
Behavior Analysis based Program Understanding to support
Software Maintenance

HeinzPozewaunigandDominik Rauner-Reithmayer
Institut for Informatics-Systems

KlagenfurtUniversity
Austria

email:
�
hepo,dominik� @ifi.uni-klu.ac.at

ABSTRACT
Oneof themostimportanttasksin softwaremaintenanceis
to understandthebehavior of thesystem’spartsoneis deal-
ingwith. Thecommonwayfor amaintainerthenis tostudy
thedocumentationof a system.However, moreoftenthan
not, this documentationis far away from beingup to date,
which is dueto thesystem’scontinuouschangeswhichare
not reflectedin its documentation.In sucha situationa
maintaineris lost andher/hisonly alternative is to dig in
thesystem’s sourcecode.This paperdealswith theprob-
lem of how to infer a (partof a) system’s behavior without
having to look at its sourcecodedirectly whenthe docu-
mentationis not trustworthy. For this purposewe analyze
theeventswhich areemittedby a system.Suchsequences
of eventscontainmuchinformationwhich allow to reason
aboutthebehavior of theemitter. We presentanapproach
to infer formal descriptionsfrom eventsequencesanddis-
cusshow thesedescriptionssupportthe maintenanceof a
system.
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1. Motivation

Fromwhateverperspectiveyouapproachit, softwaremain-
tenanceusually posesa challengeto a large variety of
aspectsfor several reasons. One of the most aggravat-
ing facetsof maintenanceis causedby the evolution of
a system. The term software evolution was first coined
by Lehmann[1]. He identified two phenomenonsco-
occurringwith long runningsystems,whicharecalled

1. law of continuingchangeand

2. law of increasingcomplexity.

Continuingchangeimpliestherecurringneedto adaptsoft-
waresystemsto evolving requirements.A systemwhich
is not adaptablediminishesin value over time. Conse-
quently, this leadsto thesecondlaw, which pointsout that
asystemdoesnotonly grow in sizebut alsoin complexity.
Corrective andadaptive maintenancerendersanever last-
ing activity andthey causeimpactsleadingto the second

law of Lehmann. This is due to the effectswhich result
from adaptingsoftwaresystemsto changingrequirements,
therebyincreasingthecomplexity of thesystemmaintained
becausechangesare not reflectedadequatelyin the sys-
tem’sdocumentation[2].

Systemscanbestructuredaccordingto their staticor
their dynamicaspects.Maintenancefocusingon thestatic
part changesthe system’s structure(architecture).If such
changesarenotwell documented,thesystem’sdecayis in-
evitable.Thisis thereasonwhy theadaptationsof thestatic
structuresarein mostcasesreflectedsufficiently in thesys-
tems documentations.The researchcommunity is well
awareof this fact and therearemany approachesaiming
at theredetectionof staticstructures,like objects(classes)
in legacy systems[3, 4, 5, 6, 7, 8].

However, maintenanceactivities do not always lead
to changesin a system’s structure. Many requirements
demandsmall adaptionsof the behavior without touching
staticparts. Althoughthe importanceof documentingbe-
havioral changesis well known, this task is usually ne-
glectedto a greatextent. Thus,the consequenceis a mis-
match betweentheactualdescriptionof a system’s behav-
ior and its actual functionality. Maintenancein suchan
environment is a extremely difficult task. This problem
hasbeenapproachedfrom different perspectives in liter-
ature[9, 10, 11, 12]. Mostof thesetechniquesarebasedon
resultsof sourcecodeanalysisandcanbe appliedto ana-
lyze behavior of state-lesscomponentson thelevel of pro-
ceduresandfunctions. Additionally, a repositorycontain-
ing knowledgein formof behavior patterns(cliches)is nec-
essaryto infer acomponent’sbehavior. In mostcasesinfer-
encingis performedby matchingchunksobtainedfrom the
maintainedsystemwith patternsretrievedfrom the repos-
itory. Theapproachesdiffer in their extractiontechniques
and/ortheirmatchingalgorithms.

