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Abstract

Spreadsheet programs, artifacts developed by non-programmers, are used for a varie-
ty of important tasks and decisions. Yet a significant proportion of them have severe
quality problems. This thesis presents a new approach for checking spreadsheets on
the premises that their developers are not software professionals. The approach takes
inherent characteristics of spreadsheets as well as the conceptual models of spreads-
heet programmers into account and incorporates ideas from symbolic testing and
interval analysis.

Unlike symbolic testing, which requires expressing formulas in terms of input va-
riables, interval-based testing uses intermediate variables for the purpose of narrowing
down computed intervals. In addition, while symbolic testing is used to validate a
formula for any possible values of the input variables, interval-based testing requires
the values of the variables to be expressed as intervals and validity is determined
based on the intervals provided.

The observation that spreadsheets are mainly used for numerical computations
enables us to introduce the idea of interval analysis to spreadsheet testing. Interval-
based testing focuses on the functionality of spreadsheet formulas instead of the in-
ternal structure of a spreadsheet program (i.e., it is not based on code coverage
criterion). It requires the user to specify input and expected intervals for desired
input and formula cells respectively. This will be documented in a behind-the-scene
spreadsheet and used to perform interval computations during the verification of a gi-
ven spreadsheet. In addition, the expected intervals provided by the user are verified
for reasonableness using interval analysis. The approach provided is thus essentially a
kind of stratified plausibility check based on the consistency of legitimate boundaries

users might specify for computations.
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Kurzfassung

Tabellenkalkulationen (Spreadsheets) werden von Anwendern ohne Programmierkennt-
nisse entwickelt. Sie werden fiir eine Vielzahl von wichtigen Aufgaben benétigt und
dienen als Grundlage fiir Entscheidungen. Es stellt sich jedoch heraus, dass ein Grof3-
teil der eingesetzten Tabellenkalkulationen schwerwiegende Qualitdtsméngel hat. In
dieser Arbeit wird ein neuartiges Priifverfahren fiir Tabellenkalkulationen préisentiert,
die von Anwendern ohne Programmierkenntnissen entwickelt wurden. Dabei werden
sowohl inhérente Tabellenkalkulationen-Charakteristiken, als auch konzeptuelle Mo-
delle von Tabellenkalkulationsentwicklern beriicksichtigt und Ideen aus den Bereichen
des symbolischen Testens und der Intervallanalyse miteinbezogen.

Im Gegensatz zum symbolischen Testen, das Formeln auf der Basis von Einga-
bevariablen erfordert, werden bei Intervall-basiertem Testen Zwischenergebnisse zur
Einschréankung der berechneten Intervalle verwendet. Weiters wird bei symbolischem
Testen eine Formel fiir jeden méglichen Wert der Eingabevariablen validiert. Dies ist
bei Intervall-basiertem Testen nicht der Fall. Hier werden die Variablen als Intervalle
ausgedriickt und die Giiltigkeit der Variablen auf der Basis dieser Intervalle bestimmt.

Hauptséichlich werden Tabellenkalkulationen fiir numerische Berechnungen einge-
setzt. Diese Tatsache rechtfertigt den Einsatz der Technik der Intervallanalyse fiir das
Testen von Tabellenkalkulationen. Intervallanalyse zielt auf das Testen der Funktio-
nalitdt von Spreadsheet-Formeln und nicht auf die interne Struktur der Tabelle ab
(so z.B. wird Code-Uberdeckung nicht gepriift). Der Anwender muf die Eingabe-
werte und auch die Intervalle fiir die Eingabe bzw. Zellformeln spezifizieren. Diese
Informationen werden in einem weiteren (versteckten) Spreadsheet gespeichert und
dienen wihrend der Verifikation zur Berechnung der giiltigen Intervalle. Zusétzlich

werden die Erwartungswerte der vom Benutzer definierten Intervalle mittels Inter-

xi



vallanalyse auf Plausibilitdt gepriift. Damit ist dieses Verfahren hauptsichlich ein
mehrschichtiger Ansatz zur Plausibilitatpriifung von Tabellenkalkulationen, das auf

der Konsistenz von giiltigen, von Anwendern spezifizierten Grenzwerten basiert.
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CHAPTER: 1

Introduction

1.1 Introduction

To ensure the quality of software, there are a variety of techniques and tools used at
various stages of the development process. Among these techniques, testing is a very
crucial activity to ensure the quality of software products and as a result up to 50%

of the cost of development is devoted to testing [7, 71, 109].

To aid testers, a variety of techniques have been proposed and are being used
at various stages of development. For end-user programs which are often developed
without any formal development methodology, the error rate is high, thus demanding
for a suitable testing methodology. Boehm and Basili [9] have indicated the necessity
of providing defect detection tools for end-user programmers whose number is grow-
ing rapidly. One of the most commonly used end-user programming environments is

the spreadsheet system.

Spreadsheet systems are widely used and highly popular end-user systems. They
are used for a variety of important tasks such as mathematical modelling, scientific
computation, tabular and graphical data presentation, data analysis and decision
making. They have actually contributed a lot to the promotion of end-user comput-

ing. Millions of people use spreadsheets everyday and they are the choices of many
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individuals and companies. Many business applications are based on the results of
spreadsheet computations and as a result important decisions are made based on
spreadsheet results. The provision of computational techniques that match users’
tasks makes programming easier. Besides their use for numerical computations which
is what they were initially designed for, spreadsheet models are also found to be very
important in other areas too. The computational models of spreadsheets are adopted
in areas such as information visualization, concurrent computation, user interface
specifications to name a few. Such extensions indicate the advantages of spreadsheets
as a model and mechanism for various kinds of programming environments. There is
also a trend in using the spreadsheet model as a general model for end-user program-

ming [73].

Despite their popularity due to their ease of use and suitability for numerical
computations, a significant proportion of spreadsheet programs have severe quality
problems. In recent years, there has been an increased awareness of the potential
impact of faulty spreadsheets on business and decision making. A number of experi-
mental studies and field audits [10, 86, 85, 81, 82, 87, 84, 83] have already showed the
serious impact spreadsheet errors have on business and on decisions made based on
spreadsheet programs. Moreover, the developers of spreadsheet programs are mainly
end-users who are not expected to follow the formal process of software development
and as a result their reliance on the initial correctness of their programs is overly
high. In addition, users do not have effective methods of detecting the existence of

faults.

Though spreadsheets are software too which are developed by end users, they are
also somewhat different. Therefore, traditional software quality assurance techniques
are not directly applicable or are applicable only to a limited extent to improve spread-
sheet quality. This is also true taking into consideration the expertise of users. Some
approaches have been proposed to tackle the spreadsheet quality problem by using
preventive mechanisms such as design methodology. These approaches are preventive
which aid to avoid some faults before they are introduced into programs, but they

do not provide mechanisms of detecting latent faults. Other approaches propose the
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adaptation of software engineering approaches to spreadsheets. These approaches
are quite appealing considering spreadsheets as computer programs. However, the
developers of spreadsheets are not trained in software engineering theory; they are
end-users who are not bothered about the formal process of software development.

Therefore, these approaches have a limited applicability.

Furthermore, users will not accept methodologies which distract their freedom of
work with which they are comfortable. In suggesting the use of software engineering
principles to spreadsheet development, the adaptation should take a serious consider-
ation of the spreadsheet developers. Unless the conceptual model of the spreadsheet
developer is incorporated in the process, all those nice looking approaches may not
be practiced by the large community of end users. On the other hand, spreadsheet
programs are different from conventional programs. Therefore, quality assurance
methodologies should take into consideration the similarities and differences among
spreadsheets respectively spreadsheet developers and conventional software respec-
tively programmers while providing mechanisms of reducing errors. The challenge is
to maintain a methodology in its ”"simplified” form (it may not be inherently sim-
ple) on the surface level which provides the user adequate control in order to check

whether his/her spreadsheet is "reasonably” correct.

However, very little is known about the use of testing as a means to improve
spreadsheet quality. The problem we want to address here is: How can spreadsheet
programs be tested? Unlike previous testing approaches which are based on structural
test adequacy criteria (i.e., based on code coverage criterion) we tackle the problem

based on the functionality of spreadsheet formulas.

This work aims to devise a testing methodology for spreadsheet programs on the
premise that their developers are not software professionals. The approach takes in-
herent characteristics of spreadsheets as well as the conceptual models of spreadsheet
programmers into account and incorporates ideas from symbolic testing and interval
analysis. The use of interval analysis on spreadsheets is appropriate particularly based

on the observation that spreadsheets are mainly used for numerical computations. For
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that matter, interval arithmetic is a generalization of real number arithmetic which

is the mathematical computation used behind spreadsheets.

The proposed methodology enables the user to attach intervals to the desired in-
put and formula cells and automatically perform interval analysis to determine the
conformance of spreadsheet computation, user expectation and interval computation.
Moreover, the integration of the testing methodology on top of a familiar spreadsheet
development system and the usability of the methodology without requiring any con-
cept of conventional software testing techniques will facilitate the use of the approach

by the large community of spreadsheet users.

The remainder of this chapter is organized as follows. The main focus of this
thesis, the need for spreadsheet program testing, is briefly described in section 1.2.
A highlight of the interval-based testing methodology which is based on symbolic
testing and interval analysis is given in section 1.3. A description of the organization

of the thesis is given in section 1.4.

1.2 The Spreadsheet Testing Problem

Spreadsheet programs are easy to write but program understanding, fault detection,
and debugging are difficult. As the computational structure and the accompanying
documentation are hidden from the user, maintenance is often error prone. Although
spreadsheet quality suffers from different perspectives such as design and maintenance

the focus of this thesis is on testing spreadsheet programs.

Formulas are very crucial elements of a spreadsheet program whose result serves
as a basis for decision making. Spreadsheets are usually developed to manipulate
numerical values. The manipulation is accomplished through the use of formulas.
Basically there are two types of cells in a spreadsheet: input cells and formula cells.
Input cells contain numbers entered by the user. Formula cells contain mathematical
expressions which contain references to the values of other cells, functions, and/or

arithmetic operators. Hence, it is not difficult to imagine that most of the errors will
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be introduced while creating formulas. In addition, some studies have already shown
that the number of errors in formulas are higher than other errors in a spreadsheet
program. In an experimental study of experienced users, Brown and Gould [10] found
that the majority of errors were formula errors. Saariluoma and Sajaniemi [101] have
identified two types of errors which are location errors and formula errors. In loca-
tion errors, the formula is structurally correct but one or more of the cell references
are wrong which affects the value of the formula. Similarly, Chadwick and Rajal-
ingham [17, 93] showed in their classification and detailed description of spreadsheet
errors that the observed errors were concerned with the construction and use of formu-
las. In addition, they stated that this result was confirmed by surveys of professional
computer auditors in the United Kingdom. The main problems associated with the
use of a formula as stated in [16] are choosing a wrong mathematical formula (e.g.,
incorrect use of SUM, average problem, etc.) to implement the required computation
and the incorrect use of relative and absolute cell references for a formula to be copied
to other locations. In our approach, we proposed interval-based testing to check the

correctness of formulas.

1.3 Testing Approach

A program can be tested based on its functional and structural characteristics. The
aim of structural testing is to measure how much a program code is exercised by a
given set of test cases. To do this, different code coverage criteria are available based
on the requirement of code coverage. A strong code coverage criterion requires the
design of a large number of effective test cases to assure that a large portion of the
code is covered during testing. This requires knowledge of the code structure and
use of abstract models such as control flow graph and def-use graph to describe the
code structure. On the other hand, functional testing is performed based on the
functionality of the program rather than the code structure. As a result the concern
is what the program is supposed to do rather than how it is written. Test cases are
designed so that it is possible to observe whether the desired functionality is accord-
ingly implemented. These techniques are targeted to professional programmers who

write programs based on formal methodologies of software development.
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Spreadsheet programmers who are not concerned about the formal process of
software development write programs mainly on a trial and error basis. Thus, they
are not expected to do testing respectively design in a formal way. However, they will
benefit much and can develop quality programs if they are provided tools which do
not require concepts of software engineering theory. Based on this observation and
the inherent characteristics of spreadsheets, we proposed an approach which combines

symbolic testing and interval analysis.

1.3.1 Symbolic Testing

Symbolic testing is a static analysis technique which requires the use of symbolic val-
ues instead of actual values for input variables in a program. The program is assumed
to be executed but with symbolic values. The validity of the resulting formula (i.e.,
symbolic output) is determined for any arbitrary value of the input variables. If a
formula is valid in such circumstances, then it is expected to be valid when actual
values are substituted for the input variables. Hence, it can be said that symbolic

testing lies between testing and proving program correctness.

However, unlike symbolic testing, which requires expressing formulas only in terms
of input variables, interval-based testing uses intermediate variables for the purpose
of narrowing down computed intervals. In addition, while symbolic testing is used
to validate a formula for any possible values of the input variables, interval-based
testing requires the values of the variables to be expressed as intervals and validity is

determined based on the intervals provided.

1.3.2 Interval Analysis

An interval represents a range of possible values bounded by the interval’s lower and
upper bounds. Interval analysis is used to extend the properties of real numbers so as
to provide a solution for problems involving uncertainty and approximations. Apart
from mathematical problems, its application is recognized in various fields such as

artificial intelligence and Systems and Control Engineering. Due to the inadequacy
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of closed intervals to solve a variety of problems, the classical interval arithmetic is
extended to deal with open intervals and intervals containing zero values. We can
see that the applications of interval analysis is mainly for applications dealing with

numerical computations.

Based on the observation that spreadsheets are mainly used for numerical com-
putations, we use interval computations on spreadsheets to detect the existence of
faults. The user specifies input and expected intervals for desired input and formula
cells respectively. This will be documented in a behind-the-scene spreadsheet and
used to perform interval computations during the verification of a given spreadsheet.
In addition, the expected intervals provided by the user are verified for reasonableness

using interval analysis.

1.4 Overview of the Thesis

The main goal of this research work is to devise a testing methodology for spread-
sheet programs. To achieve this goal, testing methods of conventional software were
surveyed, limitations of existing quality assurance approaches were examined and an
approach which takes into account inherent characteristics of spreadsheets as well as

the conceptual models of spreadsheet programmers is proposed and implemented.

The remainder of this thesis is organized as follows. Chapter 2 describes the usage
and characteristics of spreadsheets and the general quality issues that arise in spread-
sheet programs from different perspectives such as design, testing, and maintenance.
To give some background information about the types and real-life consequences of
spreadsheet errors, we present some of the error incidents that are reported in the
literature and a taxonomy of errors which are results of research and field audits
collected by different authors. In addition, a discussion of some of the limitations
spreadsheet systems have which directly or indirectly contribute to the quality prob-
lems of spreadsheet programs is presented. In chapter 3, we first present an overview
of conventional software testing followed by a discussion of the similarities and differ-

ences spreadsheet programs have with reference to conventional programs. Based on
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these similarities and differences, an assessment of the applicability of conventional
software testing methods to spreadsheet programs is made. As a result of this as-
sessment, an approach to testing spreadsheet programs is proposed which is based on
interval analysis and symbolic testing. Chapter 4 deals with the discussion of related
work which are aimed at preventing and revealing the existence of faults in spread-
sheet programs. We describe the approaches of spreadsheet design, formula design,

visualization, and testing.

In chapter 5, we discuss the background concept of interval arithmetic which
is the core concept of our testing methodology. Chapter 6 describes the interval-
based testing approach which is based on interval analysis and symbolic testing. It
discusses the basis for interval-based testing and defines the process of spreadsheet
program testing. To detect the existence of symptoms of faults, intervals are attached
to desired cells and interval computation is performed on spreadsheets. For this,
a discussion of interval computation on spreadsheets is provided. In addition, a
verification coverage criterion which indicates the extent of verification for a given
spreadsheet is provided. Once the existence of symptoms of faults is detected, the
next task is to find the location of the actual faults. A fault tracing strategy to identify
the most influential faulty cells is discussed in chapter 7. In chapter 8, we discuss the
design and implementation issues of interval-based testing methodology and describe
its architecture. Chapter 9 concludes the thesis by providing the main ideas of the
work and its contribution. A further extension of the work is also highlighted. The

definitions of the basic terms used in this thesis are given in the glossary.



CHAPTER: 2

Problem Background

”Spreadsheets make it easy to do complex calculation-and even easier to do them

incorrectly” [105].

Spreadsheets systems are widely used and highly popular end-user systems. They
serve as an important basis for decisions in almost any field of a modern society. De-
spite their exemplary status and pioneering features, spreadsheets suffer from quality
problems. In this chapter, we review spreadsheet usage (section 2.1) and the gen-
eral quality issues of spreadsheet programs (section 2.2). Some error incidents and
different taxonomies of spreadsheet errors are also provided. Besides the errors com-
mitted by users, the limitations of spreadsheet systems are also discussed. Finally, a

summary of the main points of the chapter is given in section 2.3.

2.1 End-user Programming and Spreadsheets

In the history of computer technology, the first computers were developed for nu-
merical computations. Due to the increasing demand of people to use computers
for other applications, its use is extended in diverse applications. The development
of spreadsheet systems immediately followed the development of personal comput-

ers. Spreadsheet systems have played a major role in the success and popularity of
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personal computers [62, 97]. The first spreadsheet system, VisiCale, which was de-
veloped in 1978 by Robert Frankston & Dan Bricklin was developed exclusively for
the purpose of accounting. The tabular interface was just an electronic representa-
tion of an accountant’s ledger sheet. Soon, people found the tabular layout easy and
appropriate to map a variety of problems directly into a spreadsheet. As a result,
spreadsheet systems did not remain as a tool for accountants only; they rapidly be-
came a tool of choice for various applications. Nowadays, they are used almost in all
office environments for the purpose of numerical computation, mathematical mod-
eling, scientific computation, tabular and graphical data presentation, data analysis
and decision making, etc. The basis for all these applications is its suitability for

numerical computations.

Spreadsheet programs are developed for a variety of tasks. Some are used for sim-
ple, one-time applications; others are used for complex tasks and are used frequently.
For example, Sajaniemi & Pekkanen [103], in their study of spreadsheets in business
and government organizations, found a spreadsheet program which contains 1092
edges of a path in the data dependency graph. While some are for personal use, oth-
ers are highly important and used for organizational missions. Spreadsheet programs
which are developed for organizational purposes are usually developed by a group of
people with varying domain and programming experience. In their study, Nardi and
Miller [74] found that spreadsheets used in the work environments are results of col-
laborative work by people with different levels of programming and domain expertise.
Cooperative work is accomplished by successive refinement of a spreadsheet program
by people of different responsibility and expertise and by exchange of templates. Dur-
ing the verification of a spreadsheet program, different people with different levels of

expertise were also found working together.

Spreadsheet systems are widely used and highly popular end-user systems. They
have actually contributed a lot to the promotion of end user computing. According
to the number of users, spreadsheet systems are the most widely used next to word
processing packages [108]. In a questionnaire of 373 accountants who are working in

large and mid-sized firms, accountants chose spreadsheet systems over other systems
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(e.g., DBMS and Accounting systems) [57]. Even though this study considered only
one area of spreadsheet use, it still indicates the degree of spreadsheet importance.

There are different reasons for their popularity.

1. Spreadsheet systems are easy to use. To write a spreadsheet program, one needs
to fill numbers to cells and the accompanying labels and then specify formulas
to perform computations. For the specification of a formula, there are also a
variety of built-in functions from a pre-defined library. The user needs only to

identify the arguments of the functions which are mostly cell references.

2. Spreadsheet systems provide a computational power to non-programmers to do
complicated sets of calculations quickly and easily [25]. Accountants, secre-
taries, scientists, etc. develop very important applications without the need of

learning conventional programming.

3. The integration of a task-oriented formula language and tabular layout [73]. The
availability of high-level task specific functions relieves the user from low-level
details of programming. Spreadsheet languages provide a set of mathematical,
business, and statistical functions which are commonly needed for a variety of
applications. The tabular layout is a familiar and flexible display for structuring
and presenting data for a wide range of applications [39]. It also serves as a guide

and problem understanding framework during the problem solving process.

4. The metaphorical and visual nature of the user interface [114]. Spreadsheet
systems provide immediate visual feedback about the effects of computation.

The entire state of computation is visible.

Spreadsheets are an important basis for decisions in almost any field of a modern soci-
ety. Besides their use in business, Filby [32] demonstrated a variety of examples used
in scientific and engineering computations such as Physics and Electronic Engineering,
Chemical Engineering, Molecular Biology, and Material Sciences. The ever increas-
ing use of spreadsheets in various fields stretch them in different directions. On the
other hand, there are different researches trying to extend the existing computational
model of spreadsheet systems, adding to its multi-dimensionality. The spreadsheet

computational model is a one-way constraint model; meaning that the direction of
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evaluation is from input argument values to output formula values. Stadelmann [110]
and Hyvonen & Pascale [45] claim that spreadsheet systems could be best used if
the computational model is extended to a two-way constraint model. The idea is to
enable spreadsheets to solve for inputs from the value of a formula (i.e., back solving).
In fact this is a problem of finding the inverse. The formula is supported by a con-
straint for which the inverse value is to be computed. For example, if a spreadsheet
formula for a profit is given by profit = sales - expense, then a user might be inter-
ested to know what values of sales would result in a profit of say between 1,000,000
and 1,500,000 for a certain expense. Nardi and Miller [73] analyzed the advantages

of the spreadsheet model as a general model for end-user programming.

Others investigated the use of ”sheet-based” programming for other purposes.
For example, Chi [22] used the spreadsheet metaphor for information visualization
where the cell contains a data set (i.e., abstract data set, selection criteria, view-
ing specifications, etc.) instead of simple data elements and formulas; Yoder and
Cohn [121, 122, 123] used the spreadsheet metaphor for designing a programming
language model for concurrent computation; Hudson [42] used the computational
model of spreadsheet systems for the purpose of user interface specification; Lewis [60]
provided support for interactive graphics based on the basic concepts of the spread-
sheet. Generally, the spreadsheet model is serving as a model for various kinds of

programming environments.

2.2 Spreadsheet Quality Issue

Spreadsheet systems are used by millions of people everyday and they are the choices
of many individuals and companies. The provision of computational techniques that

match users’ tasks makes programming easier.

Spreadsheet programs are different in some ways and these differences actually
contribute partly to the spreadsheet quality problem. First and foremost, spread-
sheets are developed by end-users who are not acquainted with the process of soft-

ware development and as such they lack design review and control procedures that
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are normally associated with traditional software developed by professional program-
mers [57]. In spreadsheet development, the user usually starts coding before prior
specification or design is accomplished and as such programming is done by trial and
error. There are no distinct periods of design, coding, testing and debugging. In
addition, some of the inherent properties of spreadsheet systems that seem to reduce
complexity at first sight might become a burden in complex situations specifically
during modification (e.g., invisibility of computational structure). The ad hoc style
of spreadsheet development combined with the inherent properties of spreadsheet sys-
tems can raise quality issues. Thus, given the factual importance of spreadsheets due
to the importance of the decisions based upon spreadsheet computations, spreadsheet

quality needs a serious consideration.

2.2.1 Error Incidents

A number of experiments and field audits documented the existence of quality prob-
lems in spreadsheets. These studies encompass students in academia as well as pro-
fessionals in real-world applications. All studies come up with different error rates

but all found a significant number of errors.

One of the earliest studies of spreadsheet errors by Brown and Gould [10] found
that 44% of the spreadsheets created by experienced users contained errors. A more
recent and comprehensive study and collection of spreadsheet errors is the one com-
piled by Panko. In a development experiment, Panko and Halverson [85, 86|, found
that 64% - 79% of the spreadsheets created by different groups of subjects were erro-
neous. In addition, Panko [87] summarized the cell error rates at different stages of
a spreadsheet life. He found a cell error rate of 1.9% - 5.6% in development experi-
ments; 1.2% in field audits (i.e., in operational spreadsheets); and 34% - 55% in code
inspection experiments. Note that cell error rate (CER) is a measure of the number
of errors in spreadsheets which is a counterpart of faults/KLOC in conventional pro-
gramming. CER is defined as the total number of errors divided by the total number

of numeric cells (i.e., input numeric cells and formula cells) [81].
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There are also errors that were found in operational spreadsheets which had a
serious impact for the firms. For example, a U.S. contractor mis-referenced a cell in a
SUM formula over a range and lost $254,000 in a bid [49]; a Dallas-based oil and gas
company fired employees for decisions made based on an erroneous spreadsheet which
costed the company millions of dollars [49]; UK H.M. Customs and Excise found 10%
of tax payers spreadsheets containing errors in a partial analysis of the spreadsheets
during 1988 - 1992. The value of the errors was reported to be more than two
million pounds [14]; a financial model review by an auditing firm KPMG management
consulting found at least 5 errors in 95% of the spreadsheets reviewed [94]; a Houston
consultant with Price Waterhouse found 128 errors in 4 spreadsheets that had already

been in use [93].

2.2.2 Taxonomy of Spreadsheet Errors

A study of errors addresses the issue from different perspectives. A commonly used
strategy is to consider frequency of occurrence, real life consequences, and detail study
of the actual errors themselves. In the situation where it is difficult to detect and
remove all errors in a program, identification of important ones is often necessary.
Beizer [7] defined a metric for bug importance which takes into account the frequency

of occurrence and consequences.

Classification Schemes

A classification scheme should address the types of most frequent and important er-
rors. In addition, the effectiveness of error prevention and detection techniques can
be evaluated based on a taxonomy of errors which indicates the types, frequency and
possible causes. However, as Beizer [7] indicated, there is no universally correct way
to categorize faults. A given fault can be put into different categories depending on
the view of the programmer and the source of the error as we can see in the following
classifications. For example, typing + instead of - in a given formula may be typo-

graphical or misunderstanding of the necessary arithmetic.

Some classification schemes are available for spreadsheet errors. Panko and Halver-
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son [87] offer a taxonomy that consists of three major categories of errors: mechanical,
logic, and omission errors. Mechanical errors refer to typographical and positioning
errors. Logic errors are misunderstanding of the logic of the necessary algorithm to
be used in a formula. Omission errors are a result of leaving out something needed
in the program. This classification is mainly based on the causes of the errors. A
more general classification scheme containing Panko and Halverson’s scheme is given

by Rajalingham et al. [92].

