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Abstract

Object-Oriented modeling and design methodologies have been receiving
a significant attention since they allow a quick and easy-to-gasp overview
about a complex model. However, in the literature there are no formal frame-
works that allow designers to verify the consistency (absence of contradic-
tions) of both the static and dynamic components of the specified models,
that are often assumed to be consistent. In this paper, a unifying formal
framework is proposed that allows the consistency checking of both the
static and dynamic components of a simplified Object-Oriented model.

Keywords: Object-Oriented specifications, consistency, integrity constraints,
static model, dynamic model.

1 Introduction

”Object-Oriented modeling and design is a new way of thinking about problems
using models organized around real-world concepts” [28]. Nowadays, various
Object-Oriented (OO) modeling and design methodologies have been consolidat-
ing, such as, for instance OMT [28], OOD [5], OOSE [25] and, in particular, UML
[31], that is very popular at the moment.

These methodologies have been receiving most of the attention since they of-
fer significant modeling facilities by using diagrammatic notations. The use of
diagrams, that can be rooted in the early beginning of conceptual modeling (the
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ER model [12]), is becoming a consolidated methodology since it allows a quick
and easy-to-gasp overview about a complex model. UML, for instance, offers a set
of nine different diagram types which allow one to view a system from different
perspectives.

However, visual modeling languages lack the capability of expressing finer
details about the system, therefore they have been enriched with textual languages
[32]. In UML, for instance, the Object Constraint Language (OCL) has been de-
fined, that is a textual language for describing constraints within OO models. It
has been specifically designed to complete diagrams with formal statements con-
cerning restrictions on the values allowed for the object instances of the specified
model.

When using an OO modeling methodology two main dimensions have to be
considered: the structure of the objects, that is represented by the static model
(object model or class model), and the behavior of the objects, that is represented
by the dynamic model (or behavioral model).

In the past, research was mainly concentrated on understanding the static
model of the objects, that is, the attributes, relationships, and integrity constraints
the objects have to satisfy, whereas the object behavior was either ignored or sup-
posed to be defined by the signature of methods only (see for instance [2, 9, 10,
16, 26]). Languages similar to OCL were used to express conditions (integrity
constraints) on the static model (as for instance, “nobody must earn more than
his/her boss”). Successively, such languages were used to express conditions on
the behavioral model too (as for instance, ”in order to transfer more than a cer-
tain amount of money a further signature is required”). Currently, statecharts,
introduced by David Harel [23], or variants of statecharts [1], are often used to
express the object behavior by using constraint languages similar to OCL (see for
instance [18]). However, nowadays that behavioral models are spreading, there is
no significant work in the literature about formal frameworks that allow, for in-
stance, the consistency (i.e., absence of contradictions) of the specified models to
be checked. In fact, very often such models are simply assumed to be consistent
(see for instance [18, 22]).

In this work, both dimensions of OO conceptual modeling are considered. In
particular, in the paper a unifying formal framework has been defined that allows
the consistency checking of both the static and dynamic components of a simpli-
fied OO model. The contribution of the paper consists in: (i) the definition of the
semantics of the dynamic component of an Object-Oriented specification in terms
of the semantics of the associated static component, (ii) the notion of consistent
behavior of an OO specification, and (iii) the formal characterization of it. Notice
that, in OO modeling, object behavior is distinguished in intra-object and inter-
object behaviors, i.e., the behavior of objects that are instances of the same type,
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and the behavior of objects instances of different types, respectively. In this paper
we focus on intra-object behavior.

The paper is organized as follows. In Section 2, the static and dynamic models
adopted in this paper are formally introduced. In Section 3, the formal characteri-
zation (i.e., the necessary and sufficient conditions) of the consistency of the static
and dynamic components of an OO specification is presented. Finally, the con-
clusion and future work follow. Below the related work is given.

1.1 Related work

In the literature, static and behavioral models are generally assumed to be con-
sistent. However, it is interesting to briefly recall some of the existing proposals
concerning the integrity constraint satisfiability (consistency) checking, as inves-
tigated within the fields of databases and logic programming.

In [2, 7, 13, 16] we find various methodologies for the verification of the
consistency of static data models, including ISA hierarchies, or disjointness con-
straints, or cardinality constraints. However, constraints involving comparison
operators are not addressed that, vice versa, are on the basis of the dynamic model
proposed in this paper.

The satisfiability of integrity constraints involving comparison operators has
been addressed, for instance, in [3, 17, 15], within the field of Object-Oriented
databases (OODB), and widely investigated in the context of deductive databases
[6], by relying on theorem prover techniques. However, since the formalism
adopted in [3] is very expressive (it includes union, complement, quantified sets,
valueset-types etc..), the consistency checking of recursive schemas enriched with
explicit integrity constraints is undecidable. Similarly, in the context of deduc-
tive databases, and also in [17], since a schema is a set of first order logic for-
mulas, the methods proposed by the authors are semidecidable. Finally, in [15],
a characterization of finite satisfiability of OODB integrity constraints involving
comparison operators has been addressed. However, in that paper a different class
of constraint expressions has been considered that, for instance, does not allow
comparisons with constants to be expressed.

