
Content-based Indexing and Retrieval supported
by Mobile Agent Technology

Harald Kosch, Mario Döller and László Böszörményi

Institute of Information Technology, University Klagenfurt, Austria
harald.kosch(mdoeller,laszlo.boeszoermenyi)@itec.uni-klu.ac.at

Abstract. In this paper we present the MultiMedia Database Mobile
agent technology (M3) which supports personalized content-retrieval and
indexing in a distributed Oracle 8i DB. We implemented an agency on
top of the Oracle 8i JServer and realized mobility with the embedded
Visbroker Corba ORB. A performance comparison of our mobile agent
technology with a client-server solution for a nearest-neighbor search in
an image database shows the efficiency of the proposed solution.

Keywords: Mobile Agents, Multimedia Database System, Content-based
Indexing and Retrieval

1 Introduction
The increasing development of indexing and retrieval tools in distributed multi-
media database systems (MMDBMS), as well as the growing quantity of multi-
media data, require efficient technologies to ensure the access and the manage-
ment of the network and client resources [1].

In this context, we take advantage of mobile agent technology as an enhance-
ment of distributed multimedia database indexing and retrieval. Mobile agents
allow the execution of the retrieval tasks in an automated way, with minimal
human interaction [2]. This allows the user to concentrate on other client activi-
ties, like the preparation of the client’s buffer/cache for the expected multimedia
delivery. Furthermore, it fits well with the requirement of efficient multimedia in-
dexing and retrieval based on user’s preferences by offering personalized process-
ing of multimedia data through the access and pre-processing of the multimedia
raw data where they are stored. For instance, a user is interested in retrieving
the nearest images to a reference image in a multimedia database, however the
database proposes only a simple range-search. Using the mobile agent technol-
ogy the agent can contain a method, provided by the user, for processing the
nearest-neighbor search directly in the database management system.

Internet applications, actually using effectively the mobile agent technology
are for instance electronic commerce [3], telecommunication [4], information re-
trieval [5], and management of distributed resources [6]. This paper introduces
a mobile agents technology in the scope of content-based indexing and retrieval
in a distributed Oracle8i MMDBMS. We will demonstrate that these problems
are well suited to mobile agent technology (see section 3). Yet, astonishing, that
few related work considered mobile agent technology in this context (see sec-
tion 2), although applications running on top of a MMDBMS have the very



similar features to the applications mentioned beforehand : they are character-
ized by asynchronous transactions, high latency, complex information processing
and distributed task processing features.

2 Related Work

One key functionality in a multimedia database (MMDMBS) is how to index
and then to retrieve continuous and non-continuous multimedia information ef-
ficiently. One broadly used method, the Content-Based Retrieval (CBR) of mul-
timedia objects relies on extraction properties of a multimedia object [7, 8]. CBR
in distributed MMDBMS involve the retrieval of multimedia data from various,
possibly heterogenous database sites, and to compute the result in mutual agree-
ment.

A typical approach to CBR is the similarity search between extracted multi-
media features [7]. Here, the query is actually posed against the low-level feature
vectors extracted from the multimedia object. A broadly used Image CBR sys-
tem is QBIC (Query By Image Context, see wwwqbic.almaden.ibm.com), another
popular system for videos is Virage (www.virage.com). Features described for
CBR include measures expressing the color/texture/shape distribution of an
image plus motion for a video. A CBR query is translated into a point query
in a multi-dimensional feature space. The similarity between a query- and a
database-object is estimated using a distance function.

CBR in a distributed MMDBMS is broadly supported by a client/server
architecture. It includes (1) user interfaces to submit requests, their transfer to
the DB server; (2) the retrieval operations at the DB server; and (3) the results
return. A broadly used protocol for the client (written in Java) and server is
JDBC (Java Database Connection; see java.sun.com/products/jdbc/index.html).
If several sites are involved, multiple client-server connections are spawned and
the different results are compared and merged at the client-side. An example
is MetaSEEk (www.ctr.columbia.edu/MetaSEEk/). It is a meta-search engine for
images based on the content of CBIRs located at IBM, Virage and Columbia
University servers.

