Helfried Pirker

Specification Based Software Maintenance
(a Motivation for Service Channels)

Dissertation

zur Erlangung des adademischen Grades
Doktor der technischen Wissenschaften

Studium: Angewandte Informatik

Universitat Klagenfurt
Fakultat fur Wirtschaftswissenschaften und Informatik

1. Begutachter: o.Univ.-Prof. Mag. Dr. Roland T. Mittermeir
2. Begutachter: o.Univ.-Prof. Dipl.-Ing. Dr. Johann Eder

Klagenfurt, September 2001

Ehrenwortliche Erklarung

Ich erklare ehrenwortlich, da ich die vorliegende Schrift verfait und alle
ihr vorausgehenden oder sie begleitenden Arbeiten durchgefiihrt habe. Die
in der Schrift verwendete Literatur sowie das Ausmal der mir im gesamten
Arbeitsvorgang gewahrten Unterstiitzung sind ausnahmslos angegeben. Die
Schrift ist noch keiner anderen Priifungsbehorde vorgelegt worden.

Klagenfurt, 12. September 2001

Abstract

Software aging and structural deterioration are phenomena which increase
the software maintenance effort. One of the main goals in software mainte-
nance research is to keep the aging process of the system benign. But for
achieving that, special effort and tool support is needed.

Object-orientation, often claimed to be a pradigm to facilitate software main-
tenance and reuse, is not the silver bullet to solve the above problem. Object-
orientation itself and concepts like polymorphism, late binding and code tan-
gling cause severe problems in maintenance. Objects are not immune against
aging, too.

One path to reach the goal of decreasing the maintenance effort and to avoid
structural deterioration is to establish a rigid maintenance process enforcing
model evolution before the evolution of the implementation.

By model evolution we refer to maintenance activities on a representation of
the system on a higher level of abstraction as the source code, i.e. the sys-
tems specification or design. We refer to such approaches, applying model
evolution before the evolution of the implementation, as model based main-
lenance.

We argue, that the proper level of abstraction for doing model evolution is the
systems specification. Service Channels as an instrumentation of specification
based maintenance are introduced.

One key issue in all model based (specification based) maintenance approaches
is that a firm relationship between the systems model and the systems im-
plementation has to be established and maintained. Establishing such rela-
tionships means identifying and documenting them (in the best case during
the systems development).

We argue, that service channels are a proper representation to capture the
relationships between the systems model and implementation, and further-
more service channels provide active maintenance support on the model level
for anticipated changes.

Most arguments against specification (model) based maintenance approaches
state the additional documentation effort as the main disadvantage.

In this work we try to invalidate these arguments by showing, that most of
the additional documentation can be acquired by consequently performing
requirements traceability throughout the whole development process and by
using static and dynamic analysis tools.

Zusammenfassung

"Software Alterung” (software aging) und der "strukturelle Verfall von Soft-
ware” (structural deterioration) sind Eigenschaften, die Software, die sich
in Wartung befindet aufweisen kann und die den notwendigen Aufwand fir
Wartungsaktivitaten erhohen. Eines der Ziele der Forschung im Gebiet der
Software Wartung ist es daher, den Alterungsprozess von Software zu un-
terdricken. Um dieses Ziel zu erreichen benotigen die Verantwortlichen fur
die Wartungsaktivitaten eine spezielle Werkzeugunterstutzung.

Das objekt-orientierte Paradigma, dem zwar nachgesagt wird Software War-
tung und Wiederverwendung zu erleichtern, kann die Software Alterung
auch nur bedingt aufhalten. Objekt-orientierte Konzepte wie z.B. Polymor-
phismus, Late Binding, und Code Tangling erleichtern das Ausfihren von
Wartungsaktivitaten keineswegs. Die Folge ist, das auch Objekte "altern”.

Ein Weg um den Aufwand fur Wartungsaktivitaen zu senken und den ”struk-
turellen Verfall von Software” zu verhindern, ist die Einfihrung eines War-
tungsprozesses, der eine Evolution auf Modellebene der Software (model
evolution) vorsieht, bevor auch die dazugehorende Implementierung (Source
Code) geandert wird.

Fuvolution auf Modellebene bedeutet, dafl die vorhandenen Beschreibungen
des Systems wie Entwurfsmodelle oder formale Spezifikationen, entsprechend
den Wartungsanforderungen geandert werden. Ansatze, die eine Modell Evo-
lution vorshen, werden auch als modellbasierte Wartung bezeichnet.

Wir sind tberzeugt, daB formale Spezifikationen die richtige Abstraktion-
sebene ist, um Modell Evolution durchzufithren. Um eine solche spezifika-
tionsbasierte Wartung zu unterstiitzen werden in dieser Arbeit Service Chan-
nels eingefiihrt.

Eine Kernfrage in allen modellbasierten und spezifikationsbasierten Wartungs-
ansatzen ist es, Beziehungen zwischen ”zusammengehorenden” Elementen
auf der Spezifations- und Implementierungsebene zu identifizieren, zu doku-
mentieren und zu warten. Die Identifikation und Dokumentation sollte mog-
lichst schon bei der Entwicklung des zu wartenden Systems geschehen.

Wir sind iiberzeugt davon, dafl Service Channels die richtigen Mechanismen
sind, um solche Beziehungen zwischen Spezifikation und Implementierung zu
fassen und zu dokumentieren. Dartiberhinaus stellen Service Channels auch
aktive Wartungsunterstuzung fur zu erwartenden Anderungen im System zur
Verfugung.

Gerade die Dokumentation dieser Beziehungen im System und der dafur
notwendige Aufwand werden oft als Argumente gegen spezifikationsbasierte
Wartungsansatze gennant. In dieser Arbeit soll auch aufgezeigt werden, dafl
der Grofiteil der notwendigen Dokumentation damit erreicht werden kann,
bekannte Techniken wie Requirements Tracing konsequent wahrend der En-
twicklung einzusetzen. Ebenso erleichtern statische und dynamische Analyse
Werkzeuge das Auffinden solcher Beziehungen.

Contents

1 Introduction 13
1.1 Why focus on software maintenance? 13
1.2 Software Maintenance 14

1.2.1 Some Definitions, 14
1.2.2 Factors Affecting Software Maintenance. 16
1.3 State of the Art of Software Maintenance 17
1.3.1 Practices in Maintenance 17
1.3.2 Maintenance and Object-Orientation 20
1.4 Motivation for thiswork 21
1.4.1 Organization of thiswork 22

2 Different Maintenance Contexts 25
2.1 What is a Maintenance Context? 25
2.2 Classical Software Maintenance 27

2.2.1 Pathological Software Maintenance 27
2.2.2 Source Code Based Maintenance 27
2.3 Maintainable Systemso oL 28
2.3.1 Increasing Maintainability 29
2.3.2 Hooks into Frameworks 30
2.3.3 Subject Oriented Programming / Design 32
2.4 Model Based Maintenance 35
2.5 Summary of related worko 36

2.5.1 Additional System Documentation 36

10

2.5.2 Approaches facilitating software maintenance

2.5.3 Active maintenance support

3 Object Model Evolution and Service Channels

3.1 Maintenance Process Models
3.1.1 A Software Life Cycle Model for Maintenance
3.1.2 Quick Fix Model
3.1.3 [Iterative Enhancement
3.1.4 Full Reuse Model
3.1.5 Specification Based Maintenance

3.2 Object Model Evolution

3.3 Service channels to support model evolution
331 Basicldea00
3.3.2 Maintenance Support by Service Channels

3.4 Some Examples o000
3.4.1 Thermometer: Changing the temperature range

3.4.2 Team Calendar: Changing the number of participants
ofameeting oL

3.5 Realizations of Service Channels
3.5.1 Built-in service channels

3.5.2 External service channels

3.6 Related Work

Documentation of Relationships in the System

4.1 Required Traceability
4.1.1 Intra-Level Traces.
4.1.2 Inter-Level Traces

4.2 Classes of dependencies
4.2.1 Explicit Dependencies
4.2.2 Hidden Dependencies
4.2.3 Materialized Dependencies

4.3

4.4

Intra-Object Schemas
43.1 Basicldea,

4.3.2 Intra-Object Schemas and Service Channels

4.3.3 The system development perspective

SUMMmMAary

Effects on the Development process

5.1
5.2

5.3
5.4

)

The Software Development Process
Anticipating Potential Changes
5.2.1 Sources for Potential Changes
5.2.2 Change Cases
Design Rationale
Tracing Dependencies

5.4.1 Requirements Tracing

5.4.2 Requirements Tracing and Service Channels

Development for Service Channels
5.5.1 Requirements Analysis
5.52 Design oo
5.5.3 Requirements Tracing in all Phases
5.5.4 Providing Service Channels

(Model Based) Maintenance Activities

6.1
6.2

6.3
6.4

The Software Change Process
Change Impact Analysis
6.2.1 Shlicing 0oL
Change Propagation

Regression Testing,

Service Channels and Maintenance Environments

7.1

Issues for Building Service Channels

7.1.1 Admissibility of the Requested Change . . .

73
74
75
76
7

79
79
82
82
83
85
86
86
87
88
89
89
90
90

93
93
94
95
100
102

11

12

7.1.2

Admissibility of the Service Channel

7.2 Prototype of a Service Channel

7.2.1
7.2.2
7.2.3
7.2.4

Safe change of the temperature range
Unsafe change of the temperature range
Is the Service Channel up to date?

A service channel for changing temperature ranges

7.3 Implementation Strategies for Service Channels

7.3.1
7.3.2

Internal Service Channels

External Service Channels

& Conclusion and Further Work

A The Thermometer Case Study
Al OO Analysis Modelo oL

A1l
Al.2
A.1.3

Specification Level
Implementation Rationale

C++ like Implementation

B The TeamCalendar Case Study
B.1 OO Analysis Model
B.2 Object-7Z Specification oL

Bibliography

121

125
125
126
127
128

131
131
132

139

Introduction

This section gives an overview of factors influencing software
maintenance and of its state of the art. A motivation for this
work and a road map through the work will be given.

1.1 Why focus on software maintenance?

Without performing an empirical study one can easily observe, that society,
business and administration is becoming more and more dependent on soft-
ware (information) systems. Investments in development and acquisition of
such systems are considerable.

Much work in academia and industry has been spent on making the devel-
opment of software systems faster and cheaper and on making the developed
systems reliable and responsible to the initial requirements.

Shipping, installing the new system and training the users mark the end of
development activities and put the system into work, which will possibly
generate errors and/or new requirements. As the average lifetime of software
systems is about 10 years [TT92], it is not surprising, that 40-90 % of the total
life-cycle costs spent on a software system are spent for post-development (i.e.
maintenance) activities [Ben97].

Reasons for the amount of effort spent on post-development activities can be

found in [Par94, Leh80, Leh98].

Lehman’s Laws of Program Fvolution [Leh80] describe characteristics of soft-
ware systems in use. The first law, the law of continuing change says, that
a software system in use has to undergo continual change or will become
less useful. As the system implements the users requirements it also has to

13

14

Introduction

reflect the changes in these requirements. If it does not reflect these changes,
it loses its value to the user or to the organization using it. Parnas refers to
that fact as software aging [Par94]. One cause for software aging is that the
system does not reflect the above changes.

LLehman’s second law, the law of increasing complexity says that the complex-
ity of a system undergoing the above mentioned continual changes increases.
This is due to the fact, that the personnel responsible for the initial develop-
ment of the system is not maintaining it. Assumptions and rationales made
by the requirements analysts, designers and programmers may not be known
to the staff (the maintainers) responsible for post development activities. By
making a change to the system, some of these assumptions or rationales may
be violated, thus making the system less understandable. Parnas states this
observation as the second cause for software aging. Blum refers to that phe-
nomenon as the software maintenance paradoz [Blu95], stating that the more
experience one gains with a system, the more difficult is the maintenance of
that system. He also states that ”...the older the system is, the more costly
it is to maintain.”

Hence, the brief considerations mentioned above motivate to focus on soft-
ware maintenance. Lehman sees in software evolution (and maintenance) ”...
the key to our survival in this computer age.” [Leh98].

1.2 Software Maintenance

This section should briefly sketch the field of software maintenance and pro-

vides some definitions [Ben97, KH9S].

1.2.1 Some Definitions

Software maintenance focuses on post-development activities on software sys-
tems already delivered to the customer. By following the IEEE definition,
maintenance is a sub-area of software engineering. It defines software engi-

neering [IEE91] as:

the application of the systematic, disciplined, quantifiable ap-
proach to the development, operation and maintenance of soft-
ware; that is the application of engineering to software.

Software maintenance itself is defined as [IEE91]:

Software Maintenance

the process of modifying the software system or component af-
ter delivery to correct faults, improve performance or other at-
tributes, or adapt to a change in environment.

The above definition of software maintenance already indicates different types
of software maintenance. Bennett states four different categories of software
maintenance [Ben97]:

Perfective maintenance enforces changes to the system as a result of user
requests for improved functionality of the system.

Adaptive maintenance enforces changes due to changes in the systems en-
vironment.

Corrective maintenance is the identification and elimination of errors and
faults in the system.

Preventive maintenance covers activities and changes in order to make the
system more maintainable.

When looking at the above definitions, the main focus is on change. Per-
forming changes (whatever category of maintenance they are belonging to)
is not a trivial task (cf section 1.3). Change requests are usually expressed
in changes in the users needs, in changes of the systems behavior. These
change requests have to be transformed into changes in the source code of
the system. Consultation of documents (if available) like the requirements
specification, design documents, user and technical documentation facilitate
maintenance. These documents have also to be kept up to date, i.e. must
also reflect the performed change.

Other maintenance tasks are change impact analysis (determining the side
effects of a change) or the management of different versions of the system
(configuration management).

Maintaining a system means keeping the system up to date with the users
requirements, in other words the aging process of the system is delayed. At
some point in the life cycle of the system, a decision has to be made, whether
the system should be replaced or not [Sak94].

The term software evolution is not commonly defined. Some authors refer to
software evolution when focusing on planned changes to the system, and to
maintenance in general when focusing on unplanned changes to the system.
Lehman on the other hand sees software evolution as the unification of the
software development and maintenance processes [Leh98].

15

16

Introduction

1.2.2 Factors Affecting Software Maintenance

In order to make it easier to compare different software maintenance ap-
proaches, tools and empirical studies, some authors are trying to define an
ontology for software maintenance. The first step was to define the factors
influencing software maintenance. Figure 1.1 [KvNT99] is presenting the five
key issues of software maintenance: the maintenance process itself, the ser-
vice type, the people involved within software maintenance, the (software)
product itself, and the software (development) process which lead to the the
product to be maintained.

Service Type Product

Maintenance Process

Software

r Process

Figure 1.1: Factors Affecting Software Maintenance [KvN*99]

The Maintenance Process

The maintenance process describes how maintenance activities are organized.
A maintenance process description is necessary, as maintenance activities
are to be planned and should not be undertaken in a chaotic trial and error
manner.

Maintenance process models are presented in section 3.1.

The Service Type

The service type refers to the different types of maintenance activities as
defined in the previous section. The different service types are adaptive
maintenance, corrective maintenance, perfective maintenance and preventive
maintenance.

State of the Art of Software Maintenance

The Product

Another important factor influencing software maintenance is the product
itself. Product relevant issues might be the size of the system, its age (in the
sense of time as well as in the sense of David Parnas [Par94], cf section 1.1)
or the products composition.

Composition [KvN*T99] refers to which artifacts on different levels of ab-
straction are available to the maintenance team. The question, whether
they have access to requirements documents, design models, specifications
and additional documentation influences the productivity and quality of the
maintainers work.

The Software Process

The software development process itself influences the maintenance process.
The basic questions here are, whether development was aiming at developing
a maintainable system or even more pragmatic whether the development
environments or tools are available to the maintainers.

The People Involved

The last, but not the least factor influencing software maintenance are the
people doing it. Questions here are the skills of the team members, how is
the group organized and how are they managed. On the other hand, it is also
important to know the type of users or customers working with the system
to be maintained.

1.3 State of the Art of Software Maintenance

This section aims at providing insight into the state of the art of software
maintenance by describing current practices in software maintenance and
by taking a closer look on how object-orientation influences the software
maintenance tasks.

1.3.1 Practices in Maintenance

This section states known problems and maintenance practices in software
maintenance. The main goal is to identify problem areas in the software
maintenance and to put a mirror to the idealistic introduction of software
maintenance in section 1.2.

17

18

Introduction
Documentation issues

The main cause for problems in software maintenance is the fact, that the
maintenance personnel is not the same personnel who developed the system
to be maintained. So maintainers heavily rely on the available documenta-
tion.

In many cases, the only document available is the source code of the old
system to be maintained. Hence reverse engineering [CC90] activities have
to be performed to get a better understanding of the system. In Browns
study [BCD95] one of the major findings is, that reverse- and re-engineering
tools are seen as the most required lools within maintenance projects due to
the lack of documentation.

In other cases documentation is available, but it is not up to date with the
system which is actually in use. This is due to the fact, that changes are
made in the source code and these changes are not manifested in the doc-
umentation. Parnas refers to that phenomenon as structural deterioration
[Par94]. Singer reports, that the biggest problem with the systems docu-
mentation was its maintenance [Sin98]. So there is a need for maintenance
environments and rigorous maintenance processes enforcing the update of the
systems documentation in order to complete the maintenance task. It has to
be noted here, that the requirements specification or design documents have
also to be kept up to date.

Another interesting finding in Singers study [Sin98] is, that even if documen-
tation is available and is up to date with the system in use, it is not consulted
by the maintenance personnel.

The primary source of information is the source code itself. Second, the
maintenance personnel would consult the author of the source code and then
other persons, who already worked with the systems source code. Jgrgensens
study [Jgg95] provides empirical data about the use of the different infor-
mation available to maintenance personnel. For solving only 2 % of the
examined maintenance tasks, the maintenance personnel consulted the user
documentation or user manuals, for solving of 6 % of the tasks the application
system documentation (e.g. design documents) was consulted, for 8 % of the
tasks language or tool documentation was used as a source of information
about the system.

On the other hand, users of the system (19 % of the tasks), system person-
nel like database administrators (23 % of the tasks) or other maintenance
personnel of that system (29 % of the tasks) were consulted to gain more
information about the system.

State of the Art of Software Maintenance

Another issue is, that documentation is considered un-trustworthy by main-
tainers. They state that documentation is often inconsistent and out of date
or too vast and complex to be of use [Sin98, Yip95].

Maintenance personnel trusted more in documentation describing the archi-
tecture or design of the system. Hence, a more abstract description of the
system is considered more useful and is believed to be more correct.

To summarize, one of the important problem areas in software maintenance
is the existence and the quality of the documentation of the system.

Testing

Browns study [BCD95] compared several maintenance projects within the
same organization. An interesting result was, that there is no common ap-
proach to systematic testing of the changed code. The maintenance personnel
was either not up to date with current practices and approaches in testing or
there was no time to introduce or experiment with these current practices.

It is not possible to generalize the result of one study, but testing seems not
to be considered that important in software maintenance as it should be.

Configuration Management

The findings about configuration management are similar to those about
testing. Brown stated, that all of the examined projects saw configuration
management as a crucial element in support of their maintenance task, but
there was no common understanding of it. Each project had its own con-
figuration management system and policy. The only fact in common was
the need of better configuration management support in the sense of more
automated support [BCD95].

Focus of maintenance tasks is the source code

In the previous sections it was stated that keeping the documentation (design
documents, requirements specification) up to date was one problem area and
that structural deterioration is one of the consequences.

This is due to the fact, that the main focus of software maintenance is the
source code [Sin98]. Changes are done on the source code first, the docu-
mentation is (frequently) updated afterwards.

To avoid this, a maintenance process has to be implemented, enforcing the
evolution of the specification and design before the evolution of the source
code. The problem here is, that e.g. design models (object models) are too

19

20

Introduction

general and too abstract. Most of the necessary changes in source code are
not visible in the object model.

Lindvalls study [[LR98] examined the visibility of changes in the object model
(design document). In the system examined the object model is a design
model provided by the Objectory CASE tool and the source code is the
corresponding C++ implementation. Only 40 % of the changes in the source
code classes are visible in the classes according the object model.

This is due to the fact that object models are too abstract to represent
details of their implementation. Information about method bodies is usually
not included in object models. In Lindvalls study, 40 % of the changes were
changes of elements in the bodies of methods without changing the methods
interface. So these changes were not visible in the object model.

1.3.2 Maintenance and Object-Orientation

Object-Orientation is, beside its benefits for requirements analysis and the
development of software systems, also seen as a paradigm that facilitates
software reuse and maintenance. Taking a closer look on object-oriented sys-
tems, one observes that object-orientation is not the solution to all problems
of software maintenance and that OO can cause problems too.

In the advent of the object-oriented paradigm, object-orientation was claimed
to be the “silver bullet” in software development. Arguments like

structural clarity / well understood, clean design

encapsulation / information hiding

were stated to claim that object-orientation not only facilitates the initial
development of software systems, but also enforces extensive reuse and eas-
ter maintenance. These claims seemed to be fair, but there was a lack of
empirical evidence [Jon94].

Several studies showed [BBDD97, KHJ97, DBM*95, HGK*95, CvM93, WH92,
LMR92], that object-orientation decreases maintenance effort and that in ob-
ject oriented systems the localization of changes is easier.

On the other hand, complex inheritance trees, late binding, dynamic creation
of object instances, overloaded operations, polymorphism, code tangling and
code scattering cause substantial problems for the maintenance of object-
oriented systems.

Motivation for this work

1.4 Motivation for this work

As mentioned in the above sections, software aging and structural deterio-
ration are phenomena which increase the maintenance effort. So one of the
main goals in software maintenance research is to keep the aging process of
the system benign. But for achieving that, special effort is needed [Leh80].

Object-orientation is not the silver bullet to solve the above problem. As
stated above, object-orientation cause severe problems in maintenance and
objects are not immune against aging, too.

In [BROO] a life cycle model for software maintenance (cf section 3.1) is pre-
sented. This model introduces three phases for systems under maintenance.
The goal is to keep the system under maintenance as long as possible in the
evolution stage. The evolution stage is characterized by the fact, that the
system shows architectural integrity (all models of the system are available,
up to date and corresponding).

One path to reach this goal is establishing a rigid maintenance process enforc-
ing model evolution before the evolution of the implementation [MPRR9S].
By model evolution we refer to maintenance activities on a representation of
the system on a higher level of abstraction as the source code, i.e. the sys-
tems specification or design. We refer to such approaches, applying model
evolution before the evolution of the implementation, as model based main-
lenance.

Several approaches for model based maintenance have been presented in the
literature. One goal of this work is to present an overview of the diversity of
model based maintenance approaches.

Our view on model based maintenance is also presented. We argue, that the
proper level of abstraction for doing model evolution is the systems specifi-
cation. Service Channels as an instrumentation of specification based main-
tenance are introduced.

One key issue in all model based (specification based) maintenance approaches
is that a firm relationship between the systems model and the systems imple-
mentation has to be established and maintained. Establishing such relation-
ships means identifying and documenting them (in the best case during the
systems development). A proper representation has to be introduced and the
relationships have to be stored in a proper way (repository of a maintenance
environment).

Most arguments against model based maintenance approaches state the ad-
ditional documentation effort as the main disadvantage of these approaches.

21

22

Introduction

A goal of this work is to invalidate these arguments by showing, that most of
the additional documentation can be acquired by consequently performing
requirements traceability throughout the whole development process and by
using static and dynamic analysis tools (e.g. slicers).

1.4.1 Organization of this work

The work is organized as follows (figure 1.2 should serve as a road map
through this work):

Chapter 2 introduces different contexts, where maintenance requests may
occur.

