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Abstract

Elliptic curve cryptosystems allow the use of prime fields with special moduli that speed up the
finite field arithmetic considerably. T'wo algorithms for reduction with respect to special moduli
have been implemented in software on both a 32-bit and a 64-bit platform and compared to
well-known generic modular reduction methods. Timing results for multiplications in prime
fields of size between 2'! and 2°'? are presented and discussed.

1. Introduction

The growing use of public-key cryptosystems like RSA [17] or DSA [15] does not only
provide a useful application of large finite fields, but also raises the need for efficient
algorithms and implementations of finite field arithmetic. In particular, multi-precision
modular reduction and modular exponentiation algorithms and implementation options
have been investigated in the literature [6, 8]. As these contributions aim at supporting
the arithmetic used in the RSA or DSA cryptosystems, they focus on the modular expo-
nentiation operation for operand sizes of more than 1000 bits and on the asymptotic time
complexity of the investigated algorithms.

Today, public-key cryptosystems based on elliptic curves [12, 5] have been integrated into
current standards [10, 1] to provide an alternative to the classical systems mentioned
above. The recommended elliptic curve cryptosystems operate on smaller finite fields
of size close to 22°°, at the cost of a more complex arithmetic and a greater number of
system parameters. The additional degree of freedom introduced by the curve parameters,
however, allows the use of special finite fields yielding a very efficient arithmetic.

In this contribution, prime finite fields F, of p elements are considered, where p is of
some special form that allows an efficient modular reduction modulo p. One such special
primes are Pseudo-Mersenne (PM) primes, the other ones are Generalized Mersenne
(GM) primes, which are both generalizations of the well-known Mersenne numbers 2% —
1. We focus on modular multiplication modulo p, which represents the multiplicative
operation in IF,. Field exponentiations are not needed for arithmetic operations on elliptic
curves, and field inversions can be avoided by using projective coordinates. According
to the field sizes used in elliptic curve cryptosystems, we restrict our investigation to the
range 2191 < p < 2512,
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We present the results of a comparative software implementation of four modular reduc-
tion algorithms used for modular multiplication on both a 32-bit and a 64-bit platform.
Two of these algorithms are well-known generic reduction methods, namely the classical
one using divisions [11, Algorithm 4.3.1.D] and Montgomery’s method [14], whereas the
other ones are only applicable to PM or GM moduli, respectively.

We focus on prime finite fields, but for elliptic curve cryptography also fields of character-
istic 2 and so-called Optimal Extension Fields (OEFs) [2] are used. The latter ones are
small field extensions with characteristic close to the machine word base, which allow very
efficient field operations, including field inversion. A recent work of Smart [18] indicates
that OEFs have a clear performance advantage over both fields of characteristic 2 and
prime fields for elliptic curve cryptosystems. However, the comparison was performed
only for fields of size ~ 2'%° and only Montgomery and GM reduction were considered for
prime field operations. De Win et al. [21] compare fields of characteristic 2 with prime
fields, but only use Barrett reduction [3, 4] for the latter. The investigations in [6, 8] show
that Barrett reduction is roughly as efficient as Montgomery reduction.

The paper is organized as follows. Section 2 introduces useful representations of prime
finite fields and gives an overview over the modular multiplication operation. The fol-
lowing four sections describe each modular reduction algorithm in detail, and sections 7
and 8 present the implementation results and conclusion. The timing results are given in
both graphical and tabular representation in the appendix.

2. Prime Finite Field Arithmetic

Besides the well-known standard representation of prime finite fields, a field representation
utilizing Montgomery’s reduction algorithm (see section 4) can be used, which has not
yet been clearly stated in the literature. Field multiplications can be performed using
the same methods of modular multiplication in both representations, as explained in
section 2.3. Modular reduction with respect to special moduli, however, is only useful in
standard representation.

2.1. Standard Representation

Let p > 2'%° be a prime. We can represent the elements of the finite field F, by integers
x in the range 0 < z < p. We will call this the standard representation of prime field
elements. In a computer with word base b, x is usually represented as a multi-precision
integer © = (xp_1,...,%o)p of non-negative digits z; < b such that vt < p < b and

n—1
T = lebz (2.1)
=0

In the sequel we will always assume that z is stored in memory as an integer array
X[0...n— 1] such that X[i] = z;.

For an arbitrary integer value b > 1 we define |z|, to be the minimum number of digits x;
needed to represent z in the form of (2.1). That is, |z|, = n if and only if "' <z < b".
In particular, |z denotes the number of bits occurring in the binary representation of x.
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2.2. Montgomery Representation

The set of elements of F, can be represented by a certain permutation of the set P =
{0,1,...,p— 1} such that an efficient use of the Montgomery reduction method (see sec-
tion 4) is possible. Let R > p be an integer coprime to p such that computations modulo R
are easy to perform: R = 0". Given an element x € F, in standard representation, we
define the integer

t=x-RMODp (2.2)

to be the Montgomery representation' of x. The mapping pu: P — P, x + T is bijective,
since gcd(R, p) = 1. Because x = y if and only if u(z) = u(y), testing equality of two field
elements is equally easy for both standard and Montgomery representation. The inverse
mapping is given by p~}(z) = - R"! MOD p, and its extension to Z is called Montgomery
reduction.