Our previously developed SMOOTH system [9] provides besides CBR also means
for high-level annotation and querying, works in a client-server environment
as well. A recent system enhancement (introduction of ’Domain Transparency’
meaning that the client interface automatically adapts to extensions made by
a new application domain to the base annotation classes) revealed serious per-
formance bottlenecks of the JDBC connection (thin driver) to an Oracle 8i DB.
The repeated JDBC calls to build the client interface dynamically combined
with a high volume of requested data worsened the response time considerably.
A first-aid solution was the integration of a JDBC client cache for query results.
However, the use of a mobile agent solution might improve the situation more
efficiently. We address such a solution in the near future.
Many mobile agent systems have been established. Some of these are Aglets [10],
Mole [11] and Grasshoper [12]. They are well-suited to a wide range of Internet
applications, to mention only WWW mining [13], or telecommunication [14].



However, to the best of our knowledge, there are few works which deal with
the use of mobile agents in a distributed database system. Some related work
concentrated on the use of mobile agents in distributed Web databases [15, 16].
Others dealt with distributed data warehousing. For instance Weippl et al. [17]
propose a mobile AgentDB technology, based on the JServer capabilities of the
Oracle 8i DBMS which is tailored to the inserting process in a data warehouse.
These related work rely mainly only on simple access functions and do not ad-
dress the problem of handling multimedia data. In the context of distributed
multimedia systems, mobile agents are successfully utilized for Quality of Ser-
vice (QoS) negotiations [18, 19]. For instance, Manvi et al. [19] propose a mobile
agent based QoS management system which provides means for efficient agent
based bandwidth negotiation. However, the issue of CBR is not yet treated in
this context.

3 Mobile Agent Technology in a Distributed MM-System

3.1 General Considerations

A mobile agent is defined as a self-contained software element that acts au-
tonomously on behalf of a user (e.g. person or organization, or a multimedia
content customer) and in addition, has the unique ability to migrate from one
host in a network to another [16].

The definition of a mobile agent contains at least three issues which deserve
special interest when developing mobile agent systems in a distributed multime-
dia database systems. The first issue refers to the autonomy of a mobile agent.
This is a feature that allows the agent to act on its own by using the data (e.g.
the feature vector of an image whose nearest-neighbors have to be searched),
and the mobile logic which it incorporates (e.g. the similarity search code), and
requires only little human intervention (e.g. provide the iterinary) or guidance
(e.g. error handling). Further, the time needed to fulfill the tasks is reduced
because interaction with the user is avoided. For instance, a similar image to
the reference one found in the first database is used as input for the search in a
second image database. Obviously, the agent has to be designed to deal with any
situation that may occur during execution, such as the violation of the private
information associated to the agent’s owner [20], or a resource violation at the
remote agency which let return the agent immediately.

The second issue in the definition refers to the mobility of an agent. The mo-
bility feature enables the agent to travel to the host where the data are physically
stored. In this way the transfer of a large amount of data in the network is pre-
vented. This is obviously of great interest in a distributed multimedia database
system. For instance reconsider a distributed nearest-neighbor search. Instead
of downloading the best matches from all involved databases, as required in a
client/server solution, the mobile agent incorporates the result of the first visit
as internal state and uses it for the further search.

The final argument for using mobile agent technology is the personalization
of the indexing and retrieval process. The effectiveness of automatic multimedia
indexing is conditioned to a great extent by the amount of a priori information



available in the application domain [21]. An elegant solution is the integration
of this information as mobile logic. For instance, in an surveillance application a
mobile agent might include detailed information on the intruder objects to the
video server which allows the selective coding of video clips (e.g. as MPEG-4
Video Objects) [22].

3.2 Architecture of our M3 Agency

In the following we describe a set of concepts upon which our mobile agents
M3 system relies. Principally, it is a Java-based mobile agent system which uses
CORBA services to implement mobility. Its main characteristics are the agent
execution in the core of the database, i.e. the agency and the agent are database
objects, and the possible use of direct access and retrieval methods of multimedia
data through server-sided JDBC and interMedia Java classes (see section 3.2).

