Self-descriptive Software Components

Roland T. Mittermeir & Heinz Pozewaunig
Institut fiir Informatik-Systeme
Universitat Klagenfurt, Austria

email:{mittermeir, hepo}@isys.uni-klu.ac.at

Abstract

Many technical problems involved with Com-
ponent Based Software Development might
be considered solved these days. Less so are
mental reservations both, developers as well
as their managers have with respect to the
risks involved with building software from
powerful building blocks.

This paper addresses the issue of trust de-
velopers might extend towards components.
Besides psychological aspects this issue has
a technical aspect. We will focus on the
latter. After a brief review of mechanisms
to describe software components and the
relationships between descriptions and cer-
tifications, the paper zooms in on “self-
descriptive” methods, i.e. methods directly
involved with the executional properties of
software.

The approach presented in detail is tuned to-
wards fine-grained distinctions. It lends itself
particularly to questions of version discrimi-
nation and software maintenance.

1 Motivation

My great-grandfathers horse-cart found its way home,
even when the old man was too tired to direct the
horses. My car will kill me, if I fall asleep on the high-
way. - Can we build software that resembles rather my
great-grandfathers horses than my car?

We increasingly rely on complex technology in spite
of the apparent deficiencies highlighted in the above
sentence. Is there a chance to bring some of the relia-
bility of these old systems back to modern technology,
specifically to software, a technical artifact that is oc-
casionally claimed to be “artificially intelligent”?

When aiming at such goals, we have first to ana-
lyze some of the differences between the system con-
sisting of horse, cart, and driver as opposed to the
system consisting of car and driver. Since we want
to abstract from the driver and since the material the
wagon or the car respectively are made of does not
really contribute to this difference, the distinction has
to be found in the horse. The car is a system without

a self!. The combination horse and cart, however, has
in the horse-part of this system at least some limited
capability of recognizing its self as well as - in this
example - the location of its self as opposed to the
location where it ought to be in the evening.

We better don’t stress this analogy to a point were
it breaks. However, we might at least agree that
from a reliability perspective, a component knowing
about its self has merits over a component that is just
there without such knowledge. Let us pause at the
proverb “To a person with a nail, any tool looks like
a hammer”. This proverb implicitly assumes that the
tool has no knowledge about its self. Hence, either a
wrench or a pair of pincers might be used as hammer,
even if they break during the operation. Lacking a
self, they lack any capability of protecting themselves
against misuse. Likewise they lack any capability of
protecting their application environment against them
being applied in an abusing manner.

In the rest of this paper we will focus on the issue to
which extent information inherent in a component (a
tool) can be externalized in such a way that it becomes
instrumental in the software development process. In
order to do so, we next focus on notions of external
descriptions versus self-description of software compo-
nents. Based on these reflections, we propose in sec-
tion 3 the technique SBS which exploits the behavior
of software components directly without taking the de-
tour of externally added descriptions. While section 3
still focusses on software Reuse, section 4 highlights
how SBS can be used to support other software engi-
neering tasks.

2 Self-descriptiveness of Software

How about the self of software? Software is an ar-
tifact. Hence, it cannot have the kind of self we
find with the horse or with other animals around
us. It has not even a physical substance. However,

'Some psychologists might claim that the notion of self,
specifically the self-awareness, is a unique property of hu-
mans. They characterize it as “the” major discovery dur-
ing childhood. We are not going to argue about that in de-
tail. But at least certain social behavior of animals makes
us to believe that animals are capable of distinguishing
between themselves and their peers in the cohort. Hence,
some limited concept of self seems to exist.