If we want to perform field operations in Montgomery representation, we will have to
define addition @& and multiplication ® for elements in Montgomery representation such
that p becomes a field homomorphism. That is, we must ensure that

I

= x+y and
= 7Ty

I

D
O]

8l
|

for all z,y € T, given in standard representation. For addition, we can just define
@y = x+ yMODp, since the map p is linear. This means that field addition in
Montgomery and standard representation can be performed using the same procedure. In
particular, the additive inverse of Z is given by p — Z. For multiplication, we define

( g) =7 g R‘1 MOD p (2.3)

Thus, a field multiplication in Montgomery representation is carried out by a multiplica-
tion of integers followed by a Montgomery reduction. Field additions and multiplications
in Montgomery representation can hence be performed without any conversions to or from
standard representation.

2.3. Modular Multiplication

As a field multiplication in both standard and Montgomery representation amounts to
multiplying the operands and reducing them, modular multiplication is a basic building
block of prime finite field arithmetic.

There are two possibilities to perform a modular multiplication of elements x,y € [F,,. The
straight-forward one is to multiply the n-digit integers x and y first, and then to reduce
the 2n-digit result z = z-y modulo p. This requires at least 2n digits of temporary storage

L This is called p-residue in the original paper [14].
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space and the corresponding instructions for memory access. These costs can be reduced
by interleaving multiplications and reductions according to the equation:

n—1
x-yMODp = in-y-biMODp
i=0
= (((...(((xn—1 -yMODpP) - b+ xp_o-y) MODp) - b+ ...
+z1-y) MODp) - b+ 2 - y) MODp (2.4)

However, the number of arithmetic operations needed to reduce a 2n-digit integer may
be smaller than the total number of arithmetic operations executed during n modular
reductions of (n + 1)-digit operands. This is even more likely to be true, if n is small,
which is the case in current implementations of elliptic curve cryptosystems. In the sequel,
we therefore focus on the non-interleaving method for modular multiplication.

The costs of a modular multiplication can be roughly estimated by counting only the
number of single-precision multiplications, as these are the major and most expensive ba-
sic machine operations needed for a modular multiplication. Clearly, the non-interleaving
method requires n? single-precision multiplications plus the costs for one modular reduc-
tion.

2.4. Modular Reduction

There are quite different algorithms available to perform the modular reduction z MOD p.
The classical one described by Knuth [11, Algorithm 4.3.1.D] first estimates the quotient
q = |2/p| and then computes z MOD p = z — ¢ - p, with a subsequent possible correction
of the error introduced by the quotient estimation.

As the computation of ¢ involves single-precision divisions, which are rather expensive
compared to single-precision multiplications, one may pre-compute a scaled value of 1/p
to avoid divisions during reduction. This is what Barrett’s algorithm [3, 4] does. As
already mentioned, the description of this algorithm is not yet included in this paper.

An alternative approach to modular reduction is given in the original work of Mont-
gomery [14], where an efficient method of computing the Montgomery reduction z -
R~ MOD p without divisions is given (see sections 2.2 and 4).

Modular reductions can be performed without any integer division at all, if primes of a
special form can be used. For instance, if p can be chosen as a Mersenne prime, that is
as p = 2% — 1, then an integer z < p? can be reduced modulo p by writing 2 = u - 2% + v,
where u and v are k-bit integers. Now it follows from 2¥ =1 (mod p) that

z=u+v (mod p).
Hence the modular reduction 2 MOD p can be performed by one modular addition of k-bit

integers.

However, Mersenne primes are rare; there is none between the Mersenne primes 2'27 — 1
and 252! — 1. We might therefore look for primes of a more general form which allow us
to apply the same idea explained above. Moreover, we want k to be a multiple of the



350 Modular Multiplication Using Special Prime Moduli

word size w to avoid real bit shifts. Two such generalizations have been proposed so far.
The first one is due to Crandall [7], who proposed the use of Pseudo-Mersenne (PM)
primes p = 2" — ¢ for some “small” positive integer c¢. The second generalization, due to
Solinas [19], are primes generated by some polynomial expression of low coefficient norm,
which are called Generalized Mersenne (GM) primes. We are going to describe each of
these reduction methods in detail in the following sections.

3. Classical Reduction

The most obvious way of performing a modular reduction is that of adapting the ordinary
pencil-and-paper method of division which has been formalized by Knuth [11, Algorithm
4.3.1.D]. The pseudocode of this algorithm is given in algorithm 1. Division of an (n+m)-
digit number by an n-digit divisor is achieved by m divisions of (n + 1)-digit numbers by
the divisor. A quotient of the latter type, say ¢ = |x/p], is estimated by the expression

¢=min(b—1,(xn - b+ xy_1) DIV p,_4).

It can be shown that ¢ is never too small and, if p, ; > b/2, at most two in error, i.e.
g — 2 < q < (. To obtain the correct value of ¢, the multiplication ¢ - p can be reduced
t0 G+ (pn_1 - b+ pn_2), at the cost of correcting a possible negative residue. However,
negative residues occur only with probability 2/b. Note that x — ¢ - p < p, which ensures
that each time the for loop is entered in algorithm 1, the condition z < p - b"=""! is true.
This implies that z; < p, 1.

The condition p, ;1 > b/2 can always be satisfied by means of normalization, that is, by

multiplying both z and p by an appropriate power of 2. This procedure might enlarge z
by one more digit, but it does not if z < p%.

The costs are dominated by the division in line 8, the (1 x 2)-multiplication in line 10, and
the (1 x n)-multiplication in line 15. As the for loop is executed m times, the algorithm
performs m divisions and m(n + 2) single-precision multiplications. If z < p? we can set
m = n.