Leibniz is a system for logic programming, based on logic decomposition tech-
niques [30]. It compiles fast solution algorithms for checking the satisfiability of a
given set of boolean formulas in conjunctive normal form, in which the variables
range on predefined, finite domains. Indeed, in order to adopt this method in our
data model, a preliminary step should be performed since we do not assume finite
domains, i.e., we do not require objects to take values on finite ranges of values.

Finally, in the literature, many OO specification approaches have been pro-
posed, related to system functions, behavior, communication, and decomposition
(the reader that is interested in a comparison among the different proposals may
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refer to [33]). In this paper, regarding the static model, we followed essentially
the UML approach. In particular, the static model has been formalized by using
an OO specification language based on the notion of a type, that can be seen as
a textual form of the UML class diagrams. Furthermore, the constraint expres-
sion language adopted in this paper is similar to OCL, that is the textual language
used to describe constraints in UML [32]. Regarding the behavioral model, we
followed the statecharts approach proposed by Harel [22, 23, 24], that is recalled
in Subsection 2.2.

2 The static and dynamic models

2.1 The static model

In this subsection, a specification language of a simplified OO model is presented.
The language, that is based on the notion of a type, is compliant with the ODMG
standard [10], and has a kernel common to the type-expression specification lan-
guage O2 [4].

A type has a name, a tuple and a constraint expression. The tuple is given
by a set of typed properties (tp) enclosed in square brackets. A constraint ex-
pression (c_expr) is a disjunction of conjunctions (disjunctive normal form)
of expressions of the form: ”p § K (single expression, indicated as s_expr for
short), where p is the name of a property, # stands for a comparison operator, such
as "=", ">, ”>”, #, etc,, and K is a constant. For instance, consider the exam-
ple below where two types are defined, whose names are vehicle, and employee,
respectively. In particular, one c_expr is given, associated with employee, estab-
lishing a lower bound for the consultant (consult) and manager (mgr) salaries.

Example 2.1
vehicle < [maker:string, owner:employee, color:(red, green, blue),
production_date:integer]
employee < [name:string, salary:integer, drives:vehicle, status:(depend, consult, mgr),
boss:employee],
(salary > 2000 A status = consult) v
(salary > 4000 A status = mgr)
O

A property, that is identified by a name, can be typed by using: (i) type names
(as, in Example 2.1, vehicle.owner), establishing an explicit link (or association)
between two types; (ii) atomic-types, e.g., integer or string (for instance, in the
example, vehicle.maker); (iii) valueset-types, that are specified between ordinary
parenthesis by the interval extremes (in the case of integer or real intervals), or by
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enumeration (as, for instance, vehicle.color). In a tuple, multiple occurrences of
the same property names are not allowed. Furthermore, we assume that properties
are single-valued, that is, an object, instance of a type, has to take exactly one
value in correspondence with each property.

Notice that, in this paper, inheritance is not addressed. In particular, types are
supposed to have both the static (typed properties and constraint expressions) and
behavioral (that will be addressed in the next subsections) components explicitly
given.

A c_expr is well-formed w.r.t. (a type whose name is) 7 if all the properties
defining the constraint expression are properties of 7. For instance, the c_expr
of the previous example is well-formed w.r.t. employee, whereas it is not well-
formed w.r.t. vehicle. Below, the notion of an OO speci fication is introduced.

Definition 2.1 [OO specification] A finite set of types is an OO specification iff:

e every type name is uniquely defined (i.e., the same name is not associated
with more than one tuple);

e there are no dangling type names (i.e., every type name is defined);
e every c_expr associated with a type 7 is well-formed w.r.t. 7.

|

The set of types given in Example 2.1 is an OO specification. Notice that
in a specification, besides the above requirements, the constraint expressions are
supposed to be correctly typed, e.g., in Example 2.1, the constraint salary > red
associated with employee would be rejected at a pre-processing stage, by using a
type-checker.

As already mentioned, in our approach the c_expr’s are in disjunctive normal
form, i.e., they are disjunctions of conjunctions of s_expr’s. Of course, by ap-
plying the standard replacement rules for logical operators [21], any expression
that is a conjunction of c_expr’s, or its negation, will be considered a c_expr as
well.

2.1.1 Semantics of an OO specification

The formal semantics of an OO specification will be given according to the formal
semantics of Description Logics, as defined in [8].

Given an OO specification S, let 7 be the set of type names, atomic-types,
and valueset-types of S (corresponding to the atomic concepts in [8]), and let
P be the set of property names of S (corresponding to the atomic roles in [8]).



An interpretation T = (A%, ) over S consists of a non-empty and finite
set AZ, that is the domain of Z, and a function .Z, that is the interpretation
function of Z, that maps every type 7 € T to a subset (7)% of AZ (the set of
instances of 7) and every property p € P to a subset (p) of AT x AZ. Then, a
type:

T < tuple, c_expr
Is an inclusion assertion as defined in [8] (i.e., it specifies only necessary con-
ditions for an object to be an instance of the type 7), for which the interpretation
function is defined as follows (#S denotes the cardinality of the set S and a_expr
denotes an and expression, i.e., a conjunction of s_expr’s):

o (tuple, c_expr)t = (tuple)* N (c_expr)t

o (tuple)t = N; ([p :type;|)t =
N; {z € AT | # {y: <z,y >€ (p;)* and y € (type;)*} =1})
that corresponds to the Description Logics construct (3= p;.type;)*

o (cexpr)t = (a_expr; V a_expr;)* = (a_expr;)* U (a_expr;)*

o (a_expr)t = (s_expr; A s_expr;)* = (s_expr;)* N (s_expr;)*

o (sexpryf=(pfh K)t =
{re AT |Vy:<z,y>€ (p)f=y0 K}
where @ is one of the comparison operators 7>, ”>", 7=""#£" efc..