Every Oracle 8i MMDBMS server which wants to host an M3 agent must
provide an agent run-time environment. This environment is responsible for ex-
ecution and migration of the agents. Furthermore, an agent dispatcher is needed
to initially start up the run-time environment. The role of the agent dispatcher
in an Oracle DB is played by the JServer. The JServer offers an encapsulated en-
vironment, sessions, which are independent from each other, as well the CORBA
advanced services. Our run-time environment relies on the offered CORBA ser-
vices, as well as on the Java language features, to implement mobility. The
advantages of this approach are manifold, e.g. use of security mechanism offered
by CORBA services, use of the advanced naming service to locate the MMDBMS
servers, as well as use of object serialization for conversion and reconstruction
of java classes and instances, in connection with the Java networking support.
Similar strategies have been successfully employed in related systems (see [23]
for CORBA services, and [24] for Java-based mobile agents).

Introduction to Oracle JServer The architecture of the JVM in Oracle 8i
is based on a session model. Sessions are private address spaces that clients
have exclusive access to. They are not shared with any other client, although
they may be serially re-used between clients. This means that the actions of one
client can not interfere with any other client. All interactions between clients
is done through the database itself, using transactional semantics. Each session
has its own JVM. It is a ’thin’ JVM which uses the shared memory architecture.
This means that all clients share the read only static portion of their own JVM.

Java classes and its sources in Oracle 8i are not stored in the file system,
but in the database system the same way that PL/SQL packages are stored.
Java classes, sources and resources are therefore database objects. Java Threads
running in the Oracle 8i session are scheduled non-preemptively, i.e. a thread
must yield control explicitely in order that the JVM runs another thread.

The whole environment is called JServer. Furthermore, the JServer consists of
a Java Accelerator, an integrated CORBA 2.0 ORB (Visibroker), an embedded
SQLJ translator and an Enterprise JavaBeans 1.0 compliant container for EJB
components. The CORBA environment provides an user with the ability to call
into and out of the database server by using the CORBA IIOP protocol. CORBA



servers can be invoked from clients using IIOP. In this scenario the database then
behaves as a CORBA server.

Session Architecture in the M3 Agency The JServer is responsible for the
session management (creation, destruction etc.). Each session possesses a ’thin’
JVM (˜40 KB), a session memory, which is used for static variables, and a call
memory for the instance variables of the currently executed class. The session’s
memory is limited to secure the system and to offer some kind of equality between
all sessions. Figure 1 shows the session architecture. Before a database object
can be invoked (e.g. a java CORBA Server), all class files and all help files have
to be loaded and to be ”published”. Agency and agent run in the same session.
However, only the agency is published and activated via the Java Naming and
Directory Interface (JNDI). The arriving mobile agent is received by the agency
and loaded with a Class Loader provided by the JServer. The agency obtains then
a reference to the agent and can interfere so at any time with it (stop, resume
etc.). For the publishing of the agency, one needs to know the valid username
and password of the user which hosts the mobile agents (agency publishing can
only be done by an agency administrator). However, the agent itself needs not to
know user/password, as the session is already spawn by the agency. Furthermore,
the agent accesses the stored multimedia data via server-sided JDBC directly,
without supplemental authentification (see subsection 3.2). Therefore, it is the
task of the agency to provide the necessary security level for the agent execution
(see next subsection).

Session

name, class, helper
name, class, helper

Session
Session

activated object

activated object

activated object

object reference

object reference

object reference

JNDI
name, class, helper

published objects

Oracle 8i

Fig. 1. Session Architecture.

Run-time Environment The M3 Agent system is not an always running
server, but is activated on demand. It reminds therefore of the servlet technology
where for each call a new servlet instance will be created. In the following, we will
give a short description of the necessary classes, database tables and database
users:

– AgencyServant: This class is the published object in the database. Oracle’s
JServer will return a reference to a newly created AgencyServant in a new
session to the calling client. Furthermore, the AgencyServant accepts the
incoming agents and starts them in an AgencyThread. When an agent ter-
minates, it will be sent to the next host in the itinerary. The AgencyServant



is also responsible for keeping track of the currently running agents. If a new
agent arrives, the agency has first to test with the help of the Agencyinfo
table whether the maximal number of running agents is reached.