Saariluoma et al. [101], in their experimental study, categorized spreadsheet er-
rors in two basic types: Location and Formula errors. Location errors are what are
commonly termed as misreference errors. They also indicated that these errors are
typical in spreadsheet programs. Formula errors contain typographical errors in for-
mula components and what they call mathematical mistakes. Mathematical errors are
a result of the inability to define the necessary mathematical expression in a formula.
The main errors in this scheme are typographical, misreference, and mathematical

errors.

Another classification is given by Ayalew et al. [5] from a different perspective.
Instead of categorizing errors based on their cause, this scheme classifies errors by
the spreadsheet concept they seem to be associated with. In this scheme there are
three categories of errors: Physical area related errors, Logical area related errors,

and General errors.

Category 1: Physical Area Related Errors

Errors that are typical to physical areas normally deal with missing values in the
area or values of the wrong type somewhere in the area. We call this error reference
to a blank cell and reference to a cell with value of wrong type. In some cases such
values are entered intentionally to achieve a better structure and/or readability of the

spreadsheet program. In other cases, these values result from errors.

Example 2.1: Reference to a blank/wrongly typed cell

In figure 2.1 the range for the sum spans from label 1. Quarter down to the last cell
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A | B |
1
2 i uarter T 1
] : :
4 |January 140 ]
5 |February 1200 !
B |March 170 !
7 12. Quarter !
8 |April 180 '
9 |May v230 '
10 | June Moo
11
12 | Sum =3UMIB2:B10)
17

Figure 2.1: Reference to a blank/wrongly typed cell

of the list. The two label cells are not considered in the sum yet, but there is no hint
for the user that they might influence the sum if they are changed to a number (e.g
to 1 instead of 1. Quarter).

A similar error occurs when numbers are entered (or formatted) as text though
the numbers are intended to be used for some calculation purposes. This is due to
the fact that spreadsheet formulas take text cells and numeric cells without signaling

any error message about type mismatches.

Example 2.2: Incorrectly formatted cells

Figure 2.2 shows a spreadsheet to calculate the sum of the scores of students using
a SUM formula. This spreadsheet was imported from another program. The SUM
function over the range B3:N3 resulted in the value 22 which is incorrect (see cell
P3). The user tried to format using General number format but the result did not
change. A second attempt was to format using Number format but with out any
decimal places (just for presentation purpose). The result did not change. The user
was wondering what a miracle was going on and made the calculation by hand (see
column O). While calculating manually, the user made another error (see cells O
and O6). The numbers appear to the user as numbers but actually they are not and it
18 difficult for the user to see why it was wrong. It becomes visible when the cells are
formatted using Number format with some decimal places. Those numbers which

are formatted as text will not have decimal digits.
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A [B][c[D[EJF]G]H]IJJ]IK]LIM|IN]O] P |
1
N v e el e S e S e'o a'& e'{b
O e S S S N N e
2 e S e gt S e e
3 2 g |10 |10 (10| 9 8 |10 | 6 ] g |10 | 10 [117 22
4 |Student 1 2 g |10 m{1m] 9 7 9 5 g B | 10| 10|95 104
_ & |Student 2 ] g (10| 7 4] 4] g |10 3 5 5] 4] 9 |84 G4
_ B |Student 3 1 5 g [ 3 4] 4 7 2 4 [ 7 4 193 G3
_ ¢ |Student 4 2 g 9 (10| 9 4] 7 7 4] 5 4 |10 |10 | 93 93
& |Student 5 2 g (10| 9 9 9 7 7 5 5 =] = 7 | 89 a9
.9 |Student B 0 8 |10] 9 g =] g g 4 4 4 5 4 18 a1
10| Student 7 2 g |10 1m| 9 =] 7 9 4] 7 [ 7 |10 (100 100

Figure 2.2: Incorrectly formatted cells

Another typical problem of the physical area is the impact if new values are added
to the area. If the new value is inserted somewhere in the middle of the physical area,
it automatically expands such that the new value and all old values are still within the
area. If the new values are added by appending them to the area, the area does not
expand. This leads to the error type of incorrect physical area specification. Generally,
the incorrect physical area specification problem exists if there are cells outside the
physical area which should be part of it. For the user it is not clear that those cells
are not part of the physical area any more and it is common for him/her to assume

that those cells influence the result of the function applied to the physical area too.

Example 2.3: Physical area specification error

In figure 2.3 the user defines a sum over an area of cells. During the life span of
the spreadsheet program it turns out that more cells are needed for specifying the rev-
enues of the salesmen. This is not a problem for extending Miller’s range, but the
row appended for Smith is not part of the physical area anymore. The sum cell does
not yield the correct result, but the reason why the final spreadsheet instance is wrong

s not obvious for the user.

A third class of typical error is the accidental deletion of a cell within a physical

area. This leads to the already identified reference to a blank cell error.
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A [ B | ¢ | A B € ] A | B | C |
1 |Salesman  Date Sales | 1 |Salesman  Date Sales | 1 Salesman  Date Sales
|2 Miller 0.4 2000 S0 |2 Miler 0142000 HO O [2 Millr 0142000 A0
13 16.4.2000 |3 1642000 |3 16.4.2000 1000
EL 04.4.2000 g0 A 47000 T[4 19.4.2000 30
5 064 7000 900-) | 5 | Srith (4.4 2000 B0 S | 5 Siith 04 4 2000 il
B Total oo B 06 4 2000 wo B G42000 900
7 — |1 T 2 L
18 8 |8 |Total | 3300!

Figure 2.3: Physical area specification error

A fourth class of errors is the physical area mizup error. While the previous error
categories are grounded on the fact that users hardly distinguish between spreadsheet
programs and spreadsheet instances (input has not the distinct role as in conventional
programming), this error class is due to the spreadsheet program’s property which
is a mixture of a problem solving tool and a presentation tool. The problem arises
when two separate physical areas get mixed up. In this case, one of them cannot be
defined as a physical area by the user anymore. The grouping functions have to be
replaced by expressions (i.e SUM by multiple +). For the user it is not obvious that

(s)he can specify two physical areas in two columns (see lefthand-side of figure 2.4).

Example 2.4: Physical area mixup problem

As shown in figure 2.4, the salesman spreadsheet program has to calculate a final sum
over all sales and a subsum for each salesman. If the user wishes to place the final
sum, the subsum and the sales in one column (i.e. for layout-reasons), the final sum
has to be replaced by an expression which adds the subsums. If the subsum moves to
another cell or another salesman (with a new subsum) is introduced, the user has to

maintain the final sum expression. If (s)he forgets it, the final sum becomes wrong.

Category 2: Logical Area Related Errors

A logical area represents some kind of cohesion between cells. Normally a logical area
originates from copying the same source multiple times and the user is not aware of

the logical area where a cell belongs to.
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| A [ B G D [ E ] F [ 6 | H ]

| 1 |Salesman Date Sales Salesman Date Sales

2
3 | Miller 01.4.2000 500 Miller 01.4.2000 500

4 16.4.2000 1000 16.4.2000 1000
E 18.4.2000 900 18.4.2000 900
| 6 |Subtotal Miller Subtotal Miller

7 | Smith 04.4.2000 600 Smith 04.4.2000 600

8 0B.4.2000 9S00 0B.4.2000 500
E 16.4.2000 1000 16.4.2000 1000
ﬂ Subtotal Smith 2500 Subtotal Smith 2500

11 |Total 4900 Total 4900

Figure 2.4: Physical area mixup problem

A typical error is overwriting a formula with a constant value. This error can
have many reasons like rounding errors or unexpected results of the formula. The
user simply overwrites the formula result in the cell with a constant value. Of course,

this value remains there even if the values in the formerly referenced cells change.

Another error that is common to logical areas is copy misreference. In this case, a
constant value or an absolute reference is specified in a formula instead of a relative
reference. This error is generally not noticed until the cell’s formula is copied into
another cell. If a constant cell is referenced with a relative reference, a similar problem

will occur when the cell’s formula is copied.

Category 3: General Errors

General errors are not explicitly associated with a physical or logical area. This cat-
egory includes errors that occur in input and formula cells. An error associated with
input cells is only typographical. Incorrect use of formats also affects the way a value
is displayed. One might format a value as 0.2% while the intended meaning could
have been 20%. This can happen to both input cells and formula cells. In addition,
if a numeric value is formatted as text data, then it might affect the computed value

of a formula.

Most of the errors in spreadsheets occur during formula definition [10, 101]. As

stated in the glossary, a formula may involve cell references, functions, operators, and
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constant values. An error can occur in any of these components due to typographical
errors or inability to formulate the necessary mathematical expression. These errors
include cell reference errors, function errors, operator errors, boundary errors (e.g.,

A5 < 10 instead of A5 <= 10), and parenthesis errors.

2.2.3 Limitations of Spreadsheet Systems

The wide acceptance of spreadsheet systems is not only due to their simplicity but
also due to their features which facilitate programming. The suppression of the low-
level details of programming, the immediate visual feedback, and the availability of
high-level task specific functions are commonly referred features among the others.
However, in spite of their exemplary status and pioneering features, there are some

limitations which directly or indirectly contribute to spreadsheet quality problem.

Different authors have indicated some of the limitations of spreadsheet systems
which may influence the quality of spreadsheets [39, 80, 113]. However, the features
associated with the issues are primarily designed to simplify presentation and pro-
gramming, but have some negative consequences. The following are commonly raised

issues.

Invisibility of Cell Information. One commonly referred drawback is the invis-
ibility of cell information (e.g., invisibility of formula, documentation, etc.). While
the values of cells are visible, other accompanying properties of a cell are not visible
(except at explicit inspection). For example, the formulas which compute the values
of cells are hidden. It is possible to see either the formulas or the values but not
both at the same time. For a single cell, it is possible to see both but this does
not give much information about the overall structure of the spreadsheet. In some
cases, this locality to a single cell may help by narrowing the point of focus instead of
dealing with the program as a whole, but it is also difficult to get sense of the general
structure of the spreadsheet program [39]. This also indicates the difficulty to predict
how changes (deleting cells, modifying cell values and formulas, etc.) to one part of

the spreadsheet will affect other parts. It is often difficult to identify where the data



2.2. SPREADSHEET QUALITY ISSUE 21

comes from and where it goes to unless one makes a detailed examination of the rela-
tionships. This is the case for documentation as well. There is no place for program
documentation and if available for a cell, again it is hidden. This is because space is
optimized for result presentation. We can not make an internal documentation in the
way we do it for conventional programs where each module, procedure or function is
described in a readable manner (e.g., using indentations and blank lines). Hendry and
Green [39] mentioned that programs are comprehended best when the whole text is
available for inspection rather than an individual line at a time. Without structured
documentation, it is difficult to understand how cell and range references are mapped
to the problem domain interpretation. As a result spreadsheet programs turn out to

be difficult to understand by other people who are not the original developers.

Spreadsheet systems (e.g., MS Excel! ) provide a facility to annotate a cell or
range. Even with this feature, sometimes it requires much text and space to describe
and this might reduce the readability of the data. For example, documenting a nested
conditional which involves different alternatives and understanding the logic behind
it may not be an easy task. Generally, we can say that the computational structure
and documentation are hidden from the user. The invisibility of such important in-
formation contributes to the inability of understanding the functionality of cells and
hence leading to incorrect interpretation and computation. This also makes testing,

debugging, and maintenance of spreadsheets difficult.

Cryptic Cell Addresses. Cell addresses are difficult to remember and are not de-
scriptive enough about the data they contain. Users usually assign column and row
headings for a group of cells to describe the intended meaning of the data. But in
the actual formula, cell references are made through column labels and row numbers.
The address is not automatically adjusted from the column and row headings. For
example, the formula SUM(A1:A3) would have been easier to understand if A1 and
A3 were represented in terms of their corresponding column and row headings. It

is possible to assign a name for each cell but that is time consuming. In addition,

LAll trademarks mentioned herein are the properties of their respective owners
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cell addresses are used to avoid the need of variable declaration used in procedural

programming.

Absence of Type Checking. Spreadsheet systems usually avoid strict type check-
ing. A text cell and numeric cell can participate in an arithmetic formula without
any symptom of type mismatch. In some cases the effect could be neutral but in
other situations it could be an error (as text data is converted into a zero value).
Had there been a type checking mechanism, the error in figure 2.2 would have been
easily identified. Similarly, a number can be formatted to be a date type, yet this
can be used for arithmetic operation with a numeric data. At the surface level, the
spreadsheet system provides the user a semantic difference through formatting but
below the surface they are the same data type and such errors are difficult to detect.
This is one limitation that spreadsheet systems support only a few types, typically

numbers, strings, and Booleans [11].

Absence of Relationships between Formulas. There is no relationship between
the source and the copy of a formula. A common feature of spreadsheet languages is
formula copy/paste and users rely on copying one formula to a range of cells. Based
on the type of references used in the source formula, the references in the destination
cells will be automatically adjusted by the underlying language. While creating a
formula for copying, the user has to consider the type of references and direction of
copying. The idea behind for the importance of the relationship is that if the user
changes some part of the source formula (e.g., change operators or cell references), it
is not automatically propagated to the copies and hence the user has to remember and
find those copies and make a new copy/paste to update. The relationship between
source and copy of a formula, if it exists, may help reducing the testing effort needed
for the copies once the source is sufficiently tested. Since the source and copies have
the same functionality and structure, incorrectness of the source in most cases (not
always because incorrectness may be from referenced cells) implies incorrectness of
the copies. For example, consider a formula = Al + B1 % C'1 defined for a cell and
copied to a group of cells. Based on the values of cells A1, B1, and C1 the user may
later on realize that the intended meaning was = (A1 4 B1) « C1. After making this
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correction, the user has to remember where this formula was copied to and make the
necessary update. On the other hand, from figure 2.2, we can see that the values
of copies of a formula could be correct though the source is incorrect. The value of
SUM(B3:N3) is incorrect but when this formula is copied down to calculate total score
of each student, the result is correct. The other input values except those values in
cells B3:D3 were entered as numbers. Similarly, correctness of the value of the source
does not necessarily imply correctness of the copies (due to the effect of relative and
absolute references during copying and errors in the referenced cells). Again from fig-
ure 2.2, if SUM(B3:N3) is a copy of the formula derived from the SUM(B10:N10), the
value of the copy is incorrect while the source provides the correct value. However, if
a relationship among source and copies is maintained, then propagation of bug fixes

can be supported when the fault is in the formula itself.

Moreover, some authors mentioned the lack of development methodology to build
spreadsheet programs. In conventional programming, there are widely recognized
techniques for designing, testing, debugging and understanding a program. In spread-
sheet programming we lack such techniques though the demand is high [26]. Some
studies on users indicated the difficulties users have in testing and debugging spread-
sheets [39].

2.3 Summary

As seen from experimental studies and field audits, large proportions of spreadsheets
have been found to contain errors. The real life consequence of spreadsheet errors is
severe to the extent of loosing millions of dollars as a result of decision made based

on erroneous spreadsheets.

The first step toward a solution is the study of the type and frequency of errors.

For this purpose different classification schemes have been presented.

The principal components of a spreadsheet program are formulas which are used

for computations and whose result is the basis for a decision. Of course, spreadsheets
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are not of interest without formulas. Hence, errors occurring in formulas need a se-
rious examination. As some studies already indicated, most of the errors occur in

formula definition. Our work focuses on checking the correctness of formulas.

Besides the errors committed by users, spreadsheet systems have also some limi-
tations which may directly or indirectly contribute to spreadsheet errors. The invisi-
bility of computational structure and the accompanying documentation, the obscure
meaning of cell addresses about the data they contain, the lack of strict type checking,
and absence of relationships between source and copies of a formula are commonly

encountered issues.



CHAPTER: 3

Assessment of Traditional Testing
Methods

This chapter reviews the testing techniques in the imperative paradigm and discusses
their applicability in testing spreadsheets. Section 3.1 presents an overview of soft-
ware testing techniques. A reader who is familiar with the testing theory in the
imperative paradigm may skip this section. Section 3.2 discusses the characteris-
tics of spreadsheet programs. An analysis of the similarities and differences between
spreadsheet programs and procedural programs is presented in section 3.3. Out of
the analysis, the implication for a testing methodology is discussed in section 3.4.
Section 3.5 concludes the chapter by giving insight about the testing approach which

seems appropriate for spreadsheets.

3.1 An Overview of Software Testing

Software is developed to solve a variety of problems be it simple, moderate or complex.
All sizes of software require a systematic and effective method of testing to provide
the desired functionality and quality. Software testing is a very crucial activity in
the development of software systems though it is an expensive and labor-intensive
task. Estimates indicate that software testing accounts for up to 50% of the cost of

development [7, 71, 109], and even more in safety-critical systems. One of the factors

25
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for the expensiveness of software testing is the difficulty of automating it. Even if it is
automated, it is still in general impossible to develop 100% fault-free software. This
is due to the infiniteness of the input size to be used for testing, the large number of
possible paths to be executed and other external parameters. As a result, criteria for

selecting input representatives and crucial paths are used.

In the literature one can see that there is no unique definition of software testing.
Its definition is stated from different perspectives by different people. It is commonly
considered as techniques of checking software by executing it with data. Myers [71]
defined it as "the process of executing a program with the intent of finding errors”.
Hetzel [40] defined it as the process of establishing confidence that a program or sys-
tem does what it is supposed to do. The two definitions given by Myers and Hetzel

represent defect testing and validation testing respectively.

Defect testing focuses on the exposure of hidden faults. Test cases are designed to
cause the system to function incorrectly as opposed to validation testing where test
cases are designed to show the system performs correctly. The main focus of defect
testing is on demonstrating the presence rather than the absence of program faults

and it will be successful if it reveals a fault in the program.

Validation testing is concerned with showing that the software works. This ap-
proach is a positive (constructive) process and is less likely to uncover faults as most
people have a tendency to show that their program really works. The need for testing
is that after development we want to be sure that the product is fault free. Actually
it is hard, if not impossible, to guarantee that the system developed is completely free
of faults. The main objective of testing is to detect the presence of faults. Testing
cannot demonstrate the absence of faults. If testing is performed with the objective
of finding faults in the software, then it also demonstrates that the software functions

appear to be working according to the specification [7].

The two different definitions indicate a difference in the objective of testing. The

objective of defect testing is to find faults in a software while the objective of vali-



3.1. AN OVERVIEW OF SOFTWARE TESTING 27

dation testing is to demonstrate that there are no faults in the software. Beizer [7]
has indicated the limits of both objectives as follows. If the objective of testing is to
detect bugs, then when are we going to stop testing? On the other hand, if the ob-
jective of testing is that the software works, then even an infinite number of tests will

not prove that it works. Hence, he concludes that testing is targeted for risk reduction.

There are different testing methods used in the imperative paradigm [7, 71, 88].
These methods are usually divided into two main categories: static testing and dy-
namic testing. Static testing is analyzing the program without executing it with data

as opposed to dynamic testing which executes the program with data.

3.1.1 Static Testing

Static testing techniques do not require the execution of a program with data. Rather,
they focus on investigating the source code in its static form looking for possible faults.
Assessment of the quality of a program is undertaken irrespective of its run-time be-
havior. Static techniques, if successful, enable us to detect faults directly unlike
dynamic testing which provides only symptoms about the existence of faults. Static
testing techniques can be used in different forms such as program proving, symbolic

execution, anomaly analysis, inspections, and code-walkthroughs [24, 50].

Program proving is to establish a mathematical proof about program correctness.
It focuses on showing the equivalence between a program and its specification in the
form of a mathematical proof. It uses the method of inductive assertions and requires
one to write assertions about the program’s input conditions and correct results. The

program is proved to be fault free if the assertions can be proved mathematically.

Symbolic execution sometimes referred to as symbolic evaluation or symbolic test-
ing is the execution of the program with symbolic data [20, 41]. The execution is not
in the traditional sense but the program is assumed to be executed with the sym-
bolic inputs. The inputs to the program are not numbers but symbols representing

the input data, which can take different values. The outputs are symbolic formulas
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of input values. The formulas can be checked to see if the program will behave as
expected. At the end of the symbolic execution of a path, the output variable will
be represented by expressions in terms of symbolic values of input variables and con-
stants. The output expressions will be subject to constraints (conditions). A path
condition at a statement gives the conditions the inputs must satisfy for an execution

to follow the path so that the statement will be executed.

Anomaly analysis is concerned with the identification of anomalies that cannot
be detected by the programming language. Anomaly analysis techniques are used
to identify existence of unexecutable code in a program, redefinitions of variables
without uses, uninitialized variables, and initialized but never used variables [24].
Dataflow analysis can also be used to identify some of the anomalies in a program.
Anomalies do not necessarily indicate the existence of faults but they are hints for

potential faults.

Inspections and walk-throughs are informal techniques. Inspections are carried
out by programmers reviewing design or code with an intent of finding faults. A
code walk-through is an analysis of code as a cooperative, organized activity by
several programmers. Programmers may use test cases and simulate execution of
code by hand. The difference between code inspection and code walk-throughs is

that inspection is targeted explicitly at the discovery of commonly made errors.

3.1.2 Dynamic Testing

Dynamic testing involves the execution of a program using test data similar to the
real data that will be processed by the program. Unexpected outputs can be used
to infer the existence of faults. The basic procedure of dynamic testing is to provide
the program with inputs, executing the program, and then compare the output of
the program with the expected results. Figure 3.1 depicts the overall procedure of
dynamic testing [91]. Since more information can be obtained during the execution
of the program, there are a variety of testing methods that belong to dynamic test-

ing. The two common dynamic testing methods are functional testing (also called
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Figure 3.1: Test Information Flow [91]

black-box testing) and structural testing (also called white-box testing). Structural
testing is concerned with the implementation of the program while functional testing
is concerned with the function that the program is supposed to perform. Since the
two methods can uncover different types of bugs, they are complementary and used

in combination to design and construct a comprehensive test data set.

Structural Testing

Structural testing involves the execution of the program with test cases derived from
the structure or detailed design of the program. Test cases are designed based on
the internal control flow structure or data dependency. Another structural testing
method is mutation testing which is based on injecting known bugs to programs. The
structural testing method is mostly used in unit testing. Test cases are systematically

chosen inputs which have the highest likelihood of revealing faults in the program.
1. Control Flow Based Testing

Control flow based testing uses the program’s control flow as a structural model
for generating test cases [7, 50]. It requires testing the logical paths of the program by
providing test cases which exercise specific sets of conditions and/or loops. There are

different control flow based testing techniques which define criteria for selecting a set
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of test paths through the program. The criteria are used to measure the thorough-
ness of the test and also provide a way to determine whether testing is complete. The
basic control flow based testing techniques are statement testing, basis path testing,

branch testing and paths testing.

Statement testing requires the design of test cases to execute each statement of a
program at least once. In terms of the control flow graph of a program, statement
testing requires the execution of all nodes in the graph. It is the weakest of all contrl

flow based testing techniques.

Basis path testing uses McCabe’s program complexity measure (called cyclomatic
complexity) and the mathematical analysis of control flow graphs to guide the testing
process [69, 119]. Cyclomatic complexity represents the number of independent paths
in the basis set of the unit. If the cyclomatic complexity of a unit is n, then there
are n distinct paths and hence test cases should be designed to execute the n distinct
paths. The cyclomatic complexity (M) can be computed in any one of the following

ways.

1. M = E — N + 2 where E represents the number of edges of the flow graph and
N number of nodes of the flow graph.

2. M = number of regions of the flow graph.

3. M = P + 1 where P is the number of predicate nodes contained in the flow

graph.

The principle is to test a basis set of paths through the control flow graph of each
unit. This means that any additional path through the unit’s control flow graph can

be expressed as a linear combination of paths that have been tested.

Branch testing is performed with the objective of traversing each edge of the con-
trol flow graph at least once during testing. It requires the execution of tests so that

each decision takes on all possible outcomes at least once. We can easily see that
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branch coverage subsumes statement coverage. In other words, a set of test cases sat-
isfying branch coverage will also satisfy statement coverage. The drawback of branch
testing is that it can evaluate to true and false without exercising all the conditions
if the decision involves compound conditions. To alleviate this problem, test cases
should be designed so that all sub-conditions evaluate to true and false. Since the
combination of values of all conditions may not result in the evaluation of the decision
to true and false, the combined requirement decision/condition coverage is imposed.
This requires all the decisions and all the conditions in the decisions take both true
and false values. In addition, each component of the condition should be tested to de-
tect possible types of faults in the condition. A compound condition includes Boolean
operator, Boolean variable, relational operator and arithmetic expression. If a com-
pound condition is incorrect, then at least one of the components is incorrect. There
are a variety of condition testing strategies corresponding to different types of condi-
tion usage in a program. For example, Tai [111] has proposed two testing strategies
namely BOR (Boolean Operator testing) and BRO (Boolean and Relational Operator
testing) for compound conditions. The BOR testing requires a set of tests to detect
faults in expressions involving Boolean operators. Similarly, the BRO testing requires

a set of tests to detect faults in expressions involving Boolean and relational operators.

Path testing requires the execution of all possible paths in the control flow graph
at least once. Path testing can reveal faults which may not be detected by branch
testing. Test cases designed based on path testing force the execution of all possible
paths in the program. However, this technique is less practical as the number of
possible paths grows rapidly even for small programs which involve loops. In addi-
tion, some paths may not be reachable and the identification of such paths is also
difficult. Since the number of possible paths in a program could be very large and
path testing cannot reveal all types of faults in a program, other alternatives have

been investigated to fill the gap between branch coverage and path coverage [7, 35].

