
Temporal Data Warehousing: Business Cases and Solutions

Johann Eder
University of Klagenfurt

Email: eder@uni-klu.ac.at

Christian Koncilia
University of Klagenfurt

Email: koncilia@isys.uni-klu.ac.at

Herbert Kogler
University of Klagenfurt

Email: hkogler@edu.uni-klu.ac.at

Keywords: Data Warehousing, Temporal Databases, Executive Information Systems, OLAP

Abstract: Changes in transaction data are recorded in data warehouses and sophisticated tools allow to analyze these
data along time and other dimensions. But changes in master data and in structures, surprisingly, cannot
be represented in current data warehouse systems impeding their use in dynamic areas and/or leading to
erroneous query results. We propose a temporal data warehouse architecture to represent structural changes
and permit correct analysis of data over periods with changing master data. We show how typical business
cases involving change in master data can be solved using this approach and we discuss architectural variants
for the implementation.

1 Introduction

Data Warehouses are structured collections of data
supporting controlling, decision making and revision
(Wu and Buchmann, 1997; Ḧusemann et al., 2000).
Data Warehouses build the basis for analyzing data
by means of OLAP tools which provide sophisticated
features for aggregating, analyzing, and comparing
data and for discovering irregularities. Data Ware-
houses differ from traditional databases in the follow-
ing aspects: They are designed tuned for answering
complex queries rather than for high throughput of a
mix of updating transactions, and they typically have
a longer memory, i.e. they do not only contain the
actual values (snapshot data) but also historical data
needed for the purposes outlined above. Historical
data can be stored either as directly as in historical
databases or - more frequently - as already aggregated
and abstracted data.

The most popular architecture for data warehouses
are multidimensional data cubes, where transaction
data (called cells, fact data or measures) are described
in terms of master data hierarchically organized in di-
mensions.

Surprisingly, data warehouses are not well prepared
for changes in spite of their requirement for serving
as long term memory. Of course they are very well
designed for dealing with changes in transaction data,
which are represented in the cells of multidimensional

data cubes. However, they cannot adequately repre-
sent changes in master data which spans the dimen-
sion structures of such cubes, with changes in units,
changes in formulas computing derived transaction
data, or schema changes.

The reason for this disturbing property of current
data warehouse technology is the implicitly under-
lying assumptions that the dimensions are orthog-
onal. Orthogonality with respect to the dimension
time means the other dimensions ought to be time-
invariant. This silent assumptions inhibits the proper
treatment of changes in dimension data.

The consequences of this deficiency are the re-
stricted applicability of data warehouse technology
in dynamic domains with frequent changes of struc-
tural data. The storing of data over several periods,
foundational for data warehouses is of rather limited
use, if these data cannot be compared and aggregated
over these periods to allow for trend computations and
multi-period comparisons. On the other hand we of-
ten found incorrect data as results of OLAP analysis,
sometimes the users where aware of the errors stem-
ming from structural changes, more often not.

The goals of our research described in this paper
are to make data warehouses more useful in dynamic
application areas, and to improve the correctness of
OLAP-results. For this purpose we need provisions to
correctly answer queries for data in a particular point
in time (snapshot data), and for retrieving data stem-

1

katja
Proceedings of the 4th International Conference on Enterprise Information Systems, ICEIS Press, Vol. 1, ISBN 972-98050-6-7, pp 81-88

ming from different periods in a way that they can be
compared or commonly processed further on. As a di-
rect consequence, it is not sufficient to just maintain
schema and structure of a data warehouse to represent
the ”new” view, since this would result in the loss of
the ability to answer queries regarding previous pe-
riods correctly, restring the value of data warehouses
for revision purposes. On the other hand, just keeping
the correct master data and units for the transaction
data is not sufficient either, since aggregation over
data from different periods would give wrong results.

In particular, we propose a temporal data ware-
house architecture which extends multidimensional
data warehouses to achieve the following features:

• representation of changes in master data, units and
schema of data warehouses

• identification of structure versions (SV) as change-
less periods

• provision of mappings of transaction data between
schema versions.