– AgencyThread: Every agent is started in such a thread. The agency is able
to start and stop this thread whenever it wants.

– Migrateable: Each agent has to implement this interface.
– Agent Sec database user: This is the security user of the agency. This user

has system privileges and can grant or revoke rights to our agency user.
Every access to the file system or tables of other users have to be granted
by this user. Only the agency can contact the security user.

– Itinerary: This interface defines the methods of an itinerary. The agency,
where the agent resides at the moment, can get the next target host name
and is able to send the agent to the new agency.

– XNotified: This interface is used to communicate with the original client. Its
implementation is usually on the original client side.

– Agency database user : This is the database user account where the agency
is published. It has to be a user who only has access to his own database
space. No further rights are necessary. We use SCOTT in our current test
environment.

– Agencyinfo database table: The Agencyinfo table contains information of
the agency and the currently running agents. The table consists of the fol-
lowing entries:
• ACTIVE: contains the number of currently running agents in the database.
• MAX: maximal number of simultaneously running agents.
• SERVERNAME: The DNS-name of the database server.
• DATABASENAME: The SID of the database.
• USERNAME: Name of the agency user. In this way the agency is able to

run in different user spaces on different databases. However, the security
user needs to know whom to grant and restrict rights.

Migration in the M3 Agency The migration of an agent occurs through the
following steps:

1. The client creates an agent for his/her needs, serializes it and creates a jar-file
with the class files.

2. The client creates instances of the implementations of the XNotified and the
Itinerary interface and connects them to the ORB. The Itinerary contains a
list of the servers which the agent intend to visit.

3. The reference of the first agency is returned by the Oracle’s JServer handling
the client call. The client sends then a message, containing the byte-code of
the agent (as a jar-file-type byte array), the serialized state of the agent, the
Itinerary and a handle (remote reference) to the Xnotified.

4. The agency receives the message and tries to create the agent. An agent
can only be created iff the number of currently running agents is lower than
the maximal number of running agents specified in the Agencyinfo table. If
there is a free slot for the new agent, then the value of the ACTIVE column



in the Agencyinfo table is increased by one. If the maximal number of agents
is currently reached, then the agency makes three more attempts to get a
free slot. If these attempts fail again, the agent is sent to the next host.

5. The agency loads the agent’s classes into the database.
6. The agency creates an AgentThread and transfers the serialized data of the

agent to the thread.
7. The thread deserializes the agent and calls its execute method.
8. When the agent and the AgentThread terminates (no more host in the

Itinerary), the agent’s result will be sent back to the Xnotified object of
the client.

Agent_SEC
User

SCOTT
User

AgencyInfo
Table

Itinerary XNotified
�

anAgentImpl Agency ItineraryImpl

Client

XNotifiedImpl

AgencyServant
�

AgentThread
�

Migrateable

Fig. 2. Architecture of the M3 Agency System.

9. The agency serializes the agent, ”gzips” the resulting stream and contact
the next host in the itinerary in order to prepare the sending process. If the
next host is accessible, the agent is sent to the next host and the procedure
pursues through step 4.

10. After having sent the agent, the agency cleans up the system and decreases
the value of the ACTIVE column in the Agencyinfo table.

If an exception occurs during the execution of the agent, and it is not caught by
the agent, the thread saves the exception. The agency gets then this exception
and returns it to the Xnotified object.



Support for CBR in the the M3 Agency A mobile agent in M3 may build
up personalized and efficient CBR through two mechanisms, which are related
strongly to each other. First, through the possibility of server-sided JDBC for
a direct access to database objects and second through the use of interMedia
Java classes for the access, retrieval and streaming of multimedia data (for more
information on interMedia see technet.oracle.com). The use of both mechanisms
are enabled by the implementation of the agency as database objects and the
execution of the agent inside a database session.