2. Dataflow Based Testing

Dataflow testing is based on the def-use graph which is constructed from the con-
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trol flow graph of a program. The basic idea behind dataflow based testing is to
make sure that the definitions of variables and their subsequent uses are exercised
by some test cases. It requires the selection of test data that exercise certain paths
from a point in a program where a variable is defined to points at which the variable
definition is subsequently used. Variable occurrences in a program can be def, c-use,

and p-use. The definitions are given in [50] as follows:

Def represents the definition of a variable where it is given a new value. C-use
represents the computational use of a variable where the variable is used in an assign-
ment statement, read/write statement, etc. P-use represents the use of a variable in

a predicate statement.

For example, in the assignment statement x = y + 5, x is defined (i.e., def) and y

is used for computation (i.e., c-use).

There are different test criteria defined to measure the coverage of the definitions
and uses of variables. Rapps and Weyuker [95] have proposed a family of test case se-
lection criteria based on the types of occurrences of variables in a program. Ntafos [75]
and Laski and Korel [59] have also proposed test adequacy criteria based on dataflow
as alternative to the control flow based measure of test adequacy. The basic criteria
are all-defs, all c-uses, all p-uses, all-uses, and all-du-paths. The definitions of the

basic dataflow testing criteria are given below [7, 50].

1. The all-defs criterion requires that for each variable definition, the testing paths
should cover at least one sub-path from the definition to a use (c-use or p-use)

of the definition.

2. The all c-uses criterion requires that all computational uses should be exercised

by some test.

3. The all p-uses criterion requires that all predicate uses should be exercised by

some test.

4. The all-uses criterion requires that all uses (c-use and p-use) should be exercised
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during testing. This criterion requires at least one sub-path from each variable
definition to every c-use and every p-use of the definition be included in the

test.

5. The all du-paths criterion requires that every simple sub-path from each variable

definition to every c-use and every p-use be exercised by some test.

In some cases a combination of c-use and p-use can be used to achieve a better
coverage than the individual criteria. These combinations are all c-uses/some p-uses
and all p-uses/some c-uses. The main task in dataflow testing is the determination of
possible dataflow paths in the program (which requires static program analysis) and
the recording of the paths executed during testing (dynamic analysis) [35]. Compar-
ing with control flow based testing techniques, dataflow based testing is weaker than
all paths testing but stronger than branch and statement testing. A general hierarchy
of subsumption for all control flow based and dataflow based testing criteria is given
in [7]. In addition, there are different experimental studies carried out to measure
and compare the effectiveness of different testing criteria. For example, Hutchins et
al. [43] have experimentally demonstrated that control flow and dataflow criteria are

complementary in their effectiveness.

The computation of def-use paths is accomplished with the aid of slicing tech-
niques. A program slice consists of the parts of a program that affect the values
computed at a certain point [112]. Usually, program slices are computed based on
a slicing criterion which contains a line number and variable. Program slices can be
computed either statically or dynamically. A static program slice with respect to a
given slicing criterion contains a set of statements that could potentially affect the
value of the variable at the given position. On the other hand, a dynamic slice con-
tains only those statements executed based on a given input data. We can see that a
dynamic slice is a subset of a static slice of a program with respect to a given slicing
criterion. Slices can also be computed in forward or backward direction. A forward
slicing computes those statements which will be affected by a given variable whereas
backward slicing computes those statements which will affect a given variable. The

above dataflow testing criteria use slicing techniques to identify the def-use paths to
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be included in testing. This is accomplished by walking on the def-use graph which
is constructed out of the control flow graph representation of the program. Besides
their use in dataflow testing, slicing techniques are also used in debugging and main-
tenance. During debugging, dicing is used to guide the fault localization procedure
to the most likely faulty statement by removing those statements which appear to be

correct from the dynamic backward slice.

3. Mutation Testing

Mutation testing is a fault based testing technique. Instead of designing test
cases to execute certain paths in a program, mutation testing requires the injection of
known faults (simple syntactic changes) into a program [50, 117]. Then test cases are
designed to detect the seeded faults. The effectiveness of the test data set is measured
by the percentage of mutants killed. Different versions of the program (mutants) are
generated by introducing faults using mutation operators. If a test case is able to
generate different values for the original program and the corresponding mutant, the
test case is successful. Mutation testing is based on two assumptions: the competent
programmer hypothesis and the coupling effect [117]. The competent programmer
hypothesis assumes that competent programmers tend to write nearly ”correct” pro-
grams. That is, programs written by experienced programmers may not be correct,
but they will differ from the correct version by some relatively simple faults such as
off-by-one fault. The coupling effect states that a set of test data that can uncover
all simple faults in a program is also capable of detecting more complex faults. Even
though the basic goal of testing is detecting faults in the original program, mutation

testing is targeted first at generating effective sets of tests.

As mutation testing is performed from a different perspective, it is difficult to
make direct comparison with other control flow based and dataflow based testing
criteria. However, there are some experimental studies showing its relative strength
by comparing it with dataflow testing criteria. For example, Offutt et al. [79] car-
ried out an experimental study to compare mutation testing and all-uses dataflow

testing. Their result indicates that mutation testing offers more coverage than the
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all-uses dataflow but at a higher cost. The major problem with mutation testing is
that the number of mutants could be very large which limits its application to large
programs. Some methods (e.g., selective mutation) have been suggested to reduce

the computational expenses of this testing technique [76, 117].

Functional Testing

Functional testing is performed based on the functional requirements of the software
and its main focus is the functionality and features of the system. It considers the
user’s point of view of the system and requires the derivation of sets of input con-
ditions that will fully exercise all functional requirements for a program. Functional
testing particularly helps to identify input classes, boundaries of data classes and
combinations of input data to design appropriate tests [69]. This method is comple-
mentary to structural testing as it uncovers a different class of bugs. Commonly used
functional testing techniques are equivalence partitioning, boundary value analysis,

and cause-effect graphing.

1. Equivalence Partitioning

As the name indicates, equivalence partitioning involves the division of the input
domain of a program into classes of input conditions where each class is a representa-
tive of a large set of other possible tests. An equivalence class represents a set of valid
and invalid states for input conditions. A test case is designed to uncover classes of
errors in an equivalence class. Its main focus is to minimize the number of test cases

needed to cover the input conditions.

2. Boundary Value Analysis

Boundary value analysis can be used to derive test cases based on the equivalence
classes. The boundary values of the equivalence classes are used to derive test cases
with the intent that boundaries are likely to be the causes for bugs. In addition, out-
put conditions are also explored by defining output equivalence classes. This approach

attempts to identify boundary conditions for each equivalence class. The conditions
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are then used to create test cases containing input values that are on, above, and

below the edges of each equivalence class.

3. Cause-Effect Graphing

Cause-effect graphing is a technique that provides a concise representation of
logical conditions and corresponding actions. It helps to select test cases that explore
combinations of input conditions. It is a Boolean graph describing the semantic
content of a written functional specification as logical relationships between causes
(inputs) and effects (outputs). This approach involves identifying specific causes and
effects which are outlined in the requirements document. Causes are conditions which
exist in the system and which account for specific system behaviors known as effects.
Effects can be system outputs that are end results of the processing. The causes
and effects are transformed into a cause-effect diagram that can be used to create
test cases. Cause-effect graphing helps to clearly identify every function’s inputs and

expected results.

Generating Test Data and Oracle

One of the most challenging task in software testing is the actual generation of test
cases. Test data can be derived from both the specification and the program’s imple-
mentation which have the highest likelihood of revealing faults. Test data are program
inputs which satisfy a given testing criteria. The generation of test data is based on
a given criterion where the criterion provides a mechanism of ensuring the complete-
ness of tests. For example, branch coverage requires the generation of test cases
which exercise the true and false branches of every decision. Most automated test
data generation approaches focus on deriving tests from the program’s source code
and they are mainly targeted to unit-level testing. These are structural-oriented test
data generators which attempt to cover certain structural elements in the program
(e.g., statement coverage, branch coverage, dataflow coverage, etc.) [28, 31, 54, 78|.
On the other hand test data generators based on data specification generate test data
from a formal description of the input domain [64]. Automated test data generation

approaches which derive tests from the program’s specification require the descrip-
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tion of the specification in some formal way [77]. Random test data generators [118]
create test data according to some distribution of the inputs without satisfying any

test criterion.

Testing is commonly carried out with the assumption that there is some mecha-
nism which will determine whether or not the result of test execution is correct. In
order to infer the existence of faults in a program, the result of the program needs
to be compared with the expected result of the program. The preparation of the ex-
pected result could be done either manually or with the help of a test oracle. ” A test
oracle is any program, process, or body of data that specifies the expected outcome
of a set of tests as applied to a tested object” [7]. An oracle is thus a mechanism that
provides the correct behavior of the program for the test cases. An ideal oracle is an
automated one which always provides a correct result for each test case. However,
fully automated oracles are difficult to create, and human oracles are commonly used
for this purpose. The specification is the main source to determine the correct behav-
ior of the program. However, during modification of an existing software, regression
test suite could also be a possible source. When a formal specification exists, an oracle
can be generated automatically from the specification [89, 90]. Generally, an oracle
constitutes two components: oracle information (what constitutes correct behavior)

and oracle procedures (which check the test results against the oracle information).

Regression Testing

While the previous approaches (see section 3.1.2) are targeted to testing during devel-
opment, testing of evolving software or testing during maintenance requires a different
approach. One of the major tasks during maintenance is the re-testing of the modified
software. Re-testing the software with all the original test cases is very expensive.
Hence the goal of re-testing (i.e., regression testing) is to re-test the new program
based on the modifications made while maintaining the same testing coverage as
completely re-testing the program [34, 37]. This involves the issue of selecting old
test cases to be rerun and designing additional test cases corresponding to the change.
Therefore, regression testing attempts to validate modified software and ensures that

no new faults are introduced into previously tested code [37, 98]. Though regression
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testing is used to test the changed part of the program, it should also be used to test
the part of the program which is affected by the change. Thus, the first step will be
to identify the changed part and then the part of the program which is affected by

the change. This is usually accomplished using dataflow analysis [34].

3.2 Spreadsheets and Spreadsheet Programmers

Spreadsheet programs are software developed by end users. The detailed work of
programming is automatically performed by the spreadsheet system itself. Input and
output are automatically performed. For example, to enter input into a spreadsheet,
one simply enters a value into a cell - no separate input statement is required. In
contrast, a procedural program must be explicitly programmed to accept input from
the user and to display the output. This easy and declarative way of programming
has an effect on the psychology of the user. Users do not consider themselves as pro-
grammers and may not even consider their work as programming and as a result do
not make the necessary design review and control procedures to improve the quality
of their spreadsheets. However, they are programmers whose computational task is
in a certain domain. They are programming to solve a given problem which involves
expressing a computation through a programming language. The only difference to
spreadsheet programming is that it provides a highly interactive, declarative environ-

ment and as a result program development is easy and fast.

Of course, spreadsheet programmers are not professional programmers; they are
end-users who are not familiar with the process of software development. Nardi and
Miller [73] describe this issue as follows: ”Spreadsheet developers are not program-
mers; they are business professional or scientists or other kinds of domain specialists
whose jobs involve computational tasks”. They prefer spreadsheets as their best
tool because no formal training on designing and programming is required and they
can develop working applications in a short period of time [26]. Their model of the
problem is directly mapped to the tabular layout of numbers and text. In contrast
professional programmers write a program based on a design which in turn depends

on some conceptual model or specification.
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3.2.1 Spreadsheet Languages

The emergence of end user programming facilitated the ease of programming for those
whose work requires only some computational tasks. Among the variety of tools used
in end user programming, spreadsheet languages are the most common one. Spread-

sheet languages belong to domain specific and visual programming languages.

Domain Specific Language

Spreadsheet languages can be considered as domain specific languages since they
are designed to support problem solving in a particular problem domain. They sup-
port mainly problems which fit into a grid representation (i.e., table-oriented com-
putational problems) [124]. Hendry [38], Casmir [15] and Ambler [3] demonstrated
through a variety of examples (e.g., the towers of Hanoi and sum of arbitrary num-
ber of values) that spreadsheet languages loose their power as the generality of the
problem to be solved goes far away from domain specific tasks. A domain specific
language is a small, usually declarative language that offers expressive power focused
on a particular problem domain. In contrast general purpose programming languages
are composed of a fairly large number of primitive functions and constructs. Domain
specific languages such as spreadsheet languages offer a small number of primitives
that map directly onto operations that users within a specific range of applications
need. These small number of primitives are high-level task specific functions which
map to tasks in the domain the user understands [72]. In their study, Nardi and
Miller [72, 73], found that users develop working applications using only a few num-
ber of functions. Spreadsheet languages offer an expressive power which enables to
express domain knowledge that shows relationships between entities in the domain
itself. Programming requires mapping of the problem directly to the two dimensional

grid structure.

Visual Programming Language (VPL)

Visual programming languages have got a variety of definitions: from languages
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which provide GUI (such as Visual Basic) to languages which use visual represen-
tations to accomplish programming. This variation is based on the extent of visual
expression provided in the language. The extent of visual expression (i.e., meaningful
visual representations used as language components to achieve the purpose of pro-

gramming) is used in [107] as one dimension to classify visual programming languages.

A classification given by Shu [107] categorizes visual languages into three:

1. Languages designed for the handling of visual information. These are languages
used for the processing of visual information. For example, a textual language

used to manipulate a picture.

2. Languages designed to support visual interaction. These are languages which
are used to represent an object visually. For example, a textual language can be
used to describe the appearance of an object using the properties POSITION,
COLOR, SCALE, etc.

3. Languages which use some visual representations to accomplish the task of pro-
gramming. For example, in a spreadsheet, cells (in essence variables) are visu-
ally represented to accomplish the necessary programming task. In spreadsheet
programming, the geometrical layout of data plays a major role. Generally,
non-procedural programming languages which use tables or forms as visual ex-

pressions fall into this category.

This classification encompasses the definitions given by Chang [19] and Ambler [3].
Ambler considers as visual programming languages only those defined in item 3 above.
Another definition given by Myers [70] considers the dimension of the program spec-
ification. According to Myers: ” A visual programming language is any programming
language that allows the user to specify a program in a two-(or more)-dimensional
way. A VPL allows programming with visual expressions - spatial arrangements of
textual and graphical symbols.” This definition clearly avoids the confusion of con-

sidering languages such as Visual Basic as visual programming languages.
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The goal of making programming and program understanding easier has been
achieved through simplicity, concreteness, explicitness, and responsiveness [12]. These

characteristics are provided to
e reduce the number of concepts needed to program (e.g., number of variables)

e allow data objects to be explored directly (i.e., the programmer can see, explore,

and change specific data values)
e explicitly depict relationships (e.g., dataflow diagrams)

e give immediate visual feedback of updated computations during editing

Green [33] indicated that spreadsheet languages contain many of these features of
VPLs - dataflow, aggregate operators, and a visual formalism even though they do

not contain explicit graphical lines showing dataflow between cells.

Nardi [72] considers a spreadsheet language as a hybrid visual programming sys-
tem which combines text and graphics. The graphics part which is the grid structure
is used to make the programs state visible (showing current values of cells in the ta-

ble). The textual part provides a compact formalism for writing program instructions.

From the definitions and characteristics of visual programming languages given
above, we can see that spreadsheet languages are VPLs to a large extent. This par-
ticularly holds from the perspective that visual programming is used to describe any
system that lets users specify a program using a two dimensional notation. In such a

system, the interaction of the user is with a two dimensional representation.

On the other hand, the structure of procedural programming languages are based
on one-dimensional, textual (i.e., statement by statement) representations and hence
are not visual programming languages. The linearity mimics its internal representa-

tions.
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3.2.2 Spreadsheet Programming

The development of a spreadsheet program is a form of programming which is carried
out by end-users. It consists of understanding the problem, devising a plan to achieve

the set of goals, and implementing the proposed plans [104].

However, writing a spreadsheet program does not require a course of conventional
programming. The user needs only to structure the problem in a tabular layout and
specify relationships among cells through the use of formulas. The main problem
solving activity is based on the use of formulas for the computation. A formula is a
way of using the values stored in other cells for the intended computation. Placing
those values into cells does not require a variable name. The column letters and row
numbers replace the task of declaring variables. Cells are named by their position
in the grid. The details of conventional programming such as data type declaration
are not needed. Types are determined dynamically as the user enters data to a cell
(formats also affect the type of data). Copying a formula across a group of cells is
a common activity. Formula copies and cell references replace iterations and assign-
ment statements respectively. The availability of high-level task-oriented functions
eliminate the need of algorithm design. Even though users do not realize it, they
are actually using program constructs such as loops and assignments. However, such
concepts are hidden from the user. Nardi and Miller [73, 74] discussed the character-
istics spreadsheet languages provide for end-user programming. Among them is the
property that spreadsheets shield users from low-level details of traditional program-
ming. They allow users to think in terms of tabular layouts of adequately arranged

and textually designated numbers.

Ambler [3] summarizes spreadsheet programming as follows:
e The programming environment is interpretive and feedback is immediate.
e No notion of variables.

e Cells do not change values in the course of an execution (except cyclic depen-

dencies).
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e No type declaration since no notion of variables.

e The order of evaluation is derived, rather than specified. No concern of control

flow as control flow is entirely derived based upon computational dependencies.

e No concern of input/output.

3.3 Comparison of Conventional and Spreadsheet

Programs

The spreadsheet paradigm is gaining increasing importance not only in developing
ordinary spreadsheet programs but also for other purposes too (see section 2.1). How-
ever, there are no widely accepted design, testing and debugging methods in this
paradigm. Devising a testing methodology for spreadsheets requires the investigation
of the suitability of existing testing methods to this new paradigm until it possesses its
own well defined methods. The imperative paradigm is the basis for devising methods
of designing, testing, debugging, etc. software in the other paradigms. Hence, the
main issue is what are the differences and what is the impact of these differences in
testing spreadsheet programs. For example, to test an object oriented program, one
cannot directly apply traditional testing methods. While traditional software is based
on procedures, object-oriented software is based on objects which contain procedures
and data together. The testing methods for object-oriented programs are adapted
based on investigations by considering the impacts of encapsulation, information hid-

ing, and inheritance [6, 23, 58].

In order to investigate how spreadsheet programs will be tested, it is essential
to consider the similarities and differences between conventional and spreadsheet
software. Rothermel et al. [100] have identified three classes of differences between

spreadsheet and procedural programs.

1. Order of evaluation. While the order of evaluation of spreadsheet programs
is data dependency driven (i.e., based on data dependency that exist between

cells), order of evaluation of procedural programs is control flow based.
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2. Interactivity. Spreadsheets are interactive which means that they provide
immediate visual feedback about the effects of changes (e.g., automatic re-
calculation of all dependent cells when a source cell is modified). Procedural

programs are noninteractive.

3. Expertise of users. Users of spreadsheet systems are mainly non-professional
programmers who are not expected to know the formal process of software devel-
opment. On the other hand, developers of procedural programs are professional

programmers who have the necessary training of software development.
In addition, other differences can be observed from different perspectives.

1. Structure of code. The structure of a spreadsheet program is two dimen-
sional while the structure of a procedural program code is represented linearly.
In spreadsheet programming the geometrical layout plays a major role. The

placement of code is guided by the tabular layout of the results.

2. Separation of input/program/output. There is no explicit separation of
input, program, and output from the user’s point of view. The cell contents of
a spreadsheet contain both the input and the program while the visible part of
the spreadsheet is the output. The main part of the spreadsheet program (i.e.,
formula) is hidden below the surface which indicates that the computational
structure is not readily available to the user. In procedural programs, there is

a clear separation between input, program, and output.

3. Conceptual view of a program. Conceptual view of a spreadsheet program
is based on data dependency relations while the conceptual view of a procedural
program is based on control flow. A conditional in a spreadsheet program is
easy to understand because it does not transfer control from one part of the
spreadsheet to another. Its effects are local to the individual cell [72]. Since
cells use other cells’ values to calculate their own values, a data dependency
is established in the spreadsheet. From this perspective, spreadsheet programs

can be considered as dataflow driven.

4. Declarativeness. The ease of use of spreadsheet languages is also derived

from the fact that they are declarative [67]. The value of a cell is computed by



3.3. COMPARISON OF CONVENTIONAL AND SPREADSHEET PROGRAMS 45

the formula associated with the cell. The detailed procedure of computation is
transferred to the language and hence is no longer the programmer’s responsi-
bility. Formulas describe relations which specify what is to be computed. Users’
understanding of the dependencies is at a higher semantic level. Therefore, users
will most likely check the correctness of formulas based on their functionality

rather than their internal structure.

3.3.1 How Suitable are Traditional Testing Methods for Spread-

sheets?

Conventional software testing techniques are based on specifications and implementa-
tion. Specification-based testing techniques require a specification where the behavior
of the software is described. Code-based testing techniques require knowledge of the

internal structure of the code and they are mainly based on control flow and dataflow.

In spreadsheet programming, neither a specification is available nor a spreadsheet
programmer has the expertise to design and execute effective test cases. With the
absence of a specification, specification-based testing techniques are not suitable. In
addition, absence of a specification implies that an automated test oracle is not imag-
inable. Even with the presence of a specification, generating an automated test oracle
is a difficult task. Besides this, fully automated test oracle is very expensive since it
is a complete alternate implementation of the software under test which provides the
expected outcome for each test case [7, 65]. In such situations, the tester (the user in
spreadsheets case) plays the role of a test oracle and provides the expected behavior

during testing.

The concept of control flow through a conventional program does not map read-
ily to a spreadsheet. Explicit flow of control may exist only within a cell when the
cell’s formula definition contains a condition. In spreadsheets, control flow is derived
from the data dependency relations. The conceptual view of a spreadsheet program is
based around data dependencies rather than control flow. Therefore, it seems rational

to investigate a spreadsheet based on data dependency conceptualization. However,
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the dataflow structure is hidden and is not easily accessible to a user. Of course,
there are tools such as MS Excel’s arrow tool which provide a visual representation
of cell dependencies using arrows. For a detailed discussion of arrow tools and other
visualization tools see section 4.2.1 of chapter 4. In spite of that, it is unlikely that
a user will design test cases based on def-use paths. Both control flow based and
dataflow based testing focus on selecting paths to execute during testing. Hence, test
case design based on control flow and dataflow paths is not feasible for spreadsheet

users.

Static testing techniques such as anomaly analysis, inspections and walk-throughs
can be used for any type of software but are not sufficient by themselves. They
rather provide additional support to formal testing techniques. The faults that can
be revealed using these techniques do not overlap with the faults that can be revealed
by the formal testing techniques. For example, dataflow analysis helps to identify
anomalies such as cells which have numeric values but are never used in computa-
tions. Such cells are not errors by themselves but they are likely to be so and could
be indicators for further examination. Dataflow analysis doesn’t help us to check the
correctness of computations and hence its application is limited only to serve as an

additional support.

Program proving which is mainly used for safety critical systems is not at all evi-
dent in spreadsheets. Let alone in spreadsheets, its use even in conventional software
is limited to safety critical systems since it is an expensive technique (in terms of

human expertise requirement and development cost).

On the other hand, symbolic execution seems applicable to a certain extent. The
main objective of symbolic execution is to express a formula in terms of its input
variables. The formula can be checked to see if the program can behave as expected.
In the case of spreadsheets, it will be helpful if the input cells are described by a range
name instead of simple cell address. For example, it is easier to understand if a net
income formula cell says gross - tax instead of something like B15-B16. Symbolic

execution enables us to see which input cells are involved in the computation of a
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formula and may help to identify those cells which are not included in the formula.
However, expressing formulas only in terms of input cells may not give the intended
meaning and could be difficult to judge its validity. For example, a formula may be
better understood if it is expressed in terms of intermediate cells instead of input
cells. Intermediate cells are used to break down a formula in some meaningful way.
Symbolic execution is also used to generate test cases by expressing a formula in

terms of input variables.

3.4 Implications for a Spreadsheet Testing Method-
ology

At a unit level testing, correctness of a unit implies correctness of behavior and cor-
rectness of implementation. The expected outcome is normally derived from the
specification or from a test oracle. In the absence of specifications, programmers pro-
vide such behavior during testing. Correctness of implementation requires detailed
knowledge of the internal structure and the design of appropriate test cases based
on a certain coverage criterion. This applies rather to professional programmers who

develop programs which will be used by different users with different data.

The root of spreadsheet programming lie in the definition of formulas. Formu-
las are the basic units of a spreadsheet program. Users define formulas without any
concern of its detailed execution. In spreadsheet programs, users want to make sure
that their spreadsheet formulas are correct with respect to the actual data they are
working on. For a formula, correctness corresponds to the equality of computed value
of the formula with a pre-calculated value. However, pre-calculated values may not
always be available. Hence, the reasonableness of the computed value is used to judge
the validity of the formula. Users usually have a gut feeling of the range of reasonable

values for each given cell though.

In order to test based on the internal structure of spreadsheet code with the ob-

jective of covering some part of the code during testing (i.e., code coverage-based
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testing), the user must first dig out the hidden data dependency relations. This
corresponds to constructing a dataflow graph to select test cases for a procedural
program. However, the problem which is frequently mentioned in spreadsheet pro-
grams is that the computational structure is hidden and dependencies are hard to
follow [5, 21, 26, 102, 106]. With this hidden implementation structure, it is difficult
for a user to understand and hence design test cases for a certain coverage criterion.
Hence, it does not seem feasible to expect a user of a spreadsheet to have such an

abstract model to design test cases.

The other possibility could be to apply random testing. This involves selecting a
random test data without the intention of satisfying any coverage criterion. However,
this alone does not give any valid prediction of the program’s reliability. Besides its
inability of assuring coverage, it may be difficult to predict the desired outputs of

random test data.

Out of this analysis, we can see that spreadsheets are software too and approaches
are needed to improve their quality. However, an approach to address spreadsheet
quality problems should be appropriate for end users. Therefore, to be successful, ap-
proaches should take into consideration that rest on the conceptual models users have
instead of on concepts targeted to professional programmers. In other words, user-
centered approaches will have a better chance to be practiced by the large community

of spreadsheet users.