Specification based maintenance is introduced in chapter 3.

Chapter 4 focuses on the documentation of the relationships within a sys-
tem. How this additional documentation influences the development pro-
cess 1s described in chapter 5.

Chapter 6 focuses on the key maintenance activities of model based main-
tenance.

In chapter 7 a prototype specification for a service channel is presented
and a coarse architecture of a maintenance environment for model based
maintenance is given.

The work closes with conclusions and an outlook for further work..

The appendices present two case studies, a temperature display and a team
calendar.

Motivation for this work

Service Type

_\ Product
2
i

Maintenance Process

Chapter 3, 6, 7

Chapter 5
Software

r Process

Pecple

Figure 1.2: Road Map through this work

23

24

Introduction

Different Maintenance Contexts

This chapter presents different contexts where maintenance activ-
ities are considered /performed throughout the systems life cycle.
By context we refer to the maintenance process and to the prod-
ucts composition (in terms of the maintenance ontology).

As sketched in chapter 1, classical software maintenance happens
on the source code level using reverse engineering support to gain
a better understanding of the code. This chapter gives a more
detailed overview where maintenance effort usually happens when
initial development of the system has terminated.

One strategy to decrease the effort spent on post development
maintenance is to increase the systems maintainability during its
initial development. Some approaches following this strategy are
presented later on in this chapter.

2.1 What is a Maintenance Context?

A maintenance context describes the situation, in which maintenance activi-
ties take place. To describe a maintenance context, the factors defined in the
maintenance ontology have to be considered. We want to focus only on the
technical issues, i.e. the maintenance process and the products composition.

Our focus is centered on the products composition. The questions here are:

Which artifacts (components) of the system are available to the mainte-
nance staff?

On which level of abstraction are those available artifacts (components)?

25

26

Different Maintenance Contexts

Figure 2.1 summarizes different maintenance contexts (product composi-
tions). It states, which artifacts are available and indicates the level of ab-
straction of the artifact. The triangle on the requirements level represents
the maintenance requests, which triggers the maintenance activities.

In context A only binaries of the system to be maintained are available. This
context is described in section 2.2.1. We refer to this context as pathological
maintenance.

In context B the systems binaries and the source code are available. This

situation is regarded as classical, source code based maintenance (cf. section
2.2.2).

Context C represents model based maintenance. In addition to the source
code, the systems design and/or specification models are available to the
maintainance personel (cf. section 2.4).

Context D represents the case, where the system contains additional artifacts
to increase the systems maintainability (cf. section 2.3.1).

Available Information

N A4 4 A4

Specification

Design

Code

Binaries

A B C D

Figure 2.1: Possible Contexts For Software Maintenance

Classical Software Maintenance

2.2 Classical Software Maintenance

By classical software maintenance we refer to situations and practices as
sketched in the previous chapter. Maintenance requests are given to the
maintenance team, who should perform the necessary activities on the run-
ning system. In most cases the initial developers are not available, as they are
already involved in other development projects. The system is in most cases
poorly documented and in some cases even the source code is not available.
Additionally, in most cases the systems maintainability is not the best.

Doing maintenance under these conditions will be briefly sketched in the
following sections on source code based maintenance and on pathological soft-
ware mainlenance.

2.2.1 Pathological Software Maintenance

In the context of pathological software maintenance, only the binaries or
the object code of the system to be maintained exist. No source code, de-
sign model, requirements documents or any other system documentation are
available. The only way to get information about the system on a higher
level of abstraction is to analyze the object code. Decompilation and the
application of slicing techniques are two attempts to this problem.

Decompilation in context of reverse engineering for software maintenance has
been part of the research in the REDO project [van93]. The interested reader
is refered to [BB92a, BB92b)]

Static Slicing Techniques applied to binaries [CF97] is also seen as a way to
get information out of the systems object code.

2.2.2 Source Code Based Maintenance

The basic activities in software maintenance are localizing where a requested
change is to be applied, analyzing its impact on the system, performing the
change, doing regression testing and documenting the change. But if only
the source code of the system is available, the system has to be prepared to
be maintained.

For localizing a change and for doing change impact analysis, the system has
to be sufficiently documented. Hence the system has to be redocumented.
This redocumentation can be done by using tools like static or dynamic anal-
ysis tools. With static analysis tools control flow diagrams (CFG) or data
flow diagrams (DFD) can be generated out of the source code. Dynamic

27

28

Different Maintenance Contexts

analysis tools follow and document module calls or the usage of data defini-
tions. Tools and techniques used for reverse engineering [CC90] can also be
of use for redocumenting the source code.

Having redocumented the system, change impact analysis can be performed
on both, a local scope (e.g. within a module) and on a global scope.

After performing the change, regression testing has to be performed.

The above activities seem to be trivial, but on the source code level all activ-
ities are on the maintainers discretion. The system might be redocumented,
but the generated documentation only contains different, more abstract views
of the source code. The quality of the change impact analysis, and hence the
risk, whether ripple effects are detected or not, depends heavily on the qual-
ity and power of the tools used for redocumenting the system. Guidance for
performing the change is not provided.

In [Sne9l, Leh91, Par86, Ben97, CYL96] more details on source code based

maintenance can be found.

2.3 Maintainable Systems

Regarding the empirical results observing software maintenance practices
(presented in chapter 1) and reflecting classical maintenance (presented in
section 2.2), developing systems with increased maintainability seems to be
the key issue for decreasing post development maintenance effort.

Following the maintenance ontology [KvN*99], the focus here is on the prod-
ucts composition and on the software development process.

Software Maintainability is defined as [IEE9O0]:

The ease with which a software system or component can be mod-
ified to correct faults, improve performance or other attributes,
or adapt to a changed environment.

The goal of this section is to present several different approaches considering
maintenance during initial system development in order to increase the sys-
tems maintainability. The approaches presented here can be grouped into 2
categories:

approaches aiming at documenting future maintenance requirements, but
providing no operational support for maintenance activities

and approaches additionally supporting post delivery maintenance activi-
ties.

Maintainable Systems

The considerations on software maintainability presented here are of a tech-
nical/qualitative nature. Most work in the literature like [LPR98] is on quan-
titavie aspects of maintainability. These quantitative aspects are not subject
of the following sections.

2.3.1 Increasing Maintainability

When trying to avoid the problems caused by classical software maintenance,
one strategy is developing more adaptive systems and /or documenting future
maintenance requirements already anticipated during the initial development
of the system.

Enhancing documentation will decrease the effort needed for understanding
the system.

Hooks into frameworks [FHLS97] are one possibilty for framework devel-
opers to document possible future changes and adaptions to an application
framework. They can be usefull when the framework has to be adapted.

Modeling of future maintenance requests as non-functional requirements
[FBI7] is a more intuitive way to consider possible future changes of a
system during development.

On the other hand, one can find in the literature several software development
approaches aiming at supporting decentralization of software development or
supporting prototyping by offering characteristics like separation of concerns,
support in merging several orthogonal views of the system or supporting evo-
lutionary prototyping. Originally these approaches (see list below) were de-
veloped for supporting the initial development of software systems, but their
underlying concepts and methodologies could also be included in software
maintenance environments.

Design Patterns like the Visitor Pattern [GHJV95, PJ9§]
Adaptive Programming with Propagation Patterns [Lie95]
Aspect Oriented Programming (AOP) [KLM*97]

Subject Oriented Programming [HKOS96, HO93]
Generative Programming [TB99a, TB99b).

The techniques and approaches listed above should lead to more adaptive
software, but are not providing (operational) support for maintenance activ-
ities.

These approaches also have in common, that when they are used for support-
ing maintenance activities, they will mostly support code based maintenance.

29

30

Different Maintenance Contexts

There is no support for maintenance on a higher level of abstraction.

A summary of these approaches can be found in section 2.5. Hooks into
Jrameworks (cf. 2.3.2) and subject oriented programming (cf. section 2.3.3)
are explained in more detail.

2.3.2 Hooks into Frameworks

An object-oriented application framework represents a generic, design (within
a given domain) for a larger-grained problem and a suitable, reusable imple-
mentation (a set of abstract classes). Applications are built by customizing
or extending the framework.

Although frameworks offer a great potential for reuse, application develop-
pers need to understand the framework and the usage of the framework to
effectively build applications from frameworks. Hence, a good documentation
of the framework and of its intented usage is needed.

Hooks [FHLS97] focus on documenting and providing guidance on the in-
dented usage of an object-oriented application framework.

Hooks describe

how a framework is intended to be used

how a framework is to be changed to meet the requirements of the appli-
cation

where (within the framework) changes have to be made

Different Parts of Hooks

Hooks consist of the following parts to describe the intended usage of a
framework:

Name: within the context of the framework, a hook needs a unique name

Requirement: the requirements part describes the problem to be solved,
hence possible requirments for an application to be built from the frame-
work.

Type: this part describes, what has to be done (method of adaption) and
what amount of support will be provided.

Area: describes the affected parts of the framework
Uses: states other hooks required to use this hook

Participants: which existing components (of the framework) or new com-
ponents participate in the hook

Maintainable Systems

Changes: this part of the hook sketches the changes to be made to in-
terfaces, associations, control flow and synchronization amongst the com-
ponents listed in the participants part. Also the order of the changes is
given.

Constraints: states limits in the usage of the hook

Comments: any further, additional description

Characteristics of Hooks

The type of a hook is described by two main characteristics of hooks: the
method of adaption and the provided support. Both characteristics quickly
describe what the hook does and how difficult it may be to use.

Method of adaption

FEnabling a feature, which exists in the framework. Such a hook needs
to describe all changes structural and behavioral changes required to
enable the feature. Also constraints, like the required exclusion of other
features when using the new one, have to be described.

Disabling a feature having some unwanted properties. In this case, con-
figuration constraints have to be stated.

Replacing an existing feature is similar to disabling a feature and adding
a new one. Here interface and behavioral constraints have to be de-
scribed.

Adding a feature is a common way of adaption. Adding new features
mostly means extending exsisting classes. The hook needs to describe,
where what new classes and operations are needed and where they should
be integrated in the framework.

Augmenting a feature or existing behavior means changing the control
flow. The hook should describe, where in the control flow a change
has to be made to fullfill the requirements and needs to point out any
dependencies between existing and new behavior.

The level of support describes, which support is provided within the frame-
work. The support types for hooks are:

Option Hooks: a set of pre-built components, existing within the frame-
work, can be chosen and enabled by the application developper.

Supported Patterns Hooks: here, no complete pre-built components ex-
ist. The framework offers a pre-defined method of fullfilling a require-
ment, application specific details have to be filled in by the application
developper.

31

Different Maintenance Contexts

Open-Ended Hooks: here, the framework does not provide direct support
or fullfilling the requirement. It points to places, where changes need to
be made and states the known contraints.

Benefits of using Hooks

The benefits of using hooks for describing the intended usage of frameworks
can be summarized in the following points:

A better documentation of the intended use of the framework is provided
to the application developper.

Hooks support the knowledge transfer from the framework developper to
the application developper.

Hooks make sure, that adaptions to and of the framework fits into its
overall architecture and behavior.

Using Hooks in maintenance

Outside of the application framwork context, hooks can be used to describe
future changes to a system to be maintained.

They may be used as

a description of future maintenance requirements
a description or specification of service channels

a better documentation of adaptive software

2.3.3 Subject Oriented Programming / Design
Subject Oriented Programming [HKOS96, HO93] is focusing on those is-

sues of object-orientation, which are caused by the fact that object-oriented
systems are decomposed by classes. The consequences for source code based
software maintenance are the following: lack of traceability within the source
code, the application of design patterns cause invasive changes in the classes
structure, and there may be difficulties when multiple teams are working on
the same class.

The lack of traceability within the source code of object oriented systems is
due to the fact, that system decomposition is by object (or by class), but
requirements are expressed by features. Although within analysis or design
models, this traceability can be kept (e.g. relations between static object
models and use cases in UML [RJB99]), this structural mismatch occurs
within the source code and leads to code scattering and code tangling.

Maintainable Systems

Code scattering refers to the situation where the source code for one feature
spreads over the whole system or the whole class hierarchy. Hence it is
implemented within the attributes and methods of different classes. E.g.
in the team calender case study, the feature “Add a new Meeting and the
assisting team-members” will be implemented in methods in the classes Date,
Meeting and TeamMember.

Code tangling refers to the situation, when one method is providing code for
different features.

The use of design patterns [GHJV95] improves the structure of a software
system, the reuse of components and the extensibility of the system. But on
the other hand, if classes are playing different roles in different patterns and
if patterns include multiple classes, this will lead to the fact, that the code of
the pattern will spread over the classes they are applied to and that the code
for patterns tangles with other code. There is no possibility to encapsulate
the code for design patterns.

From the classes view, the class contains not only the code for different
features, but also the (partial) code for the design patterns they are involved
in.

Another aspect is, that the object oriented paradigm provides no support
for the work of multiple teams, which work indepentendly on central, shared
classes.

Subject-Oriented Programming is focusing on these “problems” by decom-
posing a system by subjects, not by classes/objects and by providing rules
for the composition of subjects.

A subject is

a collection of classes, defining a particular view of a domain or a
coherent set of functionality. A subject may be a class, a fragment
of a class, a pattern, a feature or a subsystem.

It is the task of subject composition

to integrate the classes from separate subjects, to reconcile the
differences between different views and to combine the different
functionality.

Details of the composition [OKK*96] are described by composition rules.
These composition rules define how components of the subjects are to be

33

34

Different Maintenance Contexts

combined, e.g. how methods from different subjects for the same operation
and class are to be combined, or whether nested compositions are allowed.

Decentralized development [OHBS94] is supported in two ways. Decentraliza-
tion in space is possible by having multiple teams working on their subjects
independently and by composing the subjects after completion of their devel-
opment. Decentralization in lime is also possible by developing subject after
subject and by composing them in the end. If each feature in the require-
ments is implemented as one subject, this leads to feature based development.

This also reduces the code tangling and code scattering phenomenon as the
code for each feature is implemented in one subject and composition is done
by the development environment or by a special tool, not by the developer.
The developer just has to specify the composition rules. Design patterns can
also be encapsuled within their own subjects.

More recent work on subject-oriented software development is trying to ele-
vate the approach to the design level. In [CHOT99, VI1i98] these issues are
discussed in more detail.

Raising subjects to the design level also enables better traceability. As re-
quirements are expressed as a collection of features, and each feature can be
represented as a subject in the design model and also be implemented as a
subject, there is no structural mismatch to be considered when traceability
links are established.

Subject-Orientation and Maintenance

Subject-orientation influences software maintenance as code tangling and
code scattering is reduced and that due to the subjects nature traceability is
facilitated.

Reducing code tangling and scattering eases the identification of change im-
pacts as the source code for one feature (and so for a possible change) does
not spread over the whole system. It is localized within the subject, hence
change impact identification can be focused to the subject.

As mentioned above, if the possibilities for traceability provided by subjects
are used, it is easier to follow a change request form the affected requirements
feature via design subjects to code subjects.

Subjects also facilitate the extension of the system. The maintenance team
develops the new (desired) feature as a new subject and composes it into the
existing system.

Due to the decentralized nature of subjects, the maintenance team can be

Model Based Maintenance

regarded as an additional development team working on existing subjects
and developing new ones.

On the other hand, subject-orientation does not provide any assistance in
change impact identification (besides delimiting the scope to the subject)
and analysis. This means, tracing a change request from the requirements
to code and within the code is still the task of the maintainer. There is
also no support in assuring that a performed change does not introduce any
unwanted side effects.

2.4 Model Based Maintenance

Model based maintenance approaches aim at elevating maintenance activities
from the source code to the systems design or specification, or more general
to a model of the system on a higher level of abstraction than the source
code. They usually establish a more rigid maintenance process by enforcing
the systems model to be updated first before updating the source code.

They also provide support in propagating the maintenance changes per-
formed on the systems model to the source code.

Two approaches using (formal) specifications of the system and an ap-
propriate model to perform maintenance activities are specification based
maintenance [LH91] and Object Model evolution [MPRR98|. Both enforce
to change the systems specification first. While the first is reusing in-
formation on the refinement steps of the initial system to refine the new
(updated) specification, the latter one is relating the changes on the speci-
fication to according changes on the source code by using service channels.
An advantage of formal specifications is also, that tools like special theorem
provers can be used to perform ripple effect analysis.

Design maintenance systems [BP97, Bax92| are using design models of the
system to perform maintenance activities first. When initialy developping
the system, the so called design history is recorded. It contains all the
tranformation steps departing from the systems design to the source code.
Maintaining the system means maintaining the design history.

35

36

Different Maintenance Contexts

2.5 Summary of related work

To summarize the approaches mentioned within this chapter, brief descrip-
tions of the approaches are given.

As sketched in the previous sections, the approaches can be summarized in

the following groups:

approaches providing additional documentation of the system;

approaches facilitating software maintenance by structural mechanisms,

but providing no active maintenance support;

approaches providing active maintenance support.

Reverse engineering methods and techniques would fall into the second and
third group, but are not covered here.

2.5.1 Additional System Documentation

Approach Brief Operational Reference
Description Support
Hooks into Documentation of antici- | none [FHLS97]
frameworks pated future changes within
application frameworks
Non functional | Modeling of future mainte- | none [FB97]

requirements

nance requirements as non
functional requirements

Summary of related work

2.5.2 Approaches facilitating software maintenance

37

Approach Brief Operational Reference
Description Support
Usage of Patterns like the Visi- | none

Design Palters

tor Pattern provide design
guidelines for more adaptive

[GHIV95, PJ9g]

software.
Adaplive Pro- | Class dictionary graphs | If CDG evolves, | [Lie95]
gramming (CDG) to describe class | less effort
structure, propagation | needed in evolv-
patterns to describe the | ing propagation
systems behavior. Source | patterns.
code is derived from the
CDG and the propagation
patterns
Aspect-Oriented | Separation of concerns (as- | By possibly | [Kic96,
Programming pects). The different as- | defining mainte- | KLM*97]
pects are woven to the re- | nance aspects
sulting system.
Subject-Oriented | Decentralization of class | Maintenance [HKOS96,
Programming definitions, automatic | changes could | HO93|
composition of several | be made by pro-
subjects ducing a variant
of the affected
classes (= a
new subject)
and then Dbe
composed into
the exesiting
system.
Design Mainte- | Evolution of systems design | none [Bax92, BP97]

nance
Systems

Different Maintenance Contexts

2.5.3 Active maintenance support

Approach Brief Operational Reference
Description Support
Specification- Evolution of systems speci- | Semi-automatic | [LH91]
Based fication refinement of
Maintenance changed specifi-
cation
Service Chan- | Evolution of systems speci- | semi-automatic | [MPRR98,
nels fication co-evolution of | PMRRYS]
specification and
implementation
Reuse Conlracts | Implicit dependencies be- | Eases change | [LSM97]
tween parts of the system | impact identifi-
are made explicit. cation
EVA Formal programming tech- | If maintenance | [MKH97]

nique based on specifica-
tion changes and program
derivation.

changes are
expressed in
specification

changes, a new
version of the
program can be
derived.

Object Model Evolution and Service
Channels

While chapter 2 introduced different maintenance contexts de-
pending on the information available when performing mainte-
nance changes to a system, this chapter presents different main-
tenance models from the methodological perspective.

3.1 Maintenance Process Models

Maintenance (process) models describe - like their counterparts in software
development - the phases of software maintenance. One such model is the
staged software life cycle model for software maintenance [BR00]. It describes
the software life cycle after initial development.

In [Bas90] one can find three basic, but different models of software main-
tenance, the quick firx model, the iterative enhancement model and the full
reuse model. These three basic models are compared to the specification
based maintenance model.

3.1.1 A Software Life Cycle Model for Maintenance

In [BROO] a staged model for the software life cycle is presented (cf. figure
3.1). The focus of the model is to describe the phases a system runs through
after its initial development. It represents the systems lifecycle as a sequence
of stages, separating maintenance and evolution into different stages.

The first stage of the model is the [nitial Development stage. This stage
represents the development of the first version of the system following some
development methodology. This first, running version of the system is the
starting point for the maintenance life cycle model.

39

Object Model Evolution and Service Channels

Initial First running version
Developmen
Evolution | . Loss of evolvability
. Servicing discontinued
Servicing
Evolution changes \

Phase-Out \Switch-Oh‘
Servicing patches

Close-Down

Figure 3.1: Software Maintenance Life Cycle Model

The maintenance phase of other process models (cf. chapter 5) is divided
into three stages: Fvolution, Servicing and Phase-Out.

In the evolution stage, the system is running and shows no structural deterio-
ration. In the words of the authors of [BR00], the system shows architectural
integrity; following the terminology of [TN97] the system is in internal equi-
librium.

A second prerequisite for evolution is the availability of the (development)
team knowledge. This knowledge about the systems architecture and internal
invariants can assure, that changes made to the system will not lead to
structural deterioration.

The system stays in the evolution stage, as long as evolution changes are not
destroying the architectural integrity and as long as the team knowledge is
available and updated.

If one of the two prerequisites for evolution is lost, the system moves to
the servicing stage. lLoss of knowledge about the system leads to a faster
structural deterioration, which again requires more knowledge to perform a
change.

The model does not foresee a reverse step back from the servicing to the
evolution stage. The authors of [BR0O0] are sceptical, that for a system in the
servicing stage it is possible to re-establish the architectural integrity and
the lost knowledge about the system.

In the phase-out stage, the system is still in use, but no more servicing is

Maintenance Process Models

done. During the shut-down stage the system is disconnected from its users.

In the setting of this model, models like the quick-fix model are models for
performing maintenance activities for a system in the servicing stage. Models
like specification based maintenance, iterative enhancement or the full reuse
model may also be applied for a system in the evolution stage. These models
are presented in the following sections.

3.1.2 Quick Fix Model
The Quick Fix Model (cf. figure 3.2) can be regarded as the classical main-

tenance model.

Old System New System
Requirements Requirements 4 -- -I
1
1
1
Specification/Design Specification/Design <_:
1
1
1
Change !
Code o Code —
1
1
1
1
Tests Tests -f-=---~

Figure 3.2: Quick Fix Model

The basic idea behind this model is to change the old system to produce a
new one reflecting the maintenance requirements. Usually the source code
is changed, then compiled and tested until the desired new functionality has
been reached.

Afterwards the design documents, the systems specification and requirements
documents are updated. The dotted arrows in figure 3.2 indicate, that these
updates are not always done. This is due to the fact, that these documents
are either not available, that the maintenance process is not that rigorous to
enforce these necessary updates, or that lack of time and budget forces the
maintenance personal to postpone or even cancel these necessary updates to
upstream documents.

The consequence is structural deterioration (as pointed out in chapter 1)
and increasing reverse engineering effort, needed to perform further changes
to the source code. This is also described by Lehmans law of increasing

41

42

Object Model Evolution and Service Channels

complezily, the second law of Lehmans laws of progam evolution [Leh80],
and by Blum in [Blu95] describing the software maintenance paradoz.

Hence, the quick-fix model describes the way, maintenance activities are per-
formed for a system in servicing stage in Bennett and Rajlichs staged software
life cycle model for maintenance (cf. section 3.1.1).

3.1.3 lterative Enhancement

The Iterative Enhancement Model (cf. figure 3.3) is very close to prototyping
or evolutionary development approaches [Fug00, HSE90].

It starts with an analysis of the old systems usage which leads to a new set
of requirements. With these new (changed) requirements the whole develop-
ment life cycle is repeated again to produce a new system reflecting the new
(changed) requirements.