The Oracle JDBC server-side internal driver (KPRB) is built into the Ora-
cle JServer and is intrinsically tied to the Oracle8i database and to the JVM.
The driver runs within the default session–the same session in which the JVM
was invoked. It is optimized to provide direct access to SQL data and PL/SQL
subprograms on the local database, through native function call (no Net8 call
involved). Running the mobile agent inside a database session has the advantage
that the mobile agent needs not to provide the database name, the agency user
and password for obtaining a database connection through server-side internal
driver. It is the task of the agency to spawn the session which hosts the agent and
to load its byte-code, as well as its instance directly into the database. There-
fore the same agent code can be executed without no adaptation on any host
participating in the distributed MMDBMS system.

The server-sided internal driver is one prerequisite for the support of CBR,
the other one are the interMedia Java classes provided by Oracle 8i. Oracle8i
interMedia supports multimedia domain-specific types, methods, and interfaces.
The following multimedia object types are supported: ORDAudio for audio,
ORDImage and ORDVir for images, and ORDVideo for videos. For all of these
data types, special interMedia Java classes are provided which enables the user
to create own Java applications to use, manipulate, and modify multimedia data
stored in an Oracle 8i database.

The multimedia retrieval part of the mobile agents has to be designed in
the following way, first make a server-sided connection from the Java applica-
tion to the Oracle database through JDBC’s defaultConnection() method (no
user/password needs to be provided). Second, execute a SELECT statement on
the database table containing multimedia data and store the results in the Java
application (based on the interMedia Java classes). Third, move the results into
an interMedia object with the getCustomDatum() method. Perform operations
on the Java multimedia application object to obtain the desired functionality
(possibly through repeated SELECT statements).

Example: The following statements show how to retrieve the first stamp of
an image table stamps (1), how to move the results into an interMedia object
imgObjj (2), and finally how to produce an MemoryImageSource mis for further
processing. This MemoryImageSource can e.g. be used for the computation of a
color histogram (see the mobile agents in the experimenal section 4).
...

(1) Statement stmt = conn.createStatement();

(1) OracleResultSet rs = (OracleResultSet)stmt.executeQuery

("SELECT image1 FROM stamps WHERE id=1");



(2) OrdVir imgObjj = (OrdVir)rs.getCustomDatum(1, OrdVir.getFactory());

(3) int width = imgObjj.getWidth();

(3) int height = imgObjj.getHeight();

(3) MemoryImageSource mis =

new MemoryImageSource(width, height,ColorModel.getRGBdefault(),

imgObjj.getDataInByteArray(), 0, width);

...

4 Performance Evaluation

The performance evaluation is given in two parts. In a first part we show how
our agent system might enhance the server capabilities for the example scenario
of a nearest-neighbor search in a stamp database. In a second part, we compare
for the same problem, but for a larger face database, the response time of our
agent system to a solution based on a client-server architecture.

4.1 Evaluation of the Enhancement Capabilities
One of the main advantages of using our mobile agent systems concerns its ca-
pacity to enhance the database functionality by injecting personalized programs
in the database system.

Fig. 3. Reference Image of the NN-search

The example image database contains 59 US stamps in jpeg format, each with
24 bits per pixel (16 Million colors). The example problem to be solved within
this part is that of a nearest-neighbor search (NN-search). That means we detect
the most similar stamp to a reference one, in the stamp image database. Such
a search is useful for many applications, for instance a user finds an interesting
stamp in a newspaper, scans it and likes to retrieve more information (e.g. price,
where to obtain, etc.) about this stamp from a stamp database. Therefore, he/she
intends first, to find the most similar stamp in the database and second, retrieve
information as provided by it.

The indexing and retrieval task is solved by two agents, the first one (indexing
agent) computes a color histogram feature vector of length 256 from the image
database and stores it in a separate table. This table has two attributes, the fea-
ture vector of type VARRAY(256) OF NUMBER, and the id of the respective image.
We suppose that the images are stored in an object-relational image table with



one attribute of type ORDVir referencing the images and one attribute of type
NUMBER containing the id of the image stored. The second mobile agent (retrieval
agent) performs the NN-search of the reference stamp (Aircraft ’Staggerwing’)
shown in figure 3. This stamp is not contained directly in the database, how-
ever appears as a thumbnail in a collection of images showing classic American
Aircrafts (this collection is shown to the left of figure 4).