3.5 Summary

Spreadsheets are software developed by end users using a certain domain specific lan-
guage. At first sight, this might give the impression to consider conventional quality
assurance techniques for spreadsheets. Conventional quality assurance techniques, in
their very nature, are targeted to professional programmers who write specifications
and validate their products based on specifications and some code coverage criteria.
As a support of the formal verification techniques, other quality assurance techniques

such as inspection, reviews, and dataflow analysis can be used at various stages of
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software development. In spreadsheet programming where program development is
non-algorithmic and largely trial and error based, we don’t expect the user to do ver-
ification based on conventional quality assurance techniques. However, inspections
and reviews can be used to support other formal quality assurance techniques, but

they are by no means sufficient by themselves.

To be successful, approaches should take into consideration that rest on the con-
ceptual models users have instead of on concepts targeted to professional program-
mers. Hence our approach doesn’t depart from conventional testing wisdom. We
rather propose an approach based on the purpose spreadsheets are used for and the
expertise of users. Spreadsheets are mainly used for numerical computations by end
users. Hence, we require from the user a vision of the ranges of possible values of
formula computations. This enables us to perform interval analysis on spreadsheets

to detect the existence of faults in formulas.






CHAPTER: 4

Related Work

Realizing the quality problems spreadsheets have, different approaches to improve
spreadsheet quality have been proposed. This chapter surveys approaches to improve
spreadsheet quality. The approaches can be broadly categorized as preventive and
detective. Though the research most relevant to this work is the detective approach,
we would like to review both approaches to give insight into the state of the art.
Section 4.1 reviews preventive approaches. A discussion and evaluation of detective
approaches is given in section 4.2. Finally, section 4.3 concludes the chapter by

presenting a summary of the spreadsheet quality improvement approaches.

4.1 Preventive Approaches

The focus of preventive approaches is to provide a design methodology. A number
of approaches have attempted to introduce design styles one way or the other. This
section reviews the main preventive approaches that have been discussed in the lit-
erature. It covers approaches that apply concepts of software engineering as well
as approaches that provide mechanisms of redesigning the way formulas are defined.
Section 4.1.1 discusses approaches which adapt conventional software design method-
ologies for spreadsheets. At a lower granularity, section 4.1.2 discusses approaches
targeted to formula design. Section 4.1.3 presents an evaluation of the preventive

approaches.

ol
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4.1.1 Spreadsheet Design Approaches

Different authors have indicated the lack of a development methodology for spread-
sheets and considered this as one of the causes for high error rates [63, 82]. Panko
indicated that the problem in spreadsheet development resembles the problem in con-
ventional software before the introduction of structured programming. While an ad
hoc style of development is widely used to speed up the development process, the
quality of the resulting spreadsheet suffers. To tackle the problem from a design per-
spective, different approaches have been proposed to improve the way spreadsheets

are designed.

Ronen et al. [97] indicated the necessity of a formal analysis and design approach
and to this end demonstrated a structured design technique for spreadsheet programs.
They proposed a development life cycle for spreadsheets where different components
of a spreadsheet can be identified. Block-structure diagrams are used to represent
input vectors, output vectors, decision vectors, parameter vectors, and formulas sep-
arately. The relationships among the different components are represented using
dataflow diagrams. In a similar manner, Mather [63] suggested a framework for
developing spreadsheet programs. This framework provides the identification of in-
put, output, and intermediate variables. This approach also uses different symbols
for the representation of input, output, and intermediate variables. It also provides
some guidelines how to structure the program on the two dimensional grid structure

by separating constants area, calculation area, and manager area (final outputs area).

Knight et al. [53] proposed a design methodology for spreadsheets based on Jack-
son structure diagrams. The approach provides a modularization principle to decom-
pose a spreadsheet program into modules. The main constructs of Jackson structure
diagram sequence, repetition, and selection are applied to construct a structure di-
agram for a spreadsheet module. Once a spreadsheet design is expressed based on
Jackson structure diagrams, it can be represented on the tabular grid in an indented
form which provides a structured layout. They have also indicated the potential of

the approach to transform existing spreadsheets into Jackson structure diagrams (re-
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verse engineering approach).

[sakowitz et al. [49] argue that a spreadsheet program is manipulated as one en-
tity while it contains different components that require different representations. A
spreadsheet program, according to them, can be viewed from two perspectives: logi-
cal and physical. Using database terms, the logical view consists of schema and data
components. The schema is a formal description of the program’s logic (formulas
and their relationships to each other). The data contains a structured set of values
on which the schema property operates. The physical view consists of the physical
layout of the program on the grid structure. This comprises editorial and binding.
The editorial contains anything left after the extraction of schema and data. These
are mainly titles and comments. The binding is a mapping that binds schema, data,
and editorial to the spreadsheet grid. A factoring algorithm is used to extract the
schema with the help of the user from a spreadsheet program. The reverse process
of constructing a spreadsheet program from a schema is accomplished using a syn-
thesis algorithm. To perform the extraction of schema and data, a certain structural
assumption is taken in this approach. In addition, the user is required to identify the

relations (block of related cells) out of which the schema will be constructed.

A similar approach to Wilde [120] is presented by Tukiainen [113] which is called
ASSET. The principal idea of this approach is to change the design style of spread-
sheets so that the representations of cells and their relations are more understandable.
This approach focuses on the problems of invisibility of formulas and the physical dis-
tance between a formula and cells referenced by the formula. In ASSET, a user creates
a spreadsheet program by choosing the type and size of data structures appropriate
for the computational task. The data structures are chamber, sequence, and table
which are introduced to simplify the way data is organized. A chamber consists of
a single cell. A sequence is a one-dimensional collection of cells. A table is a two-
dimensional collection of cells. For example, a user can choose a sequence structure
with 10 elements to put the values of 10 items. After filling the cells with data, a
goal is selected based on the desired computation. Goals and plans, which are used in

conventional programming, are also found to be used by spreadsheet programmers.
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Computation is performed by applying goals and plans. Goals define what must be
accomplished to solve the problem, and plans define how the goals can be achieved.
Goals and plans are implemented as predefined functions and are available during
programming a spreadsheet. ASSET enables a user to group cells in a logical collec-
tion. The logical collection consists of those cells contained in a sequence or table
structure. This avoids unintended reference to other cells. In addition, whenever a
new insertion of data is made within a given logical group of cells, the computation
is automatically updated irrespective of the position of insertion. This solves the
problem with the current spreadsheet systems where a new insertion at the border of
a range is not automatically included in the computation. This way of computation

forces the user to plan ahead the number of rows and columns needed to layout data.

An approach from an object-oriented software perspective has been proposed by
Paine [80] which requires the user to write textual specifications of objects which are
needed to build a spreadsheet program. The object specifications are then mapped
to a tabular grid using an intermediate compiler called MM (model Master). In
essence the user is expected to write an object-oriented version of his/her spreadsheet
program and then with the help of MM transform it into the desired spreadsheet
program. As demonstrated, errors due to cell misreference (e.g., referencing a wrong

cell in a formula) and type mismatch could be reduced.

A different approach is to provide users a training on systems analysis and de-
sign methods. Kreie et al. [56] claim that lack of training on analysis and design
could be one of the reasons for high error rates. In addition, they have indicated
that if users receive a training on such topics, they will likely apply the concept
when designing spreadsheets. In their study, they found that the overall design of
spreadsheet programs developed by end users who received analysis and design train-
ing improved. A similar study [51] indicated the importance of structured design
approach to spreadsheet development. Chadwick et al. [18] also indicated that high
error rates in spreadsheets are due to failure to consider spreadsheets as software.
They argue that spreadsheets are software and need application of concepts of soft-

ware engineering to the design and development of spreadsheets. They proposed a life
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cycle approach for spreadsheet development called R.A.D.A.R which encompasses re-
quirements, analysis, design, acceptance, and review. The subjects of the study were
university students who developed spreadsheets using the concepts of modulariza-
tion and applied the life cycle approach to spreadsheets. Their result shows that

spreadsheet quality can be improved by applying software engineering concepts.

4.1.2 Formula Design Approaches

The other direction of tackling the problem is to make design at a formula level.
Wilde [120] proposed redesigning the way formulas are defined. In his approach,
computations are built up by specifying operators on a nearby range of cells. The cell
containing the computed value and the cells up on which computation is performed
are contained within a specified cell range. There are no formulas in the sense of the
usual spreadsheet. Computations are more visible since they are defined in a nearby

area.

In an attempt to represent formulas visually, Cox and Smedley [25] proposed a
way of redefining the way formulas are defined. In their approach, computation is
performed by representing formulas by a graphical dataflow diagram. Cell values
involved in the computation are associated to dataflow graph nodes. Arrows from
each node of the dataflow graph to the corresponding cells of the spreadsheet are
drawn to show which cells are used in the computation. In addition, operators and
functions are also attached in the dataflow graph at appropriate positions so that the
semantics of the computation is understood from the dataflow diagram. The sink
node of the dataflow graph displays the result of the computation. This dataflow
graph representation of a formula clearly shows the cells involved in the computation,
operators and functions used in the formula. It could be also helpful in debugging a

formula.

4.1.3 Evaluation of Preventive Approaches

Preventive approaches tackle the problem from two perspectives. The first perspective

is adaptation of conventional software development process to spreadsheet develop-
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ment. This is accomplished by using a design technique [18, 49, 53, 97]. Design
approaches help in the process of creating spreadsheets and the resulting spreadsheet
will be easily understandable and maintainable. In addition, during the process of
the design, flaws can be identified and corrected before propagated to the code. This
reduces the cost of detecting and correcting faults. However, as spreadsheet systems
are used by a large number of non-professional programmers, formalized development
methodologies for spreadsheets are unlikely to be used by a significant proportion
of users. One of the reasons for the wide acceptance of spreadsheet systems is that
they can be used without any formal training on conventional software development
process. Moreover, users develop spreadsheets very quickly as compared to the de-
velopment of conventional software. Therefore, to gain popularity, design approaches
should not force the user to change the way of spreadsheet development as users may
not accept design procedures which will reduce their productivity. The adaptation
of conventional software design methods to spreadsheets should mainly consider the

developers of spreadsheets.

The other perspective is changing the way formulas are defined [25, 80, 113, 120].
This approach seems promising provided that the way formula design is accomplished
doesn’t require much concept of procedural programming. For example, the way a
formula is specified in [25] is more visible and helpful for further examination of cell
dependencies. On the other hand, Paine [80] requires writing an object-oriented pro-
gram to build a spreadsheet program. Though it can help to alleviate some of the
problems, an approach that requires writing an object-oriented program will miss
most spreadsheet users. Similarly, Wilde [120] restricts the type of formulas which
can be created and as a result its usefulness is very limited. ASSET [113] provides
a structured way of laying out data and the relationships among group of cells are
more visible. However, all computations cannot be performed using predefined goals
and plans. It should be flexible enough to allow users to define their own formulas in
some way. If creating ones own formula requires a sort of conventional programming,

then it is unlikely that a user of a spreadsheet will afford that.

All the preventive approaches have the objective of reducing errors by providing
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preventive mechanisms. Preventing errors is cost effective but cannot stop all errors
in a program. Hence a detective mechanism is needed to detect those errors which
cannot be prevented. Preventive and detective approaches are complementary in

nature.

4.2 Detective Approaches

Faults which are not prevented during the earlier stages of development can only be
identified through detective mechanisms. In spreadsheet development where there
is no well defined and user-accepted development process, detective approaches are
highly desirable. Detective approaches have the objective of showing a symptom
of fault in a spreadsheet program. This can be achieved through visualization and
testing tools. Section 4.2.1 discusses approaches proposed to provide a graphical
representation of a spreadsheet program. Section 4.2.2 reviews testing techniques
that are targeted to spreadsheet programs. An evaluation of detective approaches is

presented in section 4.2.3.

4.2.1 Visualization

One of the difficulties in understanding spreadsheet programs is the invisibility of the
cell dependencies. Visualization approaches provide a visible graphical representation
of the computational structure of a spreadsheet. The graphical representation can be
in terms of arrows, colors, shades, boxes etc. which show groups of related cells and
their interactions. Besides showing the possible faults, visualization tools have also

the potential of making program understanding easier.

The spreadsheet, detective [8] adds colored annotations to spreadsheets so that
formula cells can easily be identified from input cells. For example, overwriting a for-
mula cell with a fixed value can be easily identified. In addition, it provides shading
patterns for formula cells which show the direction (vertical or horizontal) from which
a formula is copied. It also provides a mechanism of comparing versions of a spread-

sheet by identifying the changed formulas and rows(columns) inserted (deleted). The
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changed formula cells and inserted (deleted) rows (columns) are marked with different

symbols.

Most visualization approaches try to extract cell dependencies and display them
in a graphical form. In [106], a data dependency graph is presented in a three-
dimensional space. While the spreadsheet layout itself is two-dimensional, the third-
dimension is used to depict inter-cell dependencies. A desired formula cell is lifted up
in the z-axis by some units. As this cell is lifted up to higher levels, the cells upon
which the selected cell depends or the cells which depend on the selected cell or both
will be lifted up one level less the level of the selected cell. This way, cell dependencies

can be examined without superimposing arrows and colors on the spreadsheet itself.

Fluid visualization [48] applied the idea of animation to spreadsheet visualization.
Different techniques are used to visualize the dataflow structure either partly (i.e.,
cell by cell) or globally (i.e., entire dataflow structure at once). The cell by cell vi-
sualization displays the precedent and dependent cells of a given cell with links and
shades as the user moves the mouse pointer over the desired cell. On the other hand,
when the user requires a general overview of the entire dataflow structure at once,
the dataflow graph is displayed with different shades and colors showing the cell de-
pendency relationships. This is also provided in an animated form which shows the
dataflow structure in a progressive way (i.e., from input cells through intermediate
cells to output cells). Moreover, fluid visualization provides an interactive feature to

navigate and edit a dataflow graph.

Besides the dataflow graphs, spreadsheets will be better understood if a mecha-
nism of decomposition into different functional parts is also provided. In [21], dif-
ferent techniques are used to incorporate functional parts (a kind of modules) in the
visualization of a spreadsheet. The first identification is made between input, inter-
mediate, and output cells based on the availability of precedent and dependent cells.
Anomalous cells which have neither precedents nor dependents are easily identified .
Similar to cell connections, block connections are also drawn to identify the interac-

tions among different groups of cells. The variety of techniques demonstrated provide
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different levels of focus from cell by cell links to links among blocks of cells.

A more general approach to spreadsheet visualization is proposed by Sajaniemi [102].
He described a theoretical model of spreadsheets upon which visualization mecha-
nisms are introduced. This visualization approach also treats areas and introduces
different criteria to identify areas. An area contains formulas or input values which
form a logical entity. An area which contains a homogeneous collection of cells is
treated as a single entity and as a result there is a single arrow emanating from and/or
heading into such an area. A homogeneous area is an area which contains a group of
cells which are similar. Two cells are similar if they are type and formula equivalent.
In addition, different types of areas such as top-originating, bottom-originating, edge-
originating, and corner-originating are used to categorize groups of cells into single
entities based on their computational functionalities. Areas are colored yellow with a
thick border line and connected by arrows when there are interactions among the ar-
eas. Like the other visualization approaches, the dataflow structure of a spreadsheet
is displayed in a graphical form indicating cell relationships. The arrows indicate
the interactions between different entities. Moreover, this approach also establishes

relations between formulas (i.e., relations between source and copies of a formula).

A visualization approach which also considers physical and logical areas based
on the the spatial layout and the similarity of data manipulation is given in [5]. A
physical area contains cells which are usually used as input for a certain aggregation
function. On the other hand, a logical area contains a group of cells showing similar

functionalities.

Davis [26] proposed two auditing tools, one based on data dependency diagrams [97]
and another representing data dependencies using arrows superimposed on the spread-
sheet display. The on-line data dependency diagram provides a graphical layout of
inputs, outputs, decision variables, parameters, and formulas with different symbols
showing the data dependency among cells using arrows. The diagram is displayed in
a separate window from the spreadsheet display. The correspondence between a cell

and its diagram is indicated by using the same color whenever needed. The arrow
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tool shows data dependencies by drawing arrows and colors between precedent and
dependent cells. The tool also provides a means of navigating the arrows. Based on
empirical evaluation of Davis’s arrow and on-line data dependency diagram tools, the
arrow tool is found to be more appropriate for investigating cell dependencies and
helpful for debugging. Microsoft Excel’s auditing tool is similar to Davis’s arrow tool
which is intended to depict relationships between cells and help in debugging spread-
sheets. This tool draws arrows from precedent cells to dependent cells indicating the
direction of dataflow. If the precedent cells are groups of cells which form an area,
then an enclosing rectangular border is drawn around the area. A drawback of this
style of arrow representation is that it is difficult to identify cell dependencies when
there is an overlap of arrows. In addition, when there are many dependencies, a lot
of arrows are drawn which makes tracing relationships difficult and the display gets

cluttered.

Even though visualization approaches have the objective of presenting the hid-
den dataflow structure in some graphical form, they vary in features and procedures
for investigating (i.e., browsing data dependencies) precedent and dependent cells.
They also differ in the way the graphical form is displayed. Some provide a sepa-
rate graphical display (e.g., [26, 106]) while others superimpose it on the spreadsheet
display (e.g., [21, 48, 102]). Separate representation has the advantage of viewing
both displays without much information at the same display; but determining the
correspondence between separate displays adds some extra work for the user. Su-
perimposing simplifies the task of determining the correspondence between the two
displays, but both representations may not be seen clearly at the same time. However,
the appropriateness of the display type (i.e., separate representation or superimpos-

ing) cannot be easily determined by analytical methods.

Generally, the differences between visualization approaches can be examined from
different perspectives such as the ability to incorporate the concept of areas, the
ability to incorporate formula relationships, and how easily navigation and zooming

(i.e., different levels of view) can be done.
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4.2.2 Testing

These approaches try to indicate the existence of faults in a spreadsheet by applying
similar techniques of conventional software testing. However, the literature is mea-
ger in this direction. To our knowledge there have been only few attempts made to
tackle the problem from this perspective. The only testing approach known to us
in the literature is the one proposed by Rothermel et al. [99, 100]. This approach
introduces the idea of the all-uses dataflow adequacy criterion to spreadsheets. Ad-
equacy criterion helps to select test cases and provides information on the adequacy
of test cases. Cells are treated as variables of a procedural program. Using dataflow
testing terms, input cells are taken as variable definitions and formula cells as both
definitions and uses. As the user enters different values to input cells (each input
being taken as a different test case), the testing system records the def-use associa-
tions executed during validation. The user is supposed to validate each formula cell
under test as correct or incorrect for a given test case. Based on this, the degree of
testedness of a formula cell is computed by comparing the ratio of executed def-use
paths to the total def-use paths of that formula cell. Whenever the need arises, the
user is provided with information about the degree of testedness of a formula cell.
The assumption is that if the user sees a lower degree of testedness of a formula cell,
(s)he will test with additional test cases. In addition, whenever the user changes a
formula, the testing system provides feedback about how this affects the testedness

of those dependent cells.

The drawback of this approach is the assumption that users will provide test cases
to satisfy the all-uses dataflow adequacy criterion without knowledge of the underly-
ing dataflow structure of the code (i.e., def-use graph). Understanding the dataflow
structure is more difficult in spreadsheets where code is represented in two-dimension
and input/program/output are not represented separately. As the testing criterion
used remains implicit (users are not aware of it), the tests they generate are random
which may not provide adequate coverage. The weakness of random testing is dis-
cussed in section 3.4 of chapter 3. Since users are not aware of the complications

of achieving adequate code coverage, they may not be convinced by a test coverage
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information below full coverage. For example, for a given formula, if the degree of
testedness is say 30% def-use coverage, then it will be difficult for the user to provide
additional test cases to achieve 70% or 80% def-use coverage without knowing which
def-use paths are executed. Had (s)he been a professional programmer, (s)he would

design new test cases for the def-use paths which are not yet exercised by any test case.

This approach was originally designed to be used for testing each formula cell sep-
arately. As an improvement, a scale up of the approach [13] was proposed to be able
to test a group of cells at once. The new version has two approaches: straightforward
and region representative. In the straightforward approach, the user can validate a
group of cells in one operation but testedness information is maintained separately
for each cell. In the region representative approach, a single formula cell is selected
and tested and the testedness information is propagated automatically to those for-
mula cells in the region. This simplifies the effort needed to test each formula cell
and as a result the number of test cases needed is greatly reduced. In addition, the
user is not required to specify the expected value for each formula which needs to be
tested. However, this approach can also lead to wrong conclusions of testedness of
formula cells when a formula is copied to a group of cells. One very common task
in spreadsheet programming is copying a formula from one cell to a group of cells.
Depending on the cells to be referenced by the formulas in the new locations, relative
and absolute references are used. If an error occurs in setting relative and absolute
references in the source formula, then the copied formulas refer to other cells which
are not intended for the computations. Let us consider the example in figure 4.1 to

illustrate this situation.

Suppose a user specified a formula in cell D2 and copied it across the cells D3 to
D5. Since the column should not change during copying, an absolute reference is used
for the column. But as the formula is copied down to the cells D3 to D5, the row
should vary. However, the user made an error and used an absolute reference for the
row too. The formula is correct for the first formula cell D2 but the formulas in cells
D3 to D5 refer to the wrong tax rate cell B2. As a result the values of the cells in D3

to D5 are incorrect. According to the region representative approach, the user is likely
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Figure 4.1: Formula copy

to test the source formula D2 and propagate the testedness information to the copies
of the formula. Even though the source formula appears to be correct, its copies are
not correct. Due to the absolute reference which refers to a fixed cell during copying,
the copies have unintended cell references. In such cases, propagation of testedness
information provides false information. Hence, the generalization approach can fail

due to errors in setting cell reference types.

The other approach proposed in spreadsheet testing is code inspection. Code in-
spection involves the examination of program code to detect faults. Panko [82] has
conducted an experimental study on the effectiveness of code inspection to spread-
sheet testing. In his study, it was found out that individual code inspection detected
63% of the faults while group inspection detected (a team of three inspectors) 83% of
the seeded faults. The result is in line with the effectiveness of code inspection in con-
ventional software testing. One advantage code inspection gives over dynamic testing
is that code inspection detects the faults themselves directly whereas dynamic testing
provides only symptom of faults. However, code inspection cannot be automated and
hence cannot be used by individuals to test their own programs. Therefore, code in-
spection is a matter of policy setting, preparation of guidelines and team organization

instead of being used as a tool.

4.2.3 Evaluation of Detective Approaches

Detective approaches have the objective of showing symptoms of faults in a spread-

sheet program. The way a symptom of fault is generated depends actually on the type
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of detective approach used. Generally, visualization approaches are concerned with
the layout of data and the corresponding dataflow structure while testing approaches

are concerned with formulas defined for computations.

Visualization tools are used to examine the validity of spreadsheet programs by
tracing the interactions among cells to uncover unintended or missing connections.
They indicate irregularities or mismatches between the physical structure and the
invisible dataflow structure. However, visualization approaches do not focus on faults
within the formulas; they rather try to highlight anomalies by investigating relation-
ships among cells that show existence of potential errors. On the other hand, testing
approaches are concerned with the detection of faults within formulas. Code inspec-
tion approaches enable the user to detect the faults in formulas directly. Nevertheless,
this is mainly a code reading activity which does not provide the user an additional
support to detect faults. Dynamic testing, on the other hand, provides a symptom of
fault which aids the user to examine those cells for which a symptom is reported. For
the identification of the possible location of faults, the data dependencies are traced
using visualization (or debugging tools). We can see that visualization and testing ap-
proaches are complementary since they focus on different types of faults. The existing
testing approach requires the user to provide tests to satisfy a test adequacy criteria
which was defined for conventional software testing. Adaptation of such techniques
could be helpful, but should take into consideration the inherent characteristics of

spreadsheets and their developers.

4.3 Summary

The reasons for spreadsheet errors could be attributed to the lack of a well defined
design and testing support. A design methodology helps to reduce the faults which
will be introduced into the program and as such it is a preventive mechanism. How-
ever, this by itself does not ensure the quality sought for. This process has to be

accompanied by a testing phase which is targeted to the detection of latent faults.

There are two broad categories of approaches aimed at improving spreadsheet
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quality: preventive and detective approaches. Preventive approaches try to im-
prove quality by providing better design mechanisms. The objective of preventive
approaches is to prevent errors that can be prevented before they are introduced into
a spreadsheet program. Some approaches propose a development life-cycle for spread-
sheets; others provide a way of defining formulas. Some of the design approaches
force the user to change the way of spreadsheet development and others assume some
concepts of conventional software development to be used directly by a spreadsheet
developer. Though preventive approaches are very helpful in that faults can be iden-
tified at earlier stages, they should neither require concepts of conventional software

development nor force the user to change the style of spreadsheet development.

Detective approaches which consist of visualization and testing approaches try
to provide techniques of detecting the existence of faults. Visualization approaches
indicate the existence of potential faults in a spreadsheet program by providing a
graphical representation based on the data flow structure. However, visualization
approaches do not provide mechanisms of detecting faults within a formula. Testing
approaches attempt to indicate the existence of faults within formulas. The drawback
of the existing testing approach is the assumption that users will provide test cases
to satisfy the all-uses dataflow adequacy criteria without knowledge of the dataflow
structure of the code (i.e., def-use graph) and the testing criterion used. Since users
are not aware of the testing criteria employed, the tests they generate are random
which may not provide adequate coverage. In addition, users are working on actual
data that they need for their applications and need to know the correctness based on

the actual data instead of arbitrary data chosen for testing purpose.

Rather than addressing the problem of spreadsheet quality from a preventive as-
pect (i.e., preventing errors), we focus on tackling the problem from a detective aspect
(i.e., detecting existence of faults) without requiring the user to learn software engi-
neering concepts. In chapter 6, we present a testing methodology for spreadsheets
based on interval analysis and symbolic testing. The use of interval-based testing

does not force the user to change the way of spreadsheet development.