A model of S is an interpretation Z = (AZ, .%) that satis fies all the inclusion
assertions in S, i.e., for any inclusion assertion defined as above, the following
holds:

(1) C (tuple, c_expr)?.

A type 7 € T is consistent (satis fiable according to [8]) in S if S admits a
model for which (7)% # 0.

Finally, S is consistent if it admits a model for which each type is consistent
inS.

In the following, a few definitions involving constraint expressions that do not
necessarily belong to the given specification are presented.

Consider a consistent specification S, an inclusion assertion of S as defined
above, and a constraint expression, say c_expr;, that is well-formed w.r.t. 7. Then
c_expr; 1S consistent w.r.t. T iff there exists at least one model Z of S for which:

(7)F N (cexpry)” # 0.

Under the same assumptions above, consider the constraint expressions c_expry,
and c_expry, well-formed w.r.t. 7. Then c_expr, and c_expry, are:



e equivalent w.r.t. 7 tuple iff for any model Z of S the following holds:
(c_expri)® N (tuple)r = (c_expry)® N (tuple)*
where c_expry and c_expr), are also supposed to be consistent w.r.t. 7;

e disjoint w.r.t. 7 tuple iff for any model Z of S the following holds:
(c_expri)t N (c_expry)t N (tuple)® = 0.

2.2 The dynamic model

The behavior of a type is defined by a statechart [22, 23, 24]. A statechart is
associated with a type and consists of states, events and transitions. A state is
composed of a name (which identifies it) and a condition that the objects, instances
of the associated type, have to satisfy to be in that state [31]. This condition is
referred to as the range of the state. A transition is a relationship among states
and is triggered by an event. A transition, which is identified by a label, indicates
that an object, which is in a state (called source state) will enter another state
(called target state) when the event occurs and some specified condition (called
the guard of the transition) holds [31]. Therefore, at the end of the transition the
object will be in the target state of the transition. An event is identified by a name
and may trigger one or more transitions.

Example 2.2 Consider a type book defined as follows:

book =< [isbn:string, title:string, signed:bool, age:integer, registered:bool,
reserved:bool, archived:bool, status:(new, preparation, in library,
borrowed, in text book collection, in archive)]

and suppose that books which are in the library can be borrowed, if they are not
reserved. This simplified behavior for the type book is represented in Figure 1 by
means of states, events and transitions. In particular, in Figure 1 two states are
represented, whose names are book on stock and book on loan, respectively. The
ranges of these states are described in Table 1, by using the syntax presented in
the previous subsection. Furthermore, in Figure 1, t3 is the label of a transition
between the source state book on stock and the target state book on loan, that is
triggered by the event lending. The guard of the transition is reserved = false.

book on stock status = in library
book on loan status = borrowed

Table 1: Ranges of the states of Figure 1
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Figure 1: A simplified behavior associated with the book type

A more elaborated behavior associated with the type book is shown below,
within a more complex example concerning a university library.

The Library

Consider the domain of a university library and the type book defined above. The
behavior of book objects is now shown in Figure 2. Two main activities are neces-
sary for the administration of new books before they can be placed into the library:
the book registration and the book processing. The book registration is responsi-
ble for recording new books. For this purpose, all the information related to the
book is stored in the book catalogue and, successively, a registration number is
given to the book. In the book processing state, the book is described with some
keywords and, then, a signature is added.

After the administration process, books are placed into the library, where they
can be borrowed. Books, which are necessary for a lecture are given in a special
place called text book collection. Nobody is allowed to borrow books from the text
book collection. If a book has to be placed into the text book collection but, at that
moment, is borrowed by anyone else, it can be reserved. Reserved books cannot
be borrowed by anyone but are placed into the text book collection immediately
after they are returned by the borrower. Books which are borrowed or in the text
book collection, and are not reserved, can be returned to the library. Borrowed
books, that are reserved, can be returned to the text book collection only. Books,
older than 10 years can be given into the archive. Such books can be borrowed
too, but they can be returned to the archive only.

In the next sections this example will be used to better clarify our proposal.
For a deeper understanding about extensions of the statechart language we refer
the reader to [18].
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Figure 2: A more elaborated behavior associated with the book type

2.2.1 States

A state in a statechart associated with a type 7 denotes a subset of all possible
object instances of 7. A state can be seen, at an intensional level, as a predicate
that is associated with a given type, whereas, at an extensional level, it can be
considered as the set of all possible objects which fulfill such a predicate.

