
Representing Knowledge about Changes in Data
Warehouse Structures

Johann Eder and Christian Koncilia
University of Klagenfurt

Dep. of Informatics-Systems
{eder,koncilia}@isys.uni-klu.ac.at

Abstract. Already Ovid claimed that everything is in flux and we see continuing
metamorphoses. Knowledge about changes is essential for Knowledge
management in particular for the correct interpretation of data stemming from
different periods. Data Warehouses are increasingly deployed in public
administrations to provide analytical data for decision making, for monitoring
or for revisions.
Changes in transaction data are recorded in data warehouses and sophisticated
tools allow to analyze these data along time and other dimensions. But changes
in master data and in structures cannot be represented in current data
warehouse systems impeding their use in dynamic areas and leading to
erroneous query results. For an example: if the definition of "unemployment
rate" changes, then the figures cannot be compared to those of previous years.
Trend calculations on basis of the available data is irrelevant or severely
misleading.
We propose a temporal data warehouse architecture named COMET to
represent structural changes and permit correct analysis of data over periods
with changing structures.

1. Introduction

Data Warehouses are structured collections of data supporting controlling,
decision making and revision. Data Warehouses build the basis for analyzing
data by means of OLAP (online analytical processing) tools which provide
sophisticated features for aggregating, analyzing, and comparing data and for
discovering irregularities [14],[10].

Data Warehouses are designed and tuned for answering complex queries
rather than for high throughput of a mix of updating transactions, and they
typically have a longer memory, i.e. they do not only contain the actual values
(snapshot data) but also historical data needed for the purposes outlined above.

katja
published in: Proceedings of the 3rd International Workshop on Knowledge Management in Electronic Government (KMGov 2002), Trauner Druck, Schriftenreihe Informatik, Vol. 7, ISBN 3-85487-409-X, pp 186-198

The most popular architecture for data warehouses are multidimensional
data cubes, where transaction data (called cells, fact data or measures) are
described in terms of master data hierarchically organized in dimensions.

Surprisingly, data warehouses are not well prepared for changes in spite of
their requirement for serving as long term memory. Of course they are very well
designed for dealing with changes in transaction data, which are represented in
the cells of multidimensional data cubes. However, they cannot adequately
represent changes in master data which span the dimension structures of such
cubes, with changes in units, changes in formulas computing derived transaction
data, or schema changes.

Consider the following example: Diagnoses for patients were represented in
a data warehouse using the “International Statistical Classification of Diseases
and Related Health Problems” (ICD) code. However, codes for diagnoses
changed from ICD Version 9 to ICD Version 10. Even worse, the same code
described different diagnoses in ICD-9 and ICD-10. Other ICD-10 codes are a
subset of ICD-9 codes, i.e. the granularity of codes changed. Let us say that in
ICD-9 we a code X for the diagnose D and in ICD-10 we have two codes X1 for
diagnose D1 and X2 for diagnose D2 where D1 and D2 are subsets of D. The
question is now: how can we get correct results for queries like "did liver cancer
increase over the last 5 years". Without knowing the above changes we will end
up with incorrect results.

Data Warehouse and OLAP tools are increasingly employed to provide
access to large data collections and to automate and distribute reports derived
from these data collections. This proliferation of reports and OLAP statistics
unfortunately does not go hand in hand with the proliferation of knowledge
about the data in these statistical data nor with knowledge about their sources.
Frequently, we find that legends and other informative texts accompanying
usually statistical tables are missing from quickly available OLAP reports, and
of course are typically missing in ad-hoc query results. This lack of knowledge
causes wrong information of even well-minded receivers of these data.

The problems associated with this lack of information is very severe in
governmental information systems. On one hand government agencies are
collecting enormous amounts of data and provide these data to the public, on the
other hand these collected data are under closer observation and frequently are
used by parties, media and other participants in public debates.

The goals of our research described in this paper are to make data
warehouses more useful, and to improve the correctness of OLAP-results. For
this purpose we need provisions to correctly answer queries for data in a
particular point in time (snapshot data), and for retrieving data stemming from
different periods in a way that they can be compared or commonly processed

further on. As a direct consequence, it is not sufficient to just maintain schema
and structure of a data warehouse to represent the “new” view, since this would
result in the loss of the ability to answer queries regarding previous periods
correctly, restricting the value of data warehouses for revision purposes. On the
other hand, just keeping the correct master data and units for the transaction data
is not sufficient either, since aggregation over data from different periods would
give wrong results.