CHAPTER: 5

Basic Interval Arithmetic

This chapter reviews the basic definitions and properties of interval arithmetic which
are helpful with regard to spreadsheet testing. Interval-based testing methodology
thus works based on these definitions and properties and by adapting to spreadsheet
interval computation whenever necessary. Section 5.1 introduces the basic idea of
intervals. Section 5.2 presents the most common definitions of interval arithmetic for
single and multi-intervals. A treatment of relational operators for single and multi-

intervals is presented in section 5.3. Finally, a short summary is given in section 5.4.

5.1 Intervals

An interval represents a range of possible values bounded by the interval’s lower and
upper bounds. Interval arithmetic was introduced by Moore [68] and is used for
a variety of applications such as solving differential equations, linear systems, and
global optimization. It is used to evaluate arithmetic expressions over sets of num-
bers contained in intervals. The result of interval computation is an interval that is
guaranteed to contain the set of all possible resulting values bounded by the global
minimum and global maximum. Interval arithmetic is also used for error analysis as
numerical computations involve different errors. The errors could be due to errors in
the data, rounding errors, or approximation errors. Interval analysis is used to deal

with uncertain data, rounding errors, and approximations and as a result to provide

67
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bounds on the effect of such errors on a computed quantity [36].

Classical interval arithmetic deals only with closed intervals. However, in practi-
cal situations open intervals and intervals with infinite end points are common. To
incorporate this situation, extended interval arithmetic is used. However, we will use
mostly classical interval analysis for spreadsheet evaluations even though extended

intervals can also be introduced.

5.2 Interval Arithmetic

The classical interval arithmetic is usually defined for single intervals. However, in
the case of division of intervals containing zero value, the resulting interval could be
union of intervals which involves infinity end points. The resulting interval can also
be used for further interval computation. Therefore, it is also necessary to define

arithmetic operation on multiple intervals.

5.2.1 Single Intervals

Let X = [a, b] and Y = [c, d] be intervals and op represent arithmetic operators
+, -, % /. Then Xop Y = [min x op y, max x op y| where x € X and y € Y. The
min and max are global minimum and maximum values. Based on this definition,

the following basic interval arithmetic operations are defined [36, 45].
e X+Y =[a+cb+d]

e X —Y=[a—d,b—(

X *Y = [min{ac, ad, be, bd}, max{ac, ad, be, bd}]

11
= [6’ —] provided that 0 ¢ X
a

1
=Xx—,0€Y
w3 07

<[ e
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Division of intervals can be generalized as follows:

(0,0 % 2,1 i£0¢[e,d]
a7 d7 C 1 C7
{} ifc=d=0
X [aa b] . _
§7z<%&ﬂ ife=0 (5.1)
a, b ifd=0
c, 0?
a,b]  la,b] _
U th
| [C, 0) (0, d] otherwise

As real numbers are degenerate intervals, it is also possible to perform arithmetic
operations on combinations of both real and interval numbers. The following opera-
tions define mixed arithmetic. Let £ > 0 (the case for £ < 0 can be defined similarly)

be a real number.
. k+ X =[k+a,k+1]
2. k—X=[k—-0bk—d]

3. kx X =lkx*a,kxb

k 1
5 E_[Eé]
ko kT k

Other interval functions which are commonly used are absolute value and integral
exponent of an interval. These definitions are given below [36]. Let X = [a,b] be an

interval.

e Absolute value
[a, b] ifa>0
| X[ = < [b, -a] ifb<0 (5.2)
[min{|al, [b[}, maz{[al, [b]}] ifa<0<b
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e Integral exponent

)
1, 1] ifn =0
[a", b"] ifa>0orifa<0<bandn is odd
X =4 (5.3)
", an] it b <0
[0, max(a™,b")] ifa <0 <bandn is even
\

So far we have considered only closed intervals. A similar definition can be used
for open intervals (see [45]). Infinite intervals need a special consideration. The rules

for addition and subtraction of infinite and semi-infinite intervals are given below.
1. [a,b] + (—o00,d] = (—00,b+d]
2. [a,b] + [¢,00) = [a + ¢, 00)
3. [a,b] £ (=00, 00) = (—00,0)

4. [a,b] — (—o0,d] = [a — d, o)

ot

. [a,b] = [¢,00) = (—00,b— (]

5.2.2 Multi-Intervals

As seen in the case of interval division containing the value zero, the resulting in-
terval could be a union of intervals. Such intervals are called multi-intervals (or
discontinuous intervals). If multi-intervals are involved in further computations, then
arithmetic on multi-intervals is necessary. For example, if X, Y, and Z are intervals,
then (XUY)+Z=(X£2Z)U(Y £ Z). The basic arithmetic for multi-intervals is

given below.

Let X = X;UXo U UX, ={X,Xy,.. X, }and Y = YUY, U...UY, =

{¥1,Ys,...,Y,,} be sets of intervals where the component intervals are disjoint.

1. Addition
X4Y=UX+ U= U (i +Y)

i=1 j=1 1,j=1
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2. Subtraction

X-Y=UXi- UV, = U X-Y))
=1 7j=1 3,j=1
3. Multiplication
XY =UXix UY; = U (XixY)
i=1 j=1 ij=1

X Xz n Xz
4. Division — = U = —

vyoUy )

Note:

(a) The set of resulting intervals may be reducible if there are overlapping

intervals.

(b) The number of constituent intervals in the resulting discontinuous interval

lies between 1 and n*m.

5.2.3 Interval-valued Functions

Consider a real-valued function f of real variables x, xs, ..., z, and an interval func-
tion F of interval variables Xi, X, ..., X,,. The interval function F is said to be an

interval extension of f if F(xy, s, ...,z,) = f(x1, 29, ..., z,) for all z;.

Generally, interval functions are interval extensions of ordinary functions. Since
the resulting value of the function F contains the true range of the function f over
the given interval, f(xy,z,...,z,) € F(X;, Xy, ..., X,,) always holds. True range of a
function represents the range of values of the function over the given interval. For
example, let f(z) = (x — 1) % (z + 1) over [-2, 2]. Then f([-2, 2]) = [-3, 1]*[-1, 3] =
[-9, 3] while the true range of the function is [-1, 3]. The reason for such a wide range
is the dependency problem. Here, the variable x appeared twice in the expression
and gave rise to a wide range. Hence, to find the true range of a function, other
methods should be used. In general, finding the true range of an interval function
is not straight forward. The true range of a function can be easily obtained if the
function is monotonic. For a monotonically increasing or decreasing function f over

an interval [a, b], the range is either [f(a), f(b)] or [f(b), f(a)]. In the general case, we
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need to use optimization methods to find the global minimum and global maximum of
an interval function. As we are concerned only with the basic interval arithmetic, we
do not deal much with interval functions (e.g., trigonometric, exponential, logarithmic

etc.) and hence no discussion of optimization methods is provided.

5.3 Interval Relational Operators

Since intervals are not totally ordered (they have only partial order) [36, 52, 68], they
may not be comparable. The set of intervals does not have Boolean comparison op-
erators. Generally, the comparison operators of the set of intervals are three-valued
operators (i.e., T, F, TF). There are different approaches used to transform into
Boolean logic operators based on the context of use of the comparison operators. For
example, Hyvonen [44] mentioned ”constraint X > Y is satisfiable if there is some x
in X such that there is some y in Y such that = > y.” Others use demotion which
performs simple conversion. For example, in [116], optimistic demotion(TF — T)
or pessimistic demotion (TF — F) is indicated as a possibility. A better approach
is used in FORTRAN 95 [66] by introducing qualifiers ” Certainly”, ”Possibly” and

”Set theoretic”.

Let X = [a, bl and Y = [c, d] be intervals and op € R = {<,<,=,>,> #}. Table 5.1
taken from [66] shows the operational definitions of Xop Y.

Set Certainly Possibly
<la<cAb<d|b<ec a<d

a<cANb<d|b<c a<d

a=cANb=d |d<anb<cla<dAc<b
>la>cAb>d|a>d b>c
>la>cAb>d|a>d b>c
#la#cVb#d|a>dVe>b|d>aVb>c

Table 5.1: Operational definition for interval comparison
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The operational definition given in table 5.1 is based on the following mathematical
definition. Let X and Y be non-empty intervals and op € R ~ {#} where R is as
defined above.

e Set theoretic

XopY=VeeX,dyeY:zopyandVyecVY,dxe X :xo0py.
e Certainly

XopY=VeeX,VyeY zopy.
e Possibly

XopY=dreX,dyeY zopy.
Note:

e Certainly equal holds iff the two intervals are degenerate intervals (i.e., intervals

of width zero) and possibly equal holds iff the two intervals are non-disjoint.
e Possibly not equal holds iff the two intervals are not degenerate intervals.

Based on the definitions given in [36, 66], we define comparison operators for single

and multi-intervals as follows.

1. Single Intervals

e X =Yifa=cAb=d
o X #Y iffa#cVb#d
e X >Yiffa>d
e X <Yiffb<c

2. Multi-intervals

Since the comparison of multi-intervals requires normalization, we define first
normalization of multi-intervals. The normalized form of a multi-interval as

given in [45] satisfies the following conditions.
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(a) the component intervals are single intervals
(b) any two intersecting components are merged into a single interval

(c) the components are sorted in increasing order

To define multi-interval comparison, let X = X UX5U..UX,, = {X{, Xy, ..., X, }
and Y =Y, UY,U...UY,, = {¥, Y5, ..., ¥,,} be normalized multi-intervals.

e X =ViffVX, € X,V €YV : X, =V, AVY; €Y, IX; € X : X, = V]

XAV iffIX, e X,V €Y : X; 2Y; VIV, € V,VX, € X : X; £ Y,
o X >V iff [ minX;, maxX,] > [minY;, mazxYy,]

e X <Y iff [ minX;, mazxX,]| < [minY], mazY,]

5.4 Summary

Intervals represent the possible range of values bounded by the minimum and max-
imum. Computations are made on intervals to estimate the range of the possible
outcomes. Interval arithmetic is used to evaluate arithmetic expressions over sets
of numbers contained in intervals and yields an interval which usually contains the

global minimum and global maximum among the possible values of the computation.

Since intervals are easily understandable and can be appropriate to represent
uncertain numerical data, interval-based testing uses intervals to represent input do-
mains and expected intervals for input and formula cells respectively and to per-
form interval arithmetic based on the formula defined for a cell. Interval arithmetic
and comparison can be performed on both single and multi-intervals. Single interval
arithmetic and comparison will be used for ordinary spreadsheet formula computation
while multi-interval arithmetic and comparison will be used for spreadsheet formulas

which involve alternatives and result of division.

Since we are introducing intervals to express expected ranges of values, we don’t

expect the user to be so precise and define open intervals instead of closed intervals.
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For this reason we do not deal with open intervals except when they are results of
computations such as division. The interval arithmetic we are interested in is mainly
classical interval arithmetic. Similarly, if zero appears as one of the end points of an
interval which is used as a divisor during division, we approximate it by the smallest

or largest number next to zero depending on the direction of inclusion.






CHAPTER: 6

Interval-based Testing Approach

Spreadsheet programs, artifacts developed by non-programmers, are used for a va-
riety of important tasks and decisions. Yet a significant proportion of them have
severe quality problems. However, very little is known about the use of testing as
a means to improve spreadsheet quality. This chapter discusses the interval-based

testing approach which addresses the problems in testing spreadsheet software.

An introduction which provides an overview of the interval-based testing approach
is presented in section 6.1. Section 6.2 discusses the basis for the interval-based testing
approach. A discussion on the constituents of a spreadsheet program test process is
given in section 6.3. To verify the reasonableness of expected intervals provided by the
user, interval analysis is performed on spreadsheets. A discussion on how to attach
input and expected intervals and how to perform interval computation on spreadsheets
is given in section 6.4. Section 6.5 discusses the conditions and procedures on how
to generate symptoms of faults. After testing is performed, it is important to get a
general information regarding the extent of verification. Verification information for
a spreadsheet program is presented in section 6.6. A real spreadsheet to demonstrate
the process of spreadsheet testing is given in section 6.7. Finally, a summary of the

main points of the interval-based testing approach is given in section 6.8.

7
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6.1 Introduction

The interval-based testing approach incorporates different techniques. Being a test-
ing methodology for spreadsheet software which is mainly used for numerical com-
putations, it uses the idea of interval analysis. On the other hand, being a testing
technique, it resembles symbolic testing which was defined for testing conventional

software.

Structural testing techniques provide a mechanism of determining the validity of
a unit of a program based on individual test cases. On the other hand, symbolic
testing provides a mechanism of determining the validity of a unit of a program for
any possible values of the input variables. Similar to symbolic testing, in the interval-
based testing, the determination of the validity of formulas is based on intervals.
However, unlike symbolic testing which requires expressing formulas only in terms of
input variables, interval-based testing uses intermediate variables for the purpose of

narrowing down the computed interval.

Interval-based testing is based on the observation that spreadsheet software are
mainly used for numerical computations. This enables us to introduce the idea of
interval analysis to spreadsheet software testing. This approach requires the user
to specify input intervals and expected intervals to validate a spreadsheet program.
Based on the intervals provided by the user, interval computation is performed for
formula cells. To detect the existence of symptoms of faults within formulas, com-
parison is made between the values of spreadsheet computation, user expectation,
and interval computation. In order to carry out interval computation and to reason
about the correctness of spreadsheet formulas, there are two options which can be

used during interval-based testing.

1. Strictly following the idea of symbolic testing, intervals can be specified only
for input cells and all computations of bounding intervals for formula cells will
be based on the intervals specified for input cells. This works fine as long as the
given formula is defined by the user only in terms of input cells. However, if

a formula is dependent on other formula cells, the resulting computed interval
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will be wide as interval arithmetic provides the global minimum and global
maximum of all possible computations. In such cases, the comparison between
the expected interval specified for the given formula cell and the computed
interval may not signal the existence of a symptom of fault when there is actually
a fault. As a result, it is necessary to use narrower intervals for the intermediate
formula cells. This can be achieved by considering the expected intervals of
the intermediate formula cells instead of using the computed intervals of the

intermediate formula cells.

2. The other alternative is the use of expected intervals of intermediate formula
cells during the computation of the bounding interval of a formula cell which
depends on one or more intermediate formula cells. This option enables us to get
relatively narrower computed intervals and hence the comparison between the
expected interval specified for the given formula cell and the computed interval
may provide appropriate signal regarding the existence of a symptom of fault.
Therefore, this option is chosen for the computation of the bounding intervals

of formula cells.

While introducing the idea of intervals in the interval-based testing, there are some

assumptions made.

e Users do not have exact values in mind about the results of formulas but they

have some range of reasonable values which can be expressed as intervals.

e During the comparison of spreadsheet computation, user expectation, and in-
terval computation, boundary violations are only indicators of symptoms of

faults.

e Errors within the boundaries of expected intervals can go unnoticed but might

not harm dramatically.

e Ripple effects might lead to noticeable boundary violations.

The interval-based testing approach presented here differs from the testing ap-

proach discussed in chapter 4 section 4.2.2 in a number of ways. The first difference
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is that interval-based testing is not based on code coverage (i.e., no adequacy criterion
is defined). Most users are not aware of conventional software testing techniques. In
addition, they are not expected to provide effective test cases to satisfy a given classi-
cal coverage criterion without knowledge of the code structure and without knowledge
of the coverage criterion employed behind (as is done in WYSIWYT [99, 100]). The
interval-based testing focuses on the functionality of spreadsheet formulas instead of
the code structure of a spreadsheet program. Hence, other concepts have to take care
of coverage of formula verification. Verification information, similar to "test cover-
age”, can be inferred from the number of formula cells which are verified and correct

with respect to the total number of formula cells (see section 6.6).

Secondly, the interval-based testing requires the expected intervals to be docu-
mented as part of the spreadsheet whereas WYSIWY'T requires the expected values
to be just in the minds of users and used during validation. The WYSIWYT approach
requires the user to simply validate a formula as correct or incorrect based on a given
test case. To do so, the user should have the expected interval in mind for a given
formula. Thirdly, in interval-based testing, the expected intervals provided by the
users are verified for reasonableness using interval analysis whereas the WYSIWYT

approach does not provide such mechanisms.

6.2 The Rationale for Interval-based Testing

As already mentioned in previous chapters, spreadsheets are software too. But
they are developed by end-users. End-user programming environments enable non-
programmers to produce working applications. The easiness and usability of the
environments motivate users to write their own programs. In a similar fashion, users
expect a similar functionality of easiness and usability from other tools which are
used to aid in the development process. As it is seen in conventional software testing,
testing is an expensive process. Nevertheless, it is desirable to reduce this cost even
further when it comes to end-user programming. We claim that a testing methodology

for spreadsheets should take into consideration at least three points:
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e it should be user-centered
e it has to be spreadsheet-based

e it should take care of the inherent characteristics of spreadsheets

A user-centered approach refers to a methodology which takes into account
both the expertise of users and the conceptual models users have in mind about
their programs during testing. In spreadsheet programming, the detailed procedure
of computation is transferred to the language and hence is not the programmer’s
responsibility. A spreadsheet user is not concerned about the details of the com-
putation. The user specifies a formula to establish dependencies so that values of
other cells can be used in a computation. Users of spreadsheet systems often do not
know how the result of a program is computed and hence it is unlikely that they
will base their testing on the detail of computation. This is due to the fact that
spreadsheet languages are declarative. Declarative languages are concerned on data
relationship as opposed to control flow [4]. Users’ understanding of cell dependencies
is at a higher semantic level. Therefore, users will most likely check the correctness

of formulas based on the intended functionality rather than their internal structure.

The coupling of input/program/output has also a similar effect. Testing by vary-
ing inputs which is the common way of testing in conventional programming is not
readily applicable in testing spreadsheets. There are different reasons. Spreadsheet
users develop their programs by first preparing their input data and constructing the
necessary formulas to perform computations (this does not include those who develop
templates). The moment formulas are specified, computations are carried out and re-
sults displayed. No need of specifying an output mechanism. As users are working on
actual data that they need for their applications, it is likely that they need to know
the correctness of their spreadsheets based on the actual data instead of arbitrary
data chosen just for testing purposes. Input variation for the purpose of code cov-
erage requires understanding of the detail structure of computation which is hidden
from the user. Therefore, it is unlikely that testing by input variation will be effective

without knowledge of the detail structure of a spreadsheet. Moreover, users prefer
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spreadsheet systems because they are easy to use and enable them to develop working
applications in a short period of time. Thus, they may not have the time and patience
to validate their programs by varying inputs (i.e., in essence generating test cases)
for each formula cell. In such circumstances, they should be provided with a possi-
bility of validating groups of cells together (i.e., spreadsheet-based validation may
be appropriate as opposed to cell-based validation). As we will see in section 6.5, in
interval-based testing, the comparison d € F is associated with spreadsheet instances

whereas F/ C B provides a more general checkup at the spreadsheet program level.

Inherent characteristics of spreadsheets. Spreadsheet systems are mainly
used for numerical computations. During testing a spreadsheet program, developers
of spreadsheet programs will have an expectation of the result of the computation of a
formula. This expectation can be used to validate the formula as correct or incorrect
(i.e., users have an arithmetic model). The expectation can usually be abstracted in
the form of an interval which contains the possible minimum and maximum values.
As a result, we require the user to specify this expected range of values of the com-
putation in the form of intervals. Therefore, interval analysis can be performed on

spreadsheets to help in detecting existence of faults in spreadsheet formulas.

Interval-based testing is similar to symbolic testing which is used for procedu-
ral programs. Actually, it can be considered as a special case of symbolic testing.
Symbolic testing is used to verify a formula (i.e., symbolic output) by expressing the
formula only in terms of input variables instead of using actual values. As opposed
to symbolic testing where formulas are expressed only in terms of input variables,
interval-based testing uses also intermediate variables (cells taken as variables) dur-
ing interval computation. Symbolic testing assumes any values for the input and
validity is determined for any possible value of the input variables. Unlike symbolic
testing, in interval-based testing approach, the values of input variables are restricted
to a range of reasonable values that can be assumed by the input variables. In ad-
dition, for the sake of narrowing down the computed interval, interval-based testing
uses intermediate variables and their corresponding intervals attached by the user.
For example, consider a formula E1 = D1 + C1 and D1 = A1 + B1. Since D1 itself
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is a formula cell, under normal condition, the bounding interval of D1 should contain
the expected interval specified for it. Hence, it is legitimate to use the expected inter-

val instead of the computed bounding interval of D1 for those cells which reference D1.

Intervals are usually used to represent an uncertain numeric data by indicating the
boundaries of the possible values. Arithmetic operations performed on intervals re-
sult in intervals whose boundaries are represented by the global minimum and global
maximum of the possible values of the computation. Even though global minimum
and global maximum are obtained, the resulting intervals are usually wide. Hence,
we need to check whether other mechanisms of narrowing the width of computed
intervals can be used. We discuss the appropriateness of Scenarios and Probability

distributions.

As defined in Dodge et al. [30], a scenario is a combination of values assigned to
one or more variable cells in a what-if model. In the current spreadsheet systems
(e.g., MS Excel 97), scenarios are generated by identifying cells which will have dif-
ferent( or changing) values. If numeric values of cells in a spreadsheet program are
represented by intervals, a scenario can be generated based on the end points of the
intervals. In such a case, a scenario can be determined by considering all combinations
of minimum and maximum values of intervals [46]. Out of the possible scenarios, an
interval which approximates the intended computation can be chosen. Scenarios will
be helpful provided that the number of intervals used for a computation is small. The
number of possible combinations of end points grows exponentially as the number of

intervals increases.

A probability distribution is a mathematical function which describes the proba-
bilities of possible events in a sample space. An interval can be seen as a probability
distribution where values in the interval are chosen based on the probability distribu-
tion function used. Evaluation of functions can be performed by generating a value at
a time from each interval and constructing a frequency distribution. This is typically
accomplished using Monte Carlo simulation. The result is a distribution of possible

outcomes and the probability of getting those results. Finally, a range of values can
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be chosen based on its probabilistic value. For example, DECISIONPRO [27] uses a
variety of probability distribution functions for the purpose of modelling and simula-

tion of business applications.

The enumeration of scenarios and generating a frequency distribution for the
evaluation of a particular function helps in choosing an interval (with appropriate
width) which serves as a better controlling mechanism of the expectation of the user.
However, the number of scenarios could be large for most aggregation functions and
probabilistic modeling requires some knowledge of mathematics which ordinary users
may not have. Despite extra width problem, intervals are easily understandable and
can be appropriate to represent uncertain numerical data [46]. Interval-based testing
uses intervals to represent input domains and expected intervals for input and formula
cells respectively and to perform interval arithmetic based on the formula defined for

a cell.

6.3 Spreadsheet Program Test Process

After creating a spreadsheet program for a particular application, it is natural to
check its correctness. We create spreadsheet programs mainly to perform numerical
computations. What do we expect to be correct? For the correctness of a spreadsheet
program, every input value as well as every formula should be correct. To judge the
validity of the value of a formula cell, we check whether the computation is within
the range of expected results. Generally, the main task in testing a program is to
be able to detect the existence of faults in the program. In the context of conven-
tional software, to achieve this we need systematically designed test cases (using an
appropriate test strategy) that reveal faults in the program. By running the program
with the test cases and comparing the result with the expected outcome described
in the specification or generated by a test oracle, the existence of a fault can be
detected. Generally, an automated test oracle requires at least some kind of specifi-
cation [50, 89, 90], normally not existing with spreadsheets. Hence, mechanisms need
to be devised to approach the power of a test oracle while putting minimal strains

on the developers diligence and insight into complex dependencies. Thus, we must
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recognize that ”testers” of spreadsheet programs are end-users who are not aware of
testing theory and hence they are not expected to do testing in the traditional sense.

Rather, users of spreadsheet systems are highly dependent on the system’s assistance.

Spreadsheet testing is a comparison of the users computational model (goal) with
the actual spreadsheet computation. Users usually have a computational model de-
rived from the domain knowledge of the application they try to solve. In order to
achieve the desired goal of computation, users use programming tools (in this case
spreadsheet systems) as a means by which they describe the process of computation.
Finally, the goal of computation which is generated by domain knowledge will be de-
scribed in terms of language constructs (plans) which aid achieving the specified goal.
Errors occur when the language constructs chosen do not match the desired goal or
model of computation. Goal and plan as they exist in conventional programming are
also found to be used in spreadsheet, systems. Sajaniemi et al. [104] have conducted
an experimental study and found that spreadsheet users have a set of basic program-
ming goals and plans describing spreadsheet programming knowledge. A detailed

discussion of goals and plans in spreadsheet systems can also be found in [114, 115].

Therefore, the testing process should be tackled from a different angle for spread-
sheet programs. In spreadsheet programs, neither a specification is available nor
spreadsheet programmers have the patience and expertise to run a lengthy suite of
test cases. Therefore, interval-based testing for spreadsheets attempts to approximate
the power of testing. It is based on the observation that spreadsheets are mainly used

for numerical computations.

Interval-based testing focuses on numeric cells. To assess the correspondence of
formulas with the spreadsheet writers intent, we compare intervals of values expected
by the user with the boundaries yielded by interval computations. For the purpose of
testing, in addition to the usual discrete values of numeric input cells, the spreadsheet
writer attaches intervals to desired numeric input cells. This is much simpler than
generating test cases (which is a very complex process especially for end users). For

numeric input cells which may assume different values, the spreadsheet writer speci-
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Figure 6.1: Spreadsheet program test process

fies a reasonable range of values in the form of intervals which serve as input domains.
The specification of input domains is merely based on the possible values that can be
used in the spreadsheet program. Some input values may be fixed numbers. Thus,
they do not require interval representation. Such values can be treated as an interval

of width zero.

Figure 6.1 depicts the test process for a spreadsheet program. We can see that
there are three sources of information which are used to determine the existence of
fault(s) in a formula cell. The information obtained from the human oracle serves as
the goal whereas spreadsheet-program and interval-program provide the information

based on the actual plan used to achieve the desired goal.