4. Montgomery Reduction

As explained in section 2.2, performing a field multiplication in Montgomery representa-
tion makes use of an operation x — x - R~ MODp (z € Z), which is called Montgomery
reduction. The method uses a precomputed inverse of p modulo R and is based on the
following theorem:

Theorem 4.1 ([14]). Let p, R > 1 be coprime integers, and p' = —p ' MOD R. Then
for any integer x, the number

2 = (z +tp)/R, where t = zp' MOD R,
is an integer satisfying & = xR™' (mod p). Moreover, if 0 < x < pR, then 0 < & < 2p.

Proof. Observe that tp = xpp’ = —x (mod R), so & is an integer. Since 2R = = (mod p),
we have £ = 2R~ (mod p). If 0 < 2 < pR, then 0 < z+tp < pR+Rp,s00 < & < 2p. O



Modular Multiplication Using Special Prime Moduli 351

Algorithm 1 Classical modular reduction.

Input: (n + m)-digit integer z, n-digit modulus p, p,—1 > b/2, m > 1, n > 2.
Output: zMOD p.
1: if 2z > p-b™ then
2 z=z—p-b"
3: end if
4: for i =n+m — 1 downto n do
5. if z; = p,_1 then
6 gq=b-1
7 else //zi<pn
8 q=(z-b+2_1)DIVp,_y
9: end if
10:  y=q-(pn—1-b+pn-2)
11: while y > z; - b2 + Zi—1-b+ zi_2 do
12: qgq=q—1
13: Y=y — (Pn-1-b+pu_2)
14: end while
150 z=z—q-p-b"
16:  if z < 0 then

17: z2=z+p-b"
18:  end if
19: end for

20: return z

Montgomery also proposed an algorithm to compute z efficiently for multi-precision
operands [14]. Namely, 2R is obtained by successively adding p(z;p’ MOD R)b* to z for
i=0,1,...,n — 1. However, this method can still be speeded up by observing [9] that
the basic idea of this algorithm is to add multiples of p to x until the result becomes
a multiple of R. This effect can also be achieved by computing z;p; MOD b instead of
z;p' MOD R, where p}, ;= —p; ' MOD b. This leads to algorithm 2 [6].

To show the correctness of this algorithm, let us denote the original value of x by z for
now. Since ppy = —1 (mod b), each time line 3 is executed the equation pt = px;pf = —x;
(mod b) holds. It follows by induction that the value assigned to z is a multiple of b**!.
Moreover, x = Z (mod p) is a loop invariant. Hence, when execution has passed line 5,
the equation z = Z(b")~" (mod p) is true. Furthermore, when the for loop has been
completed, the value of x satisfies

n—1

=2z —i—p(z t(i) bi) < 2pb", (4.1)

i=0
since each value t(;) of the variable ¢ does not exceed b —1 and S (b—1)b < b*. Thus,
the final value of x computed by algorithm 2 is bounded by 0 < z < p.

The number of single-precision multiplications performed by algorithm 2 is given by n?+4n,
which is comparable to the costs of a multi-precision multiplication.

Using the GNU MP library, we could make use of the fast implementation of a multiply-
accumulate routine for multi-precision integers by storing the carry word generated in
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Algorithm 2 Montgomery reduction.
Input: 0 <z < pb", p < b", phy = —p; ' MODb.
Output: z(b")~' MODp.
: fori=0ton—1do
t = (z; - py) MOD b
r=x+ (p-t)b
end for
z =z DIV
if z > p then
rT=x—p
end if

return z

Tab. 1: Values of n and ¢ such that p = 2" — ¢ is prime (with high probability)

n | n/l6 | n/32 | n/64 c

160 | 10 5 - 47, 57, 75, 189, 285, 383, 465, 543, 659, 843
192] 12 | 6 | 3 237, 333, 399, 489, 527, 663, 915, 945
24| 14 | 7 | - 63, 363, 573, 719, 773, 857

256 | 16 8 4 189, 357, 435, 587, 617, 923

320 20 | 10 | 5 197, 743, 825, 843, 873, 1007, 1017
384 | 24 12 6 317

448 | 28 14 7 203, 207, 825

512 | 32 16 8 569, 629, 875, 975

line 3 in the current digit x;, which is not needed afterwards by the algorithm. This
allows only n digits to be processed in line 3 and to add the carry words when the loop
has been completed by computing

(Tn—15- - %0) = (T2n—1,- -, Tn) + (Tn-1, .-+, T0).

Note that if the latter addition generates a carry bit or if x MODb" > p, it suffices to
compute x = x — pMOD 0" to get the correct result for x.

5. Pseudo-Mersenne Primes

These are primes of the form p = 0" — ¢ where ¢ is a “small” integer. Table 1 lists some
primes of the desired form in the range of interest for elliptic curve cryptography. For
each given choice of n, all values of ¢ satisfying 0 < ¢ < 1024 such that 2" — ¢ is prime
are listed.