44t AL LAULILLAL UL pLilaiiilib lAabdaiydol Lot Lil, il o
sue of self descriptive data has already been investi-
gated [Roussopoulos, 1982]. In spite of the plethora
of work on documentation and software comprehen-
sion, we are not aware that similar approaches have
been followed in software engineering. Even the no-
tion of conceiving software as just another form of
highly structured data [Mittermeir and Oppitz, 1987;
Mittermeir, 2001] did not bring us to the point of pur-
suing this as a research issue on its own. But in soft-
ware reuse, the question as to whether the component
someone finds in a repository actually is the compo-
nent some external description claims it to be, is cen-
tral to the overall success of large scale planned reuse.

As pointed out by Tracz [Tracz, 1988] developers
will rely on reusable components only, if they can rest
assured that reusing is not harming their success in
the long run. Put in other words, they will use a
component only, if they can trust that it satisfies the
expectations put into this component, i.e. it behaves
as described.

This brings us back to the question of how to
describe reusable components. An extensive survey
about how to describe reusable software [Mili et al.,
1998] lead us to conclude that most of the approaches
discussed there are too weak to achieve both, high
recall and high precision. This is not to be blamed
on the methods analyzed there. As shown in [Mitter-
meir et al., 1998] it is due to the inherent problem of
describing software by abstractions, abstractions that
might be based on abstraction principles different with
the producer/librarian and re-user. We might inter-
pret the advice that successful reuse is better in-house
reuse or at least domain dependent reuse as an out-
grow of this problem. In in-house reuse, we can walk
to the colleague who produced the module and ask
her/him about this piece. Then, the trust we confer
to this colleague is transferred to his artifact, to the
component.

In our recent research, we split the problem. The is-
sue of adequately describing a component by a shallow
analysis of verbal documentation and using its com-
pressed form was pursued by Bouchachia [Bouchachia,
2001]. This of course falls short of the precision ob-
tained by describing components by means of func-
tional specifications [Mili et al., 1997]. However,
Bouchachia’s method can capture more dimensions
than just the functionality and it is established at far
lesser expense. The precision lacking with comparing
natural language texts is brought in at a later stage
by describing components by behavioral specifications
[Pozewaunig, 2001]. These behavioral descriptions are
basically suitable for fine grained search. Hence, some
prior screening has to sufficiently narrow the search
space. In software retrieval, this might be considering
a limiting factor to be compensated by coarser means
for narrowing down the search space. However, before
we lose focus in delving more deeply into the process
of software retrieval, we better come back to the ques-
tion of trust from another vantage point.

With any external description or specification of
software, the re-user has to trust that the compo-

sin(x) it takes only little effort to check whether it is a
trigonometrical function and whether it actually com-
putes the sine or whether, by mistake, somebody had
the wrong conceptual model and the function actually
computes the cosine instead. In case of more com-
plex components, such a check might be much more
involved and certain flaws in the component might
eventually go unnoticed. Hence, external descriptions
on higher levels of abstraction are not more than well-
meaning hints that the code most probably will live
up to what the specification promises.

Behavioral descriptions do not share this deficiency.
They consist of data tuples describing actual execu-
tional behavior of the component under consideration
(see section 3.1). Thus, in order to check whether the
description is faithful with respect to the component
it describes, we just have to run it on the input part of
the tuple and see whether the execution matches the
tuples’ output part. At least for functional compo-
nents, the issue of trust in the correspondence between
(external) description and the inherent description of
the codes own functionality can be solved as simple
as shown. For state-bearing components, which com-
pute their output on their input and internal states,
the issue is a little more involved, but still soluble
[Pozewaunig, 2001].

Why can behavioral specifications overcome the
problem of trust as posed above? They are just data-
points linking input and output space of a computa-
tion. Thus, their level of abstraction is even below
the level of abstraction of code. However, with these
data-points we are close to some notion of self inher-
ent in the code. Of course, it does not possess the self
we witnessed with the great-grandfathers horse. How-
ever, code encompasses all the computations that fall
in its domain.Since functionality can be described by
predicates, by data tables, or by code alike. Relational
specifications rest particularly on this representation
invariance. Thus, attaching executional traces or tu-
ples emanating from the formal testing process as de-
scriptive means to software does not add information,
it just serves to

oo wpbbliibid. A4 LML LdvL VL Gt i

e raise descriptive efficiency: The component does
not need to be executed, the result of the execu-
tion is readily given already.

e point to interesting spots: As we know from test-
ing theory, most input-output combinations can
be sufficiently covered by just a few characteristic
tuples, lying close to the border of sub-domains
the component is specified for. For the remain-
ing data points the components behavior will be
analogous. Hence, these points are inherently un-
interesting.