We propose an architecture for representing the changes of a data warehouse
schema and of the dimension data in a way that correct analysis of data is made
possible. Since this means recognizing that the shape and content of a Star-
Schema may change over time we call this a COMET schema. This COMET
schema not only contains the information about the structure of a data
warehouse, but also about all the changes and serves as knowledge base for the
interpretation of query results.

In this paper we discuss the use of our temporal data warehouse metamodel
in public administrations by means of an example. We present a series of
changes representing the evolution of structures. We show how the knowledge
about changes can be recorded in the COMET data warehouse model and how
this knowledge is used for reducing incorrect OLAP results.

2. Temporal Data Warehouse Architecture

Changes in dimension data cannot be represented adequately in current data
warehouse technology because of the implicitly underlying assumptions that the
dimensions are orthogonal. Orthogonality with respect to the dimension time
means the other dimensions ought to be time-invariant. The consequences of
this deficiency are the restricted applicability of data warehouse technology in
dynamic domains with frequent changes of structural data. The storing of data
over several periods, foundational for data warehouses is of rather limited use, if
these data cannot be compared and aggregated over these periods to allow for
trend computations and multi-period comparisons. On the other hand we often
found incorrect data as results of OLAP analysis, sometimes the users were
aware of the errors stemming from structural changes, more often not.

In particular, we propose a temporal data warehouse architecture which
extends multidimensional data warehouses with knowledge about changing
structures, master data and relationships between master data to achieve the
following features:

• representation of changes in master data, units and schema

• identification of structure versions as changeless periods.

• provision of mappings of transaction data between structure versions.

• Support of queries touching data from different structural versions.

• analysis of data according to new and old versions of the structure

• detect whether the result of a query might be wrong because of
changes in structure or schema

Our concept for a temporal data warehouse model called COMET proposed
in [4] and [5] builds on the techniques developed for temporal databases
[1],[8],[9], in particular time stamping information, and temporal selection and
projection, schema evolution and schema versioning [12],[3],[2],[7],[13] and
extends and adapts them for the particularities of data warehouses.

All dimension members and all hierarchical links between these dimension
members have to be time stamped with a time interval [TS,TE] representing
the valid time where TS is the beginning of the valid time, TE is the end of the
valid time and TE ≥ TS. According to [11] a time interval “is the time between
two instants” and it “may be represented by a set of contiguous granules”.
Furthermore, we timestamp all schema definitions, i.e. dimensions, categories
and their hierarchical relations, in order to keep track of all modifications of the
data warehouse schema [5].

If we represent all time stamps of all modifications within our data
warehouse on a linear time axis the interval between two succeeding time
stamps on this axis represents a structure version. This means that a structure
version is a view on a temporal data warehouse valid for a given time period
[TS,TE]. Within a structure version, the structure of dimension data is stable
on both schema and instance level. Information about structure versions can be
gained from our temporal data warehouse using temporal projection and
temporal selection [11].

The data returned by a query may originate in several (different) structure
versions. Hence, it is necessary to check whether the data needed for answering
the query (the relevant sub-cube) was affected by structural changes. This is
important since not all structural changes affect all data. If the data was affected
by structural changes, it is necessary to provide transformation functions
mapping data from one structure version to a different structure version.

Transformation functions enable us to assure that a successful analysis can
be made when dimension data and dimension structure changed. The
combination of structure versions and transformation functions enables the user
to analyze data with dimension data and structures “backward” or “forward” in
the time axis.

3.

COMET @ work

In this section, we will show by means of an example how the COMET
metamodel can be used to deal with modifications in the structure of data
warehouses, i.e., how it can be used to deal with changing knowledge.

3.1. Running Example
Throughout the rest of this paper, we will use the following running

example. Consider a data warehouse that stores information about the gross
domestic product (GDP) in the local currency and the number of inhabitants
(#Inhabitants) of European countries. In the COMET metamodel, facts are
modelled as a unique dimension. The users stated, that they would like to
analyze these facts along two dimensions: Geography and Time.

The dimension Geography has the following structure: Country →
Province, where “A → B” means that B rolls-up to A. In our COMET approach
both, Country and Province1 are called Categories. Furthermore, users want to
store the size of each country in square kilometres (Size). However, they do not
want to analyze this data, nor do they want to analyze the GDP or the
#Inhabitants along a unique dimension Size. Therefore, we can treat this
information as an user defined attribute (UDA) that is applicable to all
dimension members of the Category Country.

The data stored in this data warehouse stems from several information
systems. These systems are able to deliver data once per quarter. Therefore,
dimension Time has two Categories, namely Year and Quarter.