To make statecharts more readable and to avoid combinatorial explosion of
nodes and arcs, state hierarchies have been introduced. According to Harel’s
definition [24], we distinguish between OR-states, AND-states and basic states.
OR-states have substates which are related to each other by “exclusive-or”, i.e.,
an object can be in only one substate of an OR-state at any time. AND-states have
substates which are “and” related, i.e., an object that is in an AND-state is also in
all substates of the AND-state. In AND-states, it is worth distinguishing compo-
nent states from computational substates. The former are syntactical substates, as
for instance, in the case of book administration of Figure 2, book registration and
book processing, whereas the latter are semantical substates, as for instance, again
in the case of book administration, book in catalogue and signed book. In other
words, computational substates correspond to the legal combinations of substates
of component states.

Basic states are the states at the bottom of a state hierarchy, i.e., they do not



have substates. The states at the highest level of a statechart, i.e., without parent
states, are called root states.

Example 2.3 In Figure 2 book administration is an AND-state with the substates
book registration and book processing. These two substates, together with the
book not on stock state, are OR-states. All the other states are basic states. Root
states are new book, book administration, book on stock, book not on stock and
book in archive. O

The ranges of the basic states have to be given by the designer, whereas the
ranges of the structured states (AND-states and OR-states) are defined according
to the ranges of their substates as follows.

Definition 2.2 [The Range function] The Range function is inductively defined
on the set of states of a statechart as follows:

e each basic state is associated with a c_expr called its range;

e each OR-state S is associated with the disjunction of the ranges of all com-
ponent states of S

e ecach AND-state S is associated with the conjunction of the ranges of all
component states of S

|

Example 2.4 The ranges of the basic states of the example of Figure 2 are shown
in Table 2. According to the above definition, the range of the OR-state book not
on stock is defined as the disjunction of the ranges of its substates borrowed book
and book in text book collection, i.e.:
status = borrowed V (status = in text book collection A reserved = false).

The range of the AND-state book administration is defined as the conjunction of
the ranges of the OR-states book registration and book processing, each obtained
as disjunction of the ranges of its component states. O

In the following, the range of a state S will be indicated as S. Range.

2.2.2 Events and transitions

An event is an incident whose goal is the modification of the state of an object. An
event, which is identified by a name, is set off explicitly, and triggers one or more
transitions. A transition, which is identified by a label, indicates that an object,
that is in a given state (called source state), will enter another state (called target
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new book status = new

book in catalogue status = preparation A registered = false
mar ked book status = preparation A signed = false
registered book status = preparation A registered = true
signed book status = preparation A signed = true
book on stock status = in library

borrowed book status = borrowed

book in text book | status = in text book collection A reserved = false
collection
book in archive status = in archive A age > 10

Table 2: Ranges of the basic states of Figure 2

state) when the event occurs and some specified condition (called the guard of
transition) holds.

In the following, similarly to the notation used for the ranges of states, t.Guard
will denote the guard of transition t.

Example 2.5 In the example of Figure 2, t9 is the label of a transition between
the source state borrowed book and the target state book in text book collection,
triggered by the event return. The guard of the transition is reserved = true. The
event return also triggers transitions t7 and t11. O

Notice that transitions may have computational substates as source (or target)
states. For instance, the combination of registered book and signed book states is
the source state of transition t5.

In dynamic modeling, events and transitions represent (partial) specifications
of the methods associated with the types. The model defines which conditions
(preconditions) an object has to fulfill in order to be able to react to an event,
and which conditions (postconditions) an object satisfies after the state change.
If an event is set off and the preconditions hold, an object is transferred to a new
state. Notice that the preconditions of a transition can be derived from the de-
fined model, whereas the postconditions are suitably defined by the designer. In
particular, a state change can be performed if the object is in the source states of
the transition (that means it satisfies the ranges of the source states) and, further-
more, it satisfies the guard of the transition. In the following let t.T'arget_States
and t.Source_States be the sets of the target and source states of transition %, re-
spectively (for instance, t5.Source_States contains the states registered book and
signed book). Then, the preconditions of a transition are defined as follows.

Definition 2.3 [Preconditions of a transition] The preconditions of a transition
t, indicated as t. PreC, are defined as:

11



t.PreC = t.Guard A s;.Range \ ... N\ s,.Range
where s; € t.Source_States,i=1...n. O

After a transition has been applied, the object has to satisfy the ranges of its
target states and its postconditions, which must explicitly be given by the designer.
Therefore, the postconditions of a transition ¢, indicated as ¢. PostC', must imply
the ranges of its target states.

Similarly to ranges of states, c_expr’s will be used to specify guards, pre- and
postconditions of transitions. In Table 3, the postconditions of the transitions of
the example of Figure 2 are shown.

t1: new status = new
t2: catalogue status = preparation A registered = false A signed = false
t3: register status = preparation A registered = true
t4: sign status = preparation A signed = true
t5: place status = in library A reserved = false
t6: archive status = in archive A age > 10
t7: return status = in library A reserved = false A archived = false
t8: borrow status = borrowed A reserved = false A archived = false Vv
status = in text book collection A reserved = false A archived = false
t9: return status = in text book collection A reserved = false
t10: reserve status = borrowed A reserved = true
t11: return status = in archive A age > 10 A reserved = false A archived = true
t12: borrow status = borrowed A reserved = false A archived = true Vv
status = in text book collection A reserved = false A archived = true

Table 3: Postconditions of the transitions of Figure 2

Example 2.6 In the example of Figure 2, the preconditions of transition t9 are
given by the conjunction of the range of the state borrowed book and its guard
reserved = true, i.e.:
status = borrowed A reserved = true.
The preconditions of transition t5 correspond to the conjunction of the ranges of
the states registered book and signed book. The postconditions of t5, that are:
status = in library A reserved = false,
imply the range of the book on stock state. O

2.2.3 The behavior of a type

The behavior of a type is defined as follows.
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Definition 2.4 [Behavior of a type] The behavior of a type 7, indicated as B., is
a statechart whose ranges of the basic states, postconditions and guards of transi-
tions are c_expr’s well-formed w.r.t. 7. O

Based upon the ranges of the states we can define relationships between states,
namely equivalent states, disjoint states and orthogonal states. These relation-
ships will allow us to define the notion of consistent behavior of an OO specifica-
tion.