Based on the goal of computation, users will have a range of values in mind for
the result of the computation. Therefore, the user, assuming the role of a human
oracle, specifies the expected magnitude of the computation of the formula in the
form of an interval for permissible/expected values. As spreadsheet developers are
not expected to have formally documented specifications for their programs, we con-
sider them as test oracles who provide expected behavior based on their numeric
model of the program. However, the basis for generating such a range of values (i.e.,
expected intervals) will vary depending on the task and the level of expertise of the

user. The user may specify the expected interval based on the values of cells which
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will be referenced in the formula (i.e., based on the arithmetic model the user may
have), or knowledge in the application domain, or experience on the same or similar

task handled earlier.

The usual spreadsheet formula evaluation results in a discrete value d (see Fig-
ure 6.1). Corresponding to each formula cell for which an expected interval is at-
tached, interval computation is performed using interval program. The execution of
the interval-program is based on an interval arithmetic semantic of the operators used
in the various formulas. This leads to the computation of a bounding interval B for
the desired formula. The purpose of a computed interval is just to control the user’s
expectation so that the expected interval lies within a range of reasonable values. The
reasonableness of the expected interval provided by the user is verified by the system
using interval analysis performed behind. Once the necessary values are available
from the three sources, comparison between the values d, E and B is performed. The
comparison d € E AN E C B reports no symptom of fault whereas d ¢ EV E ¢ B
indicates a symptom of fault. For those formula cells for which a symptom of fault is

generated, further investigation is carried out using a fault tracing strategy.

The fault tracing strategy encourages spreadsheet-based verification. Spreadsheet-
based verification is performed after the necessary formulas are defined and the corre-
sponding expected intervals are attached. This corresponds to a testing phase which
takes place after development is completed. In order to trace propagated faults, the
fault tracing strategy provides a mechanism of identifying the most influential faulty
cell corresponding to a formula cell in which a symptom of fault is detected. On the
other hand, cell-based verification is performed for each formula cell. This is usually
performed while developing a spreadsheet. In such cases, the user is interested in
verifying each desired formula cell at a time after providing the necessary formula.
This could be a time consuming process although it enables the user to fix the faults

before they are propagated to other dependent formula cells.
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6.4 Spreadsheet Interval Computation

One of the information source, the interval-program, used in the spreadsheet formula
test process (see figure 6.1) requires attaching intervals and performing interval analy-
sis on spreadsheets. The idea of interval computation on spreadsheets was introduced
for the purpose of dealing with imprecise data and numerical constraints by Hyvonen
and Pascale [45]. Instead of exact numbers, users can perform computations on
intervals using spreadsheets. The way interval computation is performed in interval-
based testing is different from the interval computation used in [45]. In [45], interval
computation is performed by designing interval spreadsheet functions. That is for
each worksheet function, a corresponding interval function is defined. It performs
its computations based on interval arguments. For example, for the SUM function,
an equivalent interval function ISUM is defined to compute the sum of interval num-
bers. This is possible because spreadsheet systems (e.g., MS Excel) allow user-defined
functions to be used for computations. The interval spreadsheet functions defined are
generalizations of ordinary spreadsheet functions as intervals are extensions of real

numbers.

However, defining interval spreadsheet functions is not convenient in interval-
based testing. First, it requires the user to learn new functions designed to perform
interval computation. This would incur additional cognitive load to the user. The
goal of interval-based testing is to perform interval computation from the ordinary
spreadsheet formulas defined by the user thereby allowing the user to work in the
usual way of spreadsheet development. Moreover, values of cells during interval com-
putation in interval-based testing could be from two sources (in the case of mixed
arithmetic). If a formula involves cells of which some have intervals attached and
others without intervals attached, then the corresponding values are read from ex-
pected spreadsheet and ordinary spreadsheet respectively. Ordinary spreadsheet
(Os) is the usual spreadsheet in which computation is based on discrete values. Ex-
pected spreadsheet (FE;) is a behind-the-scene spreadsheet which contains input
intervals and expected intervals for input and formula cells respectively. To avoid re-

ferring to two spreadsheets, those discrete values can be propagated to the expected
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spreadsheet. This requires updating the expected spreadsheet whenever changes are
made to the discrete values in the ordinary spreadsheet. As a result we have chosen
to perform interval computation without requiring the user to learn new functions.
During the verification process, each formula is parsed and then those cell references
involved in the formulas are assigned their corresponding intervals. Then the interval

module is called to perform interval computations.

In interval-based testing, in addition to discrete values, interval values are at-
tached to the desired input and formula cells during the development of an ordinary
spreadsheet. For numeric input cells, the user specifies the range of reasonable values
in the form of intervals which serve as input domains. For formula cells (cells which
are intended for numerical computation), the user specifies the expected outcome of
the formula again in the form of intervals. The attached intervals will be stored as
strings (since the spreadsheet system neither support interval data types nor allow
user defined data types) in a behind-the-scene spreadsheet(F;) using the same cell
coordinates as the cells in the ordinary spreadsheet. During interval computation,
the interval strings will be converted into interval data types. For a formula defined
at the ordinary spreadsheet (Oy), the formula is evaluated based on the interval val-
ues stored in F; and the resulting interval will be stored as an interval string in the
respective cell in the bounding spreadsheet (B;). The bounding spreadsheet (B;)

which is a behind-the-scene spreadsheet contains computed bounding interval values.

For some of the input cells, the user may not attach input intervals. These cells
could contain conceptually constant values or the user doesn’t want to attach inter-
vals. Similarly, the user may not attach expected intervals for some formula cells.
These cells are not intended for verification and hence no interval computation is
performed. For the interval computation of a formula which references input cells
and formula cells which do not have intervals attached, the corresponding discrete
values from the ordinary spreadsheet are used. The intervals in this situation will be

of width zero.
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6.4.1 Input Intervals

Intervals attached to input cells are domains for those cells out of which values are
used for ordinary spreadsheet computations. Input intervals can be considered as
narrowed sets ( restricted domain) containing possible valid test cases of the cells to
which they are attached. The specification of an interval is then an implicit specifi-
cation of valid test cases. If a formula is validated as correct based on such intervals,
then it can be considered as valid for those test cases. Narrowing the possible values
of test cases to a reasonable range of values (i.e., intervals) enables us to judge the
validity of a formula cell based on such an interval rather than validating it for each
test case. Therefore, in essence we are reducing the iterative process of judging the
validity of a formula cell for each test case to a single validation activity based on
interval analysis. This also saves time by doing validation only once for a formula

which may take a variety of values if different test cases are applied.

Cells in an ordinary spreadsheet and in the corresponding expected and bounding
spreadsheets are related by their cell coordinates. The definition of relation is given

below.

Definition 6.4 (Relation) Two non-empty cells C(7,7) € O (a cell in an ordinary
spreadsheet) and E(m,n) € E (a cell in an expected spreadsheet) are said to be
related iff ¢ = m and j = n. Similarly, this relation is extended for cells containing
computed bounding intervals B(p,q) € Bs (cells in a bounding spreadsheet). The

extended relation requires that : =m =p and j =n =q.

For a given cell in an ordinary spreadsheet with coordinate (7, j), let E(i, j) be its
related cell in the expected spreadsheet. Algorithm 1 describes the necessary steps

to attach an interval to a single cell or group of cells.

Intervals are supposed to be attached only to numeric cells. If an attempt is made
to attach an interval to cells of another types, an error message is provided as intervals

are meaningless for other types of cells. In some cases there may be a need to attach
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Algorithm 1 Algorithm to attach an interval to a group of cells
get the coordinates of the first and last cells in O

for : = RowFirstCell to RowLastCell do
for j = ColumnFirstCell to ColumnLastCell do

E(i,j) < interval

end for

end for

the same interval to a group of cells which have the same functionality and similar
values. Algorithm 1 describes the necessary steps to attach an interval to a group of
cells. This algorithm can be also used to attach an interval to a single cell when the

first and last cells are the same.

The user is working only at the ordinary spreadsheet and (s)he is not aware of
the associated spreadsheets containing expected intervals and computed bounding
intervals. The expected spreadsheet is created at the moment the user started to
attach an interval whereas the bounding spreadsheet is created when interval com-
putation is performed. The association between the ordinary spreadsheet and the
expected spreadsheet (also bounding spreadsheet) is a name association. In other
words, expected spreadsheet and bounding spreadsheet are given the same name as

the ordinary spreadsheet but with different extensions.

6.4.2 Expected Intervals

It is legitimate to assume that a user sets a goal first whenever (s)he wants to perform
some calculation. Corresponding to the goal set, (s)he will have some expectation of
the outcome of the computation. Therefore, the user is expected to specify the ex-
pected interval of a formula before carrying out the computation. Expected intervals
represent a range of acceptable (or reasonable) values so that if a computed value lies

within that range then the associated formula is considered as correct.

In a typical spreadsheet system, we can classify the types of formulas used as

conditional and non-conditional. The non-conditional formulas are common formulas



92 CHAPTER 6. INTERVAL-BASED TESTING APPROACH

such as adding values of groups of cells whereas conditional formulas perform com-
putation based on a condition. Conditional formulas are those which involve the IF
function. For non-conditional formula cells, users attach a single interval to describe
the expected outcome. However, for conditional formula cells, the expected outcome
depends on the decision taken and hence on the branch actually executed. There-
fore, for conditional formulas, the user is expected to attach intervals corresponding
to each branch of the decision that will be executed. For example, for the formula
IF(A1 > 5, Al x B1, A1 — B1), the expectations are different based on whether the
comparison A1 > 5 is true or false. The true branch requires an expectation corre-
sponding to the product Al B1 (i.e.,the then part) and the false branch requires an
expectation corresponding to the difference A1 — B1 (i.e., the else part).

For nested IFs the procedure is the same except that the representation becomes
a set of intervals. To generalize the number of expected intervals which are needed
for nested IFs, let N be the number of nested IF's used in a formula. Then, N + 1
expected intervals are required. However, for a formula which involves N IFs without
being nested, we need 2V expected intervals (e.g., IF(...) + IF(...)). The algorithm
to attach expected intervals is the same as in for input intervals except that multiple
intervals are attached to a single cell as a set of intervals for a conditional formula.
However, nested and multiple TF's are less likely to be used by a significant number

of users.

6.4.3 Computation of Bounding Intervals

A bounding interval is a computed interval used to check the reasonableness of the ex-
pected interval specified by the user. The computation of bounding intervals is based
on the formulas defined at the ordinary spreadsheet. During interval computation,
the cells referenced in the formula assume interval values and the operators are used
in interval arithmetic semantics. As in the case of attaching intervals, the procedure
for the computation of bounding intervals for conditional and non-conditional for-
mula cells is different. For non-conditional formula cells, the computation is straight-

forward; instead of the usual discrete values of cells, the corresponding input and
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expected intervals from the expected spreadsheet are used. In addition, arithmetic
operators are used in the interval arithmetic context. If there are cells for which no
interval is attached, the values from the ordinary spreadsheet are used. For exam-
ple, figure 6.2(a) and figure 6.2(b) show a simple spreadsheet to compute the sum of
two numbers and figure 6.2(c) shows the corresponding input and expected intervals.

Figure 6.2(d) shows the bounding interval for the formula cell A3.

A, A,
1 ] 1 )
2 7 2 7
3 | =AT+AZ 3 12
4 4
(a) Formula view (b) Normal view
A A
1 4. 7] 1
2 ) .
3| [11,13] 3 | [10, 18]
4 4
(c) Input & ex- (d) Bounding in-
pected interval terval

Figure 6.2: Computation of a bounding interval for a non-conditional formula

Computation of Bounding Intervals for Conditional Formulas

The computation of a bounding interval for a conditional formula requires careful
examination. The first issue is the determination of the branch to be executed. As
the comparison operators used in conditions are interval comparison operators, the
decision is generally not a binary decision. This is due to the fact that the set of in-
tervals are not totally ordered. Therefore, we need some mechanism of transforming

the three-valued decision resulting from interval comparison (see section 5.3) into a
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binary decision. Moreover, the decision taken at the interval-spreadsheet level should
also conform to the decision taken at the ordinary spreadsheet level. If the intervals
under consideration are disjoint, then the comparison at the interval spreadsheet level
conforms to the comparison at the ordinary spreadsheet level. However, if the inter-
vals are non-disjoint, then the comparison at the interval spreadsheet level becomes
undecidable (see figure 6.3(b)). Let X = [a,b],2 € X and Y = [e, f],y € Y. Con-
sider xopy and Xop'Y where op € {<, <, >, >,=,#}. Figure 6.3 shows the possible

decisions that can be made by the spreadsheet-program and by the interval-program.

X Op Yy XOﬁY

dil d2
a) spreadsheet-program b) interval-program
g

Figure 6.3: Comparisons in spreadsheet-program and interval-program

Recall that in chapter 5, we have seen that different approaches were used to trans-
form interval comparison into Boolean comparison which are only approximations (or
in some cases simple choices) that do not exactly provide the same decision. There-
fore, to maintain the consistency of the decision taken by an ordinary spreadsheet

and interval spreadsheet, we can consider the following cases.

1. Interval Comparison

In this option, we simply use interval comparison operators to determine the
branch which will be executed. To illustrate the situation, consider the example

in figure 6.4.
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A | B | C A B |
1A B =IF(A1 = B1 AT"B1 A1-B1) 1 |[5, 8] 6, 9]
2 2
3 3
(a) ordinary (b) expected

Figure 6.4: A spreadsheet with conditional cell

Figure 6.4 depicts an ordinary spreadsheet which contains a conditional for-
mula. Even though this spreadsheet displays the formula instead of the com-
puted value, we can observe that the branch executed is the else part. But the
comparison at the interval spreadsheet level is undecidable (i.e., the value is
TF). Therefore, in this situation we have to compute values corresponding to

the two branches.

As we have seen in chapter 5 section 5.3, a better approach for interval com-
parison is the one used in FORTRAN 95 [66]. However, this approach requires
the programmer to specify the type of comparison (i.e., Set theoretic, Certainly,
Possibly). In interval-based testing, the user is working only at the ordinary
spreadsheet level and (s)he is even not aware whether such comparisons are
performed. Therefore, interval comparison in this form is not applicable for de-
termining the branch which will be executed. What we can do is to perform the
comparison based on either the Set theoretic or the Certainly or the Possibly
context. To do so, we shall identify the type of comparison which conforms to

Boolean comparison.

Table 6.1 presents the truth values of the conditional formula defined in fig-
ure 6.4. From this table, we can see that Set theoretic interval comparison
conforms to Boolean comparison (see the rules for the interval relational oper-

ators in chapter 5 section 5.3).

Now let us consider another example to see whether this conformance of interval
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Operator | Boolean Comparison Interval Comparison
Set theoretic | Certainly | Possibly
= F F F T
> F F F T
> F F F T
< T T F T
< T T F T
#* T T F T

Table 6.1: Comparing Boolean comparison and Set theoretic comparison

comparison (Set theoretic) and Boolean comparison holds in other situations.
Let A1 = 5 and B1 = 6 be cell values in the ordinary spreadsheet and Al =
[4,7] and Bl = [4,7] be the corresponding input intervals. As we can see
from table 6.2, the conformance between Set theoretic interval comparison and
Boolean comparison does not always hold. Of course, we can see that the
Boolean comparison conforms to none of the interval comparisons. Hence, if
these interval comparisons are used in interval-based testing, the testing system
will produce false symptoms of faults since ordinary spreadsheet and interval

spreadsheet decisions will take different branches.

Operator | Boolean Comparison Interval Comparison
Set theoretic | Certainly | Possibly
= F T F T
> F T F T
> F F F T
< T T F T
< T F F T
#* T F F T

Table 6.2: Comparing Boolean comparison and interval comparisons
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2. Interval Partitioning

The other possibility is to partition each interval under comparison into a dis-
joint union of intervals. Let X and Y be non-empty intervals and X N'Y # (.
X can be partitioned into X’ = X ~x X NY and X NY. Similarly, Y can be
partitioned into Y/ = Y N X NY and X NY. Table 6.3 shows the possible
combinations of comparisons. We can see that interval comparisons of all com-
binations except the last row conform to Boolean comparisons based on single
interval comparison defined in chapter 5 section 5.3. The interval comparison
of the last combination is the same as the comparison in table 6.2 which does

not conform to Boolean comparison.

X Y

X' Y’

X' XNy
XNy Y’
XNY | XNnY

Table 6.3: Interval partitioning

Note that in some cases, either X' or Y’ can be empty set (i.e., X C Y or

Y C X). In this case too, the comparisons follow the same procedure.

3. Decision Propagation from Ordinary Spreadsheets

As we have seen from the above two options, it is not always possible to maintain
the consistency between ordinary spreadsheet decision and interval spreadsheet
decision by using Boolean comparison at the ordinary spreadsheet and interval
comparison at the interval spreadsheet. Therefore, we should devise a mech-
anism to propagate ordinary spreadsheet decisions to the interval spreadsheet
so that the same decision and hence the same branch is executed. To do so,
we have to attach an ordinary spreadsheet pointer for the cells involved in the
conditional part of an IF function when traversing the abstract syntax tree. In

other words, during the evaluation of the IF function, the values used for the
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comparison are read from the ordinary spreadsheet. This can be accomplished

whenever necessary since related cells have the same coordinates.

Algorithm 2 Interval computation for a non-conditional formula cell

if expected spreadsheet exists then

Initialize bounding spreadsheet

for each formula cell in the selected region do

if formula has an attached expected interval then

1.

get the coordinate of the cell

. parse formula

2
3. convert the abstract syntax tree into postfix form
4.
5

perform interval arithmetic

B(i,j) < interval where B(i,j) is a cell in the bounding spreadsheet

with the coordinate read in step 1
end if

end for

end if

Algorithms 2 and 3 describe the general procedures to perform interval computation

for a non-conditional formula and conditional formula respectively.

Bounding Interval for a Formula Referring to a Conditional Cell

The other issue is how to compute the bounding interval for a formula cell referencing

a conditional cell. If a formula refers to a cell which contains an IF function, then the

issue is which expected interval of the conditional cell should be used in the compu-

tation. There are three alternatives.

1. Using all the expected intervals. In this alternative, all the expected intervals

attached to a referenced cell are used during the computation of the bounding interval

for the referencing cell. This, however, involves extra intervals and hence results in a

wide bounding interval.
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Algorithm 3 Interval computation for a conditional formula cell
if expected spreadsheet exists then

initialize bounding spreadsheet
for each formula cell in the selected region do
if formula has an attached expected interval then
1. get the coordinate of the cell
2. Parse formula
if formula is an IF function then
a. get the cell address(es) in the conditional part
b. get values of those cells with addresses as in (a) from O
c. determine branch to be executed
end if
3. Convert the desired part of the abstract syntax tree into postfix form
4. Perform interval arithmetic
5. B(i,j) < interval where B(i,j) is a cell in the bounding spreadsheet
with the coordinate read in step 1
end if
end for
end if

2. Using bounding intervals. Computation based on the bounding intervals
of referenced cells follows the usual way of spreadsheet computation. In principle,
computation of bounding intervals based on the data dependency graph (DDG) is
appropriate. However, similar to the first alternative, computation of bounding in-
tervals based on the DDG results in too much width as all precedent cells’ bounding

intervals are used for the computation.

3. Using the expected interval corresponding to the branch executed.
The above alternatives introduce extra width to the computed interval. Therefore,
an appropriate solution is to be able to use the expected interval corresponding to
the branch executed. This alternative presupposes the ability to identify the branch

executed. However, the identification of which of the expected intervals corresponds
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to the branch executed for the current evaluation is a difficult task. The information
regarding the branch executed is a dynamic information which is not available but
after the evaluation of the formula. Nevertheless, if the branch information is stored
during the computation of the bounding interval of a cell, this information can be
used during the computation of bounding intervals for those cells which reference the
cell. When reading expected intervals of referenced cells, if a cell has a set of intervals
attached, then the bounding spreadsheet can be consulted to get branch information.
Based on the branch information, the respective expected interval is used during the

computation.

Computation Following MS Excel Style

The prototype is implemented on top of MS Excel. The choice of this spreadsheet
system is just due to its wide availability. To facilitate a careless style of computa-
tion, MS Excel allows a user to mix-up text data and numeric data in a computation
without signaling any error message (except division where the divisor is text or an
empty cell). In such situations, text data is treated as zero value. Empty cells are
also treated in a similar manner. Therefore, to maintain the same style of computa-
tion at the ordinary spreadsheet (MS Excel computation) and bounding spreadsheet
(interval computation), text and empty cells are treated as zero values during interval
computation. Values in the ordinary spreadsheet are used during interval computa-
tion if the cells referenced in a formula have no intervals attached (i.e., for a cell

C(i, ) referenced in a formula, E(i,j) is empty).

6.5 Detecting Existence of Faults

Generally, the main task in testing a program is to be able to detect the existence
of faults in the program. To achieve this, different techniques can be used. As men-
tioned earlier, for the purpose of testing spreadsheets, a user specifies intervals for
those input cells which may assume different values. Those cells which do not assume
different values can be represented by an interval of width zero. In addition, for a

formula cell which needs to be tested, the user specifies the expected outcome of
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the computation in the form of an interval. Therefore, for a formula cell under test,
there are two values to be computed: a value computed by the spreadsheet program
(d) (see Figure 6.1) based on the values of the cells referenced in the formula and
a bounding interval (B) computed by interval program based on interval arithmetic
using the interval values of those referenced cells. The interval program can be viewed
as an equivalent of a spreadsheet program where the values of cells are represented
as intervals and the computation is performed based on interval arithmetic. In order
to infer the existence of a symptom fault in a formula cell, the three values d, E, and

B (see Figure 6.1) which are generated by different sources should be compared.

In section 6.4.3, we have seen that non-conditional and conditional formulas re-
quire different considerations when computing a bounding interval. Similarly, the
comparisons between d, E, and B need different considerations for non-conditional

and conditional formulas to report any symptoms of faults.

6.5.1 Comparator for Non-conditional Cells

If a formula cell does not contain an IF function, then the comparison is straight-
forward. Let E = [ej,es] and B = [by, be] be the expected and bounding intervals
respectively for a given formula cell. Let d be the discrete value of the given formula.
Under normal conditions, d € B since d represents the value of a real-valued func-
tion and B represents the value of the interval extension of the real-valued function

(see section 5.2.3). For the comparison of d, E, and B, there are two cases to consider.

Case 1: de Eand ECB

As the computed interval value of a formula is bounded by the minimum and
maximum values of the possible computation (this is by definition of interval arith-
metic), the expected interval should lie within the computed interval. In addition,
the value computed by the spreadsheet program should lie within the expected range
of computation. Hence, in this case, we can say that there is no symptom of fault.

In terms of the end points of the intervals, the comparisons can be defined in the fol-
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lowing way. Figure 6.5 shows the situation in which no symptom of fault is detected

in a formula.

1. dEEiHGISd§62

2. EgBiffblgel/\@ng

» B

Figure 6.5: Conformance between d, E and B

Case2: d¢Eor EZ B

In this case, there is an indication of a symptom of fault. The fault may be in the
formula or in the user’s perception of expected results. Of course, testing is performed
based on the assumption that there is a correct behavior of a program against which
the actual result is compared. However, we can not always take for granted that the
expected behavior is correct. When E is specified incorrectly, the fault signal serves
as a reminder to revise the perceived range of values. In the situation where d ¢ E
due to some faults in the formula, the actual result is shifted from the expected result.
In the second possibility where £ ¢ B, faults affect the bounding interval computed
for the formula and create a discrepancy between E and B. There are different sce-
narios describing the situation where there is a symptom of fault (see figures 6.6, 6.7,
and 6.8).

Scenario 1: d¢ F and F C B (i.e.,Vx € E and d € B,d <z or d > )
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Figure 6.6: Discrepancy between d and E

Scenario 2: d € F and E ¢ B (with EN B # ()
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Figure 6.7: Discrepancy between E and B

Scenario 3: d ¢ F and E ¢ B
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Figure 6.8: Discrepancy between d, E, and B
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In all the scenarios d € B. This is based on the assumption that all referenced
cells have discrete values lying within the corresponding intervals specified. In other
words, treating ordinary spreadsheet formulas as ordinary functions and the corre-
sponding interval computations as interval extensions, we see that ordinary spread-
sheet functions’ values belong to their interval extensions (see 5.2.3). The algorithm
for detecting a symptom of fault in a non-conditional formula is given in algorithm 4.
Note that a cell C(i,j) represents a cell in the ordinary spreadsheet with coordinate
(1,7); d(i,7) represents the discrete value of the cell C; E(i,j) represents a cell for
the attached interval in the expected spreadsheet; B(i,j) represents a cell for the
computed interval in the bounding spreadsheet; R represents the selected region for

verification; F is the set of formula cells in R.

Algorithm 4 Comparator for non-conditional formula cells
for each numeric cell C(i,j) € R do

if E(i,j) # 0 then
if d(i,j) ¢ E(i,j) then

mark C(i, j) incorrect

else
if C(i,j) € F then
if E(i,j) € B(i,j) then
mark C(i, j) incorrect
else
mark C(i, j) correct
end if
end if
end if
end if

end for

Example 6.5: Detecting symptoms of faults
A user is interested to know how much (s)he will get by depositing different amounts

of money with different rates. Depending on the amount of money deposited, the in-
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terest rate varies. The task in the spreadsheet shown in figure 6.9 (taken from [21])
is to calculate the interest for each amount deposited (product of column A entries
by column B entries row-wise) and finally to sum up the overall total that could be
gained from the deposit. To carry out the testing process, the user documents the
input and the expected range of values as shown in figure 6.11. Interest rates are
fixed or constant values and as a result the user does not attach intervals for the rate
column. However, since the rates are for a ceratin range of values, the user specifies
ranges of values for the deposits in column A. Based on the formulas used in the ordi-
nary spreadsheet in figure 6.10, an interval computation is performed resulting in the
bounding intervals shown in figure 6.12. Finally, the testing system verifies the given
spreadsheet and reports a symptom of fault for some of the cells. Those cells with
symptoms of faults (see figure 6.13) are marked red (dark in this paper) and those
without a symptom of fault are marked yellow (grey in this paper). In addition, those
formula cells which are not verified are shown with their default white color. As the

figure shows, a wrong reference is entered for the formula in cell C4 and even copied

to C5.