• supporting queries which touch data spanning sev-
eral structural versions

In the next chapter we provide a series of busi-
ness cases showing typical examples of changes, a
data warehouse has to cope with. In section 3 we
introduce the temporal extensions we propose and in
discuss, how the cases presented in section 2 can be
solved with our approach. In section 4 we show how
queries are processed in the proposed temporal data
warehouse, and in section 5 we discuss some architec-
tural variants for the implementation of our temporal
data warehouse.

2 Business Cases

The data stored in a data warehouse changes over
time. Reasons for modifications are for exam-
ple changing user needs, modifications in the data
sources, changing legal and regulativ conditions.

(Sarda, 2001) defines the following general busi-
ness metadata categories: functions and missions,
organization elements, goals, business entities, pro-
cesses, external events, measures, evaluation, actions
and business concepts. He shows the relation between
the defined business metadata and the data warehouse
and its metadata. Furthermore, he emphasizes that
these metadata are dynamic and do change over time.

In this section we will discuss some business cases,
i.e. some of the changes in business metadata that can
be reflected in the data warehouse with our tempo-
ral data warehouse approach. We distinguish between
changes on the schema level and changes on the in-
stance level. Furthermore, data on the instance level
can be categorized in transaction data and master data.

The schema of a data warehouse is described by
Dimensions, e.g. Time or Region, andDimension-
Levels, e.g. Year, Quarter and Month. Furthermore,
the schema defines the hierarchial relations between
Dimension-Levels, e.g. Year← Quarter← Month,
where ,,←” means ,,rolls-up to” . Instances are the
extensions of these Dimension-Levels and there hi-
erarchical relations, e.g.1999, 1.Quarter andJan
where1999 ← 1.Quarter ← Jan. We call those in-
stances Dimension-Members. Furthermore, measures
are also instances of a data warehouse representing
the values that the user wants to analyze.

For the rest of this paper, we will use the follow-
ing running example from the health care sector: con-
sider a data warehouse to store information about dis-
eases with the dimensionsTime, Geography, Diag-
nosis and Facts. Dimension-Levels are defined as
follows: Time : Y ear ← Month; Geography :
Country ← Province ← District ← City and
Diagnosis : Group ← Diagnose. Dimension facts
has two extensionsCosts representing the average
costs per disease andQuantity representing the num-
ber of patients per disease. The history of dimension
Geography is visualized in Fig. 2.

2.1 Instance Modifications

2.1.1 Transaction Data
Modifications

In data warehouses transaction data are called mea-
sures. Measures represent the values, e.g. sales or
turnover that the user can analyze. In most cases the
user wants to keep track of modifications of these
transaction data. Therefore, a very common dimen-
sion in data warehouses is the dimensionTime. In-
troducing this dimension enables the user to analyze
for example how the turnover developed over time.
The dimensionTime enables us to keep track of
changing measures.

Data warehouses are very well designed for dealing
with changes in transaction data.

2.1.2 Master Data Modifications

Nevertheless, the dimensionTime does not help us
to keep track of modifications of master data. Master
data are describing the extensions of dimension lev-
els. For example the valuesSpain andGermany are
master data of the dimension levelCountry.

We will now discuss some typical examples of
master data modifications:

• Keys: It happens quite often that the key that iden-
tifies an instance in the data source changes over
time. In our running example, the countryZaire
was renamed in 1997 and is now known asKongo.

2

Another example: diagnoses for patients are rep-
resented using the ,,International Statistical Clas-
sification of Diseases and Related Health Prob-
lems” (ICD) code. However, codes for diagnoses
changed from ICD Version 9 to ICD Version 10.
Even worse, the same code described different di-
agnoses in ICD-9 and ICD-10. Other ICD-10 codes
are a specialization of ICD-9 codes, i.e. the gran-
ularity of codes changed. Let us say that in ICD-9
we have a codeX for the diagnoseD and in ICD-
10 we have two codesX1 for diagnoseD1 andX2

for diagnoseD2 whereD1 andD2 are specializa-
tions ofD.
In this example we would not be able to correctly
answer a query like ,,Show number of diagnoses
for codeX for all years” with a non-temporal data
warehouse because this code changed from ICD-9
to ICD-10.

• Regrouping: Hierarchies represent how the data
stored in the data warehouse can be aggregated and
disaggregated. Consider that in our running ex-
ample thatAustria became a part of the region
European − Union and is no longer a part of the
regionNon−EU−Country starting with January
1995. Queries like ,,Show diseases of Non-EU-
Countries for the last ten years” would no longer
return a correct result in a non-temporal data ware-
house.