Given an integer z = 2" b" + 2/, we can write
z=2"0"+2=2"c+7 (modp), since V" =c (mod p). (5.1)

By applying this method recursively on 2", 2 MOD p can be obtained using only additions
and multiplications by ¢. The resulting algorithm 3 due to Crandall [7] and a proof of
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Algorithm 3 Reduction by a Pseudo-Mersenne modulus p = 0" —c.
Input: a base b integer z, p = b"™ — ¢ where 0 < ¢ < b"™.
Output: zMOD p.
¢ = zDIVdH™, r = zMOD ", i =0
while ¢ > 0 do
r=r+ (cg/’) MOD b")
q(i-i-l) _ cq(i) DIV b™
1=1+1
end while
while r > p do
r=r—p
end while
return r

H
e

correctness for arbitrary values of ¢ and z appear in [13, Ch. 14]. Note that each ¢
denotes a multi-precision integer here.

For use in finite field arithmetic, this algorithm can be optimized due to the fact that z is

never greater than the product of two residues modulo p, i.e. z < (p—1)% < b**. Moreover,

as b > 2% we are free to choose ¢ less than b, which will accelerate the multiplications

by ¢ considerably. The latter assumption implies that, since cg(® < prg(+1),
cq® (i)

(i+1) < < q
q - bnfl’

(5.2)

after each execution of line 4 of algorithm 3. Assuming that z < b*", we therefore obtain
the following bounds for the values of the ¢(’s:

¢V <", ¢W<b ¢?=0frn>2 (5.3)

Hence the while loop is executed at most 2 times. The resulting optimized algorithm
is shown as algorithm 4. Rq denotes a register variable and C' and C'1 are carry words.
The number of single-precision multiplications is linear in n, namely n + 1, such that the
running time for a modular multiplication will be dominated by the multiplication step.

6. Generalized Mersenne Primes
A Generalized Mersenne (GM) prime is a prime p of the form

p=b"4+c, 1 0"+ +0, (6.1)

where b is a power of 2 (the machine’s word base), ¢; € Z, and the norm 3"~ '|¢;| of the
coefficient vector is “small”. Of course, the condition that such an expression for p should
be prime imposes a number of restrictions on the coefficients ¢;. One immediate necessary
condition is that ¢y is odd. However, the investigation of such necessary conditions is
beyond the scope of this paper (see [19]). In what follows we assume that a prime of this
form is already known, and we describe two classes of algorithms for performing modular
reductions modulo p:
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Algorithm 4 Reduction of z < b*" by a modulus p = b" — ¢, optimized version.

Input: z < b**, p =b" — ¢ where 0 < ¢ < b and n > 2.

Output: zMOD p.

: q=2zDIVH', r=2MODbH"

(Rg,q) =q-c

(C,r)=r+gq

if Rq > 0 then
(Clyry=r+Rq-c
C=C+C1

end if

while C >0 or r > pdo
r=(r —p) MOD b"
cC=C-1

: end while

: return r

—
N = O

e A generic reduction algorithm based on Solinas’ work [19] which works for every GM
modulus p, but benefits from the special modulus structure.

e A number of hard-coded reduction algorithms, each of which belonging to only one
special modulus p. These algorithms are just optimized versions of the generic method
mentioned above.

6.1. Generic Generalized Mersenne Reduction

The idea of GM reduction is based on the fact that every modular reduction z MOD p,
where 2z < p? < b®", can be expressed as a sum of at most n multi-precision integers
modulo p. In general, the computation of each digit of these integers requires n multipli-
cations, yielding a total of n3 single-precision multiplications. However, if the condition
on the ¢;’s stated above holds, the products can be computed using only additions, and
often the number of multi-precision additions can be kept small.

For the following description, we restrict the range of the coefficients to |¢;| < 1. This
conforms to the generalized Mersenne primes recommended for the use in elliptic curve
cryptosystems (e.g. by NIST [16]). Moreover, we want p to be smaller than 0", i.e. for
the largest ¢ < n satisfying ¢; # 0 we require that ¢; < 0.

To get to an efficient method for reduction modulo p, we first consider the polynomial
n—1
fO=t"+> et (6.2)
i=0

(hence f(b) = p) and compute the polynomial residues of ", "1 ... #>"~! modulo f(t).
We arrange the coefficient vectors of these polynomials as the rows of an (n xn)-matrix X.
Explicitly, the matrix X, which we call the reduction matriz of f, is defined inductively
by the equations
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X0, 7] = —¢; for 0 <j <n, (6.3)
. —cp Xji—1,n—1 forj=0,i=1,...,n,
Xfij) = ool 0 (6.4
X[i—-1,7—1—-¢ X[i—1,n—1] forj>0,i=1,...,n.

Note that |X[i,j]] < n for all 0 < i,j < n, because |¢;| < 1. It is easy to show by
induction that this definition implies that for all ¢ in the range 0 < ¢ < n,

= z_:X[i,j] 7 (mod f(t)). (6.5)

This equation allows us to perform reduction modulo p = f(b) by evaluating a linear
expression involving the matrix X. Given an integer
2n—1

z= Zz, b < p?,
i=0

which is to be reduced modulo p, we can replace all powers b > b" by the expressions
resulting from equation (6.5). This yields

n—1 n—1
2MODp =3y ¥ where y; = (zj +3 z X[i,j]) MODp. (6.62)
=0

=0
Using matrix notation, these equations can be denoted more compactly as

zMODp= (Yo --- Yn-1) = ((20 --- 2n=1) + (2 ... 220-1) - X) MODp. (6.6b)

We want to evaluate this linear expression efficiently by taking advantage of two facts:
first, the matrix product can be decomposed into a sum of row vectors which are regarded
as n-digit integers. Second, as the entries of X are absolutely bounded by n, which is a
small integer, we may replace the single-precision multiplications involved in the matrix
product by successive additions and subtractions. These considerations lead to the basic
algorithm 5 for a modular reduction.