Among those arguments, apparently the second one
is crucial, since it leads the re-user to those points
where a component’s behavior is critical. It seems fair
that both, the producer and the re-user of a compo-
nent agree on which data points defined over domain
and range of a component are critical. If the pro-
ducer missed some of them (from the re-users) per-

B e e e S
ecuting it with the respective input vector. If the re-
user missed some of them, that’s too bad. However,
these points would also have been missed in develop-
ment from scratch.

Another important argument stems from the pro-
cess of gathering descriptions which is performed by
executing the component and analyzing the results.
Thus, producing trustworthy descriptions is not a task
of a human but of a specialized algorithm and it can
be repeated at nearly no cost over and over again.

When exploiting behavior, which manifests itself in
the form of test data, an accurate classification can
be obtained, which is not blurred by natural language
vagueness and/or the biases of humans describing the
self of a piece of software.

vt LLipyvatLLiLv oy A

3 Data Transformations as
Knowledge Base

To bring effective behavioral descriptions to life,
we extend the path which was already laid by the
technique of behavior sampling of Podgurski and
Pierce [Podgurski and Pierce, 1993). In their work,
they developed the idea to retrieve software by feed-
ing examples of behavior to a retrieval system. In
a first step, sample behavior in the form of input-
output tuples are specified by the searcher. Next, the
retrieval system executes its stored components and
present those showing exactly the functionality speci-
fied by the example.In that way no specialized query
language is needed to query the software repository
and the components are described by a demonstration
of a part of their behavior. The query is expressed di-
rectly in the context of the domain, thus, a software
engineer must not switch from her/his mind-set to an-
other one to access a repository.

One remark to that idea: Also for formal specifi-
cations, especially for relational specifications, data
is already considered as a means to describe soft-
ware, albeit on an abstract level. Relational speci-
fications [Mili et al., 1997] describe the behavior of a
component by means of relations between input do-
main and output range. Hence, the idea to take data
tuples as component descriptors, is not entirely new.

Some of the drawbacks coming with this approach
are the problems when executing the components on
the presented input. A ready-to-run executional en-
vironment for each component of the repository is
mandatory and in the case of a long living repos-
itory many versions of different execution environ-
ments must be maintained then. In addition, an in-
teraction with the retrieval system may render diffi-
cult, since one query-answer cycle is very time con-
suming, depending on the number of available com-
ponents conforming to the signature as specified by
the example data. A further drawback is the demand
to specify exactly the behavior of a component in ad-
vance (which includes the provision of the correct sig-
nature). If this information is not known in advance a
search becomes inevitably cumbersome or impossible,
although a functionality as needed is available in the

LU PUDLVL Y. S0
itory is not supported. However, browsing is seen as
an important means to learn about styles and already
available solutions for a certain domain.

LU LDV LIV, AU OLMS v AV

3.1 The SbS approach to description
generation

In this section we present a description technique
based on behavior sampling. We refer to this tech-
nique as static behavior sampling, for short SBS.

Whereas behavior sampling relies on the on-line ex-
ecution of components, SBS calls on historical data
about the component’s executions. The majority of
this data is provided by test data. From test data
much information about characteristic behavior of
components can be infered without having to analyze
or execute the component directly.