Old System New System
Requirements —— Requirements —

Specification/Design Specification/Design

Change Change
Code Code

Tests Tests

Analysis —_—l Analysis

Figure 3.3: Iterative Enhancement Model

The iterative enhancement model wipes out the main drawback of the quick
fix model - it avoids structural deterioration. It does so by repeating the
whole system development life cycle when developing a new system based on
the changed requirements of the old one. Hence, new specifications, design
documents and additional documentation are produced.

If the newly developed system shows architectural integrity, the iterative
enhancement model is suitable for systems in the evolution stage.

On the other hand, this model is not suitable for “small” changes in the
systems requirements as it would be too expensive to build a completely new

Maintenance Process Models

system if only small modifications to the old system are necessary.

3.1.4 Full Reuse Model

The Full Reuse Model (cf. figure 3.4) for software maintenance is based on the
idea of reusing parts of the old system and adding new functionality to it. The
focus is again not on changing the old system. The new system is developed
according to a new (changed) set of requirements reusing components from
the old system.

Old System New System
Requirements Requirements
a
Specification/Design S Specification/Design

5
Qo
£
o
(s}

Code Code

Tests Tests

Figure 3.4: Full Reuse Model

Compared to the iterative enhancement model, the full reuse model has the
advantage, that only new (added) components have to be developed and
that existing reusable components are reused as such. But additional effort
has to be spent in deciding which components are to be reused or not. An-
other prerequisite is, that the applied development process has to be “reuse
oriented”.

Like the iterative enhancement model, the full reuse model is also suitable
for changing systems in the evolution stage.

Another important issue is, how to treat components identified to be reusable
with modifications. Here the maintenance personal has to decide, either
to redevelop this component (not to reuse it) or to modify it. But if this
modification is done by applying a quick fix approach, the benefits of applying
the full reuse model are lost.

43

44

Object Model Evolution and Service Channels

3.1.5 Specification Based Maintenance

As outlined in the previous sections, the way to obtain a co-evolution of the
systems source code and related design documents and specifications is to
initiate a new development of a new system reflecting the changes in the
requirements.

Specification Based Maintenance approaches (or more general Model Based
Maintenance, cf. figure 3.5) on the other hand focus on changing the systems
specification or design and then deriving the source code for the changed
specification. So it can be compared to the quick fix model, but on a higher
level of abstraction.

Old System New System
Requirements Requirements 4— -
1
1
Change 1
Specification/Design » Specification/Design —»
Code Code -
Tests Tests <_

Figure 3.5: Specification Based Maintenance

One advantage is that structural deterioration is avoided without having to
run through the whole development life cycle. Hence, the model is suitable
for maintaining systems in the evolution stage.

Another issue is the very nature of formal specifications. When modifying
or changing a specification, tools like theorem provers can be used to show
whether there are side effects or ripples of the performed change. Refining a
specification to source code is a formal, structured, reproducible way to derive
source code. Hence after having changed the specification, the recorded
refinement history can be reused to refine the new specification.

For example, approaches like the one described in [LLH91] are using

invariants within the specification to check the specifications consistency
and to detect ripple effects after performing a change on the specification

information about the refinement steps recorded when developing the source
code from the original specification to develop the new source code out of

Object Model Evolution

the changed specification

additional documentation representing relationships between requirements
and specification.

3.2 Object Model Evolution

This section introduces object model evolution [MPRRI8]. First the context
is set up and some methodological issues are shown. Service Channels are
presented as an instrumentation of object model evolution.

The context of object model evolution is the setting of model based mainte-
nance (cf. chapter 2). We depart from the assumption, that in addition to
the source code to be maintained also models of the system on different levels
of abstraction exist. These models can be analysis models, design models or
formal specifications. We refer to these models on the model level as the
object model (OM), to the source code on the implementation level as the
object implementation (OI).

Model Level Object Model (OM)

Implementation Level Object Implementation (Ol)

Figure 3.6: Context for Object Model Evolution

Figure 3.6 summarizes the context for object model evolution. We are as-
suming, that the implementation was built according to the existing model of
the system, hence the implementation is consistent with the existing model.
This is indicated by the arrow between the object model and the object im-
plementation. The wavy line indicates, that there may be some levels of
abstraction between the object model and the object implementation.

Figure 3.7 sketches classical software maintenance, if it is performed in a
source code based maintenance context, following the quick fix model for
maintenance.

The initial system to be maintained is described by O and OM. Maintenance
activities (changes) are done on the implementation yielding OI’. To do so,

45

46

Object Model Evolution and Service Channels

OM

Model Level

Implementation Level /\ /\
Maintenance Maintenance
Ol Activity or Activity ol”

Figure 3.7: Classical Source Code Based Maintenance

reverse engineering tools and methods are applied to extract information on
a higher level of abstraction out of the source code. The initial object models
are rarely consulted (cf. chapter 1).

We refer to this evolution of the source code (implementation, OI') as object
evolution.

Further maintenance requests produce OI” out of OI’ without updating the
object model. Hence structural deterioration and increasing alienation be-
tween OM and OI” may be observed. For each further maintenance activity,
more reverse engineering effort is needed to understand actual source code.
Hence maintenance activities become more and more costly.

Assuming that maintenance on the model (specification) level is less costly
than maintenance on the implementation level and certainly less costly then
any reverse engineering activity, we propose an approach for software main-
tenance on the model level as illustrated by the solid line in Figure 3.8.

Here maintenance activities are done on the object model OM. By mainte-
nance activity steps we refer to changes such as described in [MK93, KGH*94,
KGH'196).

The resulting object model OM’ is then the basis for the derivation of a
corresponding object implementation OI'. In accordance to the object evo-

lution step (from OI to OI') we call the step from OM to OM' object model
evolution.

As figure 3.8 shows, the main goal of the approach is to obtain a co-evolution
of the object model and the object implementation.

To reach this goal, maintenance activities are to be supported by relating the
specification (model level) to the respective representation on the implemen-
tation level. Hence, additional documentation of the system is needed within

Object Model Evolution

oOM——mmmmm» OM—— OM”
Maintenance Maintenance
A‘ Activity Activity

Model Level

Implementation Level

Figure 3.8: Object Model Evolution

the model and the implementation level and between the different levels. The
first kind of documentation is necessary to ease change impact analysis, the
second one to relate changes on the model level to corresponding changes on
the implementation.

Co-evolution of model and implementation will yield a set of “benefits of
discipline”. They fall in one of the following categories:

Model evolution provides a network of related object models that define a
road-map of object evolution.

Model evolution provides guidance concerning the sequence of maintenance
steps necessary to consistently build OM’ out of OM.

By maintenance steps we refer to changes to the object model. For those
changes, the preconditions, their wanted effects and side effects are known
(their postconditions). A fixed set of such changes can be the toolbox
for defining a sequence of changes necessary to build a new object model
reflecting new requirments. Stating the changed postcondition for the new,
desired object model OM’, the new model can be built by trying to derive
the new postcondition out of the postcondition of the old object model
OM.

An example for such a fixed set of changes is the classification of changes
described in [KGH*96].

Taking the hierarchical structure of Kungs classification of changes [KGH*96],
it is possible to describe the distance between OM and OM’ on different
levels of granularity. Kung et al. use three levels of granularity in their
classification. E.g. when considering changes on classes, they distinguish
between component changes, like add (delete) a defined data attribute,
and relationship changes like add (delete) a subclass.

The additional documentation makes explicit hidden constraints that are

47

48

Object Model Evolution and Service Channels

(implicitly) assumed as given in (parts of) the implementation. Thus, one
can relate those constraints and reason about them and it will become
possible to decide whether a maintenance step violates a constraint in the
object model that is only hard to find or even not explicitly represented
at the implementation level. Constraints of this kind are a main source of
the difficulty of program comprehension and hence a recurring source of
maintenance and testing problems.

Object model evolution focuses on two aspects of software maintenance. It
enforces a rigid maintenance process (performing model evolution before ob-
ject evolution) and requires system documentation (on various levels of ab-
straction).

As the name also indicates, object model evolution is suitable for maintaining
systems in the evolution stage (cf. section 3.1.1), as co-evolution of specifi-
cation and implementation assures architectural integrity.

3.3 Service channels to support model evolution

In the previous section, object model evolution was outlined. The goal of
object model evolution is to obtain a co-evolution of the systems implemen-
tation and the according models. It was also pointed out, that additional
documentation is needed.

Service channels are now introduced, to support object model evolution in a
planned and semi-automatic way.

Refering back, figure 3.8 could be interpreted just as a methodological advice.
As such, it might already help in many situations and be in line with what
is currently seen as “best practice”.

With (ad hoc) rush-jobs, it seems counterintuitive to do stressful mainte-
nance on both, code and specification. But neglecting specification level
maintenance is quite often coupled with negligence to clean up later what
has been postponed initially.

The argument of doing the same work twice (on the model level and on the
implementation level) is raised as an excuse. This excuse — it might never
have been valid - is rendered invalid if the sum of work on the horizontal
and the downward pointing arrow is less than the work one would have to do
on the bent arrow representing implementation level maintenance. Machine
support for the vertical arrow will help to turn the economics to where the
technical perfection rests.

Service channels to support model evolution

Service channels are proposed as mechanisms on which the above mentioned
machine support can be based upon.

3.3.1 Basic ldea

The basic idea of service channels is to provide support for object model evo-
lution for an anticipated class of changes following the object model evolution
approach.

Service Channels represent maintenance functionality within the system or
within a maintenance environment. They are responsible for the localization
of changes and change impact analysis on the model level, for the evolution of
the object model, for localizing the performed change on the implementation
level and possibly propagating the change to the implementation and the
provision of test cases.

A service channel

is a mechanism relating a sequence of transformations on the
model level to the code level for one anticipated class of changes.

In its most powerful version, as adaptive service channel, model level changes
are propagated automatically to the implementation level. Such propaga-
tions are safe against introducing inconsistencies or violations of constraints
expressed in the object’s model. Thus, a safe transformation from OI to OI'
can be guaranteed. These automatic code adaptions are only possible, if the
service channel can be sure that there are not any hidden implicit constraints
remaining.

When this is not possible, service channels can still assume an observing role
as vertficative service channels. Based on the difference between OM and
OM'’ they can be used to generate test-cases [SC96] for checking OI' against
the changes in the specification. The specific benefits from focused testing
in class structures can be seen from [HMF92].

A third role service channels may play is the role of a diagnostic service chan-
nel. Diagnostic service channels are adaptive or verificative service channels
failing to perform their full mission (e.g. an adaptive service channel, which
can not perform a safe transformation). In this case, service channels (re-
gardless of their type) should clearly point out, why they failed (e.g. which
invariants are violated).

Diagnostic service channels are regarded as a mode of operation, which both
other types of service channel incorporate.

49

50

Object Model Evolution and Service Channels

Certainly, one can express modifications on the model level that are beyond
the provisions foreseen by any service channel. This applies notably when
OM and OM’ seem to be unrelated from a tools perspective. Then, the
respective modifications to OI' have to be performed unsupported and no
safe transition from OI to OI' can be guaranteed. The maintainer has,
however, still the benefit to work in a forward looking manner and does not
need to start the task with a reverse engineering activity.

Changes in
Requirement

Model Model %ﬁgjglcel
Evolution Checking Model

Object
Model

Service
Channel

Testcase
Generation/ , —

s~ Plain N
\ Programming,
\
/

Object ObJK Ao
Implementatiop Evolution Implerr{enlali

Figure 3.9: Maintenance using model evolution

Figure 3.9 summarizes the idea of object evolution by means of model evolu-
tion using service channels. Whether object evolution is fully supported by
adaptive service channels, only ex-post supported by a test data generator
(verificative service channel), or even basically not supported at all so that
just the benefits of model checking remain, depends on a classification of the
changes on the model level resulting from respective requirements changes.

3.3.2 Maintenance Support by Service Channels

To position the functionality of service channels with respect to other research
supporting software evolution, we relate them to the evolution support space
[PK98] defined by Balzer in summarizing the results of the fist International
Workshop on the Principles of Software Evolution (IWPSE’98) [Bal98g].

The evolution support space spans two dimensions: the type of support and
the scope of support.

The type of support distinguishes whether support is provided by transform-
ing the system (performing an evolutionary change automatically), by guid-
ing (sketching the necessary actions to perform the change by hand) or by
checking the impact of a requested change.

Service channels to support model evolution

The scope of support can be local (e.g. within an object), distributed or
compound. For our considerations we consider two kinds of changes: Intra-
Object changes (local scope) and to Inter-Object changes (compound scope).

Service channels provide maintenance support in two ways:

As verificative service channels they provide guided maintenance by eas-
ing ripple effect analysis, change propagation and by generating test data
for the respective change. Hence they support evolution by guiding and
checking.

As adaptive service channels they support evolution by transforming the
system according the requested evolutionary change. They can do so for
the class of changes that causes no ripple effects to other classes of the
system to be maintained. They should propagate the change automatically
from the specification to the implementation and update the relationships
between specification and implementation.

As diagnostic service channels they point out the reason, why the service
channel (either an adaptive one or a verificative one) failed. Hence they
support evolution by guiding and checking.

When determining the scope of evolution support provided by service chan-
nels, the class of changes they are built for has to be investigated.

As one can imagine, the class of changes adaptive service channels can
be provided for is limited to those change categories anticipated during
development. They can be captured as change cases [EDF96]. Adaptive
service channels have to consider all the relevant relationships and invari-
ants concerned by the respective change. The changes will be intra-object
changes (changes on the objects structure causing no changes on the ob-
jects interface), hence the scope of support is local.

According to Kungs classification [KGH*94] these changes will be data
changes, method components changes, method control structure changes
and class component changes.

Vertficative service channels will cover a broader range of changes than
adaptive service channels. They should be able to provide support to
inter-object changes. These are changes on the objects interface and/or
the objects relations (inheritance, aggregation) to other objects. Hence
the scope of such service channels is compound. They can even perform
local changes by invoking adaptive service channels.

A verificative service channel identifies the directly related objects inflicted
by a change request. Far-reaching changes are propagated further by the
verificative service channels of the objects thus identified.

51

Object Model Evolution and Service Channels

To summarize, table 3.1 places service channels within the evolution support
space.

Type of support
Trans- Guidance Checking
formation
Intra- Adaptive Verificative Verificative
object Seruvice Seruvice Service
changes Channels Channels Channels
Scope of
support Inter- Verificative Verificative
object Service Service
changes Channels Channels

Table 3.1: Service Channels and the Evolution Support Space

3.4 Some Examples

The following examples are taken from the case studies which can be found
in the appendix. The first one shows the basic types of maintenance support
service channels provide within the thermometer case study. The second one
scales these considerations up to a larger example like the team calendar case
study.

3.4.1 Thermometer: Changing the temperature range

The example of the thermometer case study (cf. appendix A) consists of two
classes, Thermometer (representing the front end for reading temperature
values from a physical thermometer) and TempDisplay (for displaying the
temperature measured by the thermometer on a two-digit display). The
corresponding C+4+ - like implementation and the implementation rationale
can also be found in appendix A.

For this example, one possible maintenance request could be the following:

The system, as il is actually implemented, is able to measure and display
temperatures within a range between -20 and 40 centigrades (refered to as

mnge(:l:,y), T = '20; Yy = 40)

Some Examples

This temperature range should be extended to cover the following tempera-
tures:

A:x=—-45; y=45
B:x=-80; y=280

C':x = —112; y = 176(degreesFahrenheit®; equivalentto — 80to80centigrades).

Source code based maintenance

The following steps will be done when following a source code based main-
tenance approach.

Having the object model and the implementation rationale in mind, one will
easily find, that the only place in the implementation, where this tempera-
ture range is defined and checked are the Thermometer:GetTemp() and the
Thermometer:: Thermometer() methods.

Thermometer: :GetTemp() {
int newtemp;

if (range_lb <= newtemp <= range_ub)
temp = newtemp

by

Thermometer: :Thermometer () {
temp = 0;

range_lb = -20;

range_ub = 40

}

Hence, it is the initialization method Thermometer::Thermometer(), which
has to be changed to define the new temperature range. The rest of the
implementation has not to be changed. The new initialization method 1is
now the following:

Changing the method as requested in case A, yields the following new ini-
tialization method:

Thermometer: : ThermometerA() {

53

54

Object Model Evolution and Service Channels

temp = 0;
range_lb = -45;
range_ub = 45
t

Compiling and testing the changed code will show, that this change intro-
duces no side effects. The new code is still meeting its specification. The
invariants within the two classes are not violated.

Changing the method as requested in case B, yields the following new ini-
tialization method:

Thermometer: :ThermometerB() {
temp = 0;

range_lb = -80;

range_ub = 80

t

Compiling and testing will again show, that this change is safe and the system
works as expected.

But in this case, when reviewing the specification, one can observe, that
the code does not meet its specification. The new method Thermome-
ter:: ThermometerV2() is violating the invariant

O(—50 < temp < 50)

within the Thermometer class, which restricts the temperature measured by
the physical thermometer to be between -50 and 50 centigrades.

In this case, even if the system works, one can observe structural deterio-
ration. The new system in use, measuring temperatures between -80 and
80 centigrades, drifts away from its specification. If mentioned within sec-
tion 1.3, the systems specification or other documents are not updated, this
structural deterioration will not be detected.

Changing the method as requested in case C, that the system is able to
display degrees Fahrenheit as well, yields the following new initialization
method:

Thermometer: : ThermometerC() {

temp = 0;
range_lb = -112;
range_ub = 172

b

Some Examples

With naive trials, this change might even seem to work.

Methodological testing should show, that the temperature display is not
able to display the three digits of the measured temperature. Hence in the
cases, where temperatures above 99 degrees Fahrenheit and below -99 de-
grees Fahrenheit will be measured, the display won’t be able to display the
third digit necessary.

If testing is not done effectively and this error will not be detected, a system
not meeting its expected functionality will be in use.

Here, not only local invariants within the Thermometer class are violated,
also invariants within the TempDisplay class are violated. But the violations
of these invariants are hard to detect within the source code, as they are not
explicitly represented there (cf. section A.1.2).

Maintenance Support by Service Channels

The problems arising when performing the above changes with a source code
based approach, originate from the fact, that invariants and dependencies
expressed within the specification are not expressed within the source code.

When providing a service channel for the above change, not only the neces-
sary changes on the specification and the source code are expressed in the
service channel. The service channel also contains information expressed in
the specification which is not included or expressed in the implementation.
Additionally, the service channel knows the information expressed in the im-
plementation rationale (cf. A.1.2).

Hence the service channel has to know the chain of implication, relating the
invariants of the specification and it has to know, that the temperature range
expressed in the specification is defined within the initialization method of
the implemented Thermometer class.

As service channels implement a specification based maintenance approach,
service channels first perform the change on the specification and check,
whether the change is safe or not. They do so by proving that none of
the invariants of the affected classes and that no maintenance invariants are
violated.

The chain of implications (cf. A.1.2)
(D= C)AN(C= A)AN (A= B)

acts as such a maintenance invariant for the service channel responsible for
changing the temperature range. As long as for the changed specification

55

56

Object Model Evolution and Service Channels

this chain of implications holds, the change is safe and can be propagated to
the source code.

Hence, for case A the service channel provided for changing temperature
ranges will act as an adaptive service channel, for case B and C it will act
as a verificative service channel, pointing out the constraints violated by the
change request.

3.4.2 Team Calendar: Changing the number of partici-
pants of a meeting

Within the team calendar case study, one possible change would be to change
the number of participants allowed for a meeting. Before investigating the
change, a possible implementation rationale is sketched. The complete spec-
ification of the team calendar can be found in appendix B.

Implementation Rationale for Meeting

Information about the number of participants allowed to attend a meeting
can be found within the Meeting and Rooms classes.

Let’s consider the invariants of the class Meeting:

A mazxparticipants = 10
B : #participants < maxparticipants

C' : #participants < location.capacity

A is taken from the constant definition within the class Meeting. B and C
are predicates from the state schema of the class Meeting. B and C also
appear as predicates in Meetings method InputMeeting.

The invariant A defines the maximum number of participants to attend a
meeting. B checks the actual number of participants, while ' is assuring,
that the actual number of participants is below the maximum capacity of the
meeting room, where the meeting takes place.

The invariants in class Rooms define the maximum capacity of the rooms.
In our case study, the largest room has the maximum capacity of 20 persons.

D : mazcapacity = 20

Some Examples
E VY r: existingrooms e r.capacity < maxcapacity

D is taken from the constant definition within the class Rooms. F is the
predicate within the state schema of class Rooms.

The invariant D defines the maximum capacity and £ assures, that the
capacity of all meeting rooms is below this maximum number.

Hence, in our case, as the number of participants allowed for a meeting is
below the maximum capacity of all available rooms (maxcapacity > maxpar-
ticipants),

ANB= CA(DAE)

holds. An efficient implementation would only check for B within InputMeet-
ing. Within the implementation, the constants and invariants defining and
checking the capacity of rooms will not appear.

One possible maintenance request could be the following:

Due to the increasing number of customers and employees, it is necessary
to have meetings with up to the following numbers of participants. The new
upper limits for the number of participants are the following:

A : 15participants

B : 25participants

Maintenance Support by Service Channels

A service channel for the above change, will focus on the definition of the
maximum number of participants within the Meeting class.

A" . mazparticipants = 15

A" . mazparticipants = 25

The service channel performs the changes on the model level, analyzing
whether A A B = C A (D A FE) holds after the change on the model

level.

57

58

Object Model Evolution and Service Channels

AN B = CA (DA FE) holds.
In this case, the service channel performs the change automatically on the
implementation and works as an adaptive service channel.

A" N B = C A (D A E) does not hold

In this case, the service channel performs change on the model level, iden-
tifies the affected parts of the implementation and will point out, that the
chain of implications is violated. It will act as a verificative service channel

3.5 Realizations of Service Channels

So far, the purpose of service channels has been presented. Now we introduce
two quite different options to realize them. Our considerations how to realize
service channels are driven by the question, how much of the systems ability
to evolve should be represented inside the system (built-in service channel)
or outside the system within a maintenance environment (external service
channel).

3.5.1 Built-in service channels

A buill-in service channel (BI-SC) or internal service channel, as shown in
Figure 3.10, is a modification mechanism inside the system developed to cover
a fixed set of changes. These changes are formulated as change requests on
the model level and are propagated automatically to both the model and
implementation level, by the built-in service channel.

To do so, the built-in service channel has to know about all relationships
between OM and OI and of all implicit constraints hidden in the implemen-
tation, which are necessary to perform the change automatically.

Hence, the object model, its corresponding implementation and the built-
in service channel together represent a set of possible solutions within the
application domain. The system can be seen as a set of virtual system in-
stances, with each instance specified by appropriately invoking the service
channel. Conceptually, the invocation of a built-in service channel with a
certain change request determines the suitable solution in the set of possible
solutions.

For example, built-in service channels can be realized as special methods writ-
ten specifically for the object under consideration, implemented as “service
methods”, not accessible to the regular “clients” of this object. Such service
devices are not a new concept in conventional engineering. We find them as
extra functionality due to the engineering knowledge of the developer, built

Realizations of Service Channels

Change request

N
N

system

Figure 3.10: Built-in service channel

beyond any users request.

Examples one might think of range from water pipes built into buildings
for use by the fire brigade via staircases or elevators in hotels marked by
“personal only”, to plugs in cars, where special diagnostic equipment can
be connected, and test-busses on highly complex VLSI-chips. These exam-
ples show already a breadth of purpose as well as the fact, that there is
an engineering decision as to how much one builds into the specific object
(pipes etc.) and how much one leaves outside for instrumentation on demand
(service—plug).

As can be seen from the engineering examples, built-in service channels are
designed with full knowledge of the design of the artefact they are built
into. This applies to software service channels too: They “know” the ob-
ject’s model, and for the spectrum of changes they are to support also the
relationship between model and implementation. Of course, each such ser-
vice channel is limited to its spectrum of changes. Hence, it needs to know
the relationships between OM and OI that are relevant for change requests
falling into this spectrum.