Figure 1 shows the resulting cube called “Europe Info” and the user
interface of the COMET Administration Tool. The right part of the toolbar
consists of a selection box that allows to select a structure version. As until now
we did not change any master data within the cube, only one structure version
exists, namely the structure version valid from 01/01/1980 until NOW. The right
part of the user interface shows a graphical representation of the schema
(dimensions and categories) of the cube valid in the selected structure version.
The left part shows all dimension members valid in the selected structure
version for the selected dimension. In Fig. 1, it shows all members assigned to
the dimension Geography.

1 For sake of readability we modelled only four different European countries (and some
provinces): Germany, Austria, Czechoslovakia, Yugoslavia and their different “versions”

C

D

C

Dimension Members

Figure 1: Cube created with the COMET Administration Tool

3.2. Changes on the Instance Level
We will now discuss how to model changes on the instance

changes of dimension members, in the COMET Administration Too
show some typical types of complex modifications by means of an ex

3.2.1. MERGE
A merge operation is an operation where several dimension mem

into one dimension member. In our running example, the re-unificati
and GDR into Germany in 1990 is a merge operation.

Representing this re-unification in the COMET data warehouse,
cube with two structure versions. The first one is valid from the start
warehouse until 1989, the second is valid from 1990 until now.

With respect to multi-period comparisons like “Show GDP of
for the last 20 years”, we could introduce a set of transformation f
map data from FRG and GDR into Germany (forward in time, i
structure version into a subsequent structure version) and vice versa (
in time, i.e. into a preceding structure version). This could be
Structure
Versions

ube

imensions

ategories

level, i.e.,
l. We will

ample.

bers merge
on of FRG

 leads to a
 of the data

‘Germany’
unctions to
.e. from a
backwards
 done by

introducing a transformation function for all facts (GDP and #Inhabitants), or
by introducing separate transformation functions for a subset of facts.

In our example, we would like to transform all values for all facts with the
same transformation function. Hence, we will use the same weighting factor to
map data. The weighting factors are stated by the administrator and may be a
result of analysing the data stored in the date warehouse. In our example, the
factors to transform cell values from “Germany” into “FRG” and “GDR” are the
proportional number of inhabitants2 of these countries.

This allows us to introduce the following transformation functions:
Germany = FRG * 1 + GDR * 1

GDR = Germany * 0,21
FRG = Germany * 0,79

Figure 2 shows how to introduce transformation functions within the
COMET Administration Tool. As can be seen, a transformation function always
maps data from one structure version SVN, into the preceding (SVN-1) or
succeeding (SVN+1) structure version. In [4] we showed, that these
transformation functions can be represented at matrices. By simply multiplying
these matrices, we are able to automatically compute transformation functions to
map data from one structure version SVN into a non-contiguous structure
version, e.g. SVN+2 or SVN-3.

Figure 2: Defining Transformation Functions

2 To be more precise, in 1989 the GDR had about 16.4 million inhabitants and the FRG had
about 62.6 million inhabitants.

3.2.2. SPLIT
A split operation is an operation where one dimension member splits up into

several other dimension members. Hence, a split operation is the opposite of a
merge operation. In other words, the re-unification of Germany (a merge
operation) is also a split operation in the reverse direction of time, e.g., from the
“future” into the “past”. Therefore, a split operation is also a merge operation in
the reverse direction of time.

In our running example, Czechoslovakia split up into the Czech Republic
and the Slovak Republic in 1992.

After the re-unification of Germany in 1990, and the separation of the Czech
and Slovak Republic in 1992, the given cube comprises of three different
structure versions. The first one is valid from the start of the data warehouse
until 1989, the second is valid from 1990 until 1991, and the third is valid from
1992 until now.

Again we are able to introduce a set of transformation functions to transform
cell values from Czechoslovakia into the Czech Republic and the Slovak
Republic and vice versa. And once again, we use the proportional number of
inhabitants3 of these countries to compute the weighting factors that have to be
stated for the transformation functions.

Hence, we introduce the following transformation functions:

Czechoslovakia = Slovak Republic * 1 + Czech Republic * 1
Slovak Republic = Czechoslovakia * 0,35
Czech Republic = Czechoslovakia * 0,65

Figure 3 shows the structure version that is valid from 1992 until now of the

resulting cube after the re-unification of Germany in 1990 and the separation of
the Czech and Slovak Republic in 1992.

The second toolbar visualizes all structure versions that are stored in the data
warehouse, i.e., it visualizes the linear time axis and the timepoints of all
modifications within the cube. The currently selected structure version is
depicted in a different colour. Furthermore, each part of this time axis is labelled
with the number of time units (in our example, the number of days) between to
ticks.