In this work we focus on state-less components only,
which are seen as functions (however complex) which
produce deterministically output on input data. Such
a pair of input and output data is called data tuple.
Since both input and output may comprise many (per-
haps complex) data elements, a data tuple dp is a pair
of two vectors: one for the input, one for the output;
dp = (;, 0). Those tuples used for the purpose of char-
acterizing software components solely are named data
points.

Test data is aimed at revealing faults in software;
the aim of testing is not to describe software. Conse-
quently, when considering the input domain to a com-
ponent containing equivalence classes, one member of
that class suffices to test that class. Any input data
selected from the same class is considered as a waste of
time and resources. Because SBS has other aims, pure
test data is not sufficient as a basis for high quality
descriptions. The consumer of the descriptions finally
is a human being who must be supported in under-
standing the representation. Hence, the description
base must be enhanced by striking samples which are
tuples immediately recognizable by domain experts to
be produced by a certain functionality.

0 u] 0 T a)
I Oy Oy, " * | Oy " " Oy,
0 0 0 g g

0 8] 8] 8]
Fi [Oll o|2 " - oij " " Oln }7\/'
0 |]] o
Im Oml Om2 - - ‘On‘j4 - - Orm
[
Q

Figure 1: A partition P, in a SBS-repository

The core of SBS is a component repository con-
taining components as well as their data points. The
coarse grain organization of the repository is deter-
mined by the signatures of components which allow

v pu b vl pvaibiive il viibooadtiib wigttadvidi b U vl WAL
partition P,. To obtain large partitions, signatures
are abstracted to gain generalized signatures which
hide implementation dependent details without loos-
ing the conceptual idea behind them [Pozewaunig,
2001]. One single partition contains all components
and their data points. Data points are selected (or
generated) such that each component is executed with
all inputs. Hence, an input vector v; represents an in-
dex entry referring to a set of output vectors V;. Data
points are chosen intelligently such that we can es-
tablish a function [to localize a component c¢;, when
input and output are provided: I(i;,05;) — ¢;. The
set of all outputs of a certain component then is ref-
ered to as O;. This structure is shown in detail in
figure 1. As one can see, the partition is complete,
which means that there is no component from which
we do not know its output given an existing input. Al-
though completeness is highly recommended, it is not
obligatory as long as the descriptive power (measured
in terms of the function [) of the given data points do
not suffer from missing values.

A SBS partition groups components on the basis
of their technical structure, their signatures. These
components share at least two important properties:

1. They demand (nearly) the same data types as
input and deliver similar typed output structures.

2. They all can be distinguished on the available in-
put data provided with the data points.

To locate a component in the repository it is suf-
ficient to distinguish it from all other available ones.
Clearly, localization is nearly impossible with the flat
representation of a o—partition. Hence, we must ana-
lyze the available information and learn yet unknown
classifiers from that. This task is called supervised
learning and in the research field of machine learning
many techniques are proposed. We chose the approach
of classifying by inducing decision trees, because the
resulting structure is rather intuitive, the algorithms
do not need any extra domain knowledge, the result’s
accuracy is at least equal to all other comparable al-
gorithms, and they are fast [Ganti et al., 1999)].

The analysis itself can be easily stated in terms of
a machine learning problem. The goal is to construct
a hierarchical structure which finally leads to one sin-
gle component. In each hierarchical step the number
of candidate components must be reduced. Since we
know each component (in terms of machine learning
a component is equivalent to a class) in advance, the
term supervised learning is evident. In that way, each
component is described by a set of attributes and their
values. Attributes in our domain are given by input
vectors; their output vectors represent the attribute’s
values. With this view onto the problem, it is simple
to derive correct classifiers for components.

Consider the simple example of table 1 where 7
string predicates taken from the ANSI C standard
library are classified with the decision tree algo-
rithm C5.0, developed by [Quinlan, 1993).