The number of executions of the first while loop of algorithm 5 is equal to the maximal
sum of positive entries along each column of the reduction matrix X. We therefore call
this number the modular addition weight w,(f) of f. Similarly, the number of multi-
precision modular subtractions only depends on the negative entries of X and is called
the modular subtraction weight ws(f) of f. The total running time of the basic algorithm
is determined by the value w(f) = w,(f) + ws(f), which is called the modular reduction
weight of f.

To indicate that the reduction matrix also depends on f, we write X = X in the following.
For the purpose of a simpler treatment of additions and subtractions, let us decompose
Xy into a positive and a negative part:

Xle, 9] if Xl2, 9] >0
X}F[l,j] — f[%]] 1 f[la‘]] ) (67)
0 otherwise.

. X[, 7] if X¢[i, 4] <O,
X gy = { POl X 65)
0 otherwise.
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Algorithm 5 Basic algorithm for reduction modulo a Generalized Mersenne prime.

Input: z < p?, p = f(b) a Generalized Mersenne prime, and the reduction matrix X of f.
Output: zMOD p.

1: x=2MODp
2: while X contains a positive entry do  // perform modular additions
3:  for all columns j of X do
4: search for the least ¢ > 0 such that X[i, 5] >0
5: if found then
6: uj = Zy4i; decrement X4, ]
T else
8: u; =0
9: end if
10:  end for
11: z=(z+u)MODp // multi-precision modular addition
12: end while
13: while X contains a negative entry do // perform modular subtractions
14:  for all columns j of X do
15: search for the least ¢ > 0 such that X[i, 5] <0
16: if found then
17: Uj = Zp4i; increment X[, 7]
18: else
19: u; =0
20: end if
21:  end for
22: z=(x—u)MODp // multi-precision modular subtraction
23: end while
24: return z

Algorithm 6 Precomputation of the modular addition matrix of a generalized Mersenne
prime p = f(b).
Input: the positive part X;f of the reduction matrix of f, and the modular addition weight

wa(f)'
Output: the modular addition matrix Ay.

1: for k=0 to we(p) — 1 do

2: forj=0ton—1do

3: 1=0

4: while i < n and X [i,5] = 0 do

5: increment 1

6: end while

7: if i <n then // positive entry found
8: A¢lk, j] = n + 1; decrement X}" [0, 7]
9: else
10: Ak, j] =2n
11: end if
12:  end for
13: end for
14: return Ay
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Clearly, we have X; = XJZF — X, and the modular addition and subtraction weights are
given by
+
i = s (S} w0 = s (D). o0

We are now ready to speed up algorithm 5. Observe that the search for positive and neg-
ative entries in lines 4 and 15, respectively, only depends on the reduction matrix X,;. We
can therefore precompute the positions (i, j) found by the basic algorithm and construct
a matrix Ay of dimension w,(f) x n such that A[k, j| contains the index n + i used in
line 4 after the while loop has been executed & times (0 < k < wy(f)). This means that
row number k of Ay contains all indices of the digits of z which are to be processed in
the (k + 1)-th modular addition of the basic algorithm. We call A the modular addition
matriz of f. The construction of Ay is shown in algorithm 6.

Another matrix Sy, which is called the modular subtraction matriz of f, is obtained using
the same algorithm with input X ;" and ws(f). Its dimension is ws(f) x n.

The basic algorithm 5 can now be improved using the matrices Ay and Sy, as shown
in algorithm 7 in the appendix. Additionally, we could get rid of the temporary n-digit
variable u by incorporating the use of Ay and Sy into the modular addition and subtraction
operations, respectively. This optimization option, however, requires an extension of the
low-level multi-precision integer library and has not been implemented.

To illustrate these algorithms, let us consider the prime
p=2"7 2% _1=F(b) where f(t)=t"—t—1, b=2

The reduced matrix is computed as

110 =14t (mod f(t)),
Xp=1011 meaning th=t+1t° (mod f(1)),
L 11 tP=1+t+t>  (mod f(t)).

The modular addition weight is w,(f) = 3, which is the maximum of the column sums

in Xy. As X; does not contain any negative values, the modular subtraction weight is

ws(f) = 0. A reduction modulo p can thus be performed using only 3 modular additions of

3-digit integers. The modular subtraction matrix is not defined, as its column dimension
is 0. Applying algorithm 6 on X;’ = X gives the modular addition matrix:

3 4

Ar=15 5

Given an integer z = (Z[) 21 2o 23 2 z5) < p?, algorithm 7 effectively computes

zMODp = (u(o) +u® 4@ 4 u(3)) MOD p, where

u® =( z 2 2z ),
u) = ( zy oz oz ),
u® =( z oz 2z ),
u(3) = ( 0 Z5 0 )
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Tab. 2: Some Generalized Mersenne primes for use in elliptic curve cryptography

f(t) b p= f(b) wa(f) ws(f)
B —t—1 04 2192 _ 964 _ 1 3 0
t7 _ t3 + 1 232 2224 _ 296 + 1 2 2
t8 _ t7 + t6 + t3 -1 232 2256 _ 2224 + 2192 + 296 -1 6 4
t12—t4—t3+t—1 232 2384_2128_296+232_1 7 3
t14 _ t7 -1 232 2448 _ 2224 -1 3 0
t16 —t—-1 232 2512 _ 232 -1 3 0

This result also occurs in [16, Appendix 1], where the entries along each column appear
in a different order, but this does not alter the value of 2 MOD p.

