
Incorporating ICD-9 and ICD-10 Data in a

Warehouse

Johann Eder and Christian Koncilia
University of Klagenfurt

Dep. of Informatics-Systems
{eder,koncilia}@isys.uni-klu.ac.at

March 2002

Abstract

The shift from version 9 to version 10 of the ICD-code (“Interna-
tional Statistical Classification of Diseases and Related Health Prob-
lems”) causes enormous problems for the exploitation of medical data
warehouses, since conventional data warehouses do not support the
change of the structure of dimensions, i.e. the content and relation-
ships of master data like the diagnostic codes, or other key values.
This shortcoming results in a reduction of possible analysis, and un-
fortunately is the cause of many wrong statistics and analysis results.
In this paper we analyze the problem and show how to superimpose
conventional multidimensional data warehouses with temporal master
data to allow queries spanning multiple periods to return correct an-
swers.

1 Introduction

A data warehouse (DWH) is an integrated repository for data stemming
from several heterogenous database systems [7, 5]. This source data may be
structured, semi-structured or unstructured. The most important usage of
data warehouses is On-Line Analytical Processing (OLAP), typically using
a multi-dimensional view of the data. OLAP tools then allow to aggregate
and compare data along dimensions relevant to the application domain.

During the last years there has been an increasing pressure exerted on
non-profit organizations (NPOs) and especially on health maintenance or-
ganizations (HMOs) to reduce costs for long term care, home health care,
infusion services, acute inpatient care, etc. By giving managers of HMOs
a tool to analyse the cost structure along multiple dimensions, data ware-
houses are an enabling technology. They will help to increase the confidence
in data quality, to analyse data with an easy-to-use interface by means of

1

katja
published in: Proceedings of the 15th IEEE Symposium on Computer Based Medical Systems (CBMS 2002), IEEE Nr. PR01614, ISSN 1063-7125, pp 91-96



On-Line Analytical Processing (OLAP) tools, to develop benchmarks, etc.
[4]

Data warehouses, i.e. OLAP tools, are well prepared to deal with mod-
ifications in transaction data, e.g. the changing values of the fact Turnover
over time can be covered by introducing a dimension Time. Surprisingly,
data warehouses are not well prepared for changes of the structure of di-
mensions in spite of their requirement for serving as long term memory.

Consider for example a data warehouse that stores information about
diseases for all European countries along the dimensions Time, Geography,
Diagnosis and Facts. In this real-world example at least two dimensions
changed over time: Geography (for instance, the re-unification of Germany
in 1990) and Diagnoses (for instance, the code for “malignant neoplasm of
stomach” has changed from 151 in ICD-9 to C16 in ICD-10).

The question is now: how can we get correct results for queries like “did
liver cancer increase over the last 5 years” or “show number of patients with
diagnoses X in Germany over the last 25 years”. Without knowing the above
changes we will end up with incorrect results.

In this paper, we will discuss two different approaches how to deal with
modifications in the dimensional structure: Representing temporal data in a
temporal data warehouse and representing temporal data in a non-temporal
OLAP system.

2 Temporal Data in a Temporal Warehouse

Our concept called COMET proposed in [1] and [2] extends the well known
data warehouse approach with aspects of temporal databases and schema
versioning. The changes we have to cope with are not only schema changes,
but also changes in the dimension data (also called master data). The
dimension Time ensures to keep track of the history of transaction data,
i.e., measures. Nevertheless, for correct query results after modifications of
dimension data we have to track modifications of these data [1].

Therefore, we extended the well known data warehouse approach with
the following aspects [1]:

• Temporal extension: dimension data has to be time stamped in
order to represent their valid time. The valid time represents the time
when a “fact is true in the modeled reality” [6].

• Structure versions: by providing time stamps for dimension data
the need arises that our system is able to cope with different versions
of structure.

• Transformation functions: Our system has to support functions to
transform data from one structure or schema version into another.

2



All dimension members and all hierarchical links between these dimen-
sion members have to be time stamped with a time interval [Ts, Te] repre-
senting the valid time where Ts is the beginning of the valid time, Te is the
end of the valid time and Te ≥ Ts. Furthermore, we timestamp all schema
definitions, i.e. dimensions, categories and their hierarchical relations, in
order to keep track of all modifications of the data warehouse schema [2].

If we represent all time stamps of all modifications within our data ware-
house on a linear time axis the interval between two succeeding time stamps
on this axis represents a structure version. This means that a structure
version is a view on a temporal data warehouse valid for a given time period
[Ts, Te]. Therefore, within a structure version the structure of dimension
data on both the schema level and on the instance level is stable.

The data returned by a query may originate in several (different) struc-
ture versions. If the data was affected by structural changes, it is necessary
to provide transformation functions mapping data from one structure ver-
sion to a different structure version.

Using transformation functions enables us to assure that a successful
analysis can be made even though there might be changes in the dimension
data and dimension structure. The combination of structure versions and
transformation functions enables the user to analyze data with dimension
data and dimension structures “backward” or “forward” in the time axis.

3 Temporal Data in a Non-Temporal OLAP Sys-
tem

The approach discussed in section 2 stores temporal data in a temporal data
warehouse model. However, frequently the need arises that temporal data
should be represented in a non-temporal data warehouse, i.e. a non-temporal
OLAP system.