3 The Czech Republic had about 10.2 million inhabitants and the Slovak Republic had about
5.4 million inhabitants.

Structure Versions
visualized

Figure 3: The cube after the re-unification of Germany, and the separation of the Czech and
Slovak Republic

3.2.3. CHANGE
A change operation is an operation where the name of a dimension member,

or one of its user defined attributes changes. In our running example, there are
for instance two different changes: In 2002 the name of “Yugoslavia” changed
to “Serbia and Montenegro”. Furthermore, in 2002 the local currency changed
in twelve countries within the European Community to EURO.

After we incorporated both modifications (the changing name of Yugoslavia
and the changing currencies in several countries) within our cube, this leads to a
new structure version that is valid from 2002 until now.

We are able to allow multi-period queries that include the dimension
member “Yugoslavia” by simply introducing a transformation function between
the dimension member “Yugoslavia” in structure version [1992, 2001] (valid
from 1992 until 2001) and the dimension member “Serbia and Montenegro” in
structure version [2002, NOW] (valid from 2002 until now) with a weighting
factor equal to 1.

Transforming the GDP in local currencies into EURO and backwards from
EURO into the local currencies can be done by defining transformation
functions with the corresponding weighting factors. For instance, as 1 Euro =
1.95583 Deutschmarks we can introduce a transformation function with a
weighting factor 0.5113 to map Deutschmarks into EURO. On the other hand,
we may introduce a transformation function with a weighting factor 1.95583 to
map EURO into Deutschmarks.

However, to map the #Inhabitants of Germany in structure version [1992,
2001] to Germany in structure version [2002, NOW] we have to introduce
another, different transformation function with a weighting factor equal to 1.

3.2.4. MOVE
A move operation changes the parent member of a dimension member. If, in

our running example, we would classify all European countries into members
and non-members of the European Community, then Austria, Sweden and
Finland would have moved from the group “Non-EC-Member” to the group
“EC-Member” in 1995.

As in our COMET approach, we do not only timestamp all nodes
(dimensions, categories and dimension members) but also all edges defining the
hierarchical relation between nodes, this could be done by setting the end time
of the valid time for the hierarchical relation between Austria and Non-EC-
Member to 1994, and creating a new hierarchical relation between Austria and
EC-Member with a timestamp [1995, NOW].

As we implicitly introduce a transformation function for each dimension
member which does not change from one structure version into another with a
weighting factor equal to 1, the administrator of the cube would not have to
introduce a transformation function to map data from Austria as a Non-EC-
Member into Austria as a EC-Member and backwards.

3.3. Changes on the Schema Level
The COMET metamodel and its implementation, the COMET

Administration tool does not only allow changes on the instance level, e.g.
modifications of dimensions members and their hierarchical relation. It does
also support changes on the schema level, for instance deleting a whole
dimension or inserting a new category.

Figure 4: Resulting cube after inserting a new category Month

Imagine for our running example, that the information systems that are the

sources for our data warehouse are changing. From 2002 on, they do not only
support data on a quarterly basis, but could also provide data on a monthly
basis. Therefore, we would like to adopt our cube, i.e., to insert a new category
Month beneath the category Quarter in the dimension Time.

Hence, we introduce a new category Month with the valid time [2002,
NOW] and a new hierarchical relation between the two categories Month and
Quarter with the same valid time. Figure 4 shows the resulting cube after
inserting a new category Month.

To allow the user to state queries like “Show GDP of Germany in January
for the last 20 years”, we could introduce a set of transformation functions to
map data from the old structure into the new structure version. This is similar to
the split operation mentioned: we split each quarter into three months.

Therefore, we could introduce the following transformation functions:
1.Quarter = January * 1 + February * 1 + March * 1

2.Quarter = April * 1 + May * 1 + June * 1
…

January = 1.Quarter * 0,333
February = 1.Quarter * 0,333

March = 1.Quarter * 0,333
April = 2.Quarter * 0,333

…
Although the same could be done when inserting new dimensions, this

would require a vast number of transformation functions. However, inserting
new dimensions should not occur frequently after careful requirements analysis.
Furthermore, we are working for providing generic transformation functions.

3.4. Analyzing the Cube
In order to enable the user to use multidimensional querying techniques like

Drill-Down, Roll-Up, Slice and Dice we implemented a tool called COMET
Transformer. The Transformer generates a data mart for each structure version
needed by the user. In its current version, the Transformer tool generates
Hyperion Essbase data marts, a popular and widely-used multi-dimensional
database management system. Figure 5 shows a data mart generated by the
Transformer. This data mart corresponds to the structure valid in the structure
version [2002, NOW] and can now be analysed using a standard OLAP tool like
Microsoft Excel or Wired For OLAP.