Due to the simple domain it is sufficient to select the
data points wholly from the available test data. The

g
e D a3 &
SRS 0“%\‘

Samples ,X%Q,O ,\Qg

<’a’;’b’>
<));)a)>
<’a’;’ba’>
<’abc’;’xy’>
<)7;)’>
<’a’;’a’>

HHT AT
HHammam
HHamamm) g
'11*11'11'11'11'116
T QS
T I e
mmm A

Table 1: A string predicate repository partition

C5.0 algorithm constructs the decision tree given in
figure 2 from the available behavior base.

T F
[T<>1] L[>]
T F T F
[[<aba>T | [[<aP>T]] (sEqua
T F T F T F

Figure 2: The characterizing structure for the string
predicates of table 1

The decision tree contains a subset of the available
data points which is sufficient to characterize a compo-
nent completely with respect to all other components
of the same repository. E.g. the description for the
predicate isSubstring is given by the following se-
quence of data points: (<’?;’a’>, <T>), (<??;?7>,
<T>), (<’a’;’ba’>, <T>). No other component
of that partition demonstrates the same behavior.
More details about software description based on data
points can be found in [Pozewaunig and Mittermeir,
2000; Pozewaunig, 2001].

4 Behavior-based descriptions to
support Software Engineering Tasks

4.1 Maintenance and Configuration

The idea of SBS was initially developed to enrich
descriptions for reusable software components. SBS-
description can be generated automatically which ren-
ders this method practical for many other application
areas within the field of software development. Espe-
cially for two fields an additional benefit for automat-
ically provided descriptors can be recognized:

e Software Maintenance and

¢ Configuration Management.

44+ @ Llalilitaliiativi Vpvliabvivilo o tbodlie L da vt ubvidl at
change of a system, this adaption of static elements
is considered to be far reaching and normally it is re-
flected well in the documentation. However, if only
minor changes in a system’s functional dimension are
affected, often the effort to adjust the documention
is considered as too high [Pozewaunig and Rauner-
Reithmayer, 2002]. In that way, a system’s func-
tionality drifts continually away from its documenta-
tion [Pirker, 2001]. With each minor adaptive main-
tenance task actualizing the documentation becomes
more costly; costs which must be debited against a
maintenance project’s budget. Inevitably, this leads
to a vicious circle where the tasks to adapt a system
becomes more and more expensive, which leads to the
effect to drop tasks with low priority, especially the
task to update the documentation.

For configuration management the question is
slightly different. The new versions emerging from a
well understood base system normally are well docu-
mented concerning their novel functionality. But since
here it must be ensured to keep the documentation
consistent with the system, a tool for verifying this
relation should be available.

This is the point where SBS enters the scene. In the
previous chapter we demonstrated the base technique
on classifying the components of a software reposi-
tory. When maintaining software or producing new
versions of a system, the partition does contain all
previous versions of one (sub)system. Since all histor-
ical artifacts have been tested carefully, enough data
for establishing a highly discriminating behavior base
should be available. As we speak about versions of
systems a commitment to quality can be taken for
granted. An important task then is regression test-
ing [Harrold, 1999] which aims at the verification that
by adding new features or correcting faults nothing
was destroyed. This task is very costly, but it pro-
duces a vast amount of new test data for the new
version. This effect ensures SBS-completeness which
is necessary for a high quality behavior base.

1 2 .. n

Figure 3: The SBS version tree for administering a
components’ versions

This situation is depicted in figure 3 where n dif-
ferent versions of one system (or one component) are
administered. Each version is a distinct leaf in the
decision tree. As a result of the SBS analyzing phase
a version is identified by a characteristic difference to
all other version maintained in the repository.

44 vy vbLi ol o LLILAdDLAL, vatbAL vl Vv Ay v vt iv
fact is to state in what specific aspects it differs from
the previous versions. To select new test tuples as
data points for description purposes, it is necessary to
get exactly those which are pointing at the changed
functionality only. Obviously, these data points test
the adapted parts of the system. But furthermore,
they should be available for all previous versions, too.
This requirement can be easily fulfilled by executing
the systems with the current test cases and feeding
the such generated data points into the SBS behavior
base. The question now arises: How can data points
be generated which focus mainly on the system’s part
which was affected by the adaption?