In this section we will discuss how to deal with temporal data in a non-
temporal OLAP system, like Oracle Express or Cognos PowerPlay. In par-
ticular, we will discuss how to store temporal data in Hyperion Essbase
Version 6.0, a popular and widely-used multidimensional database manage-
ment system. However, we will not focus on the specific nuts and bolts of
Hyperion Essbase.

3.1 Modifications of Master Data

We identified (beside the basic operations INSERT and DELETE) the following
types of modifications:

• Move: The hierarchical position, i.e. the parent of a dimension mem-
ber changes. For example “transient cerebral ischaemic attacks” (G45)

3



Figure 1: Incorporating a Subordinate Level

has moved from “Diseases of the circulatory system” (390 − 459) to
“Diseases of the nervous system” (G00 − G99).

• Change: The key of a dimension member changes. For instance the
code for “malignant neoplasm of stomach” has changed from 151 in
ICD-9 to C16 in ICD-10.

• Split: A dimension member splits up into several other dimension
members. For instance, the ICD-9 code for “Chemotherapy” V 58.1
split up into Z51.1 “Chemotherapy session for neoplasm” and Z51.2
“Other Chemotherapy”. Another example is the code 175 that split
up into ten different ICD-10 codes, namely C50.0 to C50.9.

• Merge: Several dimension members merge into one dimension mem-
ber. The ICD-9 codes 2350 and 2351 for instance, merged into the
ICD-10 code D37.0.

3.2 Prefix/Suffix Notation

The main idea of this approach is to extend the keys of dimension members
with a prefix or suffix representing the valid time of the dimension member.
Usually, the keys used in Hyperion Essbase for dimension members are their
names. For sake of readability, only dimension members that were subject
of modifications get time stamped.

According to [6] data models for temporal database management systems
“may represent a time line by a sequence of non-decomposable, consecutive
time intervals of identical duration.” These intervals are named chronons.
A dimension Time is usually a part of multidimensional database applica-
tions. As this dimension defines the finest level on which modifications of
transaction data are being stored, the chronon for the time stamp should be
equal to the chronon of the dimension Time.

4



Figure 2: Modifications of Type Move in Hyperion Essbase

The chronon and format of the time stamps should be uniform within
the whole cube, i.e., within the database. The format of the time stamp
should comprise both, the start and the end of the valid time.

To enable easy multi-period comparisons even after modifications of di-
mension members, we propose an approach where modifications of dimension
members are stored in a subordinate hierarchical level. In other words, we
insert a new, artificial hierarchical level above the level of the dimension
member which was subject of changes.

Figure 1 shows an example of such a subordinate level. In this example,
we introduced a new hierarchy level by inserting a new dimension member
named “Chemotherapy *”. We added this asterisk to inform the user that
this hierarchy is an artificial hierarchy. The children of this member are
both, the old and the new version of the corresponding dimension member.

The main advantage of this approach is that it allows multi-period com-
parisons on the level of the artificial hierarchy for all mentioned types of
modifications.

For a modification of the type MOVE, no artificial hierarchy level is
necessary. Figure 2 shows how to represent the mentioned example (G45 has
moved from 390− 459 in ICD-9 to G00−G99 in ICD-10). In order to avoid
to double the values on the top level, correct consolidation functions have
to be given. Hence, we have to exclude the ICD-9 path from consolidation.
In Hyperion Essbase, this can be done by using the consolidation function
~ (tilde), were ~ means “exclude member from consolidation”. In order to
allow comparisons on the upper levels, the corresponding member has to
inserted as a shared member. A shared member is a member with multiple

5



parents. In this example, the member G45 is a child of both 390 − 459 and
G00 − G99.

4 Conclusions

In this paper we discussed how to represent the changes that occurred due
to the shift from version 9 to version 10 of the ICD-code in data warehouses.
We focused on how represent this temporal behavior of master data in non-
temporal data warehouses, i.e., in non-temporal OLAP systems.

We presented an approach that allows to represent the different types
of modifications to master data, e.g. Move, Split and Merge. The men-
tioned approach allows multi-period comparisons, even after such types of
modifications.

References

[1] J. Eder and C. Koncilia. Changes of Dimension Data in Temporal Data
Warehouses. In Proc. of the DaWak 2001 Conference, Munich, Germany,
2001.

[2] J. Eder, C. Koncilia, and T. Morzy. The COMET Metamodel for Tempo-
ral Data Warehouses. In Proc. of the 14th Int. Conference on Advanced
Information Systems Engineering (CAISE’02), Toronto, Canada, 2002.

[3] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases:
Research and Practise. Number LNCS 1399. Springer-Verlag, 1998.

[4] E. Ewen, C. Medsker, L. Dusterhoft, K. Levan-Shultz, J. Smith, and
M. Gottschall. Data Warehousing in an Integrated Health System:
Building the Business Case. In Proc. of the 3rd Int. Workshop on Data
Warehousing and OLAP, 1998.

[5] B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual Data Ware-
house Design. In Proc. of the International Workshop on Design and
Management of Data Warehouses (DMDW 2000), Stockholm, 2000.

[6] C. S. Jensen and C. E. Dyreson, editors. A consensus Glossary of Tem-
poral Database Concepts - Feb. 1998 Version, pages 367–405. Springer-
Verlag, 1998. in [EJS98].

[7] M. Wu and A. Buchmann. Research Issues in Data Warehousing.
BTW’97, 1997.

6