Dueto their mainresource,which is sourcecode,all
theseapproachesfor programunderstandingeitherproduce
a largeoverheadfor matchingsourcecodepatternsor de-
liver inaccurateresults. Thereareonly a few approaches
which do not dependon sourcecode;nevertheless,thena
full blown knowledgebaseis neededfor a successfulap-
plication[13, 14].

1



Eventhoughall of theseapproachesleadto satisfying
results� within their domains,they donot take this very im-
portantaspectof describingthe behavior of state-bearing
componentsinto account.They operateona level which is
too fine granularto capturetherelationshipsbetweenpro-
ceduresandfunctions,resp.methodsof oneclass. Thus,
intra-objectbehavior cannotbeanalyzedby them.

Thework presentedin [15, 16] aimsatthedescription
of thedependenciesestablishedbetweendifferentmethods
of oneobjectto gaina moreholistic insightinto its behav-
ior. This dynamicview is provided by state-chartssimi-
lar to UML-statechartdiagrams[17]. To infer this view
a very expensive sourcecodeanalysisassistedby manual
guidanceis needed,evenif theunderlyingsystemis rather
small. Spendingthatmucheffort is not in all casesjustifi-
able.

In thispaperwepresentanapproachfor programun-
derstandingwhich doesnot rely on sourcecodeanalysis.
Instead,thestartingpoint of our approachis a knowledge
basebuilt uponcall traces. Thesetracesareobtainedby
analyzingsimple activity log files, test data,or dynamic
traces.From that formal grammarsareinferedwhich de-
scribe the regularitiesof event traces. Thesegrammars
reflect the main particularitiesof the behavior of state-
bearingobjects. The main assumptionof our approachis
that tracescanbeproduced(or isolated)for thosepartsof
a legacy systemwherethemaintenancefocusis placed.In
theremainderof thispaperwereferto themaintainedparts
ascomponents,e.g.objects,modules,clustersof them.

The grammars,as well as statechartdiagramsde-
rivedfromthatgrammarsdescribeall legaleventsequences
whichwereobservedin theanalyzeddata.Theseeventse-
quencescomplywith meaningfulbehavior of executedob-
jects.Thus,thegrammarsresp.statechartdiagramsreflect
thedynamicsof theobjectsin observation.

In the next section,the techniqueof how grammars
arederivedfrom eventtracesis discussedin detail. In ad-
dition thenecessaryqualitiesof eventsequencesaremen-
tioned. How the resultsof the inferenceprocessare in-
terpretedto obtain a meaningfuldescriptionfor objects’
behavior is presentedin section3.2. The benefitsof our
approachareshown in section3., wheretheresultsareap-
plied to a maintenanceproblem. We concludethis paper
with a discussionaboutfurther work to be doneand we
givea shortsubsumption.

2. Inferring formal grammars from Event
Traces

2.1 Event Trace

An eventtraceis a sequenceof procedure-or method-calls
of one component. A componentis either an object or
any coherentstructure(e.g.module)comprisingonestate
space.In this work we neglectconcretevalueswhich are

transformedby a procedure- or methodcall to getanab-
stractview of the tracedata. Tracescan be obtainedin
two differentways: (1) by analyzingthe call graphin the
sourcecodeto build a staticcall trace,or (2) by observing
the actualoccurringcalls during run time forming a dy-
namictrace. Statictracescontainmoreinformationabout
thepotentialbehavior of a component,which is dueto the
inclusionof all pathsgivenin thesourcecode.Whereasfor
maintenanceit is not always necessaryto have complete
knowledgeavailable,sinceonly thosepathsareinteresting
whichdemonstratethebehavior to bemaintained.Further-
more, the analysisof sourcecodewould be too costly, if
only a particularbehavior needsto beanalyzed,which can
beproducedby thesystemanyway.
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Figure1. A communicationsequenceproducingtraces

An event trace is gatheredby observingcalls to a
particularcomponent. In figure 1 an UML sequencedi-
agramdemonstratesthe communicationbetweencompo-
nent � and component� . This scenariocontainstwo
differenttraceswhich arean examplefor the behavior of� and � . The traceof calls of component� ’s methods
canbe identifiedas ��� �	�	��� ��
 ; that of � ’s methodsis
��� 
���������� ����� 
���������� � . If tracesareselectedintelli-
gently, theexamplesdescribeasignificantpartof behavior.
Obviously, thecompletecharacteristicsof acomponentcan
hardly be capturedby suchtraces.Therefore,we have to
abstractfrom them.