4.2 Gathering unerring data points

At a first sight this problem seems to be academic.
Isn’t it the task of software verification to test each
release especially on new features? Why can’t we take
those test tuples for classification? Obviously, this is a
feasible approach. However, one cannot be sure to get
really test tuples touching the parts of the source code
which were adapted. This is due to the fact that in
structural testing (white box testing) without special-
ized tools a tester cannot systematically generate test
data focusing on a certain spot in source code. Much
worse is the situation in functional testing (white box
testing) where domain boundaries are mostly defined
by the requirements. Obviously functional testing can
not guarantee to reveal characteristics which are valid
for the current version only.

What helps us in this situation is the fact that here
the direct access to source code is possible. This is
not the case in a reuse situation where only binaries
of components (COTS) are represented in a repository
— eventually with their test data. Then the librarian
responsible for correctly indexing components is not in
the position to dig into the source code. In contrast to
this reuse-situation, for maintenance or version devel-
opment source code is accessible and it is a rich source
of information.

The problem of getting unerring data points for
characterizing software which was changed at a state-
ment s can be restated as follows: “What input value
v stimulates the execution of statement s?” This ques-
tion is the same as stated for program slicing. Program
slicing is a analysis and reverse engineering technique
which reduces a program to those statements relevant
for a particular computation. A particular computa-
tion is a reference to a variable v which is defined at a
statement s. Since the invention of slicing techniques
by Weiser [Weiser, 1984] many variations of the idea
were published. Weiser’s method was named static
slicing because he analyzes source code and collects
all statements which possibly affect a value v at state-
ment s.. Furthermore, since Weiser’s method com-
putes all statements which affect a variable at a given
statement it is called backward slicing (in contrast to
forward slicing which computes all statements which
might be influenced by a variable).

With backward slicing a tool is available which sim-
plifies the search for unerring input data. It allows for

oviiviciilsy baAadiul)y LHIVOL Valdbo duaiiubliviiin pavibriiuiiv

s by concentrating solely on the slice.

4.3 Highlighting functional differences

A newly released version must be integrated into the
version tree. Due to the assumption of conducted re-
gression tests, the completeness of the SBS partition
in question is ensured for the new version. Addition-
ally completeness must be forced for the old version
as well which was destroyed by introducing new tests
necessary to verify the adapted functionality. If the
old versions of the system are still operational in other
contexts, the assumption to re-test them on the newly
generated inputs is only fair. On the other hand, if
old versions were really withdrawn, further keeping of
such a version in the SBS repository must be ques-
tioned. All these assumptions allow to subjoin the
new version without frictions.

The difference to the previous versions cannot be
calculated absolutely, since only the most character-
izing data tuple divergences are shown in the version
tree. If there are many more differences, they are not
shown in the tree directly. However, on a relative scale
one can easily determine the distance between version
v; and v; in calculating their distance in the version
tree. In that way, one can state that, if the distance
between v; and v; is e.g. 2, they are closer than a
component v 3 units away. But one cannot conclude
the amount of difference of two components which are
equally far away from v; because of the usage of the
most discriminating data point for classification (ne-
glecting other differences of data points).

5 Conclusion

We discussed an approach to describe components au-
tomatically on the basis of demonstrated behavior.
Although at first sight an urge to shift from conven-
tional natural language based description approaches
seems to be overanxious, this is justified by the bene-
fits of our approach. Due to the automatic generation
of characterizing structures much more trust can be
established for software which is classified impartially.
The concordance between a component and its data
manipulations is much more reliable than any rela-
tionship between a component and its keyword de-
scriptions in the long term.