For an obvious example we refer to the relationship between the state space,
its implementation and its realization in various methods. Assume a require-
ments change leads to an extension of the state space. The service channel
supporting this change will identify all those parts in the implementation
that need to be changed. In case the change can be performed in a simple
way (e.g. by changing a constant), it will check for ripple effects, perform
this change on the source code level, and after recompilation, the object’s
implementation will be consistent again.

59

60

Object Model Evolution and Service Channels

Built-In Service Channels built into an object for specific anticipated changes
to that object, will be adaptive service channels by nature. Their scope is
local and if the requested change is admissible, they transform the object
they are built into to a new instance of its relatively generic specification.

They will act as a diagnostic service channel in the case, the requested change
can not be performed by the internal service channel. In this case, they will
point out the side effects caused by the requested change, which cause failing
of the service channel.

3.5.2 External service channels

The example given above demonstrated that normal operations of an object
and operating its service channel are quite different operations. While during
normal operation, the objects state will be changed, operating its service
channel changes its state space. Hence, it is not an operation on the instance
level, but — to borrow data base terminology — on the schema level. Since we
are dealing with software, recompilation is the normal consequence.

This very different usage pattern motivates the question why such an op-
eration has to be built-in and not kept separate from the object as an in-
dependent tool. Obviously, this is a valid alternative. We are referring to
such special tools as external service channels (EX-SC), whose relation to
the system to be maintained is shown in Figure 3.11. Their main difference
to built-in service channels can be seen again from an analogy: Considering
the fire brigade, a fire-man on a ladder sprinkling water out of a hose to a
burning building would be the “external” alternative to the built-in pipes
and sprinklers.

Change request
|

|
:
oM | om
|
|
|

L7

vV N Y
ol or
old system evolved system

Figure 3.11: External service channel

External service channels are specific maintenance tools, designed indepen-

Related Work

dently of the specific object they are operating on. Their purpose is to
identify change, change propagation and limits to change propagation. An
external service channel consists of general tools for program understand-
ing and reverse engineering such as slicers (e.g. [LH96]), ER- or structure
charts generators [Vrb97] etc.). With them, support can be given for change
categories not anticipated and therefore infeasible to deal with by built-in
service channels. With the external service channel, the conceptional net-
work that is pre-established in the internal service channel will be defined on
the fly. A consequence is, that the maintenance support they provide will be
reduced. To improve their performance, special service plugs, such as explicit
links between identifiers used at the model level and identifiers used in the
implementation can be provided.

External service channels will be verificative and diagnostic ones. They sup-
port inter-object changes by guiding and checking.

3.6 Related Work

Alternative approaches:

Design Maintenance Systems [BP97, Bax92]

Here, the systems design is seen as the central focus for development and
maintenance. The according source code is seen as a byproduct. A trans-
formational scheme is used for getting the source code.

Configuration Management [CW98, CM94]

Software Configuration Management (SCM) approaches incorporate ver-
sion models to capture deltas between versions of (components of) the
system. Mechanisms for compiling the deltas in the new build are pro-
vided. Usually SCM is focussed on source code, hence they offer poor
support for model based maintenance.

Specification based maintenance [LH91]

This approach uses the object-oriented specification language Z++ to de-
scribe a formal specification, and a development record to store relation-
ships between the specification and the source code. Guidance for per-
forming changes is provided.

Reuse-Contracts [LSM97]

Here, different parts of the system (and their relationships) are described
by relational operators. Reuse contracts and the according operators fa-
cilitate maintenance by pointing out how much work is needed to update
the system, by pointing out what problems may occure and which parts
of the system have to be tested.

61

62

Object Model Evolution and Service Channels

EVA Method [MKH97] EVA (EVolution mechanism for flexible Agent)
is a formal programming technique base on specification changes and on
derivation of the program code. If maintenance changes are expressed in
the specification changes, a new version of the program can be derived.

The above listed approaches offer either support and guidance for mainte-
nance (like reuse contracts or SCM) or they are based on deriving or trans-
forming the design or specification into source code (hence each time, main-
tenance activities are performed, a new source code for the whole system is
created).

Service channels offer support for maintaining a systems specification and
implementation without having to newly recreate the whole system.

Documentation of Relationships in the
System

An important prerequisite for effective software maintenance ac-
tivities is to have an in depth-understanding of the system. This
chapter outlines the information necessary to gain such an un-
derstanding. Intra-Object Schemas are introduced to store such
information in our specification based maintenance setting using
service channels.

4.1 Required Traceability

To gain an understanding of the software system to be maintained, not only
source code and documentation is needed. The maintainer also needs ab-
stract representations of the system like specifications or design models and
he/she needs to be able to establish or to identify dependencies between var-
ious artifacts of the different system models. He/she should also be able to
trace these dependencies in order to assess the impact of a change. Hence a
certain degree of traceability is required.

Following the IEEE definition [IEE91], traceability is

a degree to which a relationship can be established between two
or more products of the development process, especially products
having a predecessor/successor or master/subordinate relation-
ship to each other.

Traceability should provide the maintainer with semantic links between vari-
ous artifacts of the system he/she can use to perform change impact analysis.

Such dependencies should be established between artifacts belonging to parts
of the system at the same level of abstraction. Dependencies among source

63

64

Documentation of Relationships in the System

code elements, like chains of method calls would fall into this category of
dependencies. But also dependencies between artifacts belonging to dif-
ferent levels of abstraction should be traceable, like an “implemented_by”
relationship between elements of the design model and their corresponding
counterparts in the source code.

By dependencies (traces) we refer to

a direct relationship between two artifacts in the system X — Y
such that a (maintenance) programmer modifying X must be

concerned about possible side effects in Y. [WH91, WH92]

Representing both kinds of dependencies graphically, yields the tracing graph
as outlined in [Boh91] and sketched in figure 4.1. It is a directed graph, having
named nodes representing different artifacts of the system.

I 7 -7
, /
BERN B PR e
W i - roN ’
AN LT Ny
gk , v
RN , A\

N
N
N 7
\ 7
N ,
N

Requirments Design Source Code Test Cases

Figure 4.1: Tracing Graph for Software Maintenance

The dotted arrows represent dependencies like “is implemented by” or “is

covered by”. For example, requirement R1 is covered by D1 and D3 in the
design model. We refer to traces of that kind as inter-level traces, as they
span among different levels of abstraction.

The solid arrows between artifacts belonging to the same level of abstraction
denote dependencies among artifacts of that level. In our example of figure
4.1 the design elements D4 and D3 are related in some kind. We refer to
traces of that kind as intra-level traces.

Required Traceability

Such a graph can be the base for performing change impact analysis. Hav-
ing determined the requirements statements affected by a change request,
a “projection”! on the graph yields the affected parts of the system on the
other levels of abstraction.

Figure 4.2 outlines the effect of changing the requirement statement R3.
The dark arrows span a subgraph of the tracing graph, following all the
dependencies starting at B3. The nodes within this subgraph represent those
artifacts of the system affected by changing RS3.

BERN S ///,’\ e
A . - o ’
Ny
, v
, N\

N
N
N 7
\ 7
N ,
N

Requirments Design Source Code Test Cases

Figure 4.2: Change Impact Analysis using the Tracing Graph

Additionally, this graph can be used to evaluate the quality of the systems
design or maintainability.

Regarding the intra-level traces for one, say, design element, the number of
traces directed into that element indicates the quality of the design. Keeping
this number low indicates, that the number of other elements directly affect-
ing this element is low. Hence this number (the in-degree) can be seen like a
coupling measure similar to the one known from structured design [SMCT74].

In the following, intra-level traces and inter-level traces are described in more
detail.

1The term projection is used by analogy to projection in the field of relational database
theory.

65

66

Documentation of Relationships in the System

4.1.1 Intra-Level Traces

Intra-level traces describe dependencies between artifacts in the system, be-
longing to the same level of abstraction, like dependencies between entities of
the source code or entities of the specification. As the focus of this work is on
specification based maintenance, this section sketches classes of (intra-level)
dependencies on the code level and on the specification level which are of
interest for maintaining an object-oriented system.

Code-level Entities and Dependencies

In order to define classes of dependencies between entities on the source code
level, one has to define the classes of entities to focus on. Within the field
of program comprehension and program understanding, a lot of work has
been done to identify such classes of entities and dependencies necessary to
understand a certain piece of code.

In the setting of (source code based) software maintenance, it is necessary to
know the structure of the source code, to be able to analyze the effects of a
change to a piece of code.

In [LMR91, LMR92] the authors describe a system, where semantic relations
within the source code are stored in a relational database. These semantic
relations are language independent and also cover object oriented language
features and relations (overloading, etc.).

Here, the entity classes and dependency classes described in [WCMHO1,
WH91, WHO92] are presented. They also cover object oriented language fea-
tures.

The limits of both approaches are the issues introduced by polymorphism,
overloading and "high level constructs”. To fully identify these relations,
dynamic analysis of the source code is necessary.

Table 4.1 summarizes the classes of code entities [WCMHO91]. Here, along-
side with entities describing structured, procedural programming language
features, object-oriented language features are considered as follows: classes
are seen as composite types, methods as special subprograms and messages
as special names.

Table 4.2 and table 4.3 show the dependency classes between the entities
defined previously.

These dependencies can be gathered by static analysis tools and can be used
to identify possibly effected entities in the code when modifying another one.

Required Traceability

‘ Entity Class

Description

data (D)

- constant (CO)

- variable (V)

— simple variable (SV)

— composite variable (CV)

— pointer variable (PV)

Any entity holding data values

eg. an integer or float, a component of a
struct or class

an entity, containing other data; eg. a struct
or a class

points to a simple or composite variable

subprogram (S)
- function (FS)
- method (ME)

eg. a procedure, function, subroutine, etc.
eg. a C language function

eg. a C++4 member function or a Smalltalk
method

type (T)

- atomicType (AT)

- compositeType (CT)
— class (CL)

describes the structure or behavior of data
eg. int, float, char, etc.
eg. struct, union, etc.

C++4 or Smalltalk class

name (N)

- message (MQG)

a name used within the software to refer to
one or more program entities; also several
names may refer to the same entity.

eg. a Smalltalk message selector or the name
of a C4++ member function. Overloading al-
lows the message to refer to one of several
methods.

Table 4.1: Code level entity classes [WCMHO91]

67

68

Documentation of Relationships in the System

‘ Dependency Class

‘ Description

Data = Data

isPartOf (V,CV)
dataAffects (D1,D2)

- usedToCompute (D1,D2)
— movedTo (D1,D2)

— matchesInParam (D1,D2)

— matchesOutParam (D1,D2)

- sharesMemory (D1,D2)
— contains (D1,D2)
— equivalencedTo (D1,D2)

— pointerAlias (D1,D2)
- subscriptOf (D1,D2)
- controlsValueOf (D1,D2)

V is directly a part of CV - not recursive
the value of D1 affects the value in D2

D1 is used in a computation of D2

the value of D1 is moved into D2

actual parameter D1 matches formal param-
eter D2 in a subprogram call

actual parameter D1 matches formal param-
eter D2 in a subprogram call; the parameter
passing scheme must allow outward flow of
data from D1 to D2; eg. call by reference
D1 and D2 may share some memory

D2 is contained within D1

D1 defined at D2, eg. matching union ele-
ments

created by pointer assignment

D1 is a subscript in n assignment to array D2
D1 controls a computation of the value of D2

Data = Subprogram
- isParameterOf (V,S)
- isLocalOf (V,S)

- islmportedBy (V,5)

V is a parameter of subprogram S
V is a local variable in S
non-local V is referenced in S

Data = Type
- determinesSizeOf (D,T)
- isOfType (D,T)

data D determines size of T (an array)
data V is of type of class T

Subprogram = Subprogram
- calls (S1,52)

subprogram S1 calls subprogram 52

Subprogram = Type

subprogramReturnsKind Of

methodImplementedIn

type of the return value of S

method ME is implemented in composite
type CT

Table 4.2: Code level dependency classes [WCMHO91]

Required Traceability

‘ Dependency Class

Description / Comments

Class = Class

- isDirectSuperClass (CL1,CL2)
- isDirectSubClass (CL1, CL2)
- inheritsFrom (CL1,CL2)

- uses (CL1,CL2)

CL1 is a direct superclass of CL2

CL1 is a direct subclass of CL.2

CL1 inherits from CL2

CL1 uses CL2; may be subclassed as “uses for
interface”, and “uses for implementation”

Class = Method

- methodReturnsObjectOfClass
(ME,CL)

- implementsMethod (CL,ME)

- inherits (CL,ME)

method ME returns object of class CL

class CL. implements method ME
class CL inherits method ME

Class = Message
- understands (CL,ME)

class CL understands method ME

Class = Variable

- isInstanceOfClass (V,CL)

- isClassVariableOf (V,CL)

- isInstanceVariableOf (V,CL)
- isDefinedBy (V,CL)

V is an instance of class CL
V is a class variable of class CL
V is an instance variable of class CL

V is defined by class CL

Method = Variable

- isParamForMethod (V,ME)

- isLocallnMethod (V,ME)

- islImportedByMethod (V,ME)
- isDefinedByMethod (V,ME)

- refersTo (ME,V)

V is a parameter for method ME

V is a local variable in method ME

V is a non-local variable used in method ME
V is defined by method ME

method ME refers to variable V

Method = Message
- isNameOfMethod (MG,ME)
- sendsMessage (ME,MG)

message MG is name of method ME
method ME sends message MG

Method = Method
-invokes (ME1,ME2)
-overrides (ME1,ME2)

method ME1 invokes method ME2
method ME1 overrides ME2

Table 4.3: Code level dependency classes for OOP [WH92]

69

70

Documentation of Relationships in the System

Specification-level Entities and Dependencies

To establish intra-level dependencies on the specification level, one has also
to define specification entities and dependencies among them. Taking model
based specification languages like Object-Z [CDD*90, DKRS91, DRS94], the
structure of the language is pretty similar to those of object-oriented pro-
gramming languages.

An Object-Z specification consists of class definitions, related by inheritance
and instantiation. A class consists of a state schema and operations (meth-
ods). Objects are instances of a class, which acts as a template for objects.

The syntax of a class is the following (described as an Object-7 class).

— ClassName|generic parameters|

visibility list
inherited classes
type definitions
constant definitions
state schema
initial state schema

operation schemas

history invariant

The wvisibility list shows those operations and parts of the state schema, which
are visible from outside the class. The history invariant is a predicate over
histories of objects of the class and is typically expressed in temporal logic.

Hence, one can easily imagine, that specification level entities and dependen-
cies can similarly be established as on the source code level.

4.1.2 Inter-Level Traces

Inter-level traces cover dependencies like “is implemented by”, “is covered
by” or design rationales. Entities to be related are those from the code and
specification level, extended by entities for requirements and design ratio-
nales.

Classes of dependencies

4.2 Classes of dependencies

The next question which comes up is how to identify those dependencies
described above. How are those dependencies manifested within the system?

We found three possible ways, how dependencies may be manifested within
a software system and grouped them into three different classes of depen-
dencies. They may be directly stated in the system (explicite dependencies),
not directly stated within the system (hidden dependencies) or they may
be manifested as “additional systems documentation” within special main-
tenance tools like service channels (materialized dependencies).

4.2.1 Explicit Dependencies

Explicit dependencies are those, that are explicitly expressed or documented
within the system. They are either expressed in the systems programming
or specification language.

Most of the inter-level traces are explicit dependencies. For example, consid-
ering the history invariant O0(—50 < temp < 50)? of the class Thermometer.

Within the C++ class Thermometer, the two constants range_1b and range_ub

contain the boundary values for temp. Hence, this fact has to be explicitly
expressed as an inter-level trace.

4.2.2 Hidden Dependencies

Hidden dependencies are dependencies not explicitly expressed within the
system. Such dependencies are provided by the developer or can be identified
using tools like dependency analysis tools or static or dynamic analysis tools
like slicers or theorem provers.

Hidden dependencies occur as intra-level traces and as inter-level traces as
shown by the following two examples out of the thermometer case study (cf.
appendix A).

First, a hidden intra-level trace on the specification is the following focusing
on the temp variable local in the ShowAct Temp method of class TempDisplay.
It is used for calculating the two digits of the display and is restricted to
—99 < temp < 99. Let’s consider the following trace:

temp = thermometer. Yield Temp

Yield Temp reads the temp variable of Thermometers state scheme.

2O denotes the temporal logic operator always.

71

72

Documentation of Relationships in the System

temp within the Thermometer class is restricted by Thermometers history
invariant O(—50 < temp < 50).

Hence, the value of TempDisplay.temp is always between -50 and 50 centi-
grades. Following the above trace, one can identify the fact, that there is
a dependency between TempDisplay.temp and the history invariant of the
Thermometer class. Hence,

O(—50 < TempDisplay.temp < 50).

Second, a hidden inter-level trace can be the following: let’s consider the local
variable temp within the ShowAct Temp method of the class TempDisplay.

On the specification, temp is restricted by —99 < temp < 99. Within the
C++ class TempDisplay: :ShowActTemp () the corresponding variable is also
called temp, but the restriction expressed in the specification is not checked
and expressed within the source code. Hence the fact, that the temp variable
in the source code is also restricted to be between -99 and 99 centigrade is a
hidden inter-level trace within the code.

How can these traces be gathered?

Hidden intra-level traces can be gathered by static and dynamic analysis
tools. Such dependency analysis tools are presented in [WH91, WH92] and
[LMR91, LMR92].

Another technique for gathering such hidden traces is (program) slicing. Slic-
ing was introduced by [Wei84].

Informally,

a program slice consists of the parts of a program that (poten-
tially) affect the values computed at some point of interest, re-
ferred to as a slicing criterion. The task of computing program
slices is called program slicing. [Tip94]

Slicing is applied in software maintenance in order to decompose the system
to be maintained [HTS96, GLI91]. To do so, the part of the system to be
changed act as the slicing criterion. Forward and/or backward slices are
computed. All parts of the system not in the slices need not be considered
for performing the change.

The application of slicing for performing ripple effect analysis is described
in [WTCRO96]. There exist algorithms and techniques for slicing procedural

Intra-Object Schemas

and object oriented software [LH98, LH96], for slicing formal specifications
[OA93] and even for binaries [CF97]. Hence, slicing is a promising approach
for supporting a specification based maintenance approach.

For surveys on slicing describing various slicing techniques and applications

the reader is refered to [Tip94, Kam95, BG96).

Tool support for identifying hidden inter-level traces can be provided by
dependency analysis tools under the assumption that inter-level traces have
been previously established by applying requirements tracing or similar tech-
niques. If inter-level traces are poorly established or not established at all,
hidden inter-level traces have to be identified by the maintenance staff.

4.2.3 Materialized Dependencies

Materialized dependencies are dependencies expressed in mechanisms like
internal service channels. Such dependencies are based on hidden and explicit
dependencies and are used for performing a special task.

One example for a materialized dependency is the chain of implications used
by the service channel sketched in section 3.4.1. This maintenance invariant
is used by the service channel to decide, whether the requested change of the
temperature range is a safe one or not.

(D= C)AN(C=A)N(A= B)

is established by the developer of the service channel and is representing the
implementation rationale for this part of the system (cf. section A.1.2).

4.3 Intra-Object Schemas

Within our specification based setting we are aiming at a co-evolution of
the systems implementation and specification during adaptive maintenance
requests. Service channels should be provided for anticipated changes and
service channels should therefore know the dependencies within the system
necessary to decide whether to perform the change or not. Hence, those
dependencies have to be expressed and stored either within the system or
within the service channel. Here, intra-object schemas are presented as one
approach to store such dependencies and to make them accessible for main-
tenance tools like service channels.

73

74

Documentation of Relationships in the System

4.3.1 Basic ldea

The basic idea behind intra-object schemas [MK93] is to establish relation-
ships between the systems specification and implementation and to highlight
information, that is somewhere hidden in the system.

Intra-object schemas serve, like conceptual schemas in data bases, as a level
of indirection between specification and implementation. Focusing on the
specification, it contains information of the kind “what did you want”, fo-
cusing on the implementation on information like “where can you find it and
how is it related”. Hence, such intra-object schemas contain intra-level traces
and inter-level traces.

Intra-object schemas are provided from the developer to support anticipated
changes to the system. Hence, they are holding the information and depen-
dencies necessary to support the change.

The class of changes to be supported by intra-object schemas covers changes
of the structure of the object (like modification of constants declared on class
level, or changes in the declarations of variables containing the “user-state”).

An intra-object schema, as shown in figure 4.3, consists of three parts: the
specification, the schema and the implementation.

Specificatin

A \ !
| "satisfies" ' ! "implemented by"
! V.

\
! Schema
‘

/

////

Implementation

Figure 4.3: Intra-Object Schema

The specification part

The specification part of an intra-object schema contains those parts of the
specification, which are possibly affected by the change it supports. The
specification can be expressed in a specification language like Object-Z, a

Intra-Object Schemas

relational specification approach [Mil83] or others.

The Implementation part

The implementation part contains the implementation of the system, ex-
pressed in the chosen programming language.

The Schema

The schema finally specifies the dependencies between the various parts of
the implementation and the specification under concern.

To do so, they contain

virtual methods

acting as guardians of integrity constraints between various attributes of
the object. Virtual methods can be regarded like views in a data base
system, but in our setting they are not providing derived functionality,
they are used for guarding constraints when a change is to be performed.

constraints on attributes of methods

Such constraints should offer more possibilities as the type system does,
e.g. avoiding a division through zero, if a variable x is divided through a
substraction of two variables, which are some disjunct integer subranges,
hence it is not possible, that x will be divided by zero. But changing one
integer subrange type to include a value of the other subrange, a division
by zero is possible. The type system will not identify this. This should be
avoided by specifying such constraints.

usage constraints
to support safeness of the used methods. They should avoid unexpected
side effects.

inter-object constraints
to hold between the component objects of complex objects.

4.3.2 Intra-Object Schemas and Service Channels

In our approach, intra-object schemas are related to service channels. As
mentioned earlier, a service channel is provided for a specific, anticipated
class of changes. Each service channel should have access to an intra-object
schema, containing the necessary explicit and hidden dependencies between
the parts of the specification and implementation affected by the change the
service channel is provided for.

75

76

Documentation of Relationships in the System

An intra-object schema is a part of the system, while the service channel
need not (internal service channels are part of the system, external service
channels are part of a maintenance environment outside the system). But
both types of service channels use intra-object schemas to store and guard
dependencies.

The service channels contain the materialized dependencies and maintenance
methods providing the service channel functionality.

Change request

I
l
oM | owm’
|
I
|

/A
0s D los

v N

Ol or
old system evolved system

Figure 4.4: External Service Channel

Figure 4.4 sketches an external service channel and figure 4.5 an internal
service channel, both containing intra-object schemas.

4.3.3 The system development perspective

If, during development of the system, some parts of the system are identified
of possibly being subject to a future change, these parts should be described
by means of an intra-object schema to support the anticipated change. This
intra-object schema will contain explicit dependencies and hidden dependen-
cies made explicit by an analysis tool or by the developer.

Analyzing the anticipated changes and the underlying dependencies will yield
to a decision, what kind of maintenance support should be provided.

If the decision is made, to provide an internal service channel, it will use
the intra-object schema. The internal service channel and the intra-object
schema will be part of the system.

If the kind of anticipated changes can be taken care of by an external service
channel (as part of a maintenance environment) the system will only contain

Summary

Change request

system

Figure 4.5: Internal Service Channel

the intra-object schema.

The connection between the external service channel and the intra-object
schema will be made by plugging the system to be maintained into the main-
tenance environment. This will enable the external service channel to access
the intra-object schema.