• Regrouping to a different Level: Another impor-
tant issue that has to be covered by temporal data
warehouses is that it has to be able to treat regroup-
ings of instances to a different dimension level in
a correct way. In our running example this hap-
pened to the Czech Republic that was aProvince
of Czechoslovakia until 1993 and is now an inde-
pendentCountry.
The major problem when regrouping dimension
members between different dimension-levels is,
that facts can be computed according to the level
of the dimension member.

• Fact-Formulas: Facts, e.g. Sales or Turnover, rep-
resent what can be analyzed with the data ware-
house. We can distinguish between computed
facts, e.g. the Cash Flow that can be computed as
NetIncome + Depreciation + Amortization +
Depletion, and non-computed facts, e.g. the
Turnover. However, these formulas can change
over time. For example the way how to compute
the unemployment rate changed in Austria because
they joined the European Union in 1995 (in fact,
the unemployment rate in Austria dropped dramat-
ically simply because the way how to compute it
was adopted to the standard used in the European
Union). Correct analyzes would take in account
that the underlying formula changed.

• Units: Units of facts could change over time. In
our running example the unit for the factCosts

changes from Spain Pesetas (ESP) or Deutschmark
(DM) to EURO starting with 2002. We could eas-
ily compute values from one currency into another
by multiplying it with the correct value.
On the other hand, there are also changes of units
where only an approximatively computation can be
done. Consider for our running example, that the
granularity of the dimensionTime changes from
Month to Day starting with January 1999. If
the data source does not support data on a daily
basis for all timepoints before January 1999, we
could only re-compute the old values by dividing
all monthly values through the corresponding num-
ber of days per month.

• Split / Merge: In our running example another
kind modification had an impact on the struc-
ture of the dimension countries, namely mergers
(the re-unification ofGermany) and splits (the
,,split” of Y ugoslavia). Non-temporal data ware-
houses would return senseless results for queries
like ,,Show diseases of Yugoslavia for the last 50
years”.

• Delete / Insert: The most frequent kind of
modifications on the instance level is to delete or
insert a new dimension member, e.g. if the product
port-folio of a company changes over time. Never-
theless, these kind of modifications are still a prob-
lem to most data warehouse architectures when an-
alyzing the stored data. Simply due to the fact that
if we insert a new tuple in the warehouse at a time-
pointT and the user states a query that implies data
from timepoints beforeT the result for the inserted
tuple would beNULL. However, the user should
be aware of the fact thatNULL means in this case
not − applicable (because the tuple did not exist)
and that it does not meanno−data− imported−
yet. The same applies of course when deleting a
tuple and stating a query for timepoints afterT .

• Attributes : Attributes of instances are commonly
used to store further information about instances
that we don’t want to put into an unique dimension.
In our running example we could want to store the
population of states (and of course the population
is changing from year to year).
Another example: for a dimension Products we
could store information about the color of the prod-
ucts or an insurance company could store informa-
tion about the policy period for a dimension Poli-
cies. Attributes are quite valuable information for
the user of a data warehouse. Imagine for example
that the result of query about the sales of a product
shows that the sales declined.
Further investigations of the attributes of this prod-
ucts could show that this started at the same point
of time as the color of the product changed.

• Time: We treat the dimension Time in a data ware-
house as any other dimension. This enables us

3

1988 1989 1990 *

GDR

FRG

1988 * 1989 * 1990

Germany

* Sum of GDR and FRG * GDR extrapolated

b)a)

Figure 1: Result of a query with a)SV2, SV3 or SV4 and b)SV1 as base structure version (see also Fig. 2)

to keep track of modifications of dimension Time.
What happens quite frequently to the dimension
Time is that its granularity changes over time. This
happens if for example the underlying data source
is no longer able to deliver data with the needed
granularity, or vice-versa if the granularity of the
underlying data source becomes finer and therefore
enables us to store the data in the data warehouse
on a finer level.

2.2 Schema Modifications

• Dimensions: The schema of a data warehouse
defines what kind of queries the user can ask. Con-
sider that for our running example the user-need
arises to distinguish between male and female pa-
tients when analyzing diseases. This would lead
to a new DimensionGender. On the other hand,
it also happens that - due to changes in the data
sources - a whole dimension has to be discontin-
ued.