Fig. 4. Left : Closest Image found by the Mobile Agent. Right : Images found by the
OrdVir System for a Threshold Value of 26.

Let us now compare our mobile agent to the build-in capacities of the Or-
acle8i interMedia Visual Information Retrieval system ORDVir. Please refer to
technet.oracle.com for more technical information on ORDVir.

The ORDVir system provides CBR functionality through the object type
ORDVir and associated methods and functions. CBR functionality is provided
by the ability to extract an image feature vector from four different visual at-
tributes : global and local color1, texture and shape. The image comparison
mechanism is provided by a similarity function ORDSYS.VIRSimilar() which
takes two elements of the ORDVir type as input. Furthermore, the user must
define a threshold similarity value governing the difference of the respective fea-
ture vectors, i.e. if the weighted sum of the distances for the visual attributes
is less than or equal to the threshold, the function returns true, otherwise it
returns false. Note that the same principle is also applied in other systems, e.g.
the Informix Excalibur Image DataBlade module (see examples.informix.com and
then goto Using DataBlade modules).

Experimental Protocol
a) M3 Agent System: The mobile agent incorporates the feature vector of the
reference image. After the complete scan of the stamps database it returned the
closest image to the reference one, as shown to the left of figure 4.
b) ORDVir System: In order to implement the NN-search with the ORDVir system,
one has to know exactly the threshold value. We started to use a value (10) of

1 Global color represents the distribution of colors within the entire image. Local color
represents color distributions and where they occur in an image.



the reference examples provided in Oradoc2. Furthermore, in order to compare
the two algorithms on the same feature extraction base, we specified that the
globalcolor visual attribute has to be used exclusively. With this first threshold
value (10), the ORDVir system didn’t find any matching image. We augmented
then the value to 30, and then the system found 5 matching images. For the
values 29 and 28 we found three matching images and for a value of 26 we found
2 matching images (they are shown in the middle and to the right of figure 4).
Then for a value 25 we found the closest image, as shown to the left of figure 4.
Finally, beyond the threshold value of 25 no match can be returned.

Obviously, such a search for an adequate threshold value is not acceptable
for a NN-search (multiple scans of the image table are required) and our mobile
agent represents therefore a useful enhancement to the ORDVir functionality for
the retrieval tasks to be solved.

4.2 Response Time Evaluation
Here, the NN-search of the qualitative first part is adapted for a response time
evaluation through considering a larger face database of size 4000. We are in-
terested in computing the nearest-neighbor image of a reference image in the
face database. Thereby, we merged the functionality of the former index- and
retrieval agent into one NN-search agent. The sample database used was the
AR Face Database created by Aleix Martinez and Robert Benavente at the
Computer Vision Center (CVC) at Purdue University. It contains 4000 images
corresponding to 126 people’s faces (70 men and 56 women) [25].

The testing environment consisted of two similar agent hosting machines
with the following parameters, CPU : AMD 800 MHz CPU, OS : Win NT 40
SP6 and Program Environment : JDK 1.3. Both machines communicated over a
100 MBit/sec Ethernet segment. Furthermore on each machine the Oracle 8.1.7
database was installed.

Our mobile agent computes on the database server for each face first a feature
vector with 256 values. Second, it compares the difference of this vector and the
reference vector to the difference of the yet best match to the reference one
(either found on a previous host or on the same host). If the difference is smaller
than the previously found best one, it retains it for further processing. The
client-server solution has to download each image to the client, and performs
the image comparison locally.