Finally, some Generalized Mersenne primes p in the range 2% < p < 2512 for bases b = 232
and b = 2% are listed in table 2. Most of them are taken from [16]. The base b need
not be the actual machine word base. The algorithm can also be applied to the modulus
p = 2192 — 2%% 1 on a 32-bit machine by using the polynomial t® — #2 — 1. Conversely,
the algorithm can be implemented for the other polynomials on a 64-bit architecture
using half-word arithmetic. This may even be necessary, since suitable GM primes of low
weight seem to be rare. Note that table 2 lists all GM primes in the given range which
are generated by polynomials of the following forms (for b = 232 and b = 26%):

ft)=t-1,
flt)=t=3,
ft)=t"—-t-1 where 0 < 2¢ < n,
nt1 n
=" ttr(1 !
=" 4] for n > 1.

These are the polynomials of modular reduction weight 1 and 3 listed in [19].

6.2. Hard-Coded Generalized Mersenne Reduction

Implementors of the elliptic curve cryptosystems specified in the standards [10, 1] may
choose to use only the recommended GM primes listed in table 2 for the underlying finite
field arithmetic. In this case, the generic GM reduction algorithm can be optimized for
different individual primes by hard-coding the multi-precision additions modulo p.

In the sequel we present the addition and subtraction matrices of the polynomials of
weight < 4 given in table 2. Sometimes, the implementation is facilitated by re-arranging
the matrix elements within each column, which does not alter the result due to the
commutativity of addition. The aim is to preserve the original order of the digits of
the input value z as far as possible to minimize copy operations. We just present the
transformed matrices.
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fy=t3—t—1 (p=2192-20_1)

Ap =

f(t):tY—t?’—i-l (p:2224_296_|_1)

g ("1 -1 -1 7 8 9 10
F=\-1 -1 -1 11 12 13 -1

5_78910111213
F7\11 12 13 -1 -1 -1 -1

f(t) — t14 _ t7 -1 (p — 2448 _ 2224 _ 1)

A = 14 15 16 17 18 19 20 21 22 23 24 25 27
F=\21 22 23 24 25 27 14 15 16 17 18 19 20

f(t):tIG_t_l (p:2512_232_1)

16 17 18 19 20 21 22 23 24 25 27 28 29 30 31
Ap=131 16 17 18 19 20 21 22 23 24 25 27 28 29 30
-13 -1 -1-1-1-1-1-1-1-1 -1 -1 -1 -1 -1

7. Implementation Results

The modular reduction algorithms described above were implemented as an extension of
the LiDIA Computational Number Theory library [20], using the GNU MP library as the
underlying multi-precision arithmetic. The timing tests were run on both an Intel 32-bit
platform, and an Alpha 64-bit architecture, both running Linux kernel version 2.2.

The 32-bit processor is a Pentium 200 Mhz with a 64-Bit data bus rated at 66 Mhz. The
CPU possesses an 8 KB L1 instruction cache and an 8 KB write-back L1 data cache. The
motherboard is equipped with a 512 KB pipelined burst SRAM L2 cache.

The 64-bit CPU is an Alpha 21164 600 Mhz on an AlphaPC 164UX Motherboard with
a board-level 2 MB L3 synchronous SRAM cache and a 128-bit data path. The CPU
possesses an 8 KB L1 instruction cache, an 8 KB write-through L1 data cache, and a
96 KB write-back L2 unified instruction and data cache.

The time measurements were done by reading the processor clock cycle counter before and
after the relevant code section. To obtain reliable results, each modular multiplication
was repeated 50 times with the same operands, and only the mean value and its expected
error, denoted by ¢t + At, were taken into account for further processing. The expected
error has been computed from the individual timings 7; as

At = EN:M (N = 50). (7.1)
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The overhead introduced by the time measuring procedure was eliminated by subtracting
the mean timing of an “empty” code section from the measured timings. This overhead
was ~ 35 clock cycles on the Pentium and &~ 15 clock cycles on the Alpha machine.

For each algorithm A and prime p, 100 integer pairs z1, 2o in the range 0 < 21,20 < p
were chosen randomly as input values for the modular multiplication timing procedure.
Up to 4 different PM primes and one GM prime of the same bit length were tested and
all individual timings ¢; = At; were collected. Only the GM primes listed in table 2
on page 358 with modular reduction weight at most 4 were used. The classical and
Montgomery methods were applied to both types of primes.

Tables 3 and 4 in the appendix list the statistical results for each algorithm and modulus
length. The standard deviation ¢ is computed only from the ¢;’s. It describes the dis-
tribution of the timings as the modular multiplication operands vary. The error € of the
mean value is computed from the individual errors At; as

s (At)?
0=—+——-——. 7.2
= (72)
The total error At is just the sum of o and . The values ¢t + At are shown graphically
in figures 1 and 2. Because there is only one data point for the generic GM method on
the Alpha platform, it is not displayed.

For comparison, the timings for the modular reduction operation are also included (see
figures 3 and 4, and tables 5 and 6 in the appendix).

The peak in the curve for classical reduction on the Alpha at 224 bits is due to the
normalization of the operands, which is only necessary if the modulus size is not a multiple
of the word size. The timing for Montgomery reduction on the Alpha at the same bit
length shows the effect of the precomputation on the modulus. Thus, the curve is really
a step function, meaning that the running time is a function of [log, p].