4.4 Summary

As mentioned above and in chapter 3, service channels heavily rely (like a
human maintainer) on information about the structure of the affected parts
of the system and about dependencies among the various artifacts within
these parts of the system.

Within this chapter, intra-level traces and inter-level traces were presented
as kinds of dependencies, which are of interest for the maintainer (from the
maintenance tools perspective, as well as from the human perspective). Such
dependencies may be identified as hidden, explicit or materialized depen-
dencies. Intra-object schemas were presented as an approach to store such
dependencies. Service channels use intra-object schemas to perform their
functionality.

A prototype of a service channel is presented in chapter 7.

7

78

Documentation of Relationships in the System

The discussion about the effort necessary to provide intra-object schemas has
the same arguments as the discussion about providing service channels.

Identifying hidden dependencies can be done by using slicing and dependency
analysis tools.

Documenting and storing inter-level dependencies can be done using require-
ments tracing tools. This is even done in projects, were it is not indented to
provide maintenance support.

Effects on the Development process

While in the previous chapters the specification (model) based
maintenance approach was presented, this chapter is focusing on
the different phases of the development process. It outlines, which
phases are influenced, when developing a system to be maintained
by using service channels.

5.1 The Software Development Process

Development of software is a rather complex process. Software life cycle
models and software process models are used to structure a software project
and to control the progress of the project by defining milestones between the
start and the end of the project.

A software life cycle defines and describes the different stages (or phases)
in the lifetime of a software product [Fug00]. Additionally, principles and
guidelines how to carry out the different stages and how to complete one
stage and move to the next one are described.

A basic, but well known life cycle model is the waterfall model [Roy70, Boe76]
(cf. figure 5.1). It divides the lifetime of a software product into five phases
and provides a sequential ordering of the phases. Completing one phase en-
forces doing verification and validation activities against the previous phase.
[terations between preceeding phases are foreseen.

The goal of the analysis phase is to capture, describe and specify the require-
ments for the problem to be solved. During the design phase, a technical
specification of the software system (the solution) is produced and imple-
mented within the implementation phase. Although quality assurance is
done within all previous phases, a testing phase is forseen and necessary.

79

80

Effects on the Development process

The maintenance phase in figure 5.1 incorporates installing and maintaining
(adapting) the system.

Analyis
V&V \
\ Design \

V&V

V&V

\ Implementation \

V&V

K Testing \

Maintenance

Figure 5.1: The Waterfall Model for Software Development

The spiral model [Boe88] breaks with the sequential nature of models like the
waterall model and describes software development as a systematic iteration
of activities driven by risk analysis and prototyping.

The fountain model [HSE90] also focuses on iterations and cycles between
the phases. As object oriented systems consist of a (possibly large) number
of classes, the fountain model provides not only a life cycle for the whole
system, but also allows life cycles for individual classes.

Although all of the above software process models claim to be life cycle mod-
els, they are focussing on describing the development effort for the software
product. All of them forsee a transition to the deployment and maintenance
of the software product, but they poorly define post development stages of
the software product. A phased maintenance model like the one presented in
[BRO0] and sketched in section 3.1 describes those post development stages.

Software life cycle models are a starting point for how to develop software.
But they are not describing a precise set of actions, tools, methods or organi-
zational structures needed for software development, but software processes

do.

The Software Development Process

A software process is a coherent set of policies, organizational structures,
technologies, procedures, and artifacts needed to conceive, develop, deploy
and maintain a software product [Fug00].

Based on a software life cycle model, a software process describes the needed
software technology (e.g. tools, infrastructures or environments), software
development methods and techniques (to use the available technology), the
organizational behavior of the teams and people involved, and economic as-
pects (e.g. the software must meet the customers requirements in a specific
market setting).

The goal of this chapter is to show how development is influenced, if the
system is to be maintained by a specification based maintenance approach.
We assume, that the underlying software process model is incorporating a
waterfall life cycle model.

If the software product under development is to be maintained following a
specification based maintenance approach as described in chapter 3, which
requires additional documentation of relationships in the system (cf. chapter
4) and the provision of service channels for anticipated changes, the follow-
ing technologies and methods should be applied in the specific development
stages:

Analysis As service channels are provided for anticipated changes, those
changes have to be identified and described within the analysis phase.
For describing such anticipated changes, change cases are proposed (cf.
section 5.2).

Design Inter-level traces have been identified to be necessary for being able
to provide service channels. Design rationales play an important role.
Hence they have to be recorded (cf. section 5.3).

Requirements Tracing An important prerequisite for being able to pro-
vide service channels, is the recording of inter-level and intra-level
traces. Consequently requirements tracing offers a framework for doing
so (cf. section 5.4).

Provision of Service Channels At the end of development of the initial
system, service channels are provided for designated change cases (cf.
section 5.5).

81

82

Effects on the Development process

5.2 Anticipating Potential Changes

Anticipating potential future changes during the requirements analysis phase
is an essential prerequisite for being able to provide service channels for some
changes. This section focuses on the sources for discovering potential changes
and presents an approach for describing such potential changes.

5.2.1 Sources for Potential Changes

As mentioned in chapter 1, software systems in use have to be adapted and
changed to reflect the changing requirements they implement or they will
become less useful. Lehman summarized this fact in his law of continuing

change [Leh80].

Brooks also observed that adapting software systems to changing require-
ments in inevitable. But he also gives hints about the sources of such changes.
He states that “the software product is embedded in a cultural matrix of
applications, users, laws, and machine vehicles. These all change continu-
ally, and their changes inexorably force change upon the software product.”

[Bro87]
Such changes may be the following [EDF96]:

Market Changes Success in business causes in most cases an increasing
number of clients. New clients may come up with additional or changed
requirements.

Business Requirements Changes The organization may change its poli-
cies and procedures to cope with changes in its environment.

Operational Process Changes Changes in the operational processes of
the organization due to internal or economic reason may raise new
requirements.

Legislative or Regulatory Changes New laws or changed laws may force
a change in the operational processes of the organization.

Imaginative Users Users familiar with the software system may propose
enhancements or changes to the system.

Beside those external changes (changes in the users requirements), also in-
ternal changes (changes in the systems requirements) have to be considered.

Anticipating Potential Changes

Technical Changes or System Driven Changes Such changes may be
triggered by events like the upgrade of the operating system or database
manangement system the system is operating on.

Sources for information about such changes may be

comments of users during requirements analysis sessions

review of regulatory and legal environment

drafts of pending legislation and regulations

review of the organizations technology and/or platform strategy

planned or scheduled changes to the product (service offerings)

Having identified such potential future changes, they now should be described
in a way, that this description may be the base for developing a service
channel.

5.2.2 Change Cases

Change cases [EDF96] are constructs to identify and incorporate potential
(expected) future changes into an analysis and design model.

Change cases are expressed using the notation of use cases [RJB99] and
describe new or revised scenarios. Figure 5.2 sketches the relationships of
changes, change cases and use cases. The goal of change cases is to capture
potential change and describe potential functionality of the system.

Change cases can be used, if an object-oriented design methodology is applied
and use cases are used to capture initial requirements. If the methodology
also foresees traceability links, these links can also be used to express the
relationships between changes, change cases and use cases.

Change cases are not intented to be implemented. But if ever a change
(covered by a change case) is intented to be implemented, the links from the
change case to other use cases will help to determine the scope of the change
on a use case level.

In the setting of change cases,

a change is a requirements-level expression of an intended revi-
sion.

A change case consists of

a use case containing a new or revised scenario, derived from a change to
requirements

83

84

Effects on the Development process

a set of existing use cases, that have to be changed to be consistent with
the changed requirements

Change
(Requirements) Use Case
[0,n]
Description Name
Traceablity Links Scenario
[1,1] i >
Change Case
1] | impact Links | [0.n]

Figure 5.2: Change, Change Cases and Use Cases

A change case is a specialized use case, which inherits the ability to describe
scenarios from use cases. It is linked to the change triggering the change
case. It is also linked to those use cases, which are affected by the intended
change.

Like change cases, which describe changes in the users requirements, changes
in the system requirements (internal changes) can be described by linking a
change trigger to the affecting system feature.

The prerequisite for profiting from change cases is the usage of an object-
oriented development methodology supporting traceability (cf. chapter 4
and section 5.4). This supports the identification of all affected parts of the
system if a change is to be performed, by following the traces starting from
the proper change case.

In our setting, change cases are seen as a way to describe anticipated changes
in requirements to serve as a base for constructing service channels.

Another way to describe anticipated changes to the systems requirements
or potential variants of the system may be the use of viewpoints [ACNL97].
Here different viewpoints are defined to represent different variants of the
system. This approach is appropriate, if a development methodology like

Design Rationale

subject oriented design / programming is used. A subject may be represented
within a viewpoint.

Describing potential changes or variants of the system as non-functional re-
quirements as proposed in [FB97] does not provide an active maintenance
support, but expresses such changes in terms of requirements.

5.3 Design Rationale

During the software design process usually a number of possible design choices
or design models are developed. The design team then has to make a decision,
which of these alternatives will become the final design model. The focus of
design rationales is to record the different alternatives and the respective
decisions.

Almost all of the works in the field of design rationales use structures similar

to the following to describe a design rationale [Han97], [PB88] and [Lee91]:

a design issue or goal which is raised concerning a design artifact
a design deliberation process; determines what artifacts to derive and why

a resulting design decision which may effect a number of artifacts.

Surveys on different design rationale approaches can be found in [Lee97] and

[MSPD95].

One prerequisite for applying design rationales is the definition of the artifacts
to be linked to design rationales. Those artifacts are not limited to design
artifacts, as advocated by early approaches like [PB88]. Like artifacts on
all levels of abstraction (analysis, design, code) can be linked together via
traceability links, those artifacts can also be linked to ”design rationales”

[CLV92].

In a maintenance setting, like the one described in [LV95] or [ASW93], design
rationales are an important source of information for maintenance personal.
If unused artifacts are also recorded, design rationales facilitate the reuse or
reactivation of such artifacts.

Design rationales together with traceability offer a powerful approach to doc-
ument a software system during development and thus providing information
for maintenance (either for tools like service channels or for maintenance per-
sonal doing maintenance by hand). But keeping the design rationales up to
date has to be enforced by the development and maintenance process.

In our setting design rationales should be linked to the traceability links

85

86

Effects on the Development process

to provide information to the service channel to perform its task

and to provide information for the service channel developer.

5.4 Tracing Dependencies

An important prerequisite for providing service channels for anticipated fu-
ture changes is the capturing of dependencies between different artifacts of
the system. In chapter 4 such dependencies were presented. Capturing such
dependencies (or traces) has to be done throughout the development of the
system. Requirements tracing is an approach, which aims in the same direc-
tion.

5.4.1 Requirements Tracing

Requirements traceability refers to the ability to describe and fol-
low the life of a requirement, in both a forward and backward di-
rection (i.e. from its origins, through its development and specifi-
cation, to its subsequent deployment and use, and through all pe-
riods of on-going refinement and iteration in any of these phases)

[GF94].

Requirements traceability focuses on two areas:

Pre-traceability documents the rationale and sociopolitical context from
which the requirements emerge [Jar98], or in other words, it refers to those
aspects of a requirement’s life prior to the inclusion in the requirements
specification [GF94].

Post-traceability links requirements to design and implementation, docu-
menting responsibility assignment, compliance verification, or impact anal-
ysis of a requirement [Jar98]. It describes the aspects of a requirement that
result from the inclusion in the requirement specification.

Pre-traceability supports the elicitation, documentation and specification of
the customers requirements by establishing links between customers and re-
quirements and between derived requirements. Post-traceability links parts
(or concepts) of the systems implementation, design or specification to re-
quirements they originate from.

Four kinds of traceability links are classified in [Jar98]:

Tracing Dependencies

Forward from requirements: links requirements to systems design and im-
plementation components, documenting responsibility assignment or the
impact of a requirement.

Backward to requirements: links system design and implementation com-
ponents to requirement for compliance verification issues.

Forward to requirements: links contributions structures [Got93] and stake-
holders etc. to requirements

Backward from requirements: links requirements to contribution struc-
tures.

The first two links enable post-traceability, while the latter two focus on
pre-traceability.

In [DP98] different types of traceability data are summarized:

Bi-directional links between customer requirements, derived requirements
and software components are needed to document the impact of require-
ments within the system.

Design rationale, design decisions, alternatives, underlying assumptions
are additional kinds of information represented implicitly within the sys-
tem. Documenting this information and linking it to the according system
components (by using the bi-directional links stated above) makes it ex-
plicitly available.

Information on contribution structures, stakeholders, etc. should improve
communication and cooperation among teams.

Documenting process data, performed tasks, etc. supports project plan-
ning and control.

In [DP98, GF94] also a survey on tool support for requirements tracing is
given.

5.4.2 Requirements Tracing and Service Channels

As mentioned in chapter 4, service channels heavily depend on different kinds
of information about the system. Two kinds of dependencies (inter-level and
intra-level dependencies) and several ways how such dependencies might be
expressed in the system, were presented.

Requirements tracing now offers an approach to capture and store such de-
pendencies during development. Post-traceability links are suited for storing
such dependencies.

Applying development environments already incorporating requirements trac-

87

88

Effects on the Development process

ing possibilities (cf. tool survey in [DP98, GF94]) facilitate the capturing,
storing and management of traceability links. These environments must pro-
vide the possibility to adapt and define project specific traceability links in
order to support different tracing or maintenance strategies.

Bi-directional links between different artifacts of the system and design ra-
tionales are traceability data types suited for being captured and recorded
within intra-object schemas.

Even if no service channels are developed, change impact analysis in a main-
tenance setting can be supported by following post-traceability links.

5.5 Development for Service Channels

The main question of this section is how the strategy to provide and to use
service channels for software maintenance influences the development of the
initial system.

Figure 5.3 gives again a waterfall model for software development and points
out, which phases are influenced by capturing information needed for the
provision of service channels.

Identifying Change Cases
-
Analyis
V&V \ Capturing Design Rationdls

' -

1 Design

|

1 -

| 4 . 7/

1 Implementation 7
! 7/

1

1

|

[4
! 7
/ s i
Y Testing
Requirements Tracing
_____ - V&V

Maintenance

Providing Service Channgls

\

1
1
1
1
]

]
1

Figure 5.3: Development for Service Channels

If a system is to be maintained via a specification based approach by using
service channels, this maintenance strategy has to be known and considered
from the beginning of the development. Hence, a commitment from the

Development for Service Channels

management and project management is needed, as additional effort has to
be spent on documenting the necessary information and dependencies.

5.5.1 Requirements Analysis

The requirements analysis phase is influenced by the fact, that not only func-
tional and non-functional requirements have to be identified and described
or modeled. Potential future changes to the requirements, which may also
cause changes to the system, have to be captured too.

The kind of changes, which can be identified in the analysis phase and hints
for possible source of information about such changes is given in section 5.2.1.

Another important aspect is the fact, that those changes have to be described
in a proper way. In a proper way means, that the description should not only
be another piece of documentation. It should semantically fit to the models
provided for functional and/or non-functional requirements and it should also
fit into the traceability scheme enforced by the development methodology.

Change cases have been proposed as such constructs for modeling potential
future changes in the requirements (cf. section 5.2.2). They are closely
related to use cases and link potential changes to the use cases describing
those requirements which are affected by the change. They are expressed as
use cases and are linked to system components via traceability links.

In a nutshell, identifying and modeling future changes is an additional ac-
tivitly to be done within the analysis phase. Descriptions or models of such
changes are additional deliverables of that phase.

5.5.2 Design

During the design phase, when a technical specification of the system is built,
one additional task comes up. Design decisions or design rationales have to
be captured.

Design rationales are an important kind of inter-level dependencies for devel-
opers of service channels or maintenance staff, as they contain information
which cannot be automatically or dynamically gathered out of the existing
system. They are not hidden within the system and so they have to be
documented explicitly.

As the design rationales have to be documented manually, this will cause
additional effort to be spent during the design phase. Developers are usually
not very keen to produce documentations and have to be motivated and
forced to capture design rationales.

89

90

Effects on the Development process

5.5.3 Requirements Tracing in all Phases

One activity occurring in all phases of the development process is require-
ments tracing (cf. section 5.4). Within all phases, inter-level and intra-level
dependencies have to be captured.

In the words of requirements tracing post-traceability links in both direc-
tions (forward from requirements and backward to requirements) are to be

established.

During analysis, intra-level dependencies are established to link change cases
to the requirements affected by the change.

During design, inter-level dependencies are captured relating artifacts of the
design model to the requirements they cover. Design rationales are also
captured as well as intra-level dependencies.

Within the implementation phase, also intra-level and inter-level dependen-
cies are captured. Most intra-level dependencies on the code level can be
gathered using static and dynamic analysis tools.

Hence, as requirements tracing occurs throughout the whole development
process, it is best integrated within a development environment supporting
traceability. This would also decrease the effort necessary for capturing the
traces.

5.5.4 Providing Service Channels
The development of the software product and of the service channels sup-
porting the maintenance of the software cannot be separated.

During the analysis phase change cases are described. In the design phase a
design model for each change case is developed. This design model (including
variants of the system) is now the base for the decision to build service
channels.

Based on the change cases and on the design model, a decision has to be
made which of the potential future changes will be supported by a service
channel. This decision has two steps.

First, the changes to be supported by service channels, have to be identified.
Factors influencing this decision might be the following:
How important is the change case for the business of the systems user?
How likely is the change to occur?

How much effort will it take, to provide a service channel.

Development for Service Channels

How complex is the change (with or without maintenance support)?

The importance and likelthood of a change can be explored during the analysis
phase. Hence, when describing a potential change, also the importance and
the likelyhood of the change should be documented.

The necessary effort for developing a service channel and the complexity of
the change can be estimated by following the traceability links in the system.
Following these links yields the parts of the system affected by the change.

Is the change a rather complex one (without maintenance support) and is the
likelyhood and importance of the change high, then the effort of developing
a service channel should be spent.

If not, a motivation to develop service channels would be to develop a system
as maintainable as possible.

The second decision to be made, is to chose the right type of service channel
for the respective change. The question is, “is the change suitable for being
supported by an internal or by an external service channel?”.

Here again, to decide whether a change can be supported by an internal
service channel (local change causing no side effects), the traceability data
can be used for a ripple effect analysis.

One important issue is, that quality assurance activities and testing have to
be performed after developing a service channel. Hence there has to be an
iteration to the testing phase.

Even if no service channels will be developed, the stored traceability data
will facilitate software maintenance by supporting the systems (program)
understanding task.

In [TN97] the authors report about two studies concerning the efforts spent
on software maintenance tasks. In [DBSBO1] the authors state, that 30 -
60 % of the maintenance costs is spent for system understanding, following
[FH76] system understanding consumes 47 % of the total maintenance effort.

Hence, having available traceability links will help to decrease the effort
necessary for system understanding.

91

92

Effects on the Development process

(Model Based) Maintenance Activities

This chapter sketches the varieties activities, methods and tech-
niques for implementing changes into an existing system. The
focus will be on change impact analysis, change propagation and
quality assurance issues.

6.1 The Software Change Process

The software change process usually consists of the following steps:

Understand software change and determine impact

Specify and design software change

Implement software change

(Re)Test affected software
Unterstanding the required change and determining its possible impact is
subject to change impact analysis (cf. section 6.2).

Specification, design and implementation of the change includes the location
of the change and the implementation of possible additional changes due to
ripple effects. Change Propagation (cf. section 6.3) covers these issues.

Finally, regression testing (cf. section 6.4) is neccessary to test whether the
modified system is still satifying its specification.

All the methods and techniques presented below rely on their proper model
of the system to change. Most of these models are based on data and/or
control flow dependencies.

93

94

(Model Based) Maintenance Activities

6.2 Change Impact Analysis

When changes to existing systems have to be made, the issue of estimating
the scope of the change (complexity, size etc.) comes up. Side Effects have
to be determined. The implementation of the change has to be planned.

For small systems (or programs), the programmer has this scoping and plan-
ning in mind (possibly after browsing the source code). But for large systems,
this does not work.

Change impact analysis aims at facilitating the understanding and implemen-
tation of a change by providing a detailed examination of the consequencies
of the requested change.

The basic concept behind change impact analysis approaches is to estab-
lish and to analyze relationships among various types of software artifacts
(specifications, design, code, tests,..). Analysis of these relationships iden-
tifies those work products, which are affected by a requested change. Such
relationships among software artifacts have been introduced in chapter 4.

A comprehensive overview of change impact analysis methods and techniques

can be found in [Boh96, BA96a, BA96b].

Related terms to impact analysis, sometimes used synonymously, are ripple
effect and side effect.

A side effect is an

“error or other undesirable behavior that occurs as a result of a

modification.” [FW8I]
A ripple effect is the

"effect caused by making a small change to a system which affects
many other parts of a system.” [SMC74]

Two basic technologies are used for change impact analysis: traceability anal-
ysis and dependency analysis. Both analysis techniques are sketched in the
following sections and program slicing as a method supporting dependency
analysis is sketched.

Traceability analysis

focuses on relationships among all types of software artifacts. It covers
relationships between artifacts like documentation, requirements specifi-
cations, source code and test cases.

Traceability is defined as

Change Impact Analysis

7ability to trace between software artifacts generated and mod-
ified during the software product life cycle” [BA96a).

Definitions of traceability and traceability relationships have been intro-
duced and discussed in chapter 4 of this work. Traceability analysis focuses

on inter level traces introduced in chapter 4.

Dependency Analysis

Dependency Analysis has a much narrower scope than traceablility anal-
ysis. Here, the aim is examining detailed relationships among program

(source code) entities like variables, modules and the like.

The main focus of dependency analysis lies on data flow and control flow

analysis.

In context of the terms introduced in chapter 4, dependency analysis fo-

cuses on intra level traces.

Dependency analysis tools are static and dynamic analysis tools. Such
tools are presented in [WH91, WH92] and [LMR91, LMR92]. A popular

technique for gathering such dependency relationships is (program) slicing

[Weig4].

In [BA96D] a wide variety of of tools and techniques supporting change impact

analysis are presented.

Slicing is presented here as a popular technique supporting dependency anal-

ysis in more detail.

6.2.1 Slicing

Program slicing is a technique supporting the restriction of the behaviour
of a program to some subset of interest [GL91]. Slicing supports depen-
dency analysis in the way, that it produces subsets of a program, containing

statements that are related by certain data and control flow dependencies.

Informally,

a program slice consists of the parts of a program that (poten-
tially) affect the values computed at some point of interest, re-
ferred to as a slicing criterion. The task of computing program
slices is called program slicing. [Tip94]

Program slicing was introduced in [Wei84]. Different kinds of slices, ways to
construct slices, and applications of slicing has been identified and defined.

Surveys of slicing applications and techniques are [BG96, Kam95, Tip94].

95

96

(Model Based) Maintenance Activities

A slice (of programm P) is usually denoted as S{v,n), where v stands for
a varable (or a set of variables) and n refers to a specific statement in P
(usually a statement number). The slice S(v,n) contains those parts of the
program, that contributed to (influenced) the value of variable v just before
the execution of statement n. S(v,n) is also called the slicing criterion.

Slices are executable programs (in the definition of [Wei84]), which can be
computed automatically. Most techniques and algorithms for constructing
slices are based on dependence graphs containing data and control flow in-
formation of the program to analyse.

Slices as defined in [Wei84] are called backward slices. During the construc-
tion of such slices the dependence graph is traversed backwards, starting from
statement n.

Forward slices where introduced in [HRB90]. Informally, a forward slice
yields those parts of the programm P, that are affected by the value of v at
statement n.