• Dimension-Levels: Consider for example that the
user wants to aggregate data from months into
quarters. Thus, we would need another dimension
levelQuarterbetween the defined dimension levels
YearandMonth.
Vice-versa it could also happen that the data source
for our running example does no longer support
data on a monthly basis, but only on a yearly basis.
We therefore would have to discontinue the dimen-
sion levelMonth.

3 Temporal Data Warehouse

As already mentioned in the Introduction the reason
for the problems contemplated in the previous section
is the implicitly underlying assumptions that the di-
mensions are orthogonal. Orthogonality with respect
to the dimensionTime means the other dimensions

ought to be time-invariant. This silent assumptions
inhibits the proper treatment of changes in dimension
data.

The dimensionTime ensures to keep track of the
history of measures, i.e. transaction data. Never-
theless, in order to gain correct query results after
modifications of master data, i.e. dimension data, we
have to track modifications of these data (Chamoni
and Stock, 1998; Eder and Koncilia, 2001). Hence,
all dimension members and all hierarchical links be-
tween these dimension members have to be time
stamped with a time interval[Ts, Te] representing the
valid time whereTs is the beginning of the valid time,
Te is the end of the valid time andTe ≥ Ts. Further-
more, we time stamp all schema definitions, i.e. di-
mensions, dimension-levels and their hierarchical re-
lations, in order to keep track of all modifications of
the data warehouse schema (Eder et al., 2001).

If we represent all time stamps of all modifications
within our data warehouse on a linear time axis the
time-lag between two contiguous time points on this
axis represents a structure version. This means that a
structure version is a view on a temporal data ware-
house valid for a given time period[Ts, Te]. There-
fore, within one structure version the structure of di-
mension data on both the schema level and on the
instance level is stable. Information about structure
versions can be gained from our temporal data ware-
house using temporal projection and temporal selec-
tion (Jensen and Dyreson, 1998).

For our running example, the structural changes
and the resulting structure versions (SV) for the di-
mensionGeography are depicted in Fig. 2. For ex-
ample, the reunification of Germany in 1990 leads to
a new structure versionSV2.

The data returned by the query can, however, orig-
inate in several (different) structure versions. There-
fore, it is necessary to provide transformation func-
tions mapping data from one structure version to a
different structure version.

4

Transformation function
 Legend

Geography

Slovakia

Geography Geography

SV1 [1980, 1989]

Czechoslovakia

FRG

GDR

Zaire

Czech

SV2 [1990, 1992] SV3 [1993, 1996]

Slovakia

Czechoslovakia

Germany

Zaire

Czech Slovakia

Czech

Germany

Zaire

SV4 [1997, ∞]

Geography

Slovakia

Czech

Germany

Kongo

Figure 2: Structure Versions and Transformation Functions for dimensionGeography of our running example

Using transformation functions enables us to assure
that a successful analysis can be made even though
there might be changes in the dimension data and di-
mension structure. The combination of structure ver-
sions and transformation functions enables the user
to analyze data with dimension data and dimension
structures ,,backward” or ,,forward” in the time axis.

Fig. 2 shows some transformation functions,
e.g. between the dimension membersGermany and
FRG. In this example, the defined transformation
function enables us to answer queries like ,,Show
number of diseases with codeX for Germany for the
last 20 Years”.

As proposed in (Sarda, 2001) the user of a data
warehouse ,,must be proactively made aware of
changes in business metadata”. In our opinion, the
best way to inform the user about changes in business
metadata is to enrich all query results stated against
the data warehouse with meaningful user informa-
tion. In other words, we have to inform the user about
modifications that had an impact on the stated query.
As shown in Fig. 1 this can be done with footnotes.

Our approach enables us to inform the user of a
data warehouse about modifications of the business
metadata that had an impact on the stated queries,
i.e. we are able to generate footnotes and a descrip-
tion of the modifications automatically and/or semi-
automatically. This can be done automatically by in-
dicating the defined transformation functions. Fur-
thermore, it can be done semi-automatically by ap-
plying a descriptive text to transformation functions
as shown in Fig. 2.

We will show some examples of transformation
functions in the following section.