A | B | o |

1 |deposit  rate payment
2 3000 0.03 S0
3 5000 0.035 175
4 8000 0.05 280
5 10000 0.06 500
B 1045
Fi

Figure 6.9: A spreadsheet to compute interest
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A, | | >

_ 1 |deposit rate payment

_ 2 |3000 0.03 =ALE2

_ 3 5000 0.035 =AT"B3

_4 (8000 0.05 =A4"B3

_ 5 [10000 0.06 =A5"B4

B =SUMICY: Ca)

7

Figure 6.10: Formula view of the interest spreadsheet

A C
1
2 |[2750:3100] 57 53]
3 [150:200]
4 |[7890:8000] [400: 400]
& |[3800:11000] [500: 66|
B [1400:1500]
7

Figure 6.11: Expected spreadsheet

A C |
0l
2 [B2.5:93]
E [175:175]
4 [276.15:280]
5 [490:550]
B [1237:1359]

7

Figure 6.12: Bounding spreadsheet
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A = C
1 |deposit  rate payment
2 3000 0.03 S0
3 S000 0.035 175
4 aoa0 0.05
5 10000 0.06
b
7

Figure 6.13: A spreadsheet with symptom of faults

As we can see from figure 6.13, the three formula cells have symptoms of faults.
The expected intervals were specified based on the goal of row-wise computation.
Cells C4 and C5 have wrong references in their formulas. The formula specified for
cell C6 which contains the total sum of the payment has no fault within the formula.
Nevertheless, since some of the cells which are referenced in the formula are faulty,
it turns out to be also faulty. In addition, we can see that the expected interval
specified for this cell does not contain the correct value of the cell. Therefore, fixing
the faults in the preceding cells cannot render this cell to be correct. This indicates
that expected intervals may be specified incorrectly due to different reasons (e.g., lack
of domain knowledge or incorrect goal assumption). In such situations, expected in-
tervals which correspond to the goal of the computation should be revised. Actually,
the first thing to examine is the expected interval and the formula itself before trying

to locate possible propagated faults.

Another discrepancy that we can observe from the above spreadsheet is the vio-
lation of the assumption that d € B for the cell C6. This is due to the fact that the
discrete values of some of the cells referenced in the formula of C6 do not lie in their
corresponding expected intervals. For example, the value of cell c4 is 280 while its
expected interval is [400:400].
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During the process of fault detection, a special case that needs to be considered is
when the bounding interval is of width zero. For example, in figure 6.12 the bounding
interval for cell C3 is 175 which is represented as [175:175]. Since the referenced cells
do not have intervals attached, the bounding interval is the discrete value computed
in the ordinary spreadsheet. However, an expected interval is attached for this cell
(see figure 6.11). In this case, the usual way of comparison E' C B reports a symp-
tom of fault which is wrong. Therefore, if the bounding interval of a given formula
cell is of width zero, then only the comparison d € E is performed. Other special

considerations of the comparisons between d, E, and B are given in section 6.5.3.

6.5.2 Comparator for Conditional Cells

If an IF function is involved in a formula, then the formula will have more than one
expected interval. For the evaluation of the decision to compute the bounding interval,
the decision is propagated from the ordinary spreadsheet. As a result there is only one
bounding interval corresponding to the branch executed. Let E = {FEi, Fs, ..., E,}
represent the expected intervals specified for a conditional cell and B = B; represent
the bounding interval corresponding to branch i. In this case, the expected interval
corresponding to the branch executed is compared with the bounding interval as given

below.

1. d € E; where i represents the branch executed and

Had it not been for the propagation of the decision from the ordinary spread-
sheet, we should have considered the computation of bounding intervals correspond-
ing to each branch of the decision if the condition is undecidable. That is, for
B = {By, By, ..., B,,} representing the bounding intervals, the comparison would have

been as follows.

1. d € £ iff dF; € E such that d € E;

2. E C Biff VE; € E,3B; € B such that F; C B;
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We can observe how complicated and ineffective this option is. Similar to the
propagation of decision from ordinary spreadsheet, we need to find a way to get the
branch information for the current execution (i.e., which branch is executed). One
way to do so is to store branch information during interval computation. Therefore,
information regarding the branch executed is stored in the bounding spreadsheet
during interval computation. In order to carry out the comparison for a conditional
formula cell, the branch information is extracted from the bounding spreadsheet in

the corresponding cell.

The algorithm for the comparison of conditional formula cells is the same as the
algorithm for non-conditional formula cells except that the branch information should
be extracted from the bounding spreadsheet before any comparisons between d, E,

and B are made. Algorithm 5 describes a comparator for conditional formula cells.

Algorithm 5 Comparator for conditional formula cells
for each numeric cell C(i,j) € R do

if E(i,j) # 0 then
get branch information from B;
let k be the branch executed
if d(i,j) & Ex(i,j) then

mark C(i, j) incorrect

else
if C(i,j) € F then
if Ey(i,7) € B(i,7) then
mark C(i, j) incorrect
else
mark C(i, j) correct
end if
end if
end if
end if

end for
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6.5.3 Special Case of the Comparator

As we have seen in section 6.5, the basic comparisons for detecting the existence of
a fault in a formula are based on the values d, E, and B. The case in section 6.5.1
figure 6.7 (i.e., d € EN B, but E ¢ B) motivates some further consideration to
generate symptom of faults. In some situations, it may be difficult to imagine that
the user’s expectation lies completely within the bounding interval computed by the
testing system even though there is no fault in the formula. As a result, it is worth of
considering to relax the comparison £ C B so that a symptom of fault is generated
only when a certain percentage of the user’s expectation is not met. The argument
here is that if the expectation of the user is met to a large extent, then the likelihood
of a fault in the formula is minimal. Similarly, if the user’s expectation is not met to
a large extent, then the likelihood of a fault in a formula is high and hence a symptom
of fault should be provided. However, the question is that how much percentage of
the user’s expectation should be met to say that there is no symptom of fault. This
can be determined only after carrying out experiments and observing users practices.
But, the basic comparison to be investigated is between the width of the intervals
ENB and E~ ENB. The width of an interval [a, b] is computed as b - a. First, we

consider the cases where symptoms of faults are generated.

1. w(EXENB) = w(E) (i.e., ENB = (). This indicates that the user’s expectation

and the computed interval do not agree at all.

2. w(ENENB)<w(ENB), but d ¢ EN B. This indicates that either d ¢ E or

d ¢ B or both which is an erroneous situation.

3. w(ENB) < w(E~ ENB). This indicates that the larger part of the expectation

is not met and hence a symptom of fault is generated.

On the other hand, the following cases indicate no symptom of fault (item 1)

though some of the cases require experimental investigation (cases in item 2).

l. w(EN~ENB)=0 (ie., d € E and E C B). In this situation, the expectation
is fully satisfied.
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2. w(ENB)>w(E ~ EN B). This indicates that E is to a large extent a subset
of B (i.e., the intersection lies to a large extent in E) which shows that the
expectation is met to a larger extent. In other words, to a large extent E and
B agree. Hence the likelihood of having a fault in the formula is less. This
can happen when most or the majority of the cells involved in the formula
do not have intervals attached. In principle, if intervals are not attached to
most of the cells involved in the formula, then the expected interval for the
given formula should not be wide. However, we don’t expect the user to have
such sharp estimation of the expected outcome of the computation. Further
comparisons to investigate are the effect of fault detection when the size of the
intersection between E and B varies. The following values can be experimentally

investigated.

1
e w(ENB) > (5)*w(E) In this situation, more than 50% of the expectation

is met.

3
e w(ENB) > (Z)*M(E) In this situation, more than 75% of the expectation

is met.

There are some factors which affect the comparison between E and B (i.e., situa-
tions where B will be a weak controlling mechanism). Among them are dependency
problems which result in too much width in the computation of B (the width becomes
large rapidly). The other is division that involves intervals containing the value zero

which often results in infinite end points.

6.6 Spreadsheet Verification Coverage

For a spreadsheet program to be correct, every formula as well as every input value
should be correct. Users are more likely to make errors while defining formulas than
when entering input values because formulas may consist of cell references, opera-
tors, and functions to carry out computations. As a result, verification information is
mainly needed for formula cells. To get a general verification information, one needs

to examine each cell value which is a tedious task. However, if a testing system is
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employed, such an information can be provided by the testing system.

In interval-based testing, after verification is performed for a selected region of
cells, those cells which have symptoms of faults and others which do not have symp-
toms of faults are marked with different colors. From this visual information, a user
can identify those which have symptoms of faults and need further investigation.
Besides, it may be also helpful to know to what extent a given spreadsheet is veri-
fied. The question that can be raised is "How do we know the correctness of a given
spreadsheet?”. Correctness information can be inferred from the number of formula
cells which are verified and correct. In a given spreadsheet, we should see a difference
in the extent of verification when the number of formula cells which are verified and
correct increases. Therefore, information similar to ”test coverage” in conventional
software testing can be provided to indicate the extent of formula verification. The
verification information can be inferred from the number of formula cells which are
verified and correct with respect to the total number of formula cells. It can be com-

puted in the following way.

Spreadsheet Verification Coverage (SVC) = % where F, represents the number of
verified numeric formula cells and F} represents the total number of numeric formula
cells in a spreadsheet. The spreadsheet verification information about the percentage
of verified cells will initiate the user to verify the remaining unchecked numeric formula
cells. To visualize this, the testing system provides a different color to checked,

unchecked, and faulty formula cells.

6.7 An Example

Consider the house rent calculation problem where the task is to calculate the total
income from the rent of different types of houses with different sizes and rental rates.
The original spreadsheet on which the user is working on is shown in figure 6.14. In
order to test this spreadsheet, the user attaches intervals to some of the desired input
and formula cells. Figure 6.16 shows the intervals attached by the user and doc-

umented in a behind-the-scene spreadsheet, the expected spreadsheet. During the
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verification of the spreadsheet, interval computation is carried out for those formula
cells for which expected intervals are attached. The computed intervals are again
documented in a behind-the-scene spreadsheet as shown in figure 6.17. Finally, the
comparator compares the values of those cells from the three sources (figures 6.14,
6.16, and 6.17) which are selected for verification and marks those cells which have

symptoms of faults and those which are correct as shown in figure 6.18.

As figure 6.18 shows, there are a lot of cells marked with red (dark in this pa-
per) which have symptoms of faults. Those which do not have symptoms of faults
are marked yellow (light grey in this paper). However, this spreadsheet is believed
to be fault-free by the user. There are two reasons for the discrepancies among the
three values of each formula cell marked faulty. First, if the expected interval does
not contain the discrete value computed by the spreadsheet, then the error is in the
specification of the expected interval (since this particular spreadsheet is fault-free).
This could be due to either lack of domain knowledge or misunderstanding of the
problem. Therefore, such discrepancies may serve to revise the goal and to have a
better understanding of the problem. The cells F11, F21, F23, G12, G14, G15,
H11, H14, H15, H23, 111, 114, 115, J11, J14, J15, J21, K11, K14, and K15
are marked faulty due to such incorrect specifications of expected intervals. Second,
the specified expected interval does not completely lie within the computed bounding
interval. As this particular spreadsheet is believed to be fault-free, again the problem
lies in the specification of the expected interval. In this case it may be difficult to
expect the user to have such a sharp estimation of the expected intervals which lie
completely within the bounding intervals. As mentioned in chapter 6 section 6.5.3,
if the intersection between the expected interval and the bounding interval is empty
or the width of the intersection is less than the other part of the expected interval,
then it is appropriate to generate symptoms of faults. On the other hand, if the
width of the intersection is larger than the other part of the expected interval, then it
is legitimate to make further investigations (for example, compare the expected and

bounding interval values of cell 14 ).
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Table 6.4 shows the changes in the number of cells which have symptoms of faults
when the comparison criterion varies. The expectation is 100% met means that the
expected interval completely lies within the computed bounding interval. 75% of the
expectation or more is met means that w(E N B) > 3 « w(E). Similarly, 50% of the
expectation or more is met means that w(ENB) > +w(FE). In table 6.4 the number
of faulty cells for each of the criteria is computed by subtracting those faulty cells
which are listed above (i.e., 20 faulty cells). Those faulty cells are marked due to the

discrepancy between the discrete values and the corresponding expected intervals.

100% | > 75% | > 50%
Rent Income Spreadsheet 26 10 7
Interest Calculation Spreadsheet(figure 6.13) 3 3 3

Table 6.4: Comparing number of faults detected by varying comparison criterion

Generally, it is expected that as the comparison criterion gets weaker, the number
of cells with symptoms of faults decreases. From Rent Income Spreadsheet, we can
see that as the comparison criterion gets weaker, the number of false symptoms of
faults is reduced. However, for the faulty spreadsheet, Interest Calculation Spread-

sheet, there is no change of symptoms of faults.

Returning to the example, the other change that we can observe is when the num-
ber of cells which have intervals attached in a formula changes. When many or all of
the cells referenced in a formula have intervals attached, then the computed bound-
ing interval will be wider than the bounding interval when less number of cells have
intervals attached. This has an effect on the result of the comparison between the ex-
pected and the bounding intervals. For example, for the formula G11 = $K$6 « D11,
the bounding interval in figure 6.19 is [270.4, 338] which is narrower than the bound-
ing interval in figure 6.18 which is [240, 350] for the same formula. As a result this
formula cell is reported to be faulty in figure 6.19 while it is fault-free in figure 6.18.
The formula cell G11 has the same formula and hence the same expected interval in
both cases which is [270, 330]. Actually, both spreadsheets are the same except that
the input cells in the range D8..E14 have no intervals attached in figure 6.19 while



120 CHAPTER 6. INTERVAL-BASED TESTING APPROACH

these same range of cells have intervals attached in figure 6.18.

On the other hand, if all the cells referenced in a formula do not have intervals
attached, then the resulting bounding interval will be of width zero and hence has no
effect on the comparison between E and B. For example, the formula cells D15, F8,
and F12 are marked as non-faulty in figure 6.19. This is because these formula cells
have bounding intervals which are of width zero and hence there is no comparison
between E and B. However, these formula cells are marked faulty in figure 6.18 since

the expected intervals do not lie within the corresponding bounding intervals.
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A spreadsheet with symptoms of faults when no intervals are attached

Figure 6.19

to input cells
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6.8 Summary

Software testing is a complex and time consuming activity. To aid testers, a variety
of techniques has been proposed and is being used at various stages of development.
The demand for such techniques may be even higher for end-users who are not trained
in the formal process of software development. In this chapter, we have presented
an approach to provide a testing methodology for spreadsheet users. This approach
incorporates a conventional software testing technique (i.e., symbolic testing) and in-
terval analysis and is proposed by taking into consideration the expertise of users and

the inherent characteristics of spreadsheets. As such it is a user-centered approach.

Unlike symbolic testing, which requires expressing formulas only in terms of in-
put variables, interval-based testing uses intermediate variables for the purpose of
narrowing down the computed interval. In addition, while symbolic testing is used
to validate a formula for any possible values of the input variables, interval-based
testing requires the values of the variables to be expressed as intervals and validity is

determined based on the intervals provided.

Interval-based testing focuses on the functionality of spreadsheet formulas instead
of the internal structure of a spreadsheet program (i.e., it is not based on code cover-
age). The observation that spreadsheets are mainly used for numerical computations
enables us to introduce the idea of interval analysis to spreadsheet testing. It requires
the user to specify input and expected intervals for desired input and formula cells
respectively. This will be documented in a behind-the-scene spreadsheet and used
to perform interval computations during the verification of a given spreadsheet. In
addition, the expected intervals provided by the user are verified for reasonableness
using interval analysis. Furthermore, the interval-definition phase also serves as a
kind of manual review process since it requires the user to check and think about the
functionality of the particular formula. Despite the requirement to attach intervals,
the proposed approach based on interval analysis does not require any knowledge of

software testing.
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As observed from different examples, it seems reasonable to make further investi-
gation in order to determine the existence of symptoms of faults when the expected
interval and the corresponding bounding interval agree to a large extent. There are
different factors which affect total satisfaction of user expectation. First, some of
the cells involved in the computation of a formula may not have intervals attached
resulting in a relatively narrow bounding interval. Second, it may be difficult for a
user to specify expected intervals that completely lie within the computed bounding
intervals. Therefore, if the percentage of the users expectation met is reduced from
100% (an ideal value) to some reasonable value (say 75%), then some false symptoms

of faults may be avoided.






CHAPTER: 7

Fault Tracing

After testing is performed, the next issue is how to locate the actual faults in a pro-
gram. This chapter presents a technique for tracing faults in a spreadsheet program.
Section 7.1 discusses the general problem of fault tracing in relation to conventional
software debugging techniques. Section 7.2 discusses the fault tracing strategy to be
used in spreadsheets. While tracing for faults, there is a need for minimizing the
search region. This requires the use and computation of priority values which is pre-
sented in section 7.3. A simple example and fault tracing algorithm are described in
this same section. The main points of the fault tracing approach are summarized in

section 7.4.

7.1 Fault Tracing Background

Once the existence of symptoms of faults is detected, the next task is to find the
location of the actual faults. A testing system can not exactly indicate the location
of faults, it rather provides a hint or symptom of a fault. However, a testing system
can facilitate the search for the location of faults by providing testing information
about the possible paths that lead to the likely fault location. Fault tracing is the
process of identifying the location of faults in a program. Generally, fault tracing in
conventional software debugging involves program slicing techniques to minimize the

search for the potential faults [1, 2, 29, 55]. The first important information needed
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in fault tracing is static backward slice which contains all variables which may affect
the variable at which a symptom of fault is detected. Since the symptom of fault is
generated based on a particular test case, those variables which are directly and in-
directly involved in the current computation will contain the faulty variable provided
that the fault is not due to missing statements. This requires the computation of
dynamic backward slices. In order to reach the potential faulty variables, further re-
duction of the dynamic backward slice should be made using the technique of dicing.
Dicing is carried out by removing the sub-slice corresponding to correct variables.
However, the use of dicing imposes some preconditions to be satisfied in order for the
resulting dice to contain the fault [61]. For example, dicing assumes that only one
faulty variable exists in the dynamic backward slice. In addition, it assumes that if a
variable is faulty then all variables in the dynamic forward slice of that variable are
faulty. This avoids the situation where faults compensate in between. In other words,
dependents of a faulty variable should not provide a correct result by compensating
through another fault. Hence, the general process of fault tracing in conventional

software can be described as follows.

Static slice — Dynamic slice — Dice — Potential location of fault

A similar procedure can be used for fault tracing in spreadsheets. However, in
our approach we do not impose the requirement that the dynamic backward slice
contains only one faulty cell. There can be several cells in the dynamic backward
slice of a faulty cell which are marked as faulty. Cell marking is performed based
on the interval-based testing methodology discussed in chapter 6. The fault tracing
procedure uses the backward slice and the cell marks recorded by the interval-based

testing system.

A fault localization technique proposed by DeMillo et al. [29] was based on the
analysis of the steps used by experienced programmers in debugging. Following a

similar procedure, the spreadsheet fault tracing process contains the following steps:

1. Determine the cells involved (directly and indirectly) in the computation of an

incorrect formula (i.e., look backward)
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2. Select suspicious cells
3. Make hypotheses about suspicious cells

Step 1 above requires the computation of backward slices with respect to a faulty
cell for which we want to locate the source of the fault. Step 2 requires the identifi-
cation of those cells which have a likelihood of propagating faults through the data
flow. These cells are marked by the comparator during the verification process. Step
3 requires reasoning about the most influential cell. In other words, this step involves
the computation of the priority values of those suspicious cells and the identification
of the one which has the highest likelihood of contribution to the faulty cells in the

dynamic backward slice.

Therefore, the main problem in fault tracing in spreadsheets is the identification
of the most influential faulty cell(s) when the fault is propagated. If the fault is local,
meaning that either the formula or the expected interval is specified incorrectly, then
the fault can be fixed by examining the faulty cell itself. The assumption in this
approach is that if the most influential faulty cell is found, then correcting this cell
may correct many of the dependent faulty cells in the data dependency graph thereby
reducing the debugging process. To address this problem, we propose an approach
using priority setting based on the number of incorrect precedents and dependents.
To do so, we rely on the dynamic backward slice of a given faulty cell as we are dealing
with propagated faults. Therefore, we make the assumption that the fault is not due
to omission of cell(s) in the formula. If the fault is due to omission of a cell, then we
can not trace the fault in the backward slice with respect to the faulty formula cell

under consideration.

A similar approach was proposed by Reichwein et al. [96] for the purpose of debug-
ging Form/3 programs. In that approach, a user marks cells as correct and incorrect
and based on the all-uses dataflow test adequacy criterion, the degree of testedness
of formulas is computed. Cells are given different colors based on their degree of test-
edness. Fault tracing is performed based on the degree of testedness of cells and by

computing fault likelihood of cells. Fault likelihood is computed based on the number
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of correct and incorrect dependents of a cell. During the fault localization process,
for the cell under consideration, those cells in the dynamic backward slice will be
highlighted in different colors based on their degree of testedness. Further process of

fault localization is carried out by performing testing using additional test cases.

In our approach, a priority value is computed based on the verification status
of precedent cells and in some cases based on dependent cells. Let C be a given
cell. Precedent cells of C are those cells which are directly (direct precedents) or
indirectly (simply precedents) referenced in the formula of C. Similarly, dependents
of C are those cells which reference C directly (direct dependents) or indirectly (simply

dependents) in their formula.

7.2 Fault Tracing Strategy

The fault tracing strategy for spreadsheets uses information from different sources
to locate the most influential faulty cell. The first information that we need is the
dataflow information. This information is already available since it is used by the
spreadsheet language during the evaluation of formulas. For example, in Microsoft
Excel, this information is used by the auditing tool to show the backward and forward
slices of cells of interest. While traversing the backward slice, we need a mechanism
of selecting the cells which have a likelihood of being the most influential faulty cell.
This information can be obtained from the testing system as cells are marked with
different colors depending on the existence of symptoms of faults. Hence, cell marks
are used to guide the search process. Based on the type of cell marks encountered,
during traversing the backward slice, priority values are computed to guide the search
to the path where the most influential faulty cell may be located. Therefore, the fault
tracing strategy uses dataflow, cell marks, and priority values to locate the most

influential faulty cell.
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7.3 Computation of Priority Value

Priority values are used to indicate the path through which the search should focus.

A definition of priority value is given below.

Definition: (Priority Value - PV)
Priority value of a cell is a value assigned to the cell based on its verification status.
A higher priority value indicates that the cell has a higher likelihood of containing

the most influential faulty cell.

During the verification process, cells in a spreadsheet are categorized into three
groups. These are cells with symptoms of faults, cells without symptoms of faults,
and cells which are unchecked. Let C represent a cell without a symptom of fault, E
represent a cell with a symptom of fault, and U represent a cell which is unchecked.

Using the verification information of cells, the priority values are related as follows.

PV(C) < PV(U) < PV(E)

The assignment of priority is also based on the contribution of a cell to incorrect
dependents. In other words, a faulty cell which has more incorrect dependents is more
influential than the one with few incorrect dependents. Furthermore, those faulty cells
which are at a higher level of the data dependency graph (i.e., near the input cells)
are more influential than those at the lower level of the data dependency graph.
Therefore, correcting those faulty cells at the highest level of the data dependency
graph may correct those cells showing incorrect values but being not actually faulty
which are dependent on the corrected cell thereby reducing the effort of the debugging
process. Under some circumstances, for a faulty cell under consideration, there may
be more than one influential cell which have the same priority value. In this case, all

those cells which have the same priority value are chosen.
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7.3.1 Example

Let us once again consider the interest calculation spreadsheet which was presented
in chapter 6 section 6.5.1. For the sake of easy reference, the spreadsheet is presented

again in figure 7.1.

A | B | ¢ ]

A | B | C | [ 1 |deposit rate payment
1 |deposit rate payrment L 3000 0.03 a0
B o o
4 |s000 0.05 =A4"E3 % 13883 g'gg
5 |10000 0.06 =A5"E4 = :
5 =5UM(C2:C5) 1B
7] |7

(a) (b)

Figure 7.1: Interest calculation spreadsheet with symptoms of faults

Suppose for the spreadsheet in figure 7.1, the user wants to trace the most influ-
ential faulty cell for the final result of the computation in cell C6. Actually, the first
thing to examine is the faulty cell itself. If the formula and the expected interval at-
tached are correct, then the fault is due to referencing a faulty cell. In such cases, we
need to trace the source of the fault. Returning to the example, the direct precedents
of cell C6 are cells C2, C3, C4, and C5 (see figure 7.2). The direct precedents fall into
the two categories correct (those without symptoms of faults) and faulty. The faulty
category which contains cells C4 and C5 is the candidate for further investigation.
The next task is to identify which one of C4 and C5 contains the most influential faulty
cell. Since they have equal priority values, then we check the number of their faulty
direct precedents and dependents. Each of them have no faulty direct precedents, but
one faulty direct dependent. Further check up reveals no difference in the priority

values as the root of the data dependency graph is reached which contains input cells.

Therefore, both cells C4 and C5 are the most influential faulty cells and as a
result, whenever the user requests for the most influential faulty cell for cell C6, the
system highlights the cells C4 and C5. However, if C4 and C5 had other faulty direct

dependents, then we need to consider also the number of their direct dependents.
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Suppose a cell K depends on C5 and has a symptom of fault. As we have seen before,
the number of faulty direct precedents of C4 = number of faulty direct precedents
of C5 = 0. Now, by considering the number of faulty direct dependents of each cell,
we get NFD(C4) =1 < NFD(C5) = 2 which indicates that C5 should be chosen
as the most influential faulty cell. Note that NFD stands for number of faulty direct
dependents.

While using the number of faulty direct dependents, there are two possibilities to

consider.

e using the the number of faulty direct dependents combined with the number of

faulty direct precedents

e using the the number of faulty direct dependents when the number of faulty

direct precedents are equal

If we use the first choice, we may find the most influential cell without going far in
the data dependency graph. This influential cell may not be the most influential for
the faulty cell under consideration but contributes to many other faulty dependent
cells. Therefore, correcting this cell may also correct many other cells which are not
in the dynamic backward slice of the cell under consideration. This option identifies

the most influential cell in terms of the number of incorrect dependents of a cell.