Definition 2.5 [Equivalent states] The states S; and S, of the behavior B, of the
type 7 are equivalent iff their ranges are equivalent c_expr’s w.r.t. 7 tuple. a

Example 2.7 Inthe example of Figure 2 the states book registration and book pro-
cessing are equivalent since their ranges coincide. In fact, each of these states is
an OR-state, whose range is given by the disjunction of the ranges of its substates,

that is, status = preparation (see Table 2). O
Definition 2.6 [Disjoint states] The states S; and S, of the behavior B, of the
type 7 are disjoint iff their ranges are disjoint c_expr’s w.r.t. 7 tuple. O

Example 2.8 In the example of Figure 2 the states new book and book on stock
are disjoint states, since they require different values for the status attribute. O

If S is an OR-state or an AND-state, in the following S.Substates denotes
the set of the direct substates of S. In the example of Figure 2, book administra-
tion.Substates contains the states book registration and book processing.

Definition 2.7 [Orthogonal states] The states S; and S, of the behavior B, of
the type 7 are orthogonal iff S; and S, are OR-states which are equivalent, and
Vs € S;.Substates and Vs’ € Sy.Substates there exists at least one model Z =
(AZ, 1) s.t. both s.Range and s’. Range are consistent w.r.t. 7, i.e..

(s.Range)* N (s'.Range)t N (1)% #£ 0. O

Essentially, orthogonality means that for an object, which is in a substate s of
an OR-state Sy, it is possible to be in anyone of the substates s’ of S, at the same
time. In other words, the ranges of the states s and s’ have not to be contradictory.
This allows the definition of parallelism by using AND-states [23].

Example 2.9 In the example of Figure 2 the states book registration and book
processing are orthogonal states. In fact, they are OR-states and their ranges are
equivalent (as shown above). Furthermore, the range of each of the substates of
book registration has a non-empty intersection with each of the ranges of the sub-
states of book processing (and vice versa). For example, the intersection between
the ranges of the states marked book and registered book is not empty, since an
object with the attribute values status = preparation, signed = false, and registered
= true, satisfies the ranges of both these states (see Table 2). O
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In line with Harel’s definitions [23], we formally define the notion of consistent
behavior of a type.

Definition 2.8 [Consistent behavior of a type] Given a consistent OO specifi-
cation S and a type 7 of S, the behavior B, of the type 7 is consistent iff the
following conditions hold:

1. for each state S of B,, there exists at least one model Z of S s.t. S.Range
is consistent w.r.t. 7, i.e..
(S.Range)* N (1)* # 0;

2. for each pair of root states Sy, S, of B;:
S1, Ss are disjoint;

3. for each OR-state S of B;:
for each pair of substates sq, sy € S.Substates:
s1, 8o are disjoint;

4. for each AND-state S of B;:
for each pair of substates sq, sy € S.Substates:
sy and s, are orthogonal;

5. given a transition ¢ of B, assume that ¢.Target_States = {S;}, i = 1.. .n.
Then, for each transition ¢:

(@) there exists at least one model Z of S s.t. t. PreC'is consistent w.r.t. 7,
i.e.
(t.PreC)t N (1) # 0,
(b) there exists at least one model Z of S s.t. all S;.Range, i =1...n,and
t.PostC are consistent w.r.t. 7:
N; (Si.Range)t N (t.PostC)t N (1)% # 0,
(€) t.PostC, not(S;.Range A ... A S,.Range) are c_expr’s disjoint w.r.t.
T tuple.

|

Let us briefly illustrate these conditions. Condition 2.8(1) deals with the fact
that any object that is in a given state must also satisfy the type = and the con-
straints of 7.

Example 2.10 Suppose we add the constraint age < 10 to the type book of Ex-
ample 2.2. Then, the behavior of this type becomes inconsistent. In fact, no object
could satisfy this constraint and the range of the state book in archive, i.e.:

status = in archive A age > 10. O
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According to Harel [23], an object cannot be in more than one root state at
the same time. Therefore, all root states must be disjoint (condition 2.8(2)). OR-
states have substates that are related to each other by exclusive-or, therefore the
substates of an OR-state must be disjoint (condition 2.8(3)).

Condition 2.8(4) deals with AND-states. AND-states have substates which are
and-related. Therefore, an object, that is in one direct substate of an AND-state
must be in all (direct) substates of the AND-state.

Condition 2.8(5) concerns the pre- and postconditions of transitions. In par-
ticular, the condition 2.8(5a) requires the consistency of the preconditions of a
transition with respect to the associated type. Conditions 2.8(5b,5¢) are used to
express that the postconditions of a transition have to imply the ranges of its target
states.