Slices are also classified as static or dynamic slices. Static slices are not
considering the program’s input, while dynamic slices are computed for a
particular fixed input for program P.

Program slicing is applied for program differencing (finding differences be-
tween programs), program integration, testing, debugging, quality assurance,
software maintenance, reverse engineering and so forth. For more details on
the application of slicing, the reader is refered to [BG96].

There exist algorithms and techniques for slicing procedural and object ori-
ented software [LH98, LH96] and for slicing formal specifications [OA93]. An
approach for slicing binaries, machine code and assembly code is introduced

in [CF97].

In the following sections, the application of slicing in the context of software
maintenance is sketched. Decomposition slices are presented for partition-
ing the program to change into independent parts to narrow the scope for a
required change. An approach for applying slicing for ripple effect analysis
shows how forward and backward slices combined can be used to localize
possible ripple effects. Finally, specification slicing is sketched. This vari-
ety of slicing approaches shows, that slicing is a well suited mechanism for
dependency analysis in model based maintenance setting.

Change Impact Analysis

Decomposition Slices

The focus when using decomposition slices [G1.91] is on partioning the pro-
gram into (possibly) independent parts. If changes are made in one indepen-
dent part, just this part needs to be understood and tested after making the
change.

A decomposition slice has the same characteristics as "normal slices”, except
that it includes all computations of a variable and is independent of a pro-
gram location, whereas "normal slices” capture the value of a variable at a
particular program location (statement).

Having now computed a decomposition slice with respect to a variable v (the
reader is refered to [GLI1] for details on the construction of decompositon
slices), the program can now be partioned in the following parts:

The independent part containing statements of the decomposition slice
that are not in any other decomposition slice.

The dependent part containing statements of the decomposition slice, that
are in another decompostions slice.

The compliment containing statement, that are in some other decomposi-
tion slice, but not in the one computed with respect to v.

Using decompositons slices has the following advantages, if a maintainer has
to change the variable v:

Only the independent and dependent part of the decomposition slice cre-
ated with respect to v have to be understood.

If just modifications to the indpependent parts are made, there are no side
effects in the compliment part.

If changes are only made in the independent part, just the independent
part has to be tested.

Finally, combining the different parts of the programs leads to a modified
and tested program [HPR89, G1.91].

Slicing for Ripple Effect Analysis

While the decomposition slicing approach is focusing on partitioning the pro-
gram before making a change, a combination of forward and backward slices
supports ripple effect analysis after making a change [HTS96, WTCR96].

The generic model for ripple effect analysis [WTCR96] is the following;:

97

98

(Model Based) Maintenance Activities

Make initial change
Identify potentially affected areas due to that change
Determine, which of these areas need further changes to remain consistent

For each additional change: determine how to make this change
Until no more additional changes are to be made

The slices used are generalized program slices [HTS96]. Those kind of slices
may be computed in both directions (forward and backward slices) and may
be restricted by a set of constraints.

In [WTCR96], three kinds of changes are identified and ripple effect analysis
processes are stated. These processes are sketched in the following. The used
symbols are described below 1.

Define change

A define change is a change on the left-hand side of an assignment state-
ment. The right-hand side of the assignment statement remains unchanged.
Before change: S : D= f(U;); i >0

After change: S : D' = f(U;); i >0

The REA process for the define change is the following:

(1) Forward slicing: < S, D >in P’ and < S, D" > in P’

(2) Backward slicing: < S, U; > in P’, for each i

The forwad slicing highlights the statements in the initial program P and
the resulting program P’, which may be affected by ripple effect due to the
change of D. The backward slice highlights the statements influencing the
right-hand side of the changed statement. The three slices together show
all the possible side effects of a define change.

Use change

A use change is a change on the right-hand side of an assignment statement.
The left-hand side remains unchanged.

Before change: S : D = f(U;); i >0

After change: S : D = f(U/); j >0 and U; # U!

REA process:

Forward slicing: < S, D > in P’

Backward slicing: < S, U/ > in P, for each j

A forward slice for the define variable, and a backward slice for each
changed use variable highlight the possible side effects of a use change.

Control change

1S: Statement in program P; D: Define variable; U;: Use variable; f: Computation
function

Change Impact Analysis

A control change is a change that affects (or might affect) the execution
sequence of a program.

Before change: S : D = f(Uy, Uy, .., U;); i >0

After change: S : D = f(U{, Uz, .., U}); j > 0and U; # U}

Here, the computation function f denotes the predicate expression in con-
ditional and loop constructs. In a control change one or more use variables
in the predicate expression are changed.

REA process:

Forward slicing: < S, U}, Uy, .., U] >; for j >0

Backward slicing: < S, U/ — U; >

The forward slice is used for identifying side effects down the execution
stream introduced by the use variables. For the newly introduces use
variables, the backward slice is used to check, whether the usage of the
new use variables is valid.

The resulting slices for each kind of change contain those parts of the program
P, which is possibly affected by the respective change. Hence, side effects and
possible additional changes due to the previous change will appear within
those slices.

Specification Slicing

Slicing techniques have not only been developed for analyzing (object ori-
ented) programs, also slicing techniques for formal specifications have been

introduced. In [OA93] a slicing technique for the Z Notation [Spi89, Dil94]

is presented.

Informally,

a " specification slice is a set of pieces of specifications that re-
stricts values of a variable.” [OA93]

Specifications slices are, as their counterparts for programs, based on depen-
dency relationships between parts of the specification.

The main goal of using specification slices in software maintenance is to
reduce the size of the specification to analyze when changes are to be made
to a specification. This is possible, because of the following characteristics of
specification slices.

In most cases, a specification slice is smaller than the original specification.

A specification slice restricts the variable in focus in exactly the same way,
as the original specification does.

99

100

(Model Based) Maintenance Activities

Hence for a model based maintenance approach, specification slicing can be
applied for impact analysis and for easing ripple effect analysis on a specifi-
cation level, before changing the source code.

6.3 Change Propagation

While change impact analysis techniques and methods focus on the under-
standing of changes and their impact to the existing system, change propa-
gation is a process of consitently implementing a change.

After a change has been introduced, the affected (changed) entity of the
system may no longer fit to the rest of the system. This is due to the
fact that, as mentioned earlier in this work, dependencies and consistency
relationships may exist between several entities of the system. The changed
entity may also require several services of other entities and provide services
to others. Hence, changing the entity may introduce inconsistencies to the
system.

Informally,

change propagation keeps track of the inconsistencies introduced
by a change and of the location where possible secondary changes
are to be made, in order to re-introduce consistency to the changed

system. [Raj97, Raj96]

Several models for change propagation have been proposed, like [YNTLS8S,
Luq90, Raj97, Raj96]. Here, the model presented in [Raj96] is sketched.

It is based on the evolution of the dependency graph for a given program.
Therefore, a model was defined for capturing the entities of a program, the
dependencies and inconsistencies.

With respect to a given entity to be changed, top dependencies (entities not
influenced by others but influencing others), bottom dependencies, incoming
and outgoing dependencies are kept. The program neighbourhood for an
entity contains all the top, bottom, incoming and outgoing dependencies for
that entity.

A step in change propagation is the replacement of one entity by an updated
one in the program neighbourhood.

A set containing marked entities (entities being marked, because of the in-
consistencies due to a change) is also held.

As a change is usually composed of a sequence of different changes, in [Raj96]

Change Propagation

two change processes based on the above model are presented to describe
and define the sequence of changes. The change processes are the change
and fix model and the top down change propagation model, also called MSE
(methodology for software evolution). Those models will be briefly sketched
in the following.

Change and Fix Model

The change and fix model starts with the change of the entity. If this change is
introducing any outgoing inconsistencies, the affected entities will be marked.
The marked entities have to be inspected and possibly be changed. This
process ends, if there are no more marked entities.

An informal description of the algorithm is given below. The formal defini-
tions can be found in [Raj96].

Start with a consistent program P
Select the entity to change
Change the entity

Update the program neighbourhood and the marked entities for the changed

entity
Check for marked entities

If there are marked entities, change them if necessary, until there are no
more marked entities.

MSE: Top Down Change Propagation

In contrast to the change and fix model, the MSE model always starts on the
top dependencies for an entity to be changed. Therefore, the set of scheduled
entities is introduced. The set of scheduled entitites contains the "highest
marked” entities in the dependency graph.

The algorithm assures, that changes always propagate top down within the
dependency graph.

Again, an informal description of the algorithm is given below. The formal
definitions can be found in [Raj96].

Start with a consistent program P
Select the entity to change from the set of top entities
Change the entity

Update the program neighbourhood and the marked and scheduled enti-
ties for the changed entity

101

102

(Model Based) Maintenance Activities

Check for marked entities

If there are marked entities, change the according scheduled entity, until
there are no more marked entities.

6.4 Regression Testing

After identifying a change, analyzing its impact, implementing the change,
possibly propagating the change, regression testing is the next activity.

Regression testing involves the retesting of part of the system after it was
modified. Only those parts should be retested, that are affected by the
modification [KGH*96].

Regression testing has to adress the following questions:

How to (automatically) identify the affected parts of the system?
What retesting strategy should be used to retest those parts?
What coverage criteria are to be used for those retests?

How to select, reuse and /or modify existing test cases?

Approaches for the above raised questions can be found in [HMF92, SC96,
GHS92, Pos94, JE94].

In [KGH*96, KGH94, KGH*95] an approach for regression testing for ob-
ject oriented software is presented. Also an algorithm for defining a test
strategy, the so called test order, is presented.

The approach is based on a regression test model consisting of several di-
agrams. An object relation diagram (ORD) describing relations like inheri-
tance, aggregation and associations and also capturing dependencies between
clases.

A block branch diagram (BBD) captures the interface and internal structure
of a class and its dependency to other classes. The BBD consist of a so called
body containing the control flow of the member function, global and class
data that are used by the member function, input and output parameters,
global and class data that are defined by this member function and all other
member functions called by this member function.

Out of the BBD the so called class firewall is constructed. Informally,

a class firewall for a class C in an object oriented program or

library is the set of classes that could be affected by changes to
the class C. [KGH*96]

Regression Testing 103

Hence, the class firewall represents the impact of the implemented change.
The algorithm for constructing class firewalls is described in [KGH*96, KGH*95].
Also an algorithm for constructing the so called test order is presented in

[KGH+96, KGH*95].

Informally,

the test order problem for class firewalls can be stated as finding
a desirable order for testing the classes that are affected by code
changes to a set of classes. [KGH196]

An effective test order implies reuse of existing test cases [HMF92, KGH™96].

104 (Model Based) Maintenance Activities

[

Service Channels and Maintenance
Environments

This chapter sketches a prototype for a service channel for a
change out of the thermometer case study. The integration of
service channels into maintenance environments is also outlined.

7.1 Issues for Building Service Channels

When building a service channel, the following questions have to be ad-
dressed:

What has a service channel to know about the system?
This question has already been adressed in chapter 4, where traceability
was discussed.

What has a service channel to check when being invoked?

This questions covers mainly the issues of the admissibility of the requested
change (is the change safe?) and of the admissibility of the service channel
(does the service channel still fit into the system?).

7.1.1 Admissibility of the Requested Change

As introduced in section 3.3, service channels are maintenance mechanisms
for guiding (and possibly performing) safe changes to the system they are
built for. A safe change is a change, not violating its maintenance invariants
(invariants to hold for this change) and avoiding structural deterioration.

Checking the admissibility of a requested change can be done within the
boundaries of the class the change occurs or system wide.

105

106

Service Channels and Maintenance Environments

In the first case, when the adminissibility should be checked locally, whithin a
class, the local invariants of the changed class are checked. If these invariants
hold, the change is locally safe. Client classes, using the changed class (server
class), can still trust the interface of the server class.

To do so, the service channel must check the inner condition.

The inner condition is defined as

Here, (' stands for the changed parts of the class and IC for the
invariants of the class restricting C'.

The arrow has the meaning that ¢ 7satisfies” IC'. This means,
that the invariants are not violated by the changed parts of the
class.

This inner condition must hold for all invariants /C' restricting

C.

If, for a requested change, one or more of the invariants of the inner conditions
do not hold, the service channel will fail and classify the change as unsafe, as
clients of this class might not trust the interface of the changed server class.

In the second case, invariants in classes using changed parts of the changed
class are also checked. If these also hold, the change is safe. In the case, that
a client class is restricting the used part of the server class by its own, than
those invariants have also to be checked.

To do so, the service channel must check the call condition.

The call condition is defined as

V(Y C — IC;) — CC;.

This means, that for a changed €, after the checking of the inner
condition, all known call conditions C'C restricting ' when using
it, have to be checked.

Whereas, if a service channel is only checking the inner conditions of a change
can only identify local inconsistencies, a service channel checking all call
conditions has more ”diagnostical power” if a change fails, as it is able to
identify violations of invariants in client classes.

Prototype of a Service Channel

In our thermometer case study, for changing the temperature range of the
thermometer (cf. appendix A and section 3.4.1), the implementation ratio-
nale is yielding the following chain of implications,

(D=C)AN(C=A)AN (A= B).

Thermometer TempDisplay

Reviewing the chain of implications, the left part of the chain is a local
invariant of the Thermometer class, whereas the right side are invariants
outside the Thermometer class, using and restricting D.

Here
D=7C

is the inner condition for this change. If the changed temperature range (D)
is satisfying the invariant €', than the change is locally safe.

The call condition is the following chain of implications
(D= C)N(D=A)

In this case, the invariant A in class TempDisplay is the only one restricting
D outside the Thermometer class. Other invariants in other classes using
and restricting D would also have to be included in the full call condition.

7.1.2 Admissibility of the Service Channel

Service channels can be used to perform or to guide changes, as they incorpo-
rate knowledge about the system (even implicit and materialized knowledge)
and use it to "guarantee” safe changes. Hence, the service channel assumes,
that those parts of the system covered by the service channel, have not been
changed "unproperly” without using the service channel. The service channel
has to check, whether these assumptions are still valid.

One assumption is, that the service channel knows all invariants in the inner
and call conditions. Before performing a change, the service channel has to
check, whether there are no additional invariants in the system not covered
by the inner condition (and call condition) defined in the service channel.

7.2 Prototype of a Service Channel

This section sketches a prototype for a service channel supporting the change
of the temperature range (cf. section 3.4.1) in the thermometer case study
(cf. appendix A).

107

108

Service Channels and Maintenance Environments

As outlined in section 3.4.1, the focus of that change are the two constants
restricting the temp variable in the Get Temp() method of class Thermometer.

These constants now have been named get Temp UB and get TempL. B denoting
the upper and lower bounds of the temp variable in the method GetTemp().
Also, the remaining constants in the Thermometer and TempDisplay classes
have been named. This yields the following new specification.

The implementation and the implementation rationale as described in ap-
pendix A remains unchanged and are therefore not included in this section.

__ Thermometer

[(INIT, Yield Temp)
tempUB, tempLB : Z getTempUB, getTempLB : 7

tempUB = 50 getTempUB = 40
templLB = —50 getTemplL B = —20

temp : Z

— GetTemp
A(temp)

temp’ = ...
getTempL B < temp’ < getTempUB

/* stores temperature supplied by physical thermometer */

_ YieldTemp
temp_out! : Z

temp_out! = temp

__INIT
temp =0

O(tempLB < temp < tempUB)

Prototype of a Service Channel

__ TempDisplay
[(INIT, ShowAct Temp)

SignDigit = + | —
digitUB, digitLB : 7Z actTempUB, actTemplLB : Z

digitUB =9 actTempUB = 99
digitLB = —9 actTemplL.B = —99

digitl, digit2 : Z
sign : SignDigil
themometer : Thermomeler

— ShowActTemp
A(digitl, digit2, sign)
temp : Z

actTempLB < temp < actTempUB
temp = thermometer. Yield Temp
temp > 0 =

(digit]” = temp mod 10

digit2" = temp div 10

sign’ = +)
ltemp < 0 =

(digitl’ = —temp mod 10

digit2" = —temp div 10

sign’ = —)

__INIT
digitl = digit2 =0 A sign = +
thermometer . INIT

O(digitLB < digit1 < digitUB)
O(digitLB < digit2 < digitUB)

To build a service channel for changing the temperature range measured by
the thermometer, the following questions have to be considered.

When is the requested change safe? What parts of the specification and
implementation have to be changed?

When is the change unsafe? Why is the change unsafe? Which invariants
or definitions are violated by the requested change?

109

110

Service Channels and Maintenance Environments

What are the assumptions the service channel is built upon? Under which
conditions can the service channel be invoked? Can the service channel
detect structural deterioration violating these assumptions?

In the following, these considerations are described for the above change and
then a specification for a prototype for a service channel supporting this
change is given.

7.2.1 Safe change of the temperature range

Reviewing the implementation rationale sketched in appendix A already gives
a clue for changing the temperature range in a safe way.

As long as the chain of implications

(D= C)AN(C=A)AN (A= B)

holds, the temperatures measured by the thermometer stays consistent with
the temperatures displayed by the temperature display.

The change affects the invariant D, which stands for the invariant
getTempL B < temp' < getTempUB

in the thermometer class. Changing the temperature range means changing
the initial definitions of the constants getTempUB and get TempLB.

(' in the above chain of implications stands for

O(tempLB < temp < tempUB)

restricting the temp variable in the state space of the thermometer class.

A stands for the invariant
actTempLB < temp < actTempUB
in the TempDisplay class, whereas B denotes the invariants

O(digitLB < digit1 < digitUB)
O(digitLB < digit2 < digitUB)

restricting the digits displayed.

A and B are part of this chain of implications, as the temperatures measured
by the thermometer (restricted by C' and D) is moved to the temperature
displayed by TempDisplay (restricted by A and B).

Prototype of a Service Channel 111

Hence, reviewing the chain of implications,

(D=C)AN(C=A)AN (A= B).

Thermometer TempDisplay

the first part is assigned to the Thermometer class stands for the inner con-
dition of that change. The second part, assigned to the TempDisplay class,
completes the call condition.

As the change affects D, a service channel has at least to check the inner
condition D = (' . Hence,

getTempUB < tempUB
and

getTemplL B > templ.B
and

getTempUB > getTempLB.

If this is the case, the requested change is not violating the local invariants
on the changed ranges of the temp variable in the Thermometer class. Other
classes, like the TempDisplay class, using the value of the temp variable
of Thermometer can still trust the interface of that class. In this case, the
service channel could take the role of an adaptive service channel by changing
the getTempUB and getTempL B within the Thermometer class.

It D = (' does not hold, the requested change is violating the history in-
variant in Thermometer. The consequent, besides this violation, is also
that classes like TempDisplay using the the value of the temp variable of
Thermometer can not trust the interface of Thermometer any more. In this
case, the service channel could take the role of a diagnostic service channel
pointing out which invariants are violated, but not performing the requested
change.

If the service channel would also check the call condition, it would be able
to show, whether the TempDisplay class is affected by this violation of the
inner condition. Hence, the service channel would be able to show ripple
effects outside the class the change takes place.

7.2.2 Unsafe change of the temperature range

The change of the temperature range is unsafe, if the above inner or call
conditions do not hold. But different inconsistencies can be observed.

112

Service Channels and Maintenance Environments

If

getTempUB > lempUB
or

getTemplL B < tempL B,

then invariant C' in the Thermometer class is violated. If 4 and B are not
violated, then there are (local) unwanted side effects in the Thermometer
class, but no unwanted side effects outside this class. The inner condition is
violated, but the call condition still holds.

The service channel should point out, that D = (' is violated, and that
(C= A)A (A= B)isnot .

If

getTempUB > actTempUB
or

getTemplLB < actTempl B,

then (D = C) A (C = A) is violated. Hence there are local (within the
Thermometer class) and non local unwanted side effects, as the inner and
the call conditions are violated. The service channel should point out, which
invariants in both classes are affected.

7.2.3 Is the Service Channel up to date?

The third question to check is, whether the assumptions under which the
service channel was built, are still valid when the service channel is invoked.

These assumptions may be violated by maintenance activities yielding struc-
tural deterioration or by maintenance activities concerning the change the
service channels was provided for, put performed outside (without using the)
service channel.

The assumptions for our change are the following:
The measured temperature is stored in the temp variable of class Ther-
mometer

This temp variable is controlled (restricted) by the constants get TempUB
and getTempL B in the GetTemp() method, and by the constants tempUB

Prototype of a Service Channel

and tempLB in the history invariant. There are no other constants or
variables or invariants controlling this temp variable. Hence, there are
no other invariants in the Thermometer class to be included in the inner
conditions.

The temp variable in the Thermometer class is moved to the temp variable
in the TempDisplay class. Here, the temp variable is controlled by the
actTempUB and actTempL B constants. There are no other constants or
variables or invariants in the TempDisplay class controlling this variable.

The usage of the Thermometer.temp variable in the ThempDisplay class
is the only usage of this variable, which is controlled by some constants or
variables of invariants. Hence, there are no other invariants to be included
in the call conditions.

If these assumptions are still valid, the service channel for this change can
be applied properly.

7.2.4 A service channel for changing temperature ranges

Building a service channel for changing the temperature range in our ther-
mometer case study has now to consider the issues raised above. To do so,
the intra-level dependencies on the specification level have to be analyzed.

Additionally, the service channel needs to know the inter-level dependencies
relating the specification to the implementation.

In the rest of this section a service channel supporting the change of the
temperature range in the thermometer case study is sketched and (partially)

described using the Z notation [Spi89, Dil94].

The schema named ServiceChannel includes a schema named [0S standing
for Intra-Object Schema. [0S is capturing the intra-level dependencies of
the specification and implementation as well as the inter-level dependencies.
The dependencies are named as sketched in the tables in chapter 4.

The service channel takes two new boundary values newUB? and newlLB?
for the temperature stored in the Thermometer class as input.

Checking the safeness of the requested change is done by checking the in-
ner condition, by comparing the input values with ValueOf(”tempUB”) and
ValueOf("tempL.B”).

The function ValueOf() is defined in the [0S yielding the initial values of
constants in the specification. As an Intra-Object Schema (cf section 4.3)
captures relationships between various concepts of the specification and the
according implementation, but not between the actual values of those con-

113

114

Service Channels and Maintenance Environments

cepts, a generic function like ValueOf () is needed to get the value of those
concepts.

The constants tempUB and templLB are the two constants restricting the
temp variable in the state space of the Thermometer class, described by
invariant C' in the specification.

As the input variables denote the new values of get TempUB and get TempL B,
this service channel checks, whether D = (', the inner condition, holds.

Checking the admissibility of the service channel means checking the as-
sumptions the service channel is built upon. First, the temp variable in the
Thermometer class is only restricted by get TempUB and get TempL B (within
the GetTemp() method) and by tempUB and tempL B in the state space via
the history invariant. Second, this history invariant and the two constants
in this invariants are not checked in the implementation.

This checking of the admissibility of the service channel is done by using the
ControlesValue Of() function defined in OS, standing for the dependency

with the same name described in table 4.2.

The function implementedBy() stores the inter-level dependencies in the 1OS.
Here, the service channel checks that both constants of the history invariant
are not implemented in the source code.

Prototype of a Service Channel

— ServiceChannelSafe rempRange
108
newUB?, newl.B? : 7
evolltemsSpec! : P Specltems
evolltemsImpl! : P Implltems

/* Check of inner conditions */
newUB? > newl B?

newUB? < ValueOf ("tempUB”)
newLB? > ValueOf ("tempLB”)

/* Admissibility of Service Channel */
ControlesValue OF (" get TempUB”,” temp”)
ControlesValue OF (" get TempLB”,” temp”)

Bitem : Dataltem |
item # 7 getTempUB” A
item # 7 getTempLB” A
Controles Value OF (item,” temp”)

Controles ValueOF (" tempUB”,” temp”)
Controles ValueOF (" tempLB”,” temp”)

Bitem : Dataltem |
item # "tempUB” A
item # "tempLB” A
Controles Value OF (item,” temp”)

implementedBy("tempUB”) = @
implemented By (" tempLB”) = @

/* Specification and Implementation Item to be changed */

evolltemsSpec! =7 get TempUB” U " get Temp L B”
evolltemsImpl! =
implementedBy(” get TempUB”) U implemented By(” get Temp LB”)

The output of this service channel are two sets evolltemsSpec! and evo-
[temsImpl! containing the specification and implementation parts (in this
example range_Ib and range_ub of the Thermometer class) to be changed.