If we use the second choice, then we can reach to the most influential cell with
respect to the cell under consideration which is at a higher level in the data depen-
dency graph. Therefore, correcting this cell may correct many cells in the dynamic
backward slice of the cell under consideration. Though both options provide the pos-
sibility of correcting many cells, we prefer to locate the most influential cell using the
second option as this identifies the most influential cell for the cells in the dynamic
backward slice. In case two or more faulty cells have equal priority after adding the
number of their faulty direct dependents, then one of them will be chosen arbitrarily
provided that they have faulty precedents. On the other hand, if they do not have

faulty precedents, then all of them are selected as the most influential faulty cells.
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A2 B2 A3 B3 A4 B3 A5 B4
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Figure 7.2: Data dependency graph for interest calculation spreadsheet

Suppose the spreadsheet in figure 7.1(a) is modified as shown in figure 7.3.

A, | B | C |
1 |deposit rate payment
2 3000 0.03 =AZ'B2
3 5000 0035 —AZ"B3
4 3000 0.0%5 =A4"B3
5 | 10000 0.06 =ASTB4+C4
B =SUMIC2Ch)
7

Figure 7.3: Modified interest calculation spreadsheet

The corresponding data dependency graph of the modified spreadsheet is shown
in figure 7.4. In this modified version, C5 references C4 thereby introducing a new
data dependency relationship. Similar to the previous case, the faulty category which
contains cells C4 and C5 is the candidate for further investigation. C4 and C5 are
both faulty. The next task is to compare the number of their faulty direct precedents.
The number of faulty direct precedents of C4 is 0 since the two precedent input cells
are correct. On the other hand, the number of faulty direct precedents of C5 is 1
since it contains C4 as a precedent. Therefore, the path to C5 should be followed to
locate the most influential faulty cell. Again, we need to compare the priority values
of the precedents of C5. C4 turns out to have a higher priority value and hence the
path to C4 should be followed. Comparing the precedents of C4, we find no faulty
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precedents. Therefore, C4 is selected as the most influential faulty cell.

NS S S

c2

A4 B3 A5 B4

3 C5

Ce

Figure 7.4: Modified data dependency graph for interest calculation spreadsheet

7.3.2 Fault Tracing Algorithm

The algorithm for identifying the most influential faulty cell is presented in algorithm 6

for propagated faults. Let C be the faulty cell for which we are interested in to identify

the most influential faulty cell(s).

Algorithm 6 Algorithm to identify the most influential faulty cell

1:
2:
3:

Get precedents of C.

Group precedents of C according to their priority values.

Let G be the group that contains faulty cells such that G = {C4,Cy,...,C,}. If
G = (), then C is the most influential cell.

Compute the number of faulty direct precedents of each of the precedents of
elements of G. For those with equal number of faulty direct precedents, compute
the number of their faulty direct dependents.

Repeat step 4 until the cell with maximum number of faulty precedents (and
dependents) is found.

Choose the path to the cell with maximum number of faulty (direct) precedents
(and dependents). Let C be the cell with maximum number of faulty (direct)
precedents (and dependents).

Repeat steps 1 to 6 until no faulty direct precedents are found or the most influ-

ential cell(s) is found.
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7.4 Summary

After testing is performed, the task of locating the actual faults is handed over to
debugging. Debugging involves the identification of the location of faults and fix-
ing the fault. In spreadsheet programs, the identification of cells with symptoms of
faults and those without symptoms of faults is carried out by the testing system (i.e.,
interval-based testing). To fix the faults, we need to examine each cell which has a
symptom of fault. This is inefficient. So, examining and fixing the faulty cells should
be done systematically. In other words, as spreadsheet programs are dataflow-driven,
faults are propagated in the direction of dataflow. Therefore, we need a mechanism
of identifying the most influential faulty cell in the data dependency graph so that
correcting it may correct many cells in the data dependency graph thereby simplify-

ing the debugging process.

In this chapter, we have presented a technique for the identification of the most
influential faulty cell for a given faulty cell which has a propagated fault. Unlike
conventional software fault localization techniques which apply dicing, we do not limit
the number of faulty cells in the dynamic backward slice of the cell under consideration
to one. Several cells with symptoms of faults can appear in the dynamic backward slice
of a given faulty cell. For the identification of the most influential faulty cells, the fault
tracing strategy uses the dataflow information which is available from the spreadsheet
language, the cell marks obtained from the testing system, and the priority values of
cells. Path selection is based on the computation of priority values of precedent cells.
Whenever precedent cells have equal priority values, the priority values of their direct

dependents are also taken into consideration.
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Implementation

In order to demonstrate the effectiveness of the interval-based testing methodology,
a prototype tool is developed. The tool incorporates a parser, an interval arithmetic
module, a comparator, and a fault tracer. This chapter describes the design and im-
plementation of the prototype for the interval-based testing methodology. Section 8.1
describes the environment under which the prototype is implemented and section 8.2
presents the architecture defined to integrate the interval-based testing methodol-
ogy on top of the Excel spreadsheet system. Also, a description of the components
of the architecture is given in this section. A summary of the main points of the

implementation is given in section 8.3.

8.1 Description of Environment

The pilot environment chosen for the demonstration of interval-based testing is MS
Excel under the Windows environment. We use Visual Basic which is the program-
ming language provided to enhance Microsoft Office applications. In order to integrate
interval-based testing on top of the MS Excel environment, we make use of the object
model provided by the system. MS Excel has got a variety of predefined objects such
as Workbook, Worksheet, and Range(cell).
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8.2 Architecture

To integrate the interval-based testing methodology on top of spreadsheet systems
an architecture is defined. Figure 8.1 depicts the general architecture to integrate
the interval-based testing methodology on top of the MS Excel environment. This

architecture indicates the dataflow between the different components of the system.

Fault tracer

A Backward slice
+
cell marks

Ordinary
User
spreadsheet
A
formula

\/
Comparator |« Parser
A A AST

Y

Expected interval Stfﬁggrval arithmetic
spreadsheet module

interval string

Y

( Bounding
[ spreadsheet

Figure 8.1: Architecture for the interval-based testing methodology
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As can be seen from figure 8.1, the user interacts only with the ordinary spread-
sheet. In other words, development of a spreadsheet program is carried out in the
usual way. However, when the user wants to attach an interval to a given cell, the user
selects the cell and chooses a menu command from the Interval menu through which
interval-based testing features are available. The attached interval is then stored in
the expected spreadsheet as a string with the same coordinate as the corresponding
cell selected in the ordinary spreadsheet (see figure 8.2). This can be done also for a

group of cells when they are intended to have the same interval.

Ed Microsoft Excel - test_deposit.xls
|E File Edit Wiew Insert Format Tools Data | Interval Window Help

IDEE[SRY| % BE@ < AvschsngExpeced B 0o - @) il Tk

AG j =| 10000 Attach Multiple Expected
A_ I B | c | D Edit Single Expected | H | I | J | K |

deptlS;DDD rate 003 paymen;n Edit Multiple Expected
5000 0.035 175 verify Formulas
1388& ggg égg Show Werification Information
: 1045 Show Computed Inkeryal
Trace Fault

Minirmum Yalue 9500
Maxinum Yalue I 11000

Cancel |

| ST T T O QS N W S U U U [ AT B

Figure 8.2: Attaching an interval to a numeric cell

Whenever a user is interested to verify a particular formula cell or group of for-
mula cells, the desired cells are selected and a Verify Formulas command issued.
Subsequently, the testing system parses each formula and generates the abstract syn-

tax tree. While traversing the abstract syntax tree, the infix form of the arithmetic
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expressions is converted into postfix form to facilitate the computation. During in-
terval computation, the formulas are evaluated based on interval arithmetic semantic
of the operators used. Finally, the resulting value of the interval computation which
is the bounding interval for the respective cell is stored in the bounding spreadsheet
as a string. Once the necessary values are available from the three sources, namely,
spreadsheet computation, user expectation, and interval computation, the compara-

tor determines the existence of symptoms of faults.

8.2.1 Parser

The parser used in this tool is a subset of a parser that could be used for the spread-
sheet language. Microsoft Excel allows to perform a variety of complex operations,
but our parser is not designed to handle all such operations. For the demonstration of
our approach, we selected basic operations which can be used in an ordinary spread-
sheet development. Actually, it would have been appropriate to use the same parser
used by the spreadsheet langauge. However, such parsers are not publicly available

as they are used in commercial products.

8.2.2 Interval Arithmetic Module

The interval arithmetic module receives the abstract syntax tree from the parser and
interval values from the expected spreadsheet. Based on the abstract syntax tree of a
given formula, values for the cell addresses involved in the formula are taken from the
expected spreadsheet. After evaluating the formula, the resulting interval is written
in a cell in the bounding spreadsheet whose coordinate is the same as the coordinate
of the cell from which the formula is extracted. Again, the interval arithmetic module
is not intended to cover all function evaluations that are provided by MS Excel. This
module is limited to the basic arithmetic operators and spreadsheet functions. For
example, it does not handle evaluations of trigonometric or logarithmic functions.
Similarly, the current implementation supports interval computation only for simple
IF functions. Nested IF functions are currently not supported. Though conceptu-
ally the same procedure can apply for nested and multiple IFs, the specification of

expected intervals for nested and multiple IFs is a tricky task.
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8.2.3 Comparator

The comparator is the component of the system which decides whether a given cell
has a symptom of fault. This is accomplished by comparing the values from the ordi-
nary spreadsheet, expected spreadsheet, and bounding spreadsheet. The comparator
converts the interval strings which are extracted from the expected spreadsheet and
bounding spreadsheet into interval data types to perform comparisons. Whenever
there is a discrepancy between the values, a cell is marked red indicating the ex-
istence of a symptom of fault. Otherwise, the cell is marked yellow indicating the
conformance of the values. After the selected region of cells are marked, the next
task is how to fix the faults in a shorter time possible. Therefore, we have to find
a mechanism that guides the user in locating the most influential faulty cells to be

corrected first. This task is handled by the fault tracer.

8.2.4 Fault Tracer

As discussed in chapter 7, the fault tracer is used to locate the most influential faulty
cell which has the highest contribution of faultiness in the data dependency graph.
The most influential faulty cell is the first candidate to make corrections with the
assumption that correcting this cell may correct many of those faulty cells which are

dependent on this cell.

The fault tracer, based on the algorithm given in chapter 7, traverses through
the dynamic backward slice of the selected cell and identifies the most influential
cell which needs to be fixed in order to shorten the debugging process. In MS Excel
spreadsheet system, the backward slice of a cell is computed by collecting the prece-
dents. This information is already recorded during the development of a spreadsheet
program. In addition to the dynamic backward slice corresponding to the desired
cell, the cell marks in the dynamic backward slice are used to search for the most
influential cell. After the most influential cell is corrected, testing is performed again
to see the effect of the correction. This process is carried out iteratively until all the

desired faulty cells are fixed.
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8.3 Summary

We have developed a testing system for spreadsheets which is based on symbolic test-
ing and interval analysis and described the architecture of the interval-based testing
methodology which enables us to integrate the system on top of spreadsheet systems.
The testing system incorporates a parser, an interval arithmetic module, a compara-
tor, and a fault tracer. The parser takes spreadsheet formulas specified by the user
as input and generates the corresponding syntax tree. The arithmetic module evalu-
ates the formula using the abstract syntax tree and substituting intervals instead of
discrete values. By extracting the values from the three sources, the comparator de-
cides the existence of symptoms of faults in formulas. Finally, based on the dynamic
backward slice of a cell and the associated cell marks, the fault tracer identifies the

most influential faulty cell.

Though not yet experimentally validated by using user participants who are real
application experts, the integration of the tool to the familiar spreadsheet system
and its usability without requiring any concept of conventional software testing are

important contributions towards achieving the goal.
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Conclusion and Further Work

9.1 Conclusion

The fact that spreadsheet programs are software might give the impression at first
sight to apply directly conventional software testing techniques to spreadsheets. How-
ever, conventional software testing techniques, by their very nature, are targeted to
professional programmers. An analysis on the suitability of conventional software
testing techniques for spreadsheets has already shown the inadequacy of these tech-
niques to spreadsheets. The implication obtained out of the analysis is that testing
approaches for spreadsheets should take into account the inherent characteristics of
spreadsheets as well as the conceptual models of spreadsheet developers. Therefore,
interval-based testing is proposed based on the premises that spreadsheets are mainly
used for numerical computations and spreadsheet developers are end-users who are

not expected to follow the formal process of software development.

Focusing on the numeric properties of spreadsheets, interval-based testing tries to
establish a connection between the users numeric expectations relative to individual
cells and how these expectations lead to intervals of potential values. Discrepancy
between computed intervals and expected intervals will inform the user about diver-

gences between the mental model and the specified model.

141



142 CHAPTER 9. CONCLUSION AND FURTHER WORK

Despite the requirement to attach intervals, the proposed approach does not re-
quire any knowledge of conventional software testing. As such it is a user-centered
approach. It is user-centered also in so far as the specification of expected intervals
requires the spreadsheet developer to reconsider the sheet from a perspective different

from the coders perspective.

The interval-based testing methodology provides the following features.

e The methodology can be used by end-users without any requirement of software
testing background and we believe that this methodology will have a better

chance to be practiced by the large community of spreadsheet users.

e The comparison criterion provides a two-level checkup. The comparison be-
tween the value computed by a spreadsheet and the expected interval specified
by the user is a verification of spreadsheet instances whereas the comparison be-
tween the expected interval and the computed interval provides a more general

verification at the spreadsheet level.

e Symptoms of faults due to incorrect specification of expected intervals can be
used as a reminder to revise the goal and to have a better understanding of the

program.

e The expected intervals specified by the user are not taken for granted, rather

the reasonableness of the expected intervals is verified using interval analysis.

e The interval-definition phase once again requires the user to check and think
about the functionality of the particular formula cell and as a result this phase
also serves as a kind of manual review process giving the methodology a com-

bined feature of automatic testing and manual reviews.

9.2 Summary

There are two main aspects that this thesis has dealt with in order to come up with an
appropriate testing methodology for spreadsheets. First, although spreadsheet pro-

grams are software too, they are different from conventional software. This inspired
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us to investigate the differences and similarities between spreadsheet and conventional
software. Second, spreadsheet developers are mainly end-users who are not expected
to know the software engineering theory, particularly testing techniques. Therefore,
the challenge has been to come up with a solution which entertains these aspects.

Interval-based testing methodology attempted to sufficiently address these issues.

Interval-based testing focuses on the functionality of spreadsheet formulas instead
of the internal structure of a spreadsheet program (i.e., it is not based on the code
coverage criterion). It requires the user to specify input and expected intervals for
desired input and formula cells respectively. This will be documented in a behind-the-
scene spreadsheet and used to perform interval computations during the verification
of a given spreadsheet. In addition, the expected intervals provided by the user are
verified for reasonableness using interval analysis. The approach provided is thus es-
sentially a kind of stratified plausibility check based on the consistency of legitimate

boundaries users might specify for computations.

The main contributions of this work are listed below.

e A user-centered approach for the verification of spreadsheet programs is pro-

posed and implemented.

e An architecture for the integration of the methodology on top of the familiar

spreadsheet system is defined.

e A fault tracing algorithm is provided. Once verification is carried out, the
next task is to find out the location of the most influential faulty cells so that
debugging is performed with a least effort. The fault tracing algorithm provided

serves this purpose.

e The introduction of interval computations on spreadsheets for the purpose of
testing might give other opportunities for the applications of intervals in spread-
sheets. This basically has a promising line as intervals are used for problems
which require numerical computations and spreadsheets are one such applica-

tions dealing with numerical computations.
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9.3 Limitations

Interval-based testing is not without limitations. The limitations are lack of verifi-
cation generalization for structurally same formula cells, extra width in the bound-
ing intervals, variation of bounding intervals for aggregation operations, handling of
nested and multiple IF's, and difficulty of generating expected intervals for a formula

cell.

e Lack of verification generalization

In interval-based testing, structurally same formulas that are used in a group of
cells require checking separately. That is, though the formulas are structurally
the same, the computational values could be different, requiring different ex-
pected intervals. Normally, since these formulas have the same structure, it
would seem appropriate to verify one formula and propagate verification infor-
mation to the other formulas in the group. This requires structural consider-
ation instead of the functionality of the cells. While dealing with structural
investigations, this problem can be handled if a relationship between the source
and copies of a formula is established. A similar approach can also be used by
identifying logical areas which contain cells that have the same formula struc-
ture as in [5]. The approach used in [13] considers such structural sameness, but
does not solve the problem as a whole since it lacks functional consideration.
Therefore, an approach that combines structural and functional considerations
could be effective in addressing this problem. Based on the functionality of cell
formulas, interval-based testing methodology addresses this problem partly by
enabling users to specify the same expected interval for a group of formula cells
which have the same functionality and whose values are closer to each other in

magnitude. These cells are intended to represent similar computations.

e Bounding intervals are usually wide

As interval arithmetic provides global maximum and minimum of possible arith-
metic on intervals, the bounding interval could be very large in some situations.
For example, division that involves intervals containing zero value results in

infinity end points. Arithmetic operations such as summation of values of cells
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in a large area of cells may result in a wide bounding interval. This problem
will not have a solution as this depends on the definitions of interval arithmetic.
Similarly, a dependency problem results in too much width in the computation
of the bounding interval. A dependency problem occurs when a single variable
occurs more than once in a formula. There are some mathematical methods
of solving the dependency problem such as branch-and-bound algorithms [36].
However, the development of algorithms for such tasks is beyond the scope of
this work. Hence, in both cases, incorrectly specified expected intervals may lie
easily within the computed interval. In such cases, we rely only on the result
of the comparison between spreadsheet computation and the expected interval

specified by the user.

e Variation of bounding intervals for aggregation operations

This problem arises as a result of using intermediate cells’ interval values during
the computation of the bounding interval of a given formula cell. Intermediate
cells have been used for the purpose of narrowing down computed bounding
intervals. However, if a given formula can be computed using different alterna-
tives such as sum of column sums or sum of row sums, the resulting bounding
intervals could be different. In such cases, the comparison between the expected
interval associated with the given formula and the bounding intervals (which
can be computed using the different alternatives) may give a symptom of fault

for one alternative while there is no symptom of fault for the other alternative.

e Nested and multiple IFs

As described in chapter 6 section 6.4.2, interval analysis for spreadsheets con-
taining nested IF's is not convenient especially from the users perspective. Nested
IF's require the specification of expected intervals corresponding to each possi-
ble branch that will be executed. This requires an appropriate user interface
corresponding to the number of branches. To do so, the formula containing
nested IF's should be parsed and the number of branches computed. This is a
dynamic activity which varies depending on the type of nested IFs involved in

a formula. Multiple IF's also pose a similar problem. The number of expected
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intervals depends on the number of possible combinations of branches which
will be executed. Therefore, the current implementation supports only simple

[Fs. It does not support nested and multiple IFs.

e Difficulty of specifying expected intervals

It may be argued that it is difficult to imagine a reasonable expected interval
when the formula involves a large number of cell references. For example, the
use of aggregation functions over a large area of cells like the sum of 100 items
with each cell value large in magnitude. Well, the question to be raised here is
that ”How do users verify such cells using other methodologies if they do not
have some range of values in mind that is acceptable?”. Since expected intervals
represent the expected behavior of computations, they should be available before
computational formulas are coded and executed. Beizer [7] has described this
situation as follows: ”In real testing the outcome is predicted and documented
before the test is run. If a programmer can not reliably predict the outcome
of a test before it is run, then that programmer does not understand how the
program works or what it is supposed to be doing. The tester who can not
make that kind of prediction does not understand the program’s functional
objectives.” In a similar fashion, the developer of a spreadsheet is expected to
be able to predict the outcome of a formula as long as (s)he understands the

functionality of the spreadsheet.

9.4 Further Work

Future research work can be done in different directions to improve the interval-based
testing approach. For example, development of automatic verification, automatic

generation of test cases, and carrying out controlled experiments.

e There are two modes of verification: by request and automatic. By request ver-
ification is used to check suspected cell or group of cells when the need arises.
This mode of verification supports spreadsheet-based verification. This mode
of verification is already implemented. The other alternative is to perform ver-

ification automatically following ordinary spreadsheet formula evaluation. In
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attempting to introduce automatic verification, a major problem which will be
encountered is to maintain the consistency between the ordinary spreadsheet
computation and the interval computation. In ordinary spreadsheet computa-
tion, whenever a change is made to a cell value, its dependents are automati-
cally updated. To maintain both computations consistent, a propagation engine
must be implemented as a separate module so that whenever changes are made
to interval values or to the ordinary spreadsheet, all dependent cells are re-
calculated. Following this, the comparator should be run for those dependent
cells to update their status of verification. It will be mainly applicable during

spreadsheet maintenance and cell-based verification.

Both modes of verification have their own advantages and drawbacks. The ad-
vantage of by request verification is that interval computation and verification
are performed only when needed thereby reducing the computational cost. The
advantage of automatic verification is that it complies with the interactive na-
ture of the spreadsheet systems. Automatic verification follows the "immediate
visual feedback” characteristics of spreadsheet systems. The drawback of by
request verification is that even though a formula cell is identified erroneous,
there is no sign how this cell may affect dependent cells unless those dependent
cells are included in the area selected for verification. So, the main drawback
associated with this mode of verification is the inability to propagate symptoms
of faults. The disadvantage associated with automatic verification is cost of
computation of bounding intervals and comparisons for those dependent cells
(similar to automatic re-calculation of ordinary spreadsheet) whenever there is
a change in one of the precedent cells. Though automatic verification has the
advantage of automatically updating the verification status of cells, it might be
messy to see a lot of symptoms of faults propagated through the data depen-
dency graph while a single change is made to some numbers. However, the user
can be given control of the situation by providing options as to which mode of

verification to use.

e Even though interval-based testing is not code coverage-based, automatic gener-

ation of test cases can be explored when code coverage-based testing is required.
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As input intervals are attached to the desired input cells, test cases can be gen-
erated from the specified input intervals. This can be achieved as symbolic
testing is also used for test case generation. However, the specification of ex-
pected behavior for the test cases which are automatically generated by the

system requires further consideration.

Other improvements can be made based on observations in an experimental
study where real users are studied using the methodology. In order to see
whether the idea works, a prototype tool is implemented which can be integrated
on top of spreadsheet systems. To quantify the effectiveness of the methodol-
ogy, it is important to study the effectiveness of the methodology by setting a
controlled experiment which involves end-user subjects using the methodology
and others without using the methodology. There are, however, some parame-
ters which should be taken into consideration while carrying out such controlled
experiments. Among them are the background of the users participating in the
experiment and the type of problems given to the users during the experiment.
Users should have similar background in their experience and the problems
should be selected so as not to require a special domain knowledge. Similar-
ity of the background of the subjects can be determined based on statistical

measures.

The first question that the experiment should answer is ” Does it help in detect-
ing faults in spreadsheet programs?”. To answer this question, two groups of
participants with similar backgrounds can be chosen for the experiment. While
one group develops spreadsheets with the testing methodology integrated, the
other group works without using the methodology. This helps to get information
regarding the usefulness of the approach in enabling users to detect symptoms
of faults in spreadsheet formulas. The second question that the experiment
should answer is ”How effective is the methodology?”. This requires comparing
the effectiveness with other approaches which are proposed for the same pur-
pose. However, there are so far no tools which are designed for the purpose of

testing spreadsheets with which comparison can be done.



Glossary

A spreadsheet is an n-dimensional matrix of cells where each cell is uniquely identi-
fied by n-coordinates. If n = 2, as in the standard case, a cell is uniquely identified by
its row and column address. We will consider here only this standard case of tabular

spreadsheets.

A cell is the atomic unit of a spreadsheet. Its content might be: (a) a value (numeric
or textual literal) (b) a formula for computing some value by referring to the values

of other cells (¢) empty - a cell with neither a value nor a formula.

A Formula is a mathematical expression which might consist of cell references, op-
erators, functions!, and constant values. At least one cell reference is expected to be
included in the computational expression of a formula. A formula yields exactly one

result.

It is important to distinguish between the tabular appearance of a spreadsheet
where all cells are shown to be either empty or contain a numeric or textual value
and the cell definitions (constants or formulas) that lead to these values presented

at the user interface.

Cell reference is a mechanism to refer to the values of other cells for the computation
of the value of a given cell formula. Cell reference can be through name, absolute
reference, and relative reference. A cell reference consists of two coordinate systems.
In an absolute reference, the upper-left corner of the spreadsheet is considered as
the origin. In a relative reference, reference to a cell is at a relative offset from the

cell making the reference. Cells can also be referred by name. A name reference is

'A function is a built-in formula supplied by the spreadsheet system
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just an alias for a cell address.
An Input Cell is a cell which contains a numeric value entered by the user.

A Formula Cell contains a formula definition for the computation of the value of

the cell.

A Spreadsheet Program constitutes the set of cell definitions in conjunction with
the particular location where these cell definitions appear. All computations are local

to the Cells in which they are defined and free of side-effects.

A Spreadsheet Instance is a spreadsheet program where input cells have certain

values. A spreadsheet program can be instantiated multiple times.

A Spreadsheet Language consists of a set of language constructs to describe the
data flow (cell references) and the data manipulation (formulas) in a spreadsheet

program.

A Spreadsheet System is an integrated environment where spreadsheet programs

can be created, instantiated, and edited.

A User is any person who is not a professional programmer but uses spreadsheet
systems for some computational purposes. User and spreadsheet programmer (devel-

oper) are synonymously used in this thesis.

The terms error and fault are used in the literature in different contexts. We use

them based on the following definitions [47, 117].
An Error is a mental mistake made by a programmer that results in a fault.

A Fault is a bug in a program that can result in a failure. Fault, defect, and bug are

synonymously used.

A Failure is a misbehavior of a program.
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