In most cases, this data mart will have the structure defined by the actual
structure version. Each data mart consists of all data that are valid for the same
time interval as the corresponding structure version plus it consists of all data
that could be transformed by the defined transformation functions from all other
structure versions.

Figure 5: A data mart in Hyperion Essbase generated by the Transformer tool

Therefore, the user defines his/her base structure version by selecting a

specific data mart. This base structure version determines which structure has to
be used for the analysis. In most cases this will be the current structure version.
However, in some cases, e.g. for auditing purposes, it will be of interest to use
an “older” structure version.

4. Conclusions

Unfortunately, many information systems are ill prepared to represent
changing knowledge. Surprisingly, multidimensional data warehouse systems
are among those. For the correctness of results of OLAP queries, it is vital that
modifications of structures are correctly taken into account. E.g., when the
economic figures of European countries over the last 20 years are compared on
a country level, it is essential to be aware of the re-unification of Germany, the
separation of Czechoslovakia, etc. This knowledge can be used in different
ways. First it is necessary for interpreting the results of OLAP queries.
However, this is usually not sufficient. The Data Warehouse should proactively
use knowledge about changes to provide subtexts (legends) for results, reject
queries because their results would be meaningless, or perform transformations
to achieve correct results.

We showed an easy-to-use and powerful approach that enables temporal
data warehousing, namely the COMET metamodel. We gave a description of

some of the problems that can be solved with the implementation of this
metamodel by means of an example. Furthermore, we showed how this
implementation – the COMET Administration Tool and the COMET
Transformer – works. It is our ambition to contribute to a more knowledgeable
use of information collected in data warehouses and to hopefully better
decisions.

5. References

[1] M. Böhlen. Temporal Database System Implementations. SIGMOD, 24(4), 1995.
[2] C. D. Castro, F. Grandi, and M. R. Scalas. Schema Versioning for Multitemporal

Relational Databases. In Information Systems, volume 22(5):249–290, 1997.
[3] S. M. Clamen. Schema Evolution and Integration. In Distributed and Parallel

Databases: An International Journal, pages 2(1):101–126, 1994.
[4] J. Eder and C. Koncilia. Changes of Dimension Data in Temporal Data Warehouses. In

Proc. of the DaWak 2001 Conference, Munich, Germany, 2001.
[5] J. Eder, C. Koncilia, and T. Morzy. The COMET Metamodel for Temporal Data

Warehouses. In Proc. of the 14th Int. Conference on Advanced Information
Systems Engineering (CAISE’02), Toronto, Canada, 2002.

[6] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research and
Practise. Number LNCS 1399. Springer-Verlag, 1998.

[7] E. Franconi, F. Grandi, and F. Mandreoli. Schema Evolution and Versioning: a Logical
and Computational Characterisation. In Workshop on Foundations of Models and
Languages for Data and Objects, 2000.

[8] I. Goralwalla, A. Tansel, and M. Özsu. Experimenting with Temporal Relational
Databases. ACM, CIKM95, 1995.

[9] H. Gregersen and C. Jensen. Temporal Entity-Relationship Models - a Survey.
TimeCenter Publication, 1997.URL: http://www.cs.auc.dk/TimeCenter/.

[10] B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual Data Warehouse Design.
In Proc. of the International Workshop on Design and Management of Data
Warehouses (DMDW 2000), Stockholm, 2000.

[11] C. S. Jensen and C. E. Dyreson, editors. A consensus Glossary of Temporal
Database Concepts - Feb. 1998 Version, pages 367–405.Springer-Verlag, 1998. in
[6].

[12] C. Liu, S. Chang, and P. Chrysanthis. Database Schema Evolution using EVER
Diagrams. In Proceedings of the Workshop on Advanced Visual Interfaces, pages
123–132, 1994.

[13] J. Roddick. A Survey of Schema Versioning Issues for Database Systems. In
Information and Software Technology, volume 37(7):383–393, 1996.

[14] M. Wu and A. Buchmann. Research Issues in Data Warehousing. BTW’97, 1997.

	Introduction
	Temporal Data Warehouse Architecture
	COMET @ work
	Running Example
	Changes on the Instance Level
	MERGE
	SPLIT
	CHANGE
	MOVE

	Changes on the Schema Level
	Analyzing the Cube

	Conclusions
	References