The metric, we examine here, is the response time for computing the nearest-
neighbor for the client-server solution and the mobile agent solutions. The perfor-
mance of the mobile agent solution depends on the database load, which depends
itself to a great extent on the available free main memory. To account for this,
we limited the available server java pool memory space for each session, once to
20 MB, 60 MB and once to 100 MB. The number of faces in the databases was
varied from 400 to 10400 (database size). For a size n smaller than 4000, the
first n images of the available ones are retained, for a size greater than 4000, the
images are replicated. We performed two experiments: in the first we used one
host and in the second two hosts.
2 www.oradoc.com/ora817/inter.817/a85333/virj ref.htm



0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

18
x 10

4

Number of faces in the database

R
es

po
ns

e 
tim

e 
(m

se
c)

 −
− 

on
e 

ho
st

Client/Server
Agency(20)
Agency(60)
Agency(100)

Fig. 5. Response Time of the Client/Server Solution vs. our Mobile Agent for one Host.

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6
x 10

5

Number of faces in the database

R
es

po
ns

e 
tim

e 
(m

se
c)

 −
− 

tw
o 

ho
st

s

Client/Server
Agency(60)

Fig. 6. Response Time of the Client/Server Solution vs. our Mobile Agent for 2 Hosts.

Figure 5 shows the response time of a first experiment using one host de-
pending on the available java pool size and the database size. The figure clearly
shows that our mobile agent solution outperforms the client-server case. The
response time of the client-server solution is on average 2.38 times higher than
that of the mobile agent one. The response time of the mobile agent solution is
almost invariable to the size of the available java pool size per session and varies
only minimally between the different values, e.g. the highest variance of 2.5%
occurs between 20MB and 100MB.

Figure 6 shows the response time of a second experiment using two hosts
depending on the available java pool size and the database size. Once again, the
response time of the mobile agent solution is clearly smaller than that of the
client-server solution. Moreover the performance gain (3.08 times less response
time of the mobile agent) is higher than in the first experiment (2.38 less response
time). The response time is again invariable with respect to the java pool size



and therefore not shown in figure 6. If one compares now the results using two
hosts to the results using one host, it can be noticed that the response time of the
mobile agent solutions doubles approximately compared to the first experiment,
as the response time of the client-server solution is more than two and half
times higher than that of the first experiment. This is due to the intermediate
processing on the client machine in the client-server solution. Therefore, the
mobile agent solution scales better with respect to the number of hosts involved
in the search.

5 Conclusion

One of the main advantages of the mobile agent technique is the ability of migra-
tion and mobility, that means to bring the problem solver directly to the problem
which results in processing cost and time benefits. This paper shows that it is
possible and profitable to establish an agency system inside a distributed Oracle
8i multimedia database.

In this context, we implemented the M3 -MultiMedia Database Mobile
agents- which supports personalized content-indexing and retrieval (CBR) in
a distributed Oracle 8i multimedia database system. Support for CBR follows
directly from the implementation of the agency system inside the Oracle 8i
database (i.e. both agency, as well as agent are database object) and by us-
ing server-sided JDBC combined with the interMedia Java Class libraries. Our
agent system proposes an advanced security concept, through session manage-
ment and an own security user which grants and revoke database and resource
access rights for the agent. A final performance comparison of our mobile agent
technology with a client-server solution for a nearest-neighbor search in an image
database shows the efficiency of the proposed solution.

In the near future we will rely the implementation of our multimedia database
SMOOTH [9] on the M3 mobile agency, in order to overcome the communication
bottleneck of a client/server JDBC (see section 2).

References

1. Guojun Lu. Multimedia Database Management Systems. Artech House, 1999.
2. N.M. Karnik and A.R. Tripathi. Design issues in mobile-agent programming sys-

tems. IEEE Concurrency, 6(3):52–61, July/September 1998.
3. P. Dasgupta, L. E. Moser, and P. M. Melliar-Smith. The security architecture for

MAgNET: A mobile agent E-commerce system. In Third International Conference
on Telecommunications and E-commerce, Dallas, TX, USA, 2000.

4. H-Jeon, C. Petrie, and M.R. Cutkosky. JATLite: A Java agent infrastructure with
message routing. IEEE Internet Computing, 4(2), March/April 2000.

5. B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D. Rus. Mo-
bile agents in distributed information retrieval. In Intelligent Information Agents,
chapter 12. Springer Verlag, 1999.