In UML, the dynamicsof componentsis described
by meansof statechartdiagramswhich areextendedfinite
stateautomatons(FSA) [17]. Hence,eventsequencesare
consideredaswordsof a formal language,specifiedby a
FSA. Our aim is to infer theautomatonfrom words,resp.
eventtraces.

2.2 Inference process

Theprocessof inferencinggrammarsfrom wordsbelongs
to the problemfield of sequencelearning[18]. For main-
tenanceoneimportantfactmustbeconsidered:theknowl-
edgeaboutcomponentsexistsaspositiveexamplessolely.
Positive examplesare words producedby the grammar,
whereasnegative examplesdo not belongto the language
atall. Negativeexamplesturnoutto beveryvaluable,since
they restrictthesearchspacetremendously. Therefore,the



problemclassis further refinedandnamedin literatureas
positive� grammarinferenceproblem.

In 1978Mark Gold [19] proved, that in general,the
identification of a canonicalautomata1, on the basisof
given positive andnegative examples,is NP-hard. How-
ever, if only positive exampleswereavailable, in general
suchan identificationwould be impossible. In the mid
80ies,therefore,researchconcentratedon heuristicsin or-
derto build automatafor aspecificcontext.

We adaptedthe SEQUITUR algorithm [20] to our
needs.SEQUITUR generatesa context-free grammar[21]
from a givenword. In fact,althoughthegrammarbelongs
into this classof complexity, the generatedlanguagesare
regular, sinceeachinferedlanguageis finite andit canpro-
duceoneword only. SEQUITUR analyzesa sequenceand
substituteseachrepetitionby a rule. Theaim of thealgo-
rithm is twofold: (1) It generatesashorterrepresentationof
theinput,thusencodingit asgrammar. (2) As aby-product
a structuralexplanationof thissequenceis provided.

A context free grammar � is a 4-tuple � ��������	�! ��#"%$
containinga setof terminals

�
, a setof non-

terminals
�

, a setof rules
 

of theform �'&)( , where�
is a non-terminalsymboland ( denotesa stringof termi-
nal andnon-terminalsymbols,and,finally, the startsym-
bol

"
. For a rule in that form � is calledthe rule’s name

aswell. Considerthesequenceof component� (figure1),
which containsa repetitionof the subsequence
*� . SE-
QUITUR replacesthemwith anonterminalandintroducesa
new rule with thatsymbol. Thegrammarsproducedshare
thefollowing two properties:

Digram uniqueness No pair of adjacentsymbolsexists
more than oncein the grammar. Adjacentsymbols
aresubstitutedby grammarrules.

Rule utility Every rule is usedmorethanonce. If a rule
is usedonly oncein thegrammar, it is deletedandthe
placewhereit wasutilized is substitutedby its right
handside.

The following grammaris inferedfrom the example
sequence(nonterminalsstartwith the metasymbol$, the
grammar’sstartsymbolis namedan + ):

+,& $A $A
$A &-
.�/�

2.3 Extensions to SEQUITUR

SEQUITUR is adequatefor describingsinglewords. How-
ever, in a maintenancecontext, many words(event traces)
of onecomponentaregiven,eachof which representsone
specificdetailof behavior. Only whenput together, a valid
descriptionis producible. Given are the following two
event tracesof onecomponent,
0� � � and �1�1
 . The SE-
QUITUR algorithm analyzesthis examplesindependently

1An inferedautomatais canonical,if it is equivalentto theautomaton
producingtheword.

andthereforethetwo grammarsconstructeddonotfind the
evidentbehavior pattern �1� . To overcomethis weakness,
SEQUITUR was extendedto enablethe analysisof many
differentsequences,which areassumedto beproducedby
onecomponent.This extensionis calledMSEQ (multiple
SEQUITUR) [22]. MSEQ detectsrepeatingpatternsspread
betweendifferentwords.