Example 2.11 Suppose again that age < 10 is a constraint associated with the
type book. Then the preconditions of transition t6 are not consistent with the type
book, due to the guard age > 10. Suppose we now delete age > 10 from the
postconditions of transition t6 in Table 3. Then, both the conditions 2.8(5b,5¢c)
are violated because the postconditions of t6 do not imply the range of the target
state:

status = in archive A age >10. O

By generalizing Definition 2.4, since an OO specification is defined as a set of
types, we can speak about the behavior of an OO specification. Therefore, we can
introduce the notion of consistent behavior of an OO specification as follows.

Definition 2.9 [Consistent behavior of an OO specification] Given a consistent
OO specification S, the behavior of S is consistent iff the behavior of each of the
types of S is consistent. a

In the remaining of this paper, given an OO specification, the set of types (i.e.,
their structures and c_expr’s) and the behavior of the specification will be referred
to as the static and dynamic components of the specification, respectively.

3 Consistency of the static and dynamic components
of an OO specification

In this section, a method for the consistency checking of both the static and dy-
namic components of an OO specification is presented. In particular, in the first
subsections the definitions and the procedures on which the approach is based are
presented and, successively, in the last subsection, the formal characterization of
the proposed method is illustrated.
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3.1 Formal definitions

Below the notion of Interval of an s_expr is presented. In particular, given an
s_expr associated with a type 7, the Interval of the s_expr is the set of admissible
values that can be associated with an instance of the type 7 through the property
p defining the s_expr.

Definition 3.1 [Interval of an s_expr] Given a type 7, consider an s_expr well-
formed w.r.t. 7, s_expr =p 6 K, and let o be the type of the property p in 7. Then,
the Interval (Int) of the s_expr is defined as follows:

e if o is one of the types integer or real, Int(s_expr) is the interval of inte-

gers or reals, respectively, that is defined as:

Int(s_expr) = (—oo, K)  iffis”<”;

Int(s_expr) = (—oo, K|  iffis”<”;

Int(s_expr) = [K,K] iffis"=";

....(and so on in all the other cases)
where ordinary parentheses and square brackets denote open and closed in-
tervals, respectively;

e if o is the string (bool) type, there are two possible cases. If 6 is "=",
Int(s_expr) is the singleton containing the K (boolean) constant; other-
wise, if 6 is "#”, Int(s_expr) is the complement set of K in the set of all
possible strings (the singleton containing the opposite boolean constant);

e if o is avalueset-type, Int(s_expr) behaves as in the previous cases, with
the further intersection with the denoted set of values.

|

Example 3.1 Consider a type employee defined as follows (notice that the ex-
pressions are numbered only for better referencing them in the next examples):

employee < [salary:integer, name:string, status:(depend, consult, mgr), boss:employee],
(salary > 2000 A status # mgr) (1) V
(salary > 4000 A status # depend A status # consult) (2)

Then:
Int(status # consult) = {depend, mgr}
and:
Int(salary > 3000) = (3000, +c0). O

Definition 3.2 [Conflicting Expression set] Given a property p and an a_expr (a
conjunction of s_expr’s), the Conflicting Expression (ConfEx) set identifies all the
s_expr’s of the a_expr containing the p property:

ConfEx(p,a-expr) = {s_expry, =p 0 K | a_expr = ... s.expry, ... } a
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Example 3.2 Consider the property status of the employee type of Example 3.1
and the a_expr (2). Then their conflicting expression set is given by the following
set of s_expr’s:

{status # depend, status # consult}. O

Definition 3.3 [Domain set] Given a type 7, a property p of 7, and an a_expr
well-formed w.r.t. 7, the Domain (Dom) set identifies the interval of admissible
values for the property p according to the given a_expr, i.e.:

Dom(p, a_expr) =; {Int(s_expr;) | s_expr; € ConfEx(p,aexpr)} O

Example 3.3 Consider again the property status and the a_expr (2) of Example
3.1. Starting from the conflicting expression set seen above, since:

Int(status # depend) = {mgr, consult}

Int(status # consult) = {mgr, depend}
the Domain set is {mgr}. O

3.2 The consistency checking procedures

In this subsection, the procedures on which the consistency checking method is
based are presented. In the following, given a type 7, we assume that c_expr,
stands for the constraint expression associated with the type .

Given a type 7 and a c_expr which is well-formed w.r.t. 7, the Consistent
procedure presented below checks if the c_expr is consistent w.r.t. . We recall
that this notion corresponds to the possibility of defining at least one object of
type 7 (therefore, also satisfying c_expr,, if present) satisfying the c_expr. In
particular, suppose that:

cexpr =a-expry V... Va_expr,

cexpry =a-expryy1 V... Va_erpr.,
then, consistency holds iff at least one a_expr; of c_expr and one a_expr; ; of
c_expr, exist such that their conjunction is consistent w.r.t. 7. This is checked
by using the AndC heck procedure. Of course, if the type 7 does not contain any
constraint expression, only a_expr; must be consistent w.r.t. 7.

Example 3.4 Consider the type employee of Example 3.1, and the following
c_expr (that is indeed an a_expr):

salary > 5000 A status = mgr.
In order to check if it is consistent w.r.t. employee, one of the following two
a_expr’s.