Dataltem is holding the actual values of the specification and implementation
parts covered by this service channel.

115

116

Service Channels and Maintenance Environments

— ServiceChannelUnSafetemprange
108
newlUB?, newlLB? : Z
evolltemsSpec! : P Specltems
evolltemsImpl! : P Implltems
violatedItemsSpec! : P Specltems
violatedIltemsImpl! : P Implltems

/* Violation of inner conditions */

(

newUB? < newlL.B? A
violatedltemsSpec! = newUB? U newl B?

)

\

(
(newUB? > ValueOf ("tempUB”) v

newlLB? < ValueOf ("tempLB”)) A

violatedItemsSpec! =
"getTempUB” U7 get TempLB” U7 tempUB” U ”tempL B”
)

evolltemsSpec! = evolltemsImpl! = @

Service ChannelUnSafe tempRange covers the cases, where the requested change
violates the inner condition D = ' and where newlUB? < newlLB?. Hints
are also given, which parts of the specification are affected.

The consequence is, that the service channel returns an empty set of imple-
mentation and specification items to be changed. The specification items
causing the failing of the service channel are returned. Hence the service
channel acts a diagnostic service channel.

The third part of this service channel specification is to cover the cases, where
the service channel is admissible or not. This is described in the schema

ServiceChannelNotAdmissible.

Prototype of a Service Channel 117

_ ServiceChannelNotAdmissible ey range

105

/* Service Channel not admissible */
3 dtem : Dataltem |

Controles Value OF (item,” temp™) A
item & {" getTempUB”,” get TempLB” " tempUB” " tempLB” }

\%

implementedBy("tempUB”) # @
V
implementedBy(" tempLB”) # @

The service channel is not admissible, if additional constraints exists on the
temp variable or if in the implementation the history invariant is somehow
implemented. These violations of the service channels assumptions about the
system may be introduced by maintenance activities concerning the temper-
ature range without using or updating the service channel. From the view
of the service channel, structural deterioration occurred and the use of the
service channel is not admissible.

To complete the specification of a service channel for changing the tempera-
ture range, the three parts of the specification are disjuncted:

TempRangeService Channel =
ServiceChannelSafe remprange V
ServiceChannelUnsafe remprange V
ServiceChannelNot Admissible rempRange

This service channel may play different roles for the above change:

In the case, the change is safe and does not violate the inner condition,
the service channel may play an adaptive or verificative role.

If the service channel plays an adaptive role, the returned sets evolltemsSpec!
and evolllemsImpl! are not empty. If the service channel plays a verifica-
tive role, those sets are returned as empty sets.

As the change is local and no call conditons are to be checked, the service
channel may be realized as an internal service channel playing an adaptive
role.

As an external service channel (verificative role) it is able to point out the
parts to be changed.

In the case, the change is unsafe and violates the inner condition, it may

118

Service Channels and Maintenance Environments

play a diagnostic or verificative role depending on its realization. A di-
agnostic service channel is an internal service channel pointing out the
violated invariants if it fails to play an adaptive role.

If the service channel is not admissible, than the service channel fails.

7.3 Implementation Strategies for Service Chan-
nels

How can this above specified service channel be implemented? In section 3.5
some hints are given. Internal and External Service Channels are sketched.
This section now briefly sketches how the above service channels can be
realized.

7.3.1 Internal Service Channels

Building an internal service channel means, building a modification mecha-
nism inside the system.

A simple internal service channel for the above change would look like this:

Thermometer: :ServChan_TempRange(int 1,u){
if (1 >= -50 && u <= 50 && 1 < u)
{ change_const(range_lb, 1);
change_const(range_ub, u) }
else
{ // non admissible change request

¥
¥

This internal service channel only changes the constants holding the temper-
ature range if the change is safe. It offers no diagnostics. If the change is
safe (the inner condition holds) it performs the change.

The decision to put diagnostical functionality into this service channel if the
change request cannot be fullfilled in a safe way, it is on the descrition of
the designer of the service channel. The above code chunk of such a service
channel shows no diagnostic functionality.

An important issue is, that for some changes, recompilation of the system is
neccessary.

Implementation Strategies for Service Channels

7.3.2 External Service Channels

External Service Channels are modification mechanisms outside of the system
to maintain. Their functionality will be verificative or diagnostic service
channels.

How such service channels can be integrated in a maintenance environment
is shown in figure 7.1, which sketches the architecture of such an environment

[CvM93].

Change Tools:
Consistency Checker
Theorem Prover
Service Channel

Mundane Tools:

div. Parser,

Symboltable generator
Control-/Dataflow generator

Knowledge Tools:
Specificaton slicer
Code Slicer
Dependency Analyser
Service Channel Framework Tools:
Datenbank fir Repository

Figure 7.1: Architecture of a maintenance environment

The base of such a maintenance environment are the framework and mundane
tools. They incorporate basic functionalities like the repository or a dictio-
nary. Also several parsers and symbol table generators can be integrated.
These two layers of the architecture offer basic functionality for software
development or maintenance environments.

The repository is used for storing and managing the different types of depen-
dencies and design rationales for the system to be maintained.

The knowledge and change tools layer incorporates tools needed for specifica-
tion based maintenance using service channels, including the service channels
themselves.

The service channel now uses the information stored in the repository for
analyzing and possible supporting a requested change. It may also use the
available knowledge tools like specification or code slicers and dependency
analyzer and the available change tools for carrying out the requested change.

119

120

Service Channels and Maintenance Environments

Such an environment should also offer the possibility to define ad-hoc service
channels. Such service channel have no specific documentation in the repos-
itory. They can be defined if a requested change becomes known, they build
the neccessary dependencies on the fly (if they do not exist) and then they
analyze the change.

Such ad-hoc service channels are beyond the scope of this work.

I0S generated by tools of maintenance environment

SC described for the system in the maintenance environment

Conclusion and Further Work

In Bennett’s and Rajlich’s roadmap for software maintenance and evolution
[BROO] a life cycle model for software maintenance (cf section 3.1) and future
research directions are presented.

With respect to this life cycle model, the goal should be to keep the system
under maintenance as long as possible in the evolution stage. This means, the
system shows architectural integrity (all models of the system are available,
up to date and corresponding).

The studies referenced and presented in section 1.3 show, that the focus of
software maintenance is still the source code. Hence, most system under
maintenance quickly leave the evolution stage.

One of the research directions identified in Bennett’s and Rajlich’s roadmap
is to raise the level of abstraction of the language or model maintenance
activities happens in order to preserve architectural integrity.

This work motivates, that specification (model) based maintenance (evolution
of models of the system together with the source code) is an approach to
preserve the systems architectural integrity.

Model based maintenance means establishing a rigorous maintenance process,
that enforces change the requirements, specification and/or design models
first and propagating the change to the source code afterwards.

In this work, object model evolution was presented as our view on specification
(model) based maintenance. The model of the system we are focusing on is
the (formal) specification of the system and enforces a co-evolution of the
systems specification and implementation.

To achieve this goal, specification and implementation have to be closely

121

122

Conclusion and Further Work

related by documenting dependencies like inter-level traces (dependencies
between specification and implementation) and intra-level traces (dependen-
cies within the specification and within the source code). Various approaches
for gathering and documenting these dependencies have been preseted.

Additionally, the concept of service channels has been introduced to in-
strument specification based maintenance. Service channels provide semi-
automatic maintenance support for already anticipated changes. For such
anticipated changes, they document the necessary dependencies and provide
support in three ways:

As adaptive service channel they transform the system according to the
required change they implement. This automatic support is provided, if
the required change is not introducing any unwanted side effects.

As verificative service channels they support ripple effect analysis, change
propagation and the generation of test cases.

As diagnostic service channels (adaptive or verificative service channels
that fail) they point out why a service channel failed.

A prototype for a service channel has been sketched in this work. Two
case studies showing maintenance support by service channels have been

described.

Providing service channels for an anticipated change, requires the analysis of
the change, documentation of the required system dependencies and imple-
mentation of the service channel. The effects of these additional activities
during system development have been shown in this work.

The benefits of using service channels (or a model based maintenance ap-
proach) are the following:

When applying service channels (or a model based maintenance approach)
the systems architectural integrity is preserved and the system stays in the
evolution stage. This decreases the effort needed for system understanding.

The higher effort in development is paid back by the decreased efforts for
system understanding and maintenance activities. The same applies for
higher efforts in system documentation.

The higher efforts for system development due to additonal documentation
of dependencies and the provision of service channels can be decreased by
the usage of established, tool supported techniques like requirments tracing
or program slicing.

Open Issues and further work:

In this work the concept of service channels and a specification of a ser-
vice channel at the prototype level have been presented. Implementation
strategies for external and internal service channels have to be refined and
validated. The defintion of classes of changes and their supporting service
channels also have to be refined.

An further issue is the one, to which extent existing service channels (or
the documentations of system dependencies) may be re-used to support ad
hoc maintenance activities for not anticipated, but at some time required
changes.

123

124 Conclusion and Further Work

The Thermometer Case Study

The Thermometer example [PM98] is (a part of) a system to display the
temperature measured by a thermometer. The thermometer, as originally
designed, measures and supplies the temperature in centigrades. It covers a
range between -50 and 50 centigrades. The system can be customized to a
narrower range of temperatures (here, it is customized to -20 .. 40). The
system then displays the temperature using a two-digit display and a sign
indicating wether the temperature is below 0 or not.

A.1 OO Analysis Model

The object-oriented analysis model is described using the OMT notation
[RBP*91]. Tt consists of two classes.

Thermometer ted TempDisplay
connecte iat1:

) digtl:N
temp:N djgitZ:N
+Init() [0,n] [1,1] sign:Char
-GetTemp() +Ini

: |
+YieldTemp():N |+5nr|1té)WTemp()

Figure A.1: Temperature Display Object Model

Class Thermometer represents the interface to the physical thermometer.
The private method GetTemp() polls the physical thermometer and stores

125

126 The Thermometer Case Study

the measured temperature within the state space of the class. YieldTemp()
supplies the recently measured temperature to its caller.

Class TempDisplay stores the values for the two digits to desplay and a
sign indicating whether the temperature is below zero or not in its statspace
and is connected to one thermometer. ShowTemp() updates the display by
interrogating the connected thermometer.

A.1.1 Specification Level

The object specification in our object model is represented using Object-7
[CDD*90, DKRS91, DRS94]. Tt consists of two objects, TempDisplay and

Thermomeler.

__ Thermometer

[(INIT, Yield Temp)

temp : Z

— GetTemp
A(temp)

temp’ = ...
—20 < temp’ < 40

/* stores temperature supplied by physical thermometer */

_ YieldTemp
temp_out! : Z

temp_out! = temp

__INIT
temp =0

O(—=50 < temp < 50)

OO0 Analysis Model

__ TempDisplay
[(INIT, ShowAct Temp)
SignDigit = + | —

digit1, digit2 : 7
sign : SignDigit
themometer : Thermomeler

— ShowActTemp
A(digit1, digit2, sign)
temp : 7

—99 < temp <99
temp = thermometer. Yield Temp
temp > 0 =
(digit]” = temp mod 10
digit2" = temp div 10
sign’ = +)
lemp < 0 =
(digit]’ = —temp mod 10
digit2 = —temp div 10
sign’ = —)

__INIT
digitl = digit2 =0 A sign = +
thermometer . INIT

0(0 < digitl < 9)
0(0 < digit2 < 9)

The Thermometer-object is the interface to the physical thermometer. The
history invariant represents the temperature range of the physical thermome-
ter. GetTemp obtains the temperature from the physical thermometer and
stores it in the state variable temp, YieldTemp presents this value on re-
quest to the caller of this method. TempDisplay, for the sake of presentation
modelled as a distinct object, requests the current temperature from Ther-
mometer and prepares it for output on a two-digit display.

A.1.2 Implementation Rationale

Implementing this specification, the following points might be considered.

127

128

The Thermometer Case Study

The behaviour of both objects is restricted by some invariants. The Temp-
Display-objects invariants

A =99 < temp < 99
and
B: 0O(0 < digit] <9) A O(0 < digit2 <9)

are driven by the requirement of a two-digit display. They are interrelated
such that knowing one of them and the way to calculate the values of the
two digits (digitl, digit2), implies the other one, hence

A= B and B = A.
The Thermometer-object has the class invariant
C: O(-50 < temp < 50)

representing some physical limitations of the thermometer and the plausibil-
ity check

D: =20 < temp < 40

Implementing this specification, one notes that the value of the variable temp
in the Thermometer-object (restricted by constraint C' and D) determines
the value of the variable temp in TempDisplay (restricted by constraint A).
Thus, Thermometer.temp can be substituted for temp in C' and because
under this substitution (' is stronger than A, and furthermore D is stronger
than C' the chain of implications

(D= C)N(C=A)AN (A= B)

holds. Therefore, it is safe and efficient to check in the implementation only
for D. There is no actual need for constraints A and B to appear within the
implementation of the TempDisplay-object.

A.1.3 C+4+ like Implementation

class Thermometer {

int temp;

int range_ub, range_lb;
public:

OO0 Analysis Model 129

GetTemp() ;
int YieldTemp();
Thermometer() ;

};

int Thermometer::YieldTemp() {
return temp,

by

Thermometer: :GetTemp() {
int newtemp;

if (range_lb <= newtemp <= range_ub)
temp = newtemp

by

Thermometer: : Thermometer () {
temp = 0;
range_lb

-20;
40

range_ub

3

class TempDisplay {

int digitl, digit2;

char sign;

Thermometer thermometer;
public:

ShowActTemp () ;
TempDisplay() ;

s

TempDisplay: :ShowActTemp() {
int temp;

temp = thermometer.YieldTemp;
sign = “‘+77;

if (temp < 0) {
temp = - temp;

130

sign = ‘=’ }
digitl = temp mod 10;
digit2
i

temp div 10;

TempDisplay: :TempDisplay() {
digitl = digit2 = 0;

sign = ‘477

thermometer = new Thermometer

b

The Thermometer Case Study

The TeamCalendar Case Study

The TeamCalendar case study presents a system for organizing meetings and
meeting rooms for a small organization. An object-oriented analysis model

[Hus99] is presented as well as a formal specification.

B.1 OO Analysis Model

Date Rooms
title : String
day: N Init()
time : N AddRoom()
duration : N RemoveRoom()
+Init()
+SetDate()
+Move() [0,n]
)\ [0.1]
8 Meeting location MeetingRoom
PrivateDate
5 5 topics : seq String roomName : String
location:String conflict : Boolean [1.1] [0.n] | capacity : N
accessTime:N
- +Init() +Init()
Init() - +SetMeeting() +AddMeeting()
SetPrivateDate() +MoveMeeting() +RemoveMeeting()
Move() +CheckConflicts()
Remo_\/eFromOwner() +SetDate()
GetPrivateDate() +RemoveParticipants()
InputPrivateDate() -GetMeeting()
AddToOwner() -InputMeeting() moderates
-SetConflict() TeamMember
1.1] -ResetConflict() -Stri
-AddToModerator() 1] [o.n] ggm:r'tﬁwlg:\‘tgstr n
-AddToParticipants() P -Sting
-CheckModerator() i
o articipantes +Init
-CheckParticipants() P P +Adt?Meeting()
-RemoveFromModerator() +RemoveMeeting()
-RemoveFromParticipants() [2.n] [0.n] |+AddModMeeting()
+RemoveModMeeting()
owns +AddPrivateDate()
+RemovePrivateDate()
+Conflict()
[0,n] |+NoConflict()

Figure B.1: TeamCalender - Objectmodel

131

132 The TeamCalendar Case Study

B.2 Object-Z Specification

Char == a | b
String == seq Char

— MeetingRoom

[(INIT, AddMeeting, RemoveMeeting)

roomName : String;
capacilty @ N;
meetings : P Meeting

V' m : meelings o #m.participants < capacily

__INIT
meetings = &

AddMeeting = [true]

RemoveMeeling = [true]

_ Rooms

[(INIT, AddRoom, Remove Room)

maxcapacily : N

mazcapacily = 20

existingrooms : P MeelingRoomg

YV r: existingrooms e r.capacity < mazxcapacily

__INIT
true

AddRoom = [true]

RemoveRoom = [true]

Object-Z Specification

—_Date
title : String;
day : N;
time : N;
duration : N

__INIT

title = ()
day = 1011999
time =0

duration = (

__SetDate

Al(title, day, time, duration)
newtitle? : String;

newday? : N;

newtime? : N;
newduration? : N

title’ = newtitle?

day’ = newday?

time' = newtime?
duration’ = newduration?

— Move
A(day, time)
newday? : N;

newlime? : N

day' = newday?
time' = newtime?

133

134

_ Meeting

The TeamCalendar Case Study

[(INIT, SetMeeting, MoveMeeting, CheckConflicts, SetDate, RemoveParticipants)

Date

maxparticipants : N

mazparticipants = 10

conflict : B

topics : seq String;

moderator : TeamMember;,
participants : P TeamMember;
location : MeetingRoom;

moderator € participants
#participants < location.capacity
#participants < mazxparticipants
H#participants > 2

#topics > 0
__INIT

topics = ()

participants = &

= conflict
_ GetMeeting _InputMeeting

m!: Meeting A(topics, moderator, participants, location)

topics? : seq String;
m! = sel newtop 4 95
/ newmoderator? : TeamMember;

_SetConflict newparticipants? : P TeamMember;
A(conflict) newlocation? : MeetingRoom

= conflict #newtopics? > 0

conflict’ #newparticipants? < newlocation?.capacity
ReselConflict #newparticipants? < max[.)a.rticipants

: newmoderalor? € newparticipants?
A(conflict) ., :
topics’ = newtopics?
conflict moderator’ = newmoderator?
= conflict’ participants = newparticipants?

location’ = newlocation?

/* Class Meeting: to be cont'd */

Object-Z Specification 135

__ Meeting
/* Class Meeting: cont’d */
AddToModerator = GetMeeting § moderator. AddModMeeling[m? [newmeeling?|

AddToParticipants = /\p : participants o GetMeeting § p. AddMeeting[m? [newmeeting?]
SetMeeting = InputMeeting \ Add ToModerator /\ AddToParticipants
CheckModerator = (GetMeeting § moderator.Conflict[m?/meeting?]) A\ SetConflict

[

GetMeeting § moderator. NoConflict[m? | meeting?]

CheckParticipants = N\p : participants e
(GetMeeting § p.Conflict[m?/meeting?]) N\ SetConflict

[

GetMeeting § p.NoConflict[m? / meeling?]
CheckConflicts = CheckModerator /\ CheckParticipants
MoveMeeting = Move /\ ResetConflict
RemoveFromModerator = GetMeeling § moderator. RemoveModMeeting[m?/ meeting?]
RemoveFromParticipants = /\p : participants @ GetMeeting 3 p. RemoveMeeting[m?/meeting?]

RemoveParticipants = RemoveFromModerator A\ RemoveFromParticipants

136

— PriwvaleDate
[(INIT, SetPrivate Date, Move, Remove From Quner)
Date

The TeamCalendar Case Study

location : String;
accessTime : N;
owner : TeamMember

__INIT

true

__ (GetPrivateDate

pd! : PrivateDate

pd! = self

_ InputPrivate Date

A(location, access Time, owner)
newlocation? : String;
newowner? : TeamMember;
newaccess Time? : N

location’ = newlocation?
owner' = newowner?
accessTime' = newaccessTime?

AddToOwner = GetPrivateDate § owner.AddPrivateDate[pd? [newpd?]
SetPrivateDate = InputPrivateDate N\ AddToOwner

RemoveFromQOuner = GetPrivateDate § owner. RemovePrivateDate

Object-Z Specification 137

_ TeamMember

name : String;
department : String;
moderates : P Meeting;
participates : P Meeting;

moderates C participates

private Dates : P PrivateDate

_AddMeeting

A(participates)
newmeeting? : Meeting

newmeeting? ¢ participates
newmeeting? € participales’

_AddModMeeting

A(moderates)
newmeeting? : Meeting

newmeeting? € moderates

newmeeling? € moderates’

_ RemoveMeeling

_ RemoveModMeeting

A(participates) A(moderates)
meeting? : Meeting meeting? : Meeting

meeling? € moderates
meeting? € moderates’

meeting? € participates
meeting? ¢ participates’

_AddPrivateDate
A(privateDates)
newpd? : PrivateDate

_ RemovePrivateDate
A(privateDates)
pd? : PrivateDate

pd? € privateDates
pd? & privateDates’

newpd? & privateDates
newpd? € privateDates’

— Conflict
meeting? : Meeting;
conflict! : B

(3 m : participates o
(m.time < meeting?.time A
(m.time + m.duration) > meeting?.time) V
(m.time > meeting?.time A
(meeting?.time + meeting?.duration) > m.time))
conflict!

— NoConflict
meeting? : Meeting;
conflict! : B

(Bm : participates
(m.time < meeting?.time A
(m.time + m.duration) > meeting?.lime) V
(m.time > meeting?.lime A
(meeting?.time + meeting?.duration) > m.time))
= conflict!

138 The TeamCalendar Case Study

— TeamDateBook
[(INIT, AddMeeting, AddPrivateDate, RemoveMeeting,
RemovePrivate Date, Add TeamMember, Remove TeamMember, MoveMeeting)

dates : P | Dateg

team : P TeamMember

V pd : PrivateDate | pd € dates o pd.owner € team

V'm : Meeting | m € dates @ m.moderator € team

V'm : Meeting | m € dates o m.participants C team
Vim : team o (tm.moderates U tm.participates) C dates
Vim : team o tm.privateDates C dales

__INIT
dates = @
team = &
_AddDate _ RemowveDate
A(dates) A(dates)
newdate? : | Date date? : | Date
newdate? &€ dates date? € dates
dates’ = dates U {newdate?} dates’ = dates \ {date?}

NewMeeting = [m? : Meeting | m?.]NIT] .
m?.SetDate N\ m?.SetMeeting A\ m?.CheckConflicts

AddMeeting = NewMeeting A\ AddDate[m?/newdate?]

MoveMeeting = [m? : Meeting | m? € dates] o m?.MoveMeeting \ m?.CheckConflicts
NewPrivateDate = [pd? : PrivateDate | pd?.]N[T] e pd?.SetDate N\ pd?.SelPrivateDate
AddPrivateDate = NewPrivateDate N\ AddDate[pd?/newdate?]

MovePrivateDate = [pd? : PrivateDate |pd? € dates] e pd?.Move

RemovePrivateDate = ([pd? : PrivateDate | pd? € dates] e pd?.RemoveFromQOuner)
A RemoveDate|[pd? [date?]

RemoveMeeling = ([m? : Meeting | m? € dates] e m?.RemoveParticipants)
A RemoveDate[m?/date?]

Add TeamMember = [true]

RemoveTeamMember = [true]

Bibliography

[ACNL7]

[ASW93]

[BA96a)]

[BA9Gb)

[Bal9g]

[Bas90]

[Bax92]

[BB92a]

[BB92b]

Paulo Alencar, Donald Cowan, Torsten Nelson, and Carlos J.
Lucena. Viewpoints as an evolutionary approach to software sys-
tem maintenance. In Proceedings of the International Conference

on Software Maintenance (ICSM’97), pages 260-267, 1997.