3.1 Solutions to Business Cases

As proposed in section 2 we distinguish between
modifications on the instance level and modifications
on the schema level.

3.1.1 Instance Modifications

In contrast to modifications on the schema level
modifications on the instance level do occur quite of-
ten. Our temporal data warehouse approach enables
us to deal with the following modifications on the in-
stance level:

• Keys: As shown in Fig. 2 we are able to deal
with modifications of keys (Zaire was renamed to
Kongo) by introducing a transformation function
between structure versionsSV3 andSV4 with the
weighting factor1, i.e. 100 persent. This func-
tion enables us to transform ,,old” data stored in
structure versionSV3 (Zaire) into the new structure
defined in structure versionSV4 (Kongo). On the
other hand, we can also enable the user to analyze
the stored values with an old structure. Therefore,
we have to introduce another transformation func-
tions to map ,,new” data stored in structure version
SV4 into the ,,old” structure ofSV3. The weighting
factor for this transformation function would also
be1.
We implicitly introduce a transformation function
for each dimension member which does not change
from one structure version into another with a
weighting factor1. This enables us to transform
for example the data stored forKongo into each
previous structure version, e.g.SV3, SV2 or SV1.

• Regrouping: We do not only timestamp dimen-
sion members but also the defined hierarchical re-
lations between dimension members. This enables
us to keep track of each regrouping of a dimension
member. As the dimension member itself did not
change, we implicitly introduce a transformation
function with the weighting factor1.
Furthermore, the cell values of upper-level dimen-
sion members are always computed from their sub-
ordinate lower level dimension members. Before
we transform the data we select the dimension
members at level-0 and transform only this subset
of cell values and compute the upper-levels of the

5

resulting values bottom-up as usual.
• Fact-Formulas: We do treat the dimension Facts

as any other dimension. This enables to store the
history of formulas. Furthermore, we are able to
introduce transformation functions between Facts.
This enables us to transform data for a given fact
and then compute the ,,new” values with ,,old” for-
mulas and vice-versa, ,,old” values with ,,new” for-
mulas.

• Units: As our approach allows us to introduce
transformation functions for facts we can easily
define transformation functions to map for example
one currency into another. For example we could
introduce a transformation with a weighting factor
0.00601012 that allows us to transform Spain Pe-
setas into Euro, and vice-versa we can introduce
a transformation function with a weighting factor
166.38609 to transform Euro into Spain Pesetas.
This enables to exactly transform one value into an-
other.
On the other hand, we could also want to introduce
transformation functions to transform data at least
approximatively, e.g. when computing monthly
values into daily values. This can be done by in-
troducing a transformation function between each
day of the month and the month. The weight-
ing factor of this transformation function would be
1/#DAY S, where#DAY S represents the num-
ber of days in the corresponding month. For exam-
ple, we can compute the value for January the 1st
by introducing a transformation function with the
weighting factor1/31.
We can easily and exactly transform daily values
into monthly values by introducing a transforma-
tion function between the month and each day of
the month with a weighting factor1. This re-
sults into a formulaJanuary = Day1 + Day2 +
... + Day31 to compute all days of January into a
monthly value for January.

• Split / Merge: The case of a split or merge of a
dimension member is similarly to the case men-
tioned above when transform monthly values into
daily values and vice-versa.
We can easily and exactly transform the data stored
for GDR andFRG as defined in structure version
SV1 (see Fig. 2) into the succeeding structure ver-
sionsSV2, SV3 andSV4. This can be done by in-
troducing a transformation between structure ver-
sionsSV1 andSV2 for GDR andGermany with
a weighting factor1 and forFRG andGermany
with a weighting factor1.
On the other hand, we can at least approximatively
transform the values stored for example in structure
versionSV2 for Germany into values forFRG
as defined in structure versionSV1. This can be
done by introducing a transformation function with
a weighting factor that corresponds for example to

the ratio of the population ofGermany andFRG,
or Germany andGDR respectively.

• Delete / Insert: If for example a new disease
becomes part of the ICD catalog, we can not
transform any ,,old” data into the resulting ,,new”
structure - simply because there exists no data
for the corresponding disease before the inser-
tion. However, we can inform the user about this
modification of the ICD catalog and inform him
about the meaning ofNULL values.
In contrast to an insert operation there is a relation
between a deleted dimension member and the fol-
lowing structure version. For example, if the user
request data for a disease that is no longer a part of
the ICD catalog we can introduce a transformation
function with the weighting factor0 to represent
this modification.