(salary > 2000 A status # mgr A salary > 5000 A status = mgr)

(salary > 4000 A status # depend A status # consult A
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Procedure 1 The Consistent procedure
input: atype 7, possibly including c_expr,; = a_expr.1 V... V a_expr;
and a c_expr well-formed w.r.t. 7:
cexpr =a-expry V... Va_expr,
output: true, if the c_expr is consistent w.r.t. 7; false, otherwise

Consistent(T,c_expr) < false

if 3 a_expr;, a_expr, ; s.t.

AndCheck(t,a_expr; N a_expr; ;) = true then
Consistent(r,c_expr) < true

end if

salary > 5000 A status = mgr)

must be consistent w.r.t. 7. This check is performed by the AndCheck procedure
informally illustrated below. O

Given a type 7 and any a_expr well-formed w.r.t. 7, the AndCheck procedure
returns true, if the a_expr is consistent w.r.t. 7; false, otherwise. Essentially, the
AndC heck procedure reports consistency iff for each property p; of the type 7 oc-
curring at least once in the a_expr (i.e., |ConfEx(p;, a_expr)| > 1) the Domain
set Dom(p;, a_expr) is non-empty. Otherwise the a_expr is not consistent w.r.t.
T since the property p; cannot be instantiated.

Example 3.5 Consider Example 3.4. Only the second a_expr, say a_exprs, IS
consistent w.r.t. 7, since:

Dom(salary, a_exprs) = (5000, +00),

Dom(status, a_expry) = {mgr}. O

Now, let us briefly illustrate the Fquivalent procedure. Such a procedure
allows us to determine if two c_expr’s well-formed w.r.t. 7 are equivalent w.r.t. 7
tuple. In particular, two constraint expressions c_expr;, and c_expr;, are equivalent
iff for each a_expr; € c_expr, there exists an equivalent a_expr; € c_expry
and vice versa. The equivalence of the a_expr; and a_expr; is checked by the
EquiCheck procedure. In particular, a_expr; and a_expr; are equivalent iff, for
all the properties p of 7, the Domain set on the pairs (p,a_expr;) and (p,a_expr;)
Is the same.

Example 3.6 Consider the type employee of Example 3.1 and the following two

a_expr’s.
a_expr; = status # depend A status # consult
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and:

a_expro = status = mgr.
They are equivalent w.r.t. employee tuple because in correspondence with the
status property, we have:

Dom(status, a_ezpr;) = Dom(status, a_expry) = {mgr}
and for all the other properties of employee both the expressions have an empty
Domain set. a

3.3 Formal characterization of consistent specifications

In this subsection, the consistency of both the static and dynamic components
of an OO specification is formally characterized. Below, we start by focusing
on the static component. The consistency of the static component is checked by
applying the Consistent procedure to all the types, and their associated constraint
expressions, that are defined in the specification.

Theorem 3.1 [Characterization of the consistency of the static component of

an OO specification] The static component of an OO specification S is consistent

iff for each type 7 of S containing constraint expressions:
Consistent(T,c_expr,) = true.

Proof. = Trivial (by contradiction).

<« By construction. Suppose that for each type 7 of S, Consistent(r,c_expr,) =
true. Then for each 7 there exists at least one a_expr of c_expr,, say a_expr, ,
s.t., for each property p; of 7, Dom(p;, a_expr;, ) is non-empty. Therefore, it is
possible to define at least one model Z = (AZ, %) s.t., for each 7, there exists an
element z, € (7)* defined as follows. For each property p; of 7, let y,, be an
element of AT sit. < z,,y,, > € (p;)%, and:

o if p; is typed with an atomic-type or a valueset-type and occurs in a_expr, x,
then y,, € Dom(p;, a_expr, ), that is non-empty (the case for which p; does
not occur in a_expr, ; is trivial);

o if p; is typed with any type name, say =, such that (v)* already contains
one element (for instance, in the case v = 7), then y,, can be any element
that is already present in ()% (as for instance z,). Otherwise, the value y,,
can be constructed by iterating the above steps.*

INotice that it is not possible to get an infinite loop because constraint expressions on relation-
ships (i.e., properties typed with type names) cannot be enforced. Therefore, in the construction
process, recursive properties can always be instantiated with already defined elements of the inter-
pretation domain.
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The following lemma is a generalization of the previous theorem to the case
of any c_expr well-formed w.r.t. 7.

Lemma 3.2 [Characterization of the consistency of any c_expr w.r.t. a type]
Consider a consistent specification S, a type 7 of S and any c_expr well-formed
w.r.t. 7. Then the c_expr is consistent w.r.t. 7 iff:

Consistent(T,c_expr) = true.

Proof. Similar to Theorem 3.1. O

Below, two further lemmata follow, that are related to the equivalence of a pair
of a_expr’s and c_expr’s, respectively.

Lemma 3.3 [Characterization of the equivalence of a_expr’s] Given a consis-
tent specification S, consider a type 7 of S and two a_expr’s, a_expry, a_expry,
each well-formed and consistent w.r.t. 7. Then a_expry, and a_expry are equiva-
lent w.r.t. 7 tuple iff:

EquiCheck(r,a_expry,a_expry) = true.