Robert S. Arnold, Malcolm Slovin, and Norman Wilde. Do de-
sign records really benefit software maintenance. In Proceedings
of the Conference on Software Maintenance (CSM’93), pages
234-243, 1993.

Shawn A. Bohner and Robert S. Arnold. An introduction to
software change impact analysis. In [BA96b], pages 1-26. 1996.

Shawn A. Bohner and Robert S. Arnold, editors. Software
Change Impact Analysis. IEEE Computer Society Press, 1996.

R. Balzer et. al. International Workshop on the Principles of
Software Evolution (IWPSE’98), 1998.

R. V. Basili. Viewing maintenance as reuse-oriented software

development. IEEE Software, 7(1):19-25, 1990.

Ira D. Baxter. Design maintenance systems. Communications

of the ACM, 35(4):73-89, 1992,

J. P. Bowen and P. T. Breuer. Decompilation. In [van93], pages
131-138. 1992.

P. T. Breuer and J. P. Bowen. Decompilation: the enumeration
of types and grammars. Technical Report PRG-TR-11-92, Ox-
ford University Computing Laboratory, 11 Keble Road, Oxford,
UK, 1992.

140

[BBDDI7]

[BCDY5]

[Ben97]

[BGO6]

[Blu95]

[BoeT6]

[Boe88]

[Boh91]

[Boh96]

[BP97]

[BROO]

Bibliography

L. Briand, C. Bunse, J. Daly, and C. Differding. An experi-
mental comparison of the maintainability of object-oriented and
structured design documents. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’97), pages
130-138, 1997.

Alan W. Brown, Alan M. Christie, and Susan A. Dart. An exam-
ination of software maintenance practices in a u.s. government
organization. Journal of Software Maintenance: Research and

Practice, 7:223-238, 1995.

Keith H. Bennett. Software maintenance: A tutorial. In [DT97],
pages 289-303. 1997.

David W. Binkley and Keith Brian Gallagher. Program slicing.
Advances in Computers, 43:1-50, 1996.

Bruce I. Blum. Resolving the software maintenance paradox.
Journal of Software Maintenance: Research and Practice, 7:3—

26, 1995.

Barry W. Boehm. Software engineering. IEEFE Transactions on
Computers, C-25(12):1226-1241, 1976.

Barry W. Boehm. A spiral model of software development and
enhancement. [FEE Software, 31(5), 1988.

Shawn A. Bohner. Software change impact analysis for design
evolution. In Proceedings of the Conference on Software Main-

tenance (CSM’91), pages 292-301, 1991.

Shawn A. Bohner. Impact analysis in the software change pro-
cess: A year 2000 perspective. In Proceedings of the International
Conference on Software Maintenance (ICSM’96), pages 42-51,
1996.

Ira D. Baxter and Christopher W. Pidgeon. Software change
through design maintenance. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’97), pages
250-259, 1997.

Keith H. Bennett and Vaclav T. Rajlich. Software maintenance
and evolution: A roadmap. In [Fin00], pages 73-87. 2000.

Bibliography

[Bro87]

[CC90]

[CDD*90]

[CFY7]

[CHOTY9]

[CLV92]

[CM94]

[CvM93]

[CWOS]

[CYL96]

Frederick Brooks. No silver bullet — essence and accidents of

software engineering. IEEFE Computer, 20(4):10-19, April 1987.

E. Chikofski and J. H. Cross. Reverse engineering and design
recovery: A taxonomy. [EEFE Software, 7(1):24-27, 1990.

David A. Carrington, David Duke, Roger Duke, Paul King, Gor-
don A. Rose, and Graeme Smith. Object-Z: An object-oriented
extension to Z. In S. Vuong, editor, Formal Description Tech-

niques Il, FORTFE’89, pages 281-296. North Holland, 1990.

Cristina Cifuentes and Antoine Fraboulet. Intraprocedural static
slicing of binary executables. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’97), pages
188-195, 1997.

Siobhan Clarke, William Harrison, Harold Ossher, and Peri
Tarr. Subject-oriented design: Towards improved alignment
of requirements, design and code. In Proceedings of the 1jth
Annual Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA’99), 1999.
A. Cimitile, F. Lanubile, and G. Visaggio. Traceability based on

design decisions. In Proceedings of the Conference on Software

Maintenance (CSM’92), pages 309-317, 1992.

Miriam A. M. Capretz and Malcolm Munro. Software configura-
tion management issues in the maintenance of existing systems.
Journal of Software Maintenance: Research and Practice, 6:1—

14, 1994.

Ronald T. Crocker and Anneliese von Mayrhauser. Maintenance
support needs for object-oriented software. In Proceedings of the
17th Annual International Computer Software & Applications
Conference (COMPSAC’93), 1993.

Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. ACM Computing Surveys,

30(2):232-282, June 1998.
William C. Chu, Hongji Yang, and Paul Luker. A formal method

for software maintenance. In Proceedings of the International
Conference on Software Maintenance (ICSM’96), pages 206—
216, 1996.

141

142

[DBM+95]

[DBSBY1]

[Dil94]

[DKRS91]

[DP9g]

[DRS94]

[DTY7]

[EDF96]

[FBOT]

Bibliography

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. The
effect on inheritance on the maintainability of object-oriented
software: An empirical study. In Proceedings of the International
Conference on Software Maintenance (ICSM’95), pages 20-29,
1995.

P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Bal-
lard. LaSSIE: A knowledge-based software information system.
Communications of the ACM, 34(5):34-49, 1991.

Antoni Diller. 7 - An Introduction to Formal Methods. John
Wiley & Sons Inc., 1994.

R. Duke, R. King, G. Rose, and G. Smith. The Object-Z speci-
fication language. Technical Report 91-1, University of Queens-
land, Dept. of Computer Science, Software Verification Research

Centre, May 1991.

Ralf Doemges and Klaus Pohl. Adapting tracability environ-
ments to project-specific need. Communications of the ACM,

41(12):54-62, December 1998.

R. Duke, G. Rose, and G. Smith. Object-z: A specification
language advocated for the description of standards. Techni-
cal report 94-45, Software Verification Research Centre, School

of Information Technology, The University of Queensland, Bris-
bane 4072. Australia, December 1994.

Merlin Dorfman and Richard H. Thayer, editors. Software En-
gineering. IEEE Computer Society Press, 1997.

Earl F. Ecklund, Lois M. L. Delcambre, and Michael J. Freil-
ing. Change cases: Use cases that identify future require-
ments. In Proceedings of the 11th Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications

(OOPSLA’96), pages 342-358, 1996.

Xavier Franch and Pere Botella. Supporting software mainte-
nance with non-functional information. In Proceedings of the
First FUROMICRO Conference on Software Maintenance and
Reengineeering (CSMR’97), pages 10-16, 1997.

Bibliography

[FH76]

[FHLS97]

[Fin00]

[Fug00]

[FWS1]

[GF94]

[GHIV95]

[GHS92]

[GT.91]

[Got93]

[Han97]

R. K. Fjelstad and W. T. Hamlen. Application program main-
tenance study - report to our respondents. In Proceedings of

GUIDE 48, The Guide Corporation, Philadelphia, 1976.

Gary Froehlich, H. James Hoover, Ling Liu, and Paul Sorensen.
Hooking into object-oriented application frameworks. In Pro-
ceedings of the 19th International Conference on Software FEngi-
neering (ICSE’97), pages 491-501, 1997.

Antony Finkelstein, editor. The Future of Software Engineering.
ACM Press, 2000.

Alfonso Fuggetta. Software process: A roadmap. In [Fin00],
pages 27-34. 2000.

D. P. Freedman and G. M. Weinberg. A checklist for poten-
tial side effects of a maintenance change. In G. Parikh, editor,
Techniques of Program and System Maintenance, pages 93—100.
1981.

Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An anal-
ysis of the requirements traceability problem. In Proceedings
of the International Conference on Requirements Fngineering

(ICRE’94), pages 94-101, 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An
approach to regression testing using slicing. In Proceedings of
the Conference on Software Maintenance (CSM’92), pages 299-
308, 1992.

Keith Brian Gallagher and James R. Lyle. Using program slic-
ing in software maintenance. IKEFE Transactions on Software

FEngineering, 17(8):751-761, August 1991.

O. Gotel. Modelling the contribution structure underlying re-
quirements. In Workshop on Requirements Engineering: Foun-
dations for Software Quality, 1993.

Jun Han. Designing for increased software maintainability. In
Proceedings of the International Conference on Software Main-

tenance (ICSM’97), pages 278-286, 1997.

143

144

[HGK+95]

[HKOS96]

[HMF92]

[HO93]

[HPRS9]

[HRB90]

[HSE90]

[HTS96]

[Hus99]

[TEE90]

Bibliography

P. Hsia, A. Gupta, C. Kung, J. Peng, and S. Liu. A study on the
effect of architecture on maintainability of object-oriented sys-
tems. In Proceedings of the International Conference on Software

Maintenance (ICSM’95), pages 4-11, 1995.

W. H. Harrison, H. Kilov, H. L.. Ossher, and 1. Simmonds. From
dynamic supertypes to subjects: A natural way to specify and

develop systmes. IBM Systems Journal, 35(2):244-256, 1996.

Mary Jean Harrold, John D. McGregor, and Kevin Fitzpatrick.
Incremental testing of object-oriented class structures. In Pro-
ceedings of the 14th International Conference on Software Engi-

neering (ICSE’92), pages 68 — 80, 1992.

William Harrison and Harold Ossher. Subject-oriented program-
ming (a critique of pure objects). In Proceedings of the Sth
Annual Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA’93), 1993.

S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering
versions of programs. ACM Transactions on Programming Lan-

guages and Systems, 11(3):345-387, 1989.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependece graphs. ACM Transactions on Programming

Languages and Systems, 12(1):35-46, 1990.

B. Henderson-Sellers and J.M. Edwards. The object-oriented
systems life cycle. Communications of the ACM, 33(9):142 —
159, September 1990.

H. Huang, Wei-Tek Tsai, and S. Subramanian. Generalized pro-
gram slicing for software maintenance. In Proceedings of the 8th
International Conference on Software Engineering and Knowl-

edge Engineering (SEKE’96), pages 261-268, 1996.

Heinrich Hussmann. Meetingorganizer: A comprehensive but
small example for the introduction of oo concepts. In OOP-
SLA99 Workshop: Quest for Effective Classroom FEzxamples,
1999.

IEEE. Standard computer dictionary. The Institute of Electrical
and Electronic Engineers, New York, 1990.

Bibliography

[IEE91]

[Jar98]

[JE94]

[Jog95]

[Jon94]

[Kam95]

[KGH*94]

[KGH*95]

[KGH*96]

[KHOS]

[KHJ97]

IEEE. TEEE standard glossary of software engineering technol-
ogy. IEEE Std. 610.12-1990, 1991.

Mathias Jarke. Requirements tracing. Communications of the

ACM, 41(12):32-36, December 1998.

Paul C. Jorgensen and Carl Erickson. Object-oriented integra-
tion testing. Communications of the ACM, 37(9):30-38, Septem-
ber 1994.

Magne Jggensen. An empirical study of software maintenance
tasks. Journal of Software Maintenance: Research and Practice,

7:27-48, 1995.

Capers Jones. Gaps in the object-oriented paradigm. [FKEFE
Computer, 27(6):90-91, June 1994.

Mariam Kamkar. An overview and comparative classification of
program slicing techniques. Journal of Systems and Software,

31:197-214, 1995.

D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen.
Change impact identification in object-oriented software main-
tenance. In Proceedings of the International Conference on Soft-

ware Maintenance (ICSM’94), pages 202-211, 1994.

David Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi
Toyoshima. Class firewall, test order, and regression testing of
object-oriented programs. Journal of Object-Oriented Program-
ming, pages 51-65, May 1995.

D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. On re-
gression testing of object-oriented programs. Journal of Systems

and Software, 32(1):21-40, January 1996.

Hsiang-Jui Kung and Cheng Hsu. Software maintenance life cy-
cle. In Proceedings of the International Conference on Software

Maintenance (ICSM’98), 1998.

G. Aditya Kiran, S. Haripriya, and Pankaj Jalote. Effect of
object orientation on maintainability of software. In Proceed-

ings of the International Conference on Software Maintenance

(ICSM’97), pages 114-121, 1997.

145

146

[Kic96]

[KLM*+97]

[KvN*t99]

[Lee9l]

[Lee97]

[Leh80]

[Leh91]

[Leh9s]

[LH91]

[LHY6]

[LHOS]

Bibliography

Gregor Kiczales. Beyond the black box: Open implementation.
IEEE Software, 13(1):8-11, January 1996.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-
M. Lointier, and J. Irwin. Aspect-oriented programming. Parc
technical report spl97-008 p97 10042, Xerox Palo Alot Research
Center, February 1997.

B. A. Kitchenham, A. von Mayrhauser, F. Niessink, N. Schnei-
dewind, J. Singer, G. H. Travassos, S. Takada, R. Vehvilainen,
and H. Yang. Towards and ontology of maintenance. Technical

Report TR99-03, Department of Computer Science, University
of Keele, Keele, Staffordshire, ST5 5BG, UK, 1999.

Jintae Lee. Extending the potts and bruns model for record-
ing design rationale. In Proceedings of the 13th Inlernational
Conference on Software Engineering (ICSE’91), pages 114-125,
1991.

Jintae Lee. Design rationale systems: Unterstanding the issues.

IEEE Fxpert, pages 78-85, May 1997.

Meir M. Lehman. Programs, life cycles and laws of software evo-
lution. Proceedings of the IEEFE, 68(9):1060 — 1076, September
1980.

Franz Lehner. Software Wartung. Carl Hanser Verlag, M nchen,
Wien, 1991.

Meir M. Lehman. Software’s future: Managing evolution. [FEE
Software, 15(1):40-44, January 1998.

Kevin Lano and Howard Haughton. A specification-based ap-
proach to maintenance. Journal of Software Maintenance: Re-

search and Practice, 3:193-213, 1991.

Loren Larsen and Mary Jean Harrold. Slicing object-oriented
software. In Proceedings of the 18th International Conference

on Software Engineering (ICSE’96), pages 495 — 505, 1996.

Donglin Liang and Marry Jean Harrold. Slicing objects using
system dependence graphs. In Proceedings of the International

Conference on Software Maintenance (ICSM’98), 1998.

Bibliography

[Lie95]

[LMRO1]

[LMRO2]

[LPROS]

[LR9S]

[LSMO97]

[Luq90]

[LVO5]

[Mil83]

[MK93]

[MKH97]

Karl J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, 1995.

Moises Lejter, Scott Meyers, and Steven P. Reiss. Support for
maintaining object-oriented programs. In Proceedings of the
Conference on Software Maintenance (CSM’91), pages 171-178,
1991.

Moises Lejter, Scott Meyers, and Steven P. Reiss. Support for
maintaining object-oriented programs. [KEF Transactions on

Software FEngineering, 18(12):1045-1052, December 1992.

Meir M. Lehman, D. E. Perry, and J. F. Ramil. Implications
of evolutions metrics on software maintenance. In Proceed-
ings of the International Conference on Software Maintenance

(ICSM?98), 1998,

Mikael Lindvall and Magnus Runesson. The visibility of main-
tenance in object models: An empirical study. In Proceed-
ings of the International Conference on Software Maintenance

(ICSM?98), 1998,

Carine Lucas, Patrick Steyaert, and Kim Mens. Managing soft-
ware evolution through reuse contracts. In Proceedings of the
First FUROMICRO Conference on Software Maintenance and
Reengineeering (CSMR’97), pages 165-168, 1997.

Luqi. A Graph Model for Software Evolution. IEEFE Transac-
tions on Software Engineering, pages 917-927, 1990.

Filippo Lanubile and Giuseppe Visaggio. Decision-driven main-
tenance. Journal of Software Maintenance: Research and Prac-

lice, 7:91-115, 1995.

Ali Mili. A relational approach to the design of deterministic
programs. Acta Informatica, 20(4):315-328, 1983.

Roland Mittermeir and Klaus Kienzl. Intra-object schemas to
enhance adaptive software maintenance. In Austro-Hungarian
Software Engineering Seminar, 1993.

Saecko Matsuura, Hironobu Kuruma, and Shinichi Honiden.
Eva: A flexible programming method for evolving systems.

147

148

[MPRROS]

[MSPD95]

[0A93]

[OHBS94]

[OKK*96]

[Par86]

[Par94]

[PBSS]

[PJ9g]

Bibliography

IEEE Transactions on Software Fngineering, 23(4):296-313,
May 1997.

Roland T. Mittermeir, Helfried Pirker, and Dominik Rauner-
Reithmayer. Object evolution by model evolution. In Proceed-
ings of the Second FUROMICRO Conference on Software Main-
tenance and Reengineeering (CSMR’98), pages 216-219, 1998.

Simon Monk, Tan Sommerville, Jean Michel Pendaries, and
Bernard Durin. Supporting design rationale f r system evolu-
tion. In Proceedings of the 5th European Software Engineering
Conference (ESEC’95), pages 397-323, 1995.

Tomohiro Oda and Keijiro Araki. Specification slicing in formal
methods of software development. In Proceedings of the 17th
Annual International Computer Software & Applications Con-
ference (COMPSAC’93), pages 313-319, 1993.

Harold Ossher, William Harrison, Frank Budinsky, and lan Sim-
monds. Subject-oriented programming: Supporting decentral-
ized development of objects. In Proceedings of the 7* IBM Con-
ference on Ojbect-Oriented Technology, 1994.

Harold Ossher, Mathew Kaplan, Alexander Katz, William Har-
rison, and Vincent Kruskal. Specifying subject-oriented com-
position. Theory and Practice of Object Systems, 2(3):179-202,
1996.

Girish Parikh. Handbook of Software Maintenance. John Wiley
& Sons, New York, 1986.

D.L. Parnas. Software aging. In Proceedings of the 16th Inter-
national Conference on Software Engineering (ICSE’94), pages
279 — 287, 1994.

Colin Potts and Glenn Bruns. Recording the reasons for design
decisions. In Proceedings of the 10th International Conference

on Software Engineering (ICSE’88), pages 418-427, 1988.

Jens Palsberg and C. Barry Jay. The essence of the visitor pat-
tern. In Proceedings of the 22nd Annual International Computer
Software & Applications Conference (COMPSAC’98), pages 9-
15, 1998.

Bibliography

[PK9S]

[PMOS]

[PMRRIS]

[Pos94]

[Raj96]

[Raj97]

[RBP+91]

[RIBYY]

[Roy70]

[Sak94]

[SC96]

Dewayne E. Perry and Takuya Katayama. Panel: Critical issues
in software evolution. In Proc. 20th International Conference on
Software Engineering, Vol. Il page 12, 1998.

Helfried Pirker and Roland T. Mittermeir. Internal service chan-
nels - principles and limits. In Proceedings of the International
Workshop on the Principles of Software Evolution (IWPSE’98),
pages 63-67, 1998.

Helfried Pirker, Roland T. Mittermeir, and Dominik Rauner-
Reithmayer. Service channels - purpose and tradeoffs. In Pro-

ceedings of the 22nd Annual International Computer Software &
Applications Conference (COMPSAC’98), pages 204-211, 1998.

Robert M. Poston. Automated testing from object models. Com-
munications of the ACM, 37(9):48-58, September 1994.

Vaclav Rajlich. MSE: A Methodology for Software Evolution.
Journal of Software Maintenance: Research and Practice, 9:103—

124, July 1996.

Vaclav Rajlich. A model for change propagation based on graph
rewriting. In Proceedings of the International Conference on

Software Maintenance (ICSM’97), 1997.

James Rumbaugh, Michael Blaha, William Premerlani, Freder-
ick Eddy, and William Lorensen. Object-Oriented Modelling and
Design. Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley, 1999.

W. W. Royce. Managing the develpment of large software sys-
tems: concepts and techniques. In Proceedings IEEE WESCON,
pages 1-9, 1970.

Sachidanandam Sakthivel. A decision model to chose between
software maintenance and software redevelopment. Journal of
Software Maintenance: Research and Practice, 6:121-143, 1994.

P. Stocks and D. Carrington. A framework for specification-
based testing. [FEFE Transactions on Software FEngineering,
22(11):777-793, November 1996.

149

150

[Sin98]

[SMC74]

[Sne9dl]

[Spigy]

[TB99a]

[TBIYb]

[Tip94]

[TN97]

[TT92]

[van93]

[V1i98]

[Vrb97]

Bibliography

Janice Singer. Practices of software maintenance. In Proceed-
ings of the International Conference on Software Maintenance

(ICSM98), 1998.

W. P. Stevens, G. J. Myers, and L. Constantine. Structured
design. IBM Systems Journal, 13(2), 1974.

Harry Sneed. Software Wartung. Verlagsgesellschaft Rudolf M
ller GmbH, K In, 1991.

J. M. Spivey. The 7 Nolation: A Reference Manual. Prentice
Hall International, 1989.

Lance Tokuda and Don Batory. Automating three modes of evo-
lution for object-oriented architechtures. In Proc. 5th Conference

on Object-Oriented Technologies (COOTS’99), 1999.

Lance Tokuda and Don Batory. Evolving Object-Oriented Ar-
chitectures with Refactorings. Automated Software Engineering,

1999.

Frank Tip. A survey of program slicing techniques. Cs-r9438
1994, Centrum voor Wiskunde en Informatica, Amsterdam, The

Netherlands, 1994.

Eirik Tryggeseth and Oystein Nytro. Dynamic tracability links
supported by a system architecture description. In Proceed-
ings of the International Conference on Software Mainlenance

(ICSM?97), pages 180187, 1997.

Tetsuo Tamai and Yohsuke Torimitsu. Software lifetime and its
evolution process over generations. In Proceedings of the Con-

ference on Software Maintenance (CSM’92), pages 63-69, 1992.

H. van Zuylen. The REDO Compendium: Reverse Engineering
for Software Maintenance. John Wiley, 1993.

John Vlissides. Subject-oriented design. C++ Report, 10(2),
1998.

Michael P. Vrbicky. Rekonstruktion von Structure Charts und
intermodularem Datenflul aus C Quellcode. Master’s thesis,
Universitat Klagenfurt, 1997.

Bibliography

[WCMHO1]

[Wei84]

[WH91]

[WH92J

[WTCR96]

[Yip95]

[YNTLSS]

Norman Wilde, Allen Chapman, Paul Mathews, and Ross Huitt.
Describing object-oriented software: What maintainers need to
know. Technical Report SERC-TR-54-F, Software Engineering
Research Center, University of Florida, 1991.

Mark Weiser. Programm slicing. IEEFE Transactions on Software
FEngineering, SE-10(4):352-357, 1984.

Norman Wilde and Ross Huitt. Maintenance support for object
oriented programs. In Proceedings of the Conference on Software

Maintenance (CSM’91), pages 162-170, 1991.

Norman Wilde and Ross Huitt. Maintenance support for object-
oriented programs. IFEFE Transactions on Software Engineering,

18(12):1038-1044, December 1992.

Yamin Wang, Wei-Tek Tsai, Xiaping Chen, and Sanjai
Rayadurgam. The role of program slicing in ripple effect analy-
sis. In Proceedings of the 8th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’96), pages
369-376, 1996.

Stephen W. L. Yip. Software maintenance in hong kong. In
Proceedings of the International Conference on Software Main-

tenance (ICSM’95), pages 88-97, 1995.

S. S. Yau, R. A. Nicholl, J. J. Tsai, and S. Liu. An Integrated
Life-Cycle Model for Software Maintenance. IEFEFE Transactions
on Software FEngineering, 15(7):58-95, 1988.

151