We do not claim that behavior based descriptions
should substitute completely the task of characteris-
ing a component conventionally. However, when trust
needs to be established in the real nature of a piece
of software, the SBS approach of behavior based de-
scriptions plays an important role.

References

[Bouchachia, 2001] A. Bouchachia. Information Re-
trieval Techniques for Software Retrieval. PhD the-
sis, Universitit Klagenfurt, Sept. 2001.

[Ganti et al., 1999] V. Ganti, J. Gehrke, and R. Ra-
makrishnan. Mining Very Large Databases. IEEE
Computer, 32(8):38-45, August 1999.

Lllallulu, LJJ(IJ 4AVAL.
ware. The Journal of Systems and Software, 47(2—
3):173-181, 1999.

[Mili et al., 1997] R. Mili, A. Mili, and R T. Mitter-
meir. Storing and Retrieving Software Components:
A Refinement Based System. IEEE Trans. on Soft-
ware Engineering, 23(7):445 — 460, July 1997.

[Mili et al., 1998] A. Mili, R. Mili, and R. T. Mitter-
meir. A survey of software reuse libraries. Annals
of Software Engineering, 5:349 — 414, 1998.

[Mittermeir and Oppitz, 1987] R.T. Mittermeir and
M. Oppitz. Software bases for the flexible composi-
tion of application systems. IEEE Trans. on Soft-
ware Engineering, SE-13(4):440-460, April 1987.

[Mittermeir et al., 1998] R. T. Mittermeir, H. Poze-
waunig, A. Mili, and R. Mili. Uncertainty aspects
in component retrieval. In Proc. IPMU’98, pages
564 — 571, Paris, July 1998. EDK.

[Mittermeir, 2001] R. T. Mittermeir. Software evolu-
tion - let’s sharpen the terminology before sharp-
ening (out-of-scope) tools. In Proc. IWPSE 2001,
Vienna, Sept. 2001. ACM SIGSOFT.

[Pirker, 2001] H. Pirker. Specification Based Software
Maintenance (a Motivation for Service Channels).
PhD thesis, Klagenfurt University, Austria, Sept.
2001.

[Podgurski and Pierce, 1993] A. Podgurski and
L. Pierce. Retrieving Reusable Software by
Sampling Behavior. ACM Trans. on Software
Engineering and Methodology, 2(3), July 1993.

[Pozewaunig and Mittermeir, 2000] H. Pozewaunig
and R. T. Mittermeir. Self Classifying Components
- Generating Decision Trees from Test Cases. In
Proc. of the SEKE2000, pages 352-360, Chicago,
71, USA, July 2000.

[Pozewaunig and Rauner-Reithmayer, 2002] H. Poze-
waunig and D. Rauner-Reithmayer. Behavior anal-
ysis based program understanding to support soft-
ware maintenance. In Proc. of the 20" TASTED ,
Innsbruck, Austria, Feb. 2002.

[Pozewaunig, 2001] H. Pozewaunig. Mining Compo-
nent Behavior to Support Reuse. PhD thesis, Uni-
versity Klagenfurt, Austria, Oct. 2001.

[Quinlan, 1993] J. R. Quinlan. C4.5 — Programs for
Machine Learning. The Morgan Kaufmann series
in machine learning. Morgan Kaufman Publishers,
San Mateo, CA, USA, 1993.

[Roussopoulos, 1982] N. Roussopoulos, editor.
Proc. Workshop on Self-Describing Data Struc-
tures. University of Maryland, Oct. 1982.

[Tracz, 1988] W. Tracz. Software reuse: Motivators
and inhibitors. In W. Tracz, editor, Software Reuse:
Emerging Technology, IEEE Tutorial, pages 62— 67.
IEEE-CS Press, 1988.

[Weiser, 1984] M. D. Weiser. Program slicing. IEEE
Trans. on Software Engineering, 10(4):352-357,
July 1984.

. iU Aol VYWV IMS PwYRLE

