right 
part of the user interface shows a graphical representation of the schema 
(dimensions and categories) of the cube valid in the selected structure version. 
The left part shows all dimension members valid in the selected structure 
version for the selected dimension. In Fig. 1, it shows all members assigned to 
the dimension Geography. 

 
1 For sake of readability we modelled only four different European countries (and some 
provinces): Germany, Austria, Czechoslovakia, Yugoslavia and their different “versions” 
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Figure 1: Cube created with the COMET Administration Tool 
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introducing a transformation function for all facts (GDP and #Inhabitants), or 
by introducing separate transformation functions for a subset of facts. 

In our example, we would like to transform all values for all facts with the 
same transformation function. Hence, we will use the same weighting factor to 
map data. The weighting factors are stated by the administrator and may be a 
result of analysing the data stored in the date warehouse. In our example, the 
factors to transform cell values from “Germany” into “FRG” and “GDR” are the 
proportional number of inhabitants2 of these countries. 

This allows us to introduce the following transformation functions: 
Germany = FRG * 1 + GDR * 1 

GDR = Germany * 0,21 
FRG  = Germany * 0,79 

Figure 2 shows how to introduce transformation functions within the 
COMET Administration Tool. As can be seen, a transformation function always 
maps data from one structure version SVN, into the preceding (SVN-1) or 
succeeding (SVN+1) structure version. In [4] we showed, that these 
transformation functions can be represented at matrices. By simply multiplying 
these matrices, we are able to automatically compute transformation functions to 
map data from one structure version SVN into a non-contiguous structure 
version, e.g. SVN+2 or SVN-3.  

 

Figure 2: Defining Transformation Functions 

                                           
2 To be more precise, in 1989 the GDR had about 16.4 million inhabitants and the FRG had 
about 62.6 million inhabitants. 



3.2.2. SPLIT 
A split operation is an operation where one dimension member splits up into 

several other dimension members. Hence, a split operation is the opposite of a 
merge operation. In other words, the re-unification of Germany (a merge 
operation) is also a split operation in the reverse direction of time, e.g., from the 
“future” into the “past”. Therefore, a split operation is also a merge operation in 
the reverse direction of time. 

In our running example, Czechoslovakia split up into the Czech Republic 
and the Slovak Republic in 1992. 

After the re-unification of Germany in 1990, and the separation of the Czech 
and Slovak Republic in 1992, the given cube comprises of three different 
structure versions. The first one is valid from the start of the data warehouse 
until 1989, the second is valid from 1990 until 1991, and the third is valid from 
1992 until now. 

Again we are able to introduce a set of transformation functions to transform 
cell values from Czechoslovakia into the Czech Republic and the Slovak 
Republic and vice versa. And once again, we use the proportional number of 
inhabitants3 of these countries to compute the weighting factors that have to be 
stated for the transformation functions. 

Hence, we introduce the following transformation functions: 
 

Czechoslovakia = Slovak Republic * 1 + Czech Republic * 1 
Slovak Republic = Czechoslovakia * 0,35 
Czech Republic = Czechoslovakia * 0,65 

 
Figure 3 shows the structure version that is valid from 1992 until now of the 

resulting cube after the re-unification of Germany in 1990 and the separation of 
the Czech and Slovak Republic in 1992. 

The second toolbar visualizes all structure versions that are stored in the data 
warehouse, i.e., it visualizes the linear time axis and the timepoints of all 
modifications within the cube. The currently selected structure version is 
depicted in a different colour. Furthermore, each part of this time axis is labelled 
with the number of time units (in our example, the number of days) between to 
ticks. 

                                           
3 The Czech Republic had about 10.2 million inhabitants and the Slovak Republic had about 
5.4 million inhabitants. 
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Figure 3: The cube after the re-unification of Germany, and the separation of the Czech and 
Slovak Republic 

 

3.2.3. CHANGE 
A change operation is an operation where the name of a dimension member, 

or one of its user defined attributes changes. In our running example, there are 
for instance two different changes: In 2002 the name of “Yugoslavia” changed 
to “Serbia and Montenegro”. Furthermore, in 2002 the local currency changed 
in twelve countries within the European Community to EURO. 

After we incorporated both modifications (the changing name of Yugoslavia 
and the changing currencies in several countries) within our cube, this leads to a 
new structure version that is valid from 2002 until now. 

We are able to allow multi-period queries that include the dimension 
member “Yugoslavia” by simply introducing a transformation function between 
the dimension member “Yugoslavia” in structure version [1992, 2001] (valid 
from 1992 until 2001) and the dimension member “Serbia and Montenegro” in 
structure version [2002, NOW] (valid from 2002 until now) with a weighting 
factor equal to 1. 



Transforming the GDP in local currencies into EURO and backwards from 
EURO into the local currencies can be done by defining transformation 
functions with the corresponding weighting factors. For instance, as 1 Euro = 
1.95583 Deutschmarks we can introduce a transformation function with a 
weighting factor 0.5113 to map Deutschmarks into EURO. On the other hand, 
we may introduce a transformation function with a weighting factor 1.95583 to 
map EURO into Deutschmarks. 