Proof. = By contradiction. Assume that EquiCheck(r,a_expry,a_expry)
= false. Then, there exists at least one property p; s.t. Dom(p;, a_expry) #
Dom(p;, a_expry), and suppose that y € Dom(p;, a_expry) and y ¢ Dom(p;, a_expry).
Therefore, it is possible to define a model Z = (AZ, .Z) s.t. there exists an element
v e A, < z,y>€ (p)t xe€ (aexpry)t N (7)F and z ¢ (a-expry)® N (1)*
(notice that according to Definition 3.1, if y € Dom(p;, a-expry), and o is the
type of the property p; in 7, then necessarily y € (0)7).

< Suppose FquiCheck(r,a_expry,a_expr;) = true. Consider an element, say
z, suchthat z € (a_expry)* N (7)%. Since for each property p; of 7, Dom(p;, a_expry,)
= Dom(p;, a_ezpry), then z € (a_expry)t N (1)* too. 0

Lemma 3.4 [Characterization of the equivalence of c_expr’s] Given a consis-
tent specification S, consider a type 7 of S and two c_expr’s, c_expry, c_expry,
each well-formed and consistent w.r.t. 7. Then c_expr, and c_expr; are equiva-
lent w.r.t. 7 tuple iff:

Equivalent(r,c_expry,c_expry) = true.

Proof. Trivial.
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Finally, by using the above lemmata, the characterization of the consistency
of the dynamic component of an OO specification can be formally presented. In
particular, first the consistency of the behavior of a type is introduced and, succes-
sively, such a result is extended to the dynamic component of an entire specifica-
tion.

Theorem 3.5 [Characterization of the consistency of the behavior of a type]
Given a consistent specification S and a type 7 of S, the behavior B, of 7 is
consistent iff the following conditions hold:

1. for each state S of B,:
Consistent(r,S.Range) = true;

2. for each pair of root states S, S, of B, :
Consistent(r,S1.Range A Ss.Range) = false;
3. for each OR-state S of B;:
for each pair of substates sq, sy € S.Substates:
Consistent(r,s1.Range A s3.Range) = false;
4. for each AND-state S of B;:

for each pair of substates sq, sy € S.Substates:
s1 and s, are OR-states s.t.:
Equivalent(r,s;.Range A so.Range) = true;
and for each pair of substates s7, s3, S.t.:
s| € s1.Substates and sy € so.Substates:
Consistent(r,s|.Range A sy.Range) = true;

5. for each transition ¢ of B.:

(@) Consistent(r,t.PreC) = true;
(b) Consistent(r,S1.Range A ... N S,.Range At.PostC) = true;

(c) Consistent(r,not(S1.Range A ... A S,.Range)
A t.PostC) = false,

where S; € t.Target_States, fori =1...n.

Proof. The thesis follows directly from Lemmata 3.2,3.3,3.4.
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Example 3.7 According to the previous theorem, it is easy to see that the behavior
of the type book of Figure 2 is consistent. Just to show a few examples consider,
for instance, the root states book on stock and book in archive. They are disjoint
since:

Consistent(book, book on stock.Range A book in archive.Range) = false.
In fact, in correspondence with the status property, we have:

Dom(status, status = library A status = archive A age > 10) = ().
Now, consider for instance transition t2. Condition 5(a) holds since:

Consistent(book, t2.PreC) = Consistent(book, status = new) = true.
Regarding the postconditions of t2, the following holds (see condition 5(b)):

Consistent(book, book in catalogue.Range A marked book.Range

A t2.PostC) = true.

Furthermore, condition 5(c) holds since there exists at least one of the properties
status, registered, or signed for which the Domain set is empty. Therefore, the
postconditions of t2 imply the ranges of the target states. O

Of course, the consistency of the behavior of an OO specification is obtained
by generalizing the theorem above as follows:

Corollary 3.6 [Characterization of the consistency of the dynamic compo-
nent of an OO specification] Given a consistent OO specification S, the dynamic
component of S is consistent iff, for each type = of S, the behavior B, of 7 satis-
fies the conditions of Theorem 3.5. a

The computational complexity of the proposed method can be evaluated sim-
ilarly to the complexity of the satisfiability problem of Boolean expressions [27].
Such a problem can be solved in exponential time in the size of a given expression,
by an exhaustive algorithm that tries all possible combinations of truth values for
the variable appearing in the expression.

4 Conclusion

In this paper, a formal framework for the consistency checking of both the static
and dynamic components of an OO specification has been presented. The con-
sistency checking method proposed in this paper could be employed in different
research fields such as, for instance, schema transformations or schema integra-
tion, whose main goal is to support the analysis and design phases at best (see, for
instance, [18, 19, 20, 29]).

In future work, we will analyze possible extensions of the OO specification
language presented in this paper, for instance, by including constraint expressions
comparing not only attribute values with constants, but also attribute values among

22



them. However, since the more expressive the language the harder the reasoning
with the language expressions, a deep preliminary analysis about the trade-off
between the expressive power of the language and the possibility of reasoning
with it is required. Such an activity, i.e., the identification of fragments of formal
logic that allow decidable reasoning methods to be defined, is one of the main
challenges of conceptual modeling that is beyond the scope of this paper.
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