Due to the primary goalof SEQUITUR, which is the
grammarencodingof one word, only the word analyzed
can be derived from the grammar. In particular, itera-
tions of contiguouslyappearingtokens,which may refer
to loopsin the sourcecode,arenot explicitly revealedby
SEQUITUR. This is not sufficient in programunderstand-
ing and thus, a more generaland abstractdescriptionof
a component’s behavior is needed. MSEQ provideswith
the possibility to introducedomainknowledgein form of
aniterationheuristic. An iterationheuristicis theminimal
numberof sequentiallyoccurringpatternsin a word. If at
leastthatmany patternsoccurconsecutively, it is assumed
that thesepatternswereproducedby a loop. For instance,
theevent trace 
0���1�1��� hints to a grammar� with the
rules +,&2
��3� , �4&5�768�/� , whereaninfinite sequence
of theterminal � maybeproduced.Obviously, thispattern
doesnot needto begeneratedby a loop in thecomponent
emittingthesequence.How many sequentialoccurringpat-
ternsreally hint to a loop dependson domainknowledge.
Therefore,theiterationdetectionmechanismof MSEQ can
becontrolledby theminimalIt-parameter, which spec-
ifies theminimumnumberof iterationsdefininga loop. In
theexample,above thevalues2, 3, or 4 would have led to
the sameresult. Thecorrectadjustmentof this parameter
dependson domainexpertiseandmustbeprovidedby the
maintainer.

SEQUITUR basesits patternrecognitionon thedetec-
tion of repeateddigrams(patternsof length2). However,
theremaybesituations,wherethesequencesdemonstrate
acertainpatternlengthlargerthan2. In suchcasesit is bet-
tertobasethegrammarsonthatcharacteristiclength.Thus,
MSEQ additionallyoffers thepossibility to detectpatterns
( 9 -grams)of a length 9 specifiedby themaintainerwhich
leadsto moredomain-adequaterulestructures.

3. Maintenance support

3.1 Interpreting grammars for program un-
derstanding

MSEQ producesformal grammarsrepresentingcharacter-
istic partsof a component’s behavior. Sincethey abstract
from concretevalueswhich are provided with the calls,
MSEQ provideswith amoregeneraldescription,whichcan
hardlyberecognizeddirectly from thetraces.In this way,
grammarshelpto understandbehavior. Dueto thefactthat
many grammarscorrectlydescribethesamewords,thisde-
greeof freedomis usedto raisethelevel of understanding.
ThemaintainermayadaptMSEQ by tuningtheparameters



in orderto generateresultswhich reflecttheparticulardo-
main: better.

Onepossibility is to “play” with parametersto geta
notion of the boundariesimportantin the domain. If the
domaincontainstransactionsof a certain length, the re-
sults obtainedby a default patternlengthmay not reveal
this characteristics.By experimentingwith the value 9
for the 9 -grams,variousgrammarsdescribetheunderlying
words. The responsibilitywhich grammarto choseasthe
bestdescriptionfor that domainis passedonto the main-
tainer. For detectingiterations,a similar approachis cho-
sen.A meaningfulvariationof theminimalIt-parameter
helpsto producegrammarswith differentlevelsof quality
whichgenerallyaimsat theirunderstandability.

As amatterof fact,formalgrammarsarenot thateasy
tocomprehendfor untrainedmaintainers.Thisis especially
trueif iterationsarerepresentedasrecursions.Thus,MSEQ

canbeforcedto changetheoutputformatof thegrammars
to EBNF2. The recursionof the startrule of the grammar
presentedin section2.3thusbecomes+�&2
 � � $<; � , which
is indeedeasierto comprehend3.

A further improvementto understandabilityis dueto
the propertyof the grammarsgeneratedby MSEQ whose
languagesarealwaysregular. Regularlanguagesareequal
to FSAs [21], which are more understandablein general
due to their graphicalrepresentation.Thus, thesegram-
marscanbetransformedto FSAswithout losingany infor-
mation. But statesin a FSA arenot directly comparable
with thoseof anUML statechartdiagram.Anyhow, since
they aredepictedas graphs,their expressivenessis rated
higherthantheoneof grammars.Algorithmswhich trans-
form grammarsto deterministicaswell asindeterministic
FSAsmaybefoundin [21].