The results indicate that modular reductions by hard-coded GM primes are more efficient
than the ones by Pseudo-Mersenne primes, provided that the GM prime is a polynomial
function of the actual word base. If hard-coded GM reduction is implemented on a half-
word base (see the 224-, 448-, and 512-bit GM primes on the Alpha), Pseudo-Mersenne
reduction might be faster. Moreover, the efficiency of GM reductions strongly depends
on the modular reduction weight of the generating polynomial. It is expected from the
results in figure 3 that Pseudo-Mersenne reduction is faster than hard-coded GM reduc-
tion whenever the modular reduction weight exceeds 4. But also the structure of the
modular addition and subtraction matrices determine the efficiency of a GM reduction
implementation, as can be seen from the fact that the hard-coded GM reductions were
faster for the 512-bit prime than for the 448-bit prime, on both platforms.

8. Conclusion

The implementation results show that the execution times of field multiplications can be
remarkably improved with respect to Montgomery multiplication by using the modular
reduction algorithms for special moduli. For field sizes near 2'92) the gain is about 35%
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on the 32-bit platform, and 27% on the 64-bit architecture. The gap increases with the
field size up to 51% and 41%, respectively, at sizes near 2°'2.

The generic method based on Generalized Mersenne is up to 10% slower than Pseudo-
Mersenne reduction on the 32-bit platform, and appears to be even slower than Montgo-
mery multiplication on the 64-bit platform. However, when GM reduction is hard-coded
for each individual modulus, it may have an advantage over Pseudo-Mersenne reduction
of up to 9%.

From an implementor’s point of view, the disadvantage of Generalized Mersenne reduction
is its bad scalability with respect to the bit length of the modulus. This means that GM
reduction must be implemented separately for each special modulus, and the performance
strongly depends on the modular reduction weight of the generating polynomial, on the
machine word base, and on the structure of the modular addition and subtraction matri-
ces, as explained in the previous section. Moreover, GM primes of low modular reduction
weight are rather rare compared to Pseudo-Mersenne primes.

An additional implication of the timing results given in this paper is that the efficiency
of general prime finite field arithmetic can be increased considerably by using the Mont-
gomery representation of field elements. The official LiDIA library does not yet support
Montgomery representation, but uses classical reduction for all prime field computations.
However, the measured improvements for field multiplications are 18-31% on the 32-bit
platform and 26-42% on the 64-bit platform, in the investigated range of moduli.
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A. Generic Generalized Mersenne Reduction

Algorithm 7 Efficient reduction modulo a Generalized Mersenne prime p = f(b).

Input: z < p?, the modular addition matrix Ay, the modular subtraction matrix Sy, and
the corresponding column dimensions w,(f) and w(f).

Output: 2 MOD p.

1: 1 =2n

2: while b’ > z do

3: Z; = 0

1=1—1
end while
r=2zMODp, C=0
. if we(f) > 0 then
for £ =0 to w,(p) —1 do // perform modular additions
for j=0ton—1do

10: uj = za, [k, j
11: end for
12: (Clyx)=x+u
13: C=C+C1
14:  end for
15:  while C' >0 or x > p do
16: z = (z —p) MOD D"
17: CcC=C-1
18: end while
19: end if
20: if w,(f) > 0 then
2. C=0
22:  for k=0 to ws(p) —1 do // perform modular subtractions
23: for j=0ton—1do

24: Uj = 2s; [k,]]
25: end for
26: (Clyz)=z—u

27: Cc=C+C1

28: end for

29:  while C' > 0 do

30: z = (x 4+ p) MOD ™
31: CcC=C-1

32: end while

33: end if

34: return
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B. Timing Diagrams
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Fig. 1: Modular multiplication timings for special prime moduli on a Pentium-II based PC.
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Fig. 2: Modular multiplication timings for special prime moduli on an Alpha 21164.
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C. Timing Data

Tab. 3: Timing statistics for modular multiplication algorithms on a Pentium-II
based PC. Timing values are in clock cycles.

modulus mean total deviation error count
length /bits timing error of mean
|2 t o+0 o 0 N
classical reduction
192 2524.0 122.0 116.9 5.1 500
224 3048.6 131.9 126.4 5.5 500
256 3660.9 185.2 176.5 8.6 400
320 5007.9 208.4 198.6 9.8 400
384 6606.2 230.0 209.8 20.2 100
448 8436.9 436.0 415.1 20.9 400
512 9998.4 268.2 257.1 11.1 500
Pseudo-Mersenne reduction
192 1403.1 113.7 108.6 5.0 400
224 1651.1 134.6 128.4 6.1 400
256 1930.4 114.0 109.0 5.0 400
320 2511.7 120.0 114.5 5.5 400
384 3314.1 436.2 397.1 39.1 100
448 4145.2 169.2 160.3 8.9 300
512 4503.0 185.0 176.2 8.8 400
generic GM reduction
192 1360.8 135.4 123.7 11.7 100
224 1820.5 166.9 151.8 15.1 100
448 4233.8 166.3 151.9 14.4 100
512 4615.6 174.8 160.1 14.7 100
hard-coded GM reduction
192 1146.1 36.9 35.5 1.4 100
224 1463.4 116.3 106.4 9.8 100
448 3848.4 135.8 125.3 10.6 100
512 4109.7 134.6 124.0 10.6 100
Montgomery reduction
192 1757.6 110.6 105.9 4.8 500
224 2197.2 109.8 105.1 4.7 500
256 2718.8 243.8 232.2 11.6 400
320 3858.5 151.6 144.3 7.3 400
384 5285.0 189.3 172.0 17.4 100
448 6916.6 208.9 198.8 10.1 400
512 8265.5 287.8 275.4 12.4 500
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Tab. 4: Timing statistics for modular multiplication algorithms on an Alpha 21164
based workstation. Timing values are in clock cycles.

