
Conceptual modeling for configuration of mass-
customizable products

Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach1

Universität Klagenfurt

Institut für Wirtschaftsinformatik und Anwendungssysteme

Computer Science and Manufacturing Research Group

Universitätsstraße 65, A-9020 Klagenfurt, Austria

Email: dietmar@ifit.uni-klu.ac.at

Tel: +43 (0) 463 2700 3757

Fax: +43 (0) 463 2700 3799

Abstract. The development and maintenance of product configuration
systems is faced with increasing challenges caused by the growing
complexity of the underlying knowledge bases. Effective knowledge
acquisition is needed since the product and the corresponding configuration
system have to be developed in parallel. In this paper we show how to
employ a standard design language (Unified Modeling Language - UML)
for modeling configuration knowledge bases. The two constituent parts of
the configuration model are the component model and a set of
corresponding functional architectures defining which requirements can be
imposed on the product. The conceptual configuration model is
automatically translated into an executable logic representation. Using this
representation we show how to employ model-based diagnosis techniques
for debugging faulty configuration knowledge bases, detecting infeasible
requirements, and for reconfiguring old configurations.

Keywords. Product Configuration, Conceptual Modeling, Knowledge
Acquisition, Diagnosis.

Introduction

Product configuration systems play an important role in the support of the
mass customization paradigm [20]. The increasing complexity and size of
configuration knowledge bases requires the provision of advanced methods
supporting the configurator development process as well as the actual
configuration process. Informally, configuration can be seen as a design
activity, where the configured product is built from a predefined set of

1 Contact author

component types that can be parameterized and interconnected on pre-
enumerated connection points. Additional constraints are used to restrict the
number of legal product constellations.

There exists a variety of application areas for product configuration systems,
e.g., in the computer industry (PC configuration), telecommunication
industry (configuration of switching systems), or automotive industry (car
sales configuration).

Figure 1 shows the three main components of our proposed configuration
environment. Knowledge acquisition is done using configuration domain
specific modeling concepts represented as UML stereotypes [8]. UML [24]
is a conceptual modeling language, which is widely applied in industrial
software development processes. This notation is similar to OMT diagrams
(Object Modeling Technique) [23] and is easy to understand and
communicate to domain experts. The resulting models are automatically
translated into a logical representation executable by a configuration engine.
After having designed and translated the configuration model (knowledge
acquisition), the resulting configuration knowledge base has to be validated.
We support this task in our framework using model-based diagnosis
techniques: Given positive and negative configuration examples (that can in
turn be modeled on the conceptual level and transformed to a logical
representation) we identify parts of the resulting knowledge base causing an
unexpected behavior of the configuration system. The outcome of this
validation phase is a set of logical sentences from the generated knowledge
base that have to be revised in order to correct the knowledge base. Note,
that these results can be easily related to the pieces of knowledge from the
(graphical) conceptual model. Therefore, the adaptation of the configuration
knowledge can be done again on the conceptual level.

���������
	
��
�
�
��

����
�����
�� ��
���
�����
��

��������	��
�
�	�
����������

�
�
���

��	��
��
����

�������

��	��
��
����

�
�
�
����
�
���

�
�
���

������	���

	���������

�����	�

��
�

�
����
�
���

�
���
�
�
����
�
���

�
�
���

������	���

	���������

�����	�
�	��

	���������	�

�
�����
�

Figure 1 Configuration environment

Once the knowledge base is validated and deployed in productive use, there
may be situations where no solutions can be computed for a set of actual
customer requirements. In such situations, our configuration and diagnosis

framework helps us to identify those parts of the user requirements
prohibiting the successful configuration of the product. Finally, when given
an already installed system and changed user requirements, the diagnosis
techniques help us insofar that we are able reconfigure the system such that
the new customer requirements can be satisfied.

Note that we defined a clear correspondence between the conceptual model
and the logical representation. Therefore the inputs for the diagnostic
reasoning can be mostly defined on the conceptual level, i.e., as UML
diagrams containing configurations that are represented as instance
diagrams. In addition, also the outcomes of the diagnostic reasoning can be
traced back to those conceptual models.

The paper is organized as follows. Based on the modeling concepts
presented in [8] we give an example for the construction of a conceptual PC
product model. We extend the set of modeling concepts by introducing the
notion of functional architectures from Mittal and Frayman [18] in order to
explicitly design functional structures [2], which are relevant for the
specification of (customer) requirements. In most cases customers are not
interested in the detailed product topology but rather specify a set of
functions the product must provide. In the line of [8] functional
architectures are represented as UML stereotypes in the conceptual
configuration model in the next section. Afterwards, we give a formal
definition of a configuration task based on the definitions of [12] which is
the formal foundation for knowledge acquisition and the integration of the
diagnosis techniques. The final sections show how the different pieces of
knowledge involved in the configuration task (product model, user
requirements, and configuration results) can be analyzed using consistency-
based diagnosis techniques. The paper ends with related work in the field
and conclusions.