3.2 Interpreting grammars for maintenance

How can grammarsdescribingpartially the behavior of
componentshelp to maintainsoftware? When consider-
ing thedifferentkindsof maintainanceactivities,grammars
helpin thefollowing ways:

In correctivemaintenanceoneof themaintasksis to
locatethespotwhereanerroroccurs.Grammarsareable
to demonstratestructuresof behavior. On a high level they
canindicatewrongordersof events,incorrectplacedrecur-
sions(iterations),or missingiterations.Any of theseindi-
catorsmayshow wrongprotocolsof thecomponent’s uti-
lization and,thus,enablesthemaintainerto locatethecor-
respondingpartsin thesourcecodeby identifyingthefunc-
tional partsemitting wrong patterns. The localizationis
supportedby two sourcesof information,whichare(1) the
event-emittingcomponentand(2) thepathwithin thecom-
ponent’s control flow graphleadingto errorproneplaces.
E.g.seeour previously presentedexample(page2) which
led to thegrammarpresentedon page3. Given is the fol-

2ExtendedBackusNaurForm
3In EBNFan =?> indicatesthat = is at leastiteratedonce.

lowing snippetof sourcecodeof component� , whichmay
producesequencesof theform

�<� 
��/� $ 6 � 
��/@ $�$ ; .

WHILE conditon1 LOOP
call B.a;
call B.b;
IF condition2 THEN
call B.c;

ELSE call B.d;
END IF;

END LOOP;

The grammarinfereddoesnot containa terminal @ . Due
to the maintainer’s domainknowledge,this is considered
a fault since @ mustshow up in the grammar. Thus, the
maintaineris hintedto look at condition2 controlling
thepathto @ , andto look at thosevariableswhich areref-
eredto in thecondition.

Adaptivemaintenanceenhancesthe functionality of
a systemby changingit in accordancewith new require-
ments.Grammarsgeneratedby MSEQ supportthisactivity
by guiding the maintainerto thoseplaceswherechanges
shouldhappen. Considera requiredadaptionof the be-
havior to the examplegiven above, wherea word 
A�0B
mustbeproducible.Therefore,a furtheralternative in the
IF-construct,B.e, shouldbe availablewhena particular
conditionholds.Similarly to thepathlocation,duringcor-
rective maintenancethe grammardirectly helpsto locate
thecorrespondingspotin thesourcecode.

4. Further Work

Grammarsdescribethe behavior of components.We pro-
vided hints for locatingspotsto be maintainedin source
codeon the basisof grammarsand words. Thesehints
couldbefurtherimproved,by connectingtheforwardengi-
neeringprocessfor developingcomponentsto theprogram
understandingactivity and maintenancestronger. In that
directionsomework hasalreadybeendone[2], wherefor-
mal specificationsfor establishingforward andbackward
tracesareutilized. We wantto exploit thesetechniquesfor
programunderstandingaswell.

MSEQ detectsany repetitionsin eventtraces.If char-
acteristicpatternsof the respective domain were known
in advance,the inferenceprocessaswell as the resulting
grammarwouldbenefittremendouslyfrom theuseof them.
Hence,a next stepto improve MSEQ would be to develop
thealgorithminto thatdirection.

5. Conclusion

We presentedan approachto automaticallygeneratede-
scriptionsof behavior from dynamiceventtraceswhichare
obtainedfrom a runningsystem.After isolatingthe parts
of a systemto bemaintained,suchgenerateddescriptions
(formal grammars,finite stateautomatons)help to under-
standthebehavior of theisolatedpart.Thistypeof descrip-
tionsis a commonway to specifythebehavior of software



non-ambiguously. Hence,a maintainerdoesnot have to
beespeciallyC trainedto interprettheseabstractions.Thus,
without touchingthe sourcecode,a maintaineris able to
reasonaboutasystem’sbehavior and,consequently, is sup-
portedin its maintenance.
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in dieAutomatentheorie, formaleSprachenundKom-
plexitätstheorie. Addison-Wesley, 1990.

[22] Heinz Pozewaunig. Mining ComponentBehaviorto
SupportReuse. PhD thesis,University Klagenfurt,
Austria,October2001.