• Attributes : As we do timestamp dimension mem-
bers and hierarchical relations between dimension
members we keep track of the history of attributes
belonging to dimension members. This enables us
to show exactly those attributes that are valid for
the selected time period.

• Time: (see solutions for ,,Units”)

3.1.2 Schema Modifications

Our generic temporal data warehouse metamodel
introduced in (Eder et al., 2001) keeps track of
modifications on both the instance level and the
schema level. After deleting a dimension the data
stored in the data warehouse can be recomputed from
one structure version into another by aggregation.
The same applies when deleting a dimension level.

However, there is no appropriate way to automat-
ically recompute values from one structure version
into another after inserting a new dimension or dimen-
sion level. We are currently working on a way to sup-
port semi-automatically recomputation of values after
inserting new dimensions or dimension levels, called
Transformation Methods.

4 Querying a Temporal Data
Warehouse

When a user issues a query within our temporal data
warehouse, he/she has to define a timepointT . This
timepoint specifies a certain base structure version
whereTs ≤ T ≤ Te and [Ts, Te] defines the valid
time interval of the base structure version.

This base structure version determines which struc-
ture has to be used for the analysis. In most cases
this will be the current structure version. However,
in some cases it will be of interest to use an “older”
structure version.

Consider that for our running example depicted
in Fig. 2 only the dimension data of dimension

6

Geography did change over time. Hence, the re-
sulting set of structure versions would be (the symbol
∞ represent that this structure version is valid until
now):

Structure Version Ts Te

SV1 1980 1989
SV2 1990 1992
SV3 1993 1996
SV4 1997 ∞

We assume that the user requests data for 1988,
1989 and 1990 and chooses the structure versionSV3

as base structure version. For answering this query
the system needs to map the data which are valid in
the structure versionSV1 into the structure defined
through structure versionSV3. Figure 2.a shows the
result of this query.

5 Temporal Data Warehouse-System
Architecture

In (Eder et al., 2001) two different approaches for
possible architectures of a temporal data warehouse-
system are discussed - the ,,indirect approach” and
the ,,direct approach” (see Fig. 3). Common com-
ponents of both approaches are theAdmin Tool , the
Temporal Data Warehouseand theTransformer .
The Admin Tool is implemented in Java and allows
the administrator to import new data in the temporal
data warehouse and to perform modifications in the
dimension data and dimension structures. All data is
stored in the temporal data warehouse that was built
with Oracle 8.1i as relational database management
system. The Transformer for the indirect approach is
implemented in C++.

5.1 Data Transformation
Approaches

5.1.1 Indirect Approach

The main idea of the indirect approach is, as shown
in Fig. 3a), that the Transformer generates one data
mart for each structure version needed by the user. In
most cases, this will only be the actual structure ver-
sion. Each data mart consists of all fact data that are
valid for the same time interval as the corresponding
structure version plus it consists of all fact data that
could be transformed by the defined transformation
functions from all other structure versions.

Each data mart is stored as a Hyperion Essbase
Cube. As we use this standard OLAP database for
each data mart, the main advantage of the indirect ap-
proach is that each data mart offers the whole OLAP
functionality, e.g., drill-down, roll-up, slice, dice, etc.
and no implementation of a front-end is needed.

5.1.2 Direct Approach

The architecture of the direct approach consists of
two additional parts as shown in Fig. 3 b). The Query
Analyzer takes a query stated by the user as input and
analyzes which data out of which structure version is
necessary to answer the query. The result of this anal-
ysis is passed to the Transformer and to the Result
Analyzer.

The Transformer works as described above. In con-
trast to the indirect approach, the Transformer is trig-
gered by the user or, in other words, for each stated
query the Transformer transforms all required cell
values to answer the query.

The Result Analyzer takes its input from the Query
Analyzer and from the Transformer. It enriches the
result of the Transformer with further user infor-
mation, i. e. , with information about what structural
modifications had an impact on the stated query. The
Result Analyzer is a subject of ongoing research.

The main advantage of the direct approach is its
flexibility.