6. P. Bellavista, A. Corradi, and C. Stefanelli. Mobile agent middleware for mobile
computing. IEEE Computer, 34(3):73–81, March 2001.

7. Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: Past, present and future.
Journal of Visual Communication and Image Representation, 10:1–23, 1999.



8. A. Yoshitaka and T. Ichikawa. A survey on content-based retrieval for multimedia
databases. IEEE Transactions on Knowledge and Data Engineering, 11(1):81–93,
1999.

9. H. Kosch, R. Tusch, L. Böszörményi, A. Bachlechner, B. Dörflinger, C. Hof-
bauer, C. Riedler, M. Lang, and C. Hanin. SMOOTH - A distributed multimedia
database system. In Proceedings of the International VLDB Conference, Rome,
Italy, September 2001. Accepted for Publication as Demonstration Paper.

10. D.B. Lange and M. Oshima. Programming and deploying Java mobile agents with
Aglets. Addison-Wesley, Reading, MA, USA, 1999.

11. J. Baumann, F. Hohl, K. Rothermel, and M. Strasser. Mole - Concepts of a mobile
agent system. World Wide Web, 1(3):123–137, 1998.

12. C. Bäumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper — A uni-
versal agent platform based on OMG MASIF and FIPA standards. In First
International Workshop on Mobile Agents for Telecommunication Applications
(MATA’99), pages 1–18, Ottawa, Canada, October 1999. World Scientific.

13. H. Ouahid and A. Karmouch. An XML based web mining agent. In First
International Workshop on Mobile Agents for Telecommunication Applications
(MATA’99), pages 393–404, Ottawa, Canada, October 1999. World Scientific.

14. C. Bäumer and T. Magedanz. Grasshopper : A mobile agent platform for active
telecommunication networks. In Proceedings of the 3rd International Workshop on
Intelligent Agents for Telecommunication Applications (IATA-99), pages 19–32,
Berlin, Germany, August 9–10 1999. LNCS 1699, Springer Verlag.

15. S. Papastavrou, G. Samaras, and E. Pitoura. Mobile agents for WWW distributed
database access. In Proceedings of the International Conference on Data Engineer-
ing (ICDE), pages 228–237, Sydney, Australia, March 1999.

16. Dejan Milojicic. Mobile agent applications. IEEE Concurrency, 7(3):80–90, July/
September 1999.

17. E. Weippl, J. Altmann, and W. Essmayr. QoS management by mobile agents
in multimedia communication. In Proceedings of the International DEXA’2000
Workshops, pages 477–481, Greenwich, UK, September 2000.

18. L.A. Guedes, P.G. Oliveres, L.F. Paina, and E. Cordozo. An agent based approach
for supporting quality of service. Computer Communications, 21:1269–1278, 1998.

19. S. Manvi and P. Venkataram. QoS management by mobile agents in multimedia
communication. In IEEE CS Press, editor, Proceedings of the International DEXA
2000 Workshops, pages 407–411, Greenwich, London, UK, September 2000.

20. C. Tschudin. Mobile agent security. In Intelligent Information Agents: Coopera-
tive, Rational and Adaptive Information Gathering on the Internet, pages 431–445.
Springer Verlag, 1999.

21. S.-C. Chen, R.L. Kashyap, and A. Ghafoor. Semantic Models for Multimedia
Database Searching and Browsing. Kluwer, 2000.

22. P. Correia and F. Pereira. The role of analysis in content based video coding and
indexing. Signal Processing, 66(2):125–142, 1998.

23. M. Amer, A. Karmouch, and T. Gray. Adding mobility to CORBA. In First
International Workshop on Mobile Agents for Telecommunication Applications
(MATA’99), pages 143–160, Ottawa, Canada, October 1999. World Scientific.

24. D. Wong, N. Paciorek, and D. Moore. Java-based mobile agents. Communications
of the ACM, 42(3):92–102, February 1999.

25. A.M. Martinez and R. Benavente. The AR face database. Technical Report CVC
Technical Report Number 24, 1998, Computer Vision Center (CVC) at Purdue
University, 1998.