However, to map the #Inhabitants of Germany in structure version [1992, 
2001] to Germany in structure version [2002, NOW] we have to introduce 
another, different transformation function with a weighting factor equal to 1. 

3.2.4. MOVE 
A move operation changes the parent member of a dimension member. If, in 

our running example, we would classify all European countries into members 
and non-members of the European Community, then Austria, Sweden and 
Finland would have moved from the group “Non-EC-Member” to the group 
“EC-Member” in 1995. 

As in our COMET approach, we do not only timestamp all nodes 
(dimensions, categories and dimension members) but also all edges defining the 
hierarchical relation between nodes, this could be done by setting the end time 
of the valid time for the hierarchical relation between Austria and Non-EC-
Member to 1994, and creating a new hierarchical relation between Austria and 
EC-Member with a timestamp [1995, NOW]. 

As we implicitly introduce a transformation function for each dimension 
member which does not change from one structure version into another with a 
weighting factor equal to 1, the administrator of the cube would not have to 
introduce a transformation function to map data from Austria as a Non-EC-
Member into Austria as a EC-Member and backwards. 

3.3. Changes on the Schema Level 
The COMET metamodel and its implementation, the COMET 

Administration tool does not only allow changes on the instance level, e.g. 
modifications of dimensions members and their hierarchical relation. It does 
also support changes on the schema level, for instance deleting a whole 
dimension or inserting a new category. 



 

Figure 4: Resulting cube after inserting a new category Month 

 
Imagine for our running example, that the information systems that are the 

sources for our data warehouse are changing. From 2002 on, they do not only 
support data on a quarterly basis, but could also provide data on a monthly 
basis. Therefore, we would like to adopt our cube, i.e., to insert a new category 
Month beneath the category Quarter in the dimension Time. 

Hence, we introduce a new category Month with the valid time [2002, 
NOW] and a new hierarchical relation between the two categories Month and 
Quarter with the same valid time. Figure 4 shows the resulting cube after 
inserting a new category Month. 

To allow the user to state queries like “Show GDP of Germany in January 
for the last 20 years”, we could introduce a set of transformation functions to 
map data from the old structure into the new structure version. This is similar to 
the split operation mentioned: we split each quarter into three months. 

Therefore, we could introduce the following transformation functions: 
1.Quarter = January * 1 + February * 1 + March * 1 



2.Quarter = April * 1 + May * 1 + June * 1 
… 

January = 1.Quarter * 0,333 
February = 1.Quarter * 0,333 

March = 1.Quarter * 0,333 
April = 2.Quarter * 0,333 

… 
Although the same could be done when inserting new dimensions, this 

would require a vast number of transformation functions. However, inserting 
new dimensions should not occur frequently after careful requirements analysis. 
Furthermore, we are working for providing generic transformation functions.  

3.4. Analyzing the Cube 
In order to enable the user to use multidimensional querying techniques like 

Drill-Down, Roll-Up, Slice and Dice we implemented a tool called COMET 
Transformer. The Transformer generates a data mart for each structure version 
needed by the user. In its current version, the Transformer tool generates 
Hyperion Essbase data marts, a popular and widely-used multi-dimensional 
database management system. Figure 5 shows a data mart generated by the 
Transformer. This data mart corresponds to the structure valid in the structure 
version [2002, NOW] and can now be analysed using a standard OLAP tool like 
Microsoft Excel or Wired For OLAP. 

In most cases, this data mart will have the structure defined by the actual 
structure version. Each data mart consists of all data that are valid for the same 
time interval as the corresponding structure version plus it consists of all data 
that could be transformed by the defined transformation functions from all other 
structure versions.  



 

Figure 5: A data mart in Hyperion Essbase generated by the Transformer tool 

 
Therefore, the user defines his/her base structure version by selecting a 

specific data mart. This base structure version determines which structure has to 
be used for the analysis. In most cases this will be the current structure version. 
However, in some cases, e.g. for auditing purposes, it will be of interest to use 
an “older” structure version.  

4.  Conclusions 

Unfortunately, many information systems are ill prepared to represent 
changing knowledge. Surprisingly, multidimensional data warehouse systems 
are among those. For the correctness of results of OLAP queries, it is vital that 
modifications of structures are correctly taken into account. E.g., when the 
economic figures of European countries over the last 20 years are compared on 
a country level, it is essential to be aware of the re-unification of Germany, the 
separation of Czechoslovakia, etc. This knowledge can be used in different 
ways. First it is necessary for interpreting the results of OLAP queries. 
However, this is usually not sufficient. The Data Warehouse should proactively 
use knowledge about changes to provide subtexts (legends) for results, reject 
queries because their results would be meaningless, or perform transformations 
to achieve correct results. 

We showed an easy-to-use and powerful approach that enables temporal 
data warehousing, namely the COMET metamodel. We gave a description of 



some of the problems that can be solved with the implementation of this 
metamodel by means of an example. Furthermore, we showed how this 
implementation – the COMET Administration Tool and the COMET 
Transformer – works. It is our ambition to contribute to a more knowledgeable 
use of information collected in data warehouses and to hopefully better 
decisions. 
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