5.2 Query Transformation Approach

We are currently working on an additional approach.
We call this approach ,,Query Transformation Ap-
proach”. The Query Analyzer of this approach works
like a mediator (Widom, 1995). It splits up a query
in n sub-queries wheren is the number of structure
versions needed to answer the stated query.

In contrast to a mediator which sends the sub-
queries through wrappers to different data sources,
our approach sends the sub-queries to different struc-
ture versions.

The result of the sub-queries and the information of
the defined transformation functions is needed from
the Transformer to transform and merge the results of
the sub-queries.

6 Conclusions

,,Nothing is sure but change” goes a saying. Un-
fortunately, many of our information systems are ill
prepared for change and, surprisingly, multidimen-
sional data warehouse systems are among those. We
presented a series of typical business cases involv-
ing change in structural data or master data we found
which cannot be solved with current data warehouse
technology, in spite of the common perception that
exactly this technology is useful for dealing with data
over longer periods of observation.

Our extensions: time-stamping of master data and
transformation functions, allow to correctly represent
changes in structural data and allows to correctly an-
alyze data in spite of changes.

7

�������

����	�
���
����������

�������
��������

��	� �!#"$	%!�	

&�!'��(� �!'(����)"$	%!�	

&�!'��(� �!'(���	��

*+	�,�,-�
-.���"$	%!�	

/�0 	�� � ��12��� �3�

& 054 & 076 & 098 & 09:

�;�<� .�.����<�

�;�<	�
-��
����������

	�1

�����=,����<	��-"$	%!�	?>7	�����@���(A���

"$*

4

"�*

6

"$*

8

"$*

B (�����C=�)
-	�� C�D��%�

�����%�

�;�<	�
-��
����������

�?�����
=�������

��	� �!#"�	%!�	

&�!'��(� �!E(-���F"$	%!�	

&�!'��(� �!E(-��	��

*G	�,�,��
-.���"$	%!�	

/�0 	�� � ��1#�H� ���

& 0I4 & 096 & 078 & 09:

���%�=,-����	��-"�	%!�	?>9	����%@-��(����

J)����(�� !#�K
�	�� C�D����

L 1

Figure 3: Architectures of a) the Indirect Approach and b) the Direct Approach (Eder et al., 2001)

We showed how typical business cases can ade-
quately be solved by our technique and also discuss
architectural variants for such data warehouse sys-
tems. It is our ambition to contribute to a broader
applicability of data warehouse technology and to a
reduction of unintentionally wrong statistics due to
incorrect query results.

REFERENCES

Chamoni, P. and Stock, S. (1998). Modellierung
temporaler multidimensionaler Daten in An-
alytischen Informationssystemen. In Kruse,
Rudolf, Saake, and Gunter, editors,Arbeits-
bericht 14, pages 93–106. Otto-von-Guericke-
Universiẗat Magdeburg, Magdeburg.

Eder, J. and Koncilia, C. (2001). Changes of Di-
mension Data in Temporal Data Warehouses. In
Proc. of the DaWak 2001 Conference, Munich,
Germany.

Eder, J., Koncilia, C., and Morzy, T. (2001). A Model
for a Temporal Data Warehouse. InProc. of the
Int. OESSEO 2001 Conference, Rome, Italy.

Etzion, O., Jajodia, S., and Sripada, S., editors (1998).
Temporal Databases: Research and Practise.
Number LNCS 1399. Springer-Verlag.

Hüsemann, B., Lechtenbörger, J., and Vossen, G.
(2000). Conceptual Data Warehouse Design. In

Proc. of the International Workshop on Design
and Management of Data Warehouses (DMDW
2000), Stockholm.

Jensen, C. S. and Dyreson, C. E., editors (1998).
A consensus Glossary of Temporal Database
Concepts - Feb. 1998 Version, pages 367–405.
Springer-Verlag. in [EJS98].

Sarda, N. (2001). Structuring Business Metadata in
Data Warehouse Systems for Effective Business
Support. Incs.DB/0110052. arXiv Archieve.
URL: http://arXiv.org/.

Widom, J. (1995). Research Problems in Data Ware-
housing.ACM.

Wu, M. and Buchmann, A. (1997). Research Issues
in Data Warehousing.BTW’97.

8