modulus mean total deviation error count
length /bits timing error of mean
p|2 t o+0 o 0 N
classical reduction
192 1505.1 37.5 35.8 1.7 500
224 2073.3 43.9 41.8 2.1 500
256 1967.1 39.1 37.0 2.1 400
320 2431.5 50.8 48.4 2.5 400
384 2997.8 49.5 44.9 4.6 100
448 3652.6 58.2 55.3 2.9 400
512 4317.0 51.3 49.0 2.3 500
Pseudo-Mersenne reduction
192 717.8 36.8 35.9 0.9 400
256 932.1 53.0 51.0 2.0 400
320 1166.1 51.4 49.9 1.6 400
384 1418.9 54.3 51.5 2.8 100
448 1713.1 61.7 59.9 1.8 300
512 2009.1 62.1 59.9 2.2 400
generic GM reduction
192 | 9111 [ 437 | 41.3 | 2.4 100
hard-coded GM reduction
192 654.7 41.8 39.3 2.5 100
224 1032.2 55.0 52.2 2.8 100
448 1732.7 66.0 62.9 3.1 100
512 1894.6 52.5 50.3 2.3 100
Montgomery reduction
192 887.8 27.3 26.1 1.2 500
224 1246.1 28.1 26.8 1.2 500
256 1241.2 26.5 25.5 1.1 400
320 1616.4 36.9 35.1 1.8 400
384 2079.6 41.1 37.4 3.7 100
448 2631.1 45.2 43.2 2.0 400
512 3205.6 52.9 50.6 2.2 500
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Tab. 5: Timing statistics for modular reduction algorithms on a Pentium-II based
PC. Timing values are in clock cycles.

modulus mean total deviation error count
length /bits timing error of mean
p|2 t o+0 o 0 N
classical reduction
192 1640.4 118.1 113.1 4.9 500
224 1963.3 280.0 268.1 11.9 500
256 2293.5 132.3 126.5 5.8 400
320 3066.7 147.1 140.5 6.6 400
384 3940.5 131.9 121.4 10.5 100
448 4948.0 185.5 177.1 8.4 400
512 6064.9 276.2 265.1 11.2 500
Pseudo-Mersenne reduction
192 352.3 34.2 33.7 0.5 400
224 385.0 65.7 63.2 2.5 400
256 408.6 40.9 40.4 0.5 400
320 417.2 67.3 64.4 2.9 400
384 471.4 45.8 45.0 0.8 100
448 530.0 81.3 77.5 3.8 300
512 580.8 70.7 68.2 2.5 400
generic GM reduction
192 480.5 39.5 37.7 1.8 100
224 715.0 63.3 61.7 1.7 100
448 797.5 153.6 139.9 13.7 100
512 862.5 180.7 165.3 15.4 100
hard-coded GM reduction
192 274.9 34.2 33.7 0.5 100
224 368.9 54.5 53.5 1.1 100
448 408.4 55.4 54.2 1.2 100
512 355.9 55.4 53.9 1.6 100
Montgomery reduction
192 867.0 79.3 76.0 3.4 500
224 1091.9 68.7 65.9 2.8 500
256 1348.4 97.5 92.9 4.6 400
320 1914.6 143.9 137.1 6.8 400
384 2650.5 258.0 238.2 19.8 100
448 3451.1 151.7 144.5 7.2 400
512 4382.5 168.7 161.5 7.2 500
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Tab. 6: Timing statistics for modular reduction algorithms on an Alpha 21164 based

workstation. Timing values are in clock cycles.

modulus mean total deviation error count
length /bits timing error of mean
p|2 t o+0 o 0 N
classical reduction
192 1078.7 40.6 38.7 2.0 500
224 1485.3 53.5 51.2 2.3 500
256 1335.8 45.4 43.2 2.2 400
320 1657.7 51.1 48.7 2.5 400
384 2034.8 47.3 42.6 4.7 100
448 2441.3 53.5 50.8 2.7 400
512 2811.4 69.3 66.3 3.0 500
Pseudo-Mersenne reduction
192 261.3 28.6 27.9 0.7 400
256 278.7 25.5 25.0 0.5 400
320 332.3 28.9 28.2 0.7 400
384 359.5 44.2 42.0 2.2 100
448 406.5 44.3 43.0 1.2 300
512 399.7 33.8 33.1 0.8 400
generic GM reduction
192 379.5 | 33.7 | 31.3 | 2.4 100
hard-coded GM reduction
192 194.1 31.1 30.1 1.0 100
224 381.7 53.4 51.1 2.2 100
448 402.9 50.4 48.4 2.0 100
512 329.8 44.2 42.2 2.0 100
Montgomery reduction
192 382.3 17.1 16.4 0.7 500
224 569.2 26.4 25.3 1.2 500
256 561.5 21.8 20.8 1.1 400
320 756.5 28.4 27.1 1.3 400
384 984.3 27.8 25.3 2.4 100
448 1272.2 37.6 35.9 1.6 400
512 1565.3 39.1 37.4 1.7 500