Concepts for modeling configuration knowledge bases

For presentation purposes we introduce a simplified (partial) UML model of
a configurable personal computer (PC) as a working example. This model
represents the generic product structure, i.e. all possible variants of the
product. The set of possible products is restricted through a set of
constraints which are related to (customer) requirements, technical
restrictions, economic factors, and restrictions according to the production
process.

Figure 2 shows how UML is embedded into a four-layer architecture. The
UML metamodel, i.e. the modeling concepts provided in UML are defined
in MOF (Meta Object Facility) [5], which provides the concepts for
designing metamodels in general. Using the concepts provided by UML,
concrete schemas such as the configuration model in Figure 3 can be
designed. A concrete configuration (result of the configuration process)
represents an instance of a schema.

��������������
02)��PRGHO�HOHPHQW

���������
80/�

FODVV�
&RPSRQHQW7\SH

LV�LQVWDQFH�RI

�
����
80/�

&RPSRQHQW7\SH�
KG�XQLW

LV�LQVWDQFH�RI

������
�������
80/��FRPSRQHQWV�
K�
��
K�
�RI

W\SH�
KG�XQLW

LV�LQVWDQFH�RI

Figure 2 Integration of UML in a metamodel architecture

The basic means for defining additional modeling concepts inside UML is
the introduction of a profile. A profile specializes the basic UML concepts
(e.g. classes, associations, dependencies) for a specific domain by defining
constraints on these concepts (definition of stereotypes). For the
configuration domain we define special sets of classes (component types,
resource types, function types, and port types are specializations of the UML
concept ‘class’), associations (incompatible, is_connected), and
dependencies (requires, produces, consumes), which are useful for
designing configuration models.

In order to make the resulting configuration models executable, we propose
a translation into the component port representation ([7], [12], [18]), which
is well established for representing and solving configuration problems. The
semantics of the different modeling concepts are formally defined by the
mapping of the graphical notation to logical sentences based on the
component port model. In general, consistency-based tools based on this
component-port model can use the logic theory derived from the UML
model although some transformation to the proprietary notation of a specific
tool may have to be done. The following concepts are the basic parts of the
ontology employed for designing configuration models (compare, e.g.,
[25]). Note, that we interpret ontologies in the sense of [3], i.e., ontologies
are theories about the sorts of objects, properties of objects, and relations
between objects that are possible in a specified domain of knowledge.
Component types. They represent parts the final product can be built of.
Component types (e.g., component type server-os in Figure 3) are
characterized by attributes that have a predefined domain of possible values.

Function types. They are used to model the functional architecture of an
artifact. Similar to component types they can be characterized by attributes
(see Figure 4).

Resources. Parts of a configuration problem can be seen as a resource-
balancing task, where some of the component (function) types produce
some resource and others are consumers (e.g. the hd-capacity is a resource
produced by hard-disks and consumed by software units).

Generalization. Component (function) types with a similar structure are
arranged in a generalization hierarchy (e.g. a server-os is either a server-os-
1 or a server-os-2).

Aggregation. Aggregations between components (functions) represented by
part-of structures describe a range of how many subparts an aggregate can
consist of (e.g. cpu is part of motherboard).

KG�FDSDFLW\
��5HVRXUFH!!

VHUYHU�RV��
��&RPSRQHQW7\SH!!

LGH�XQLW
��&RPSRQHQW7\SH!!

���

VFVL�GLVN

��&RPSRQHQW7\SH!!

VFVL�XQLW
��&RPSRQHQW7\SH!!

��������

VFVL�FRQWUROOHU

��&RPSRQHQW7\SH!!

��������

DW�EXV�VORW
��3RUW!!

SFL�FRQQHFWRU
��3RUW!!

��������

PRWKHUERDUG��

��&RPSRQHQW7\SH!!

��

SFL�VORW
��3RUW!!�������� ��������

��LV�FRQQHFWHG!!

��
VHUYHU�RV��

��&RPSRQHQW7\SH!!

YDOXH ���
��FRQVXPHV!!

FSX����
��&RPSRQHQW7\SH!!

PRWKHUERDUG��
��&RPSRQHQW7\SH!!

FSX����
��&RPSRQHQW7\SH!!

PRWKHUERDUG��
��&RPSRQHQW7\SH!!

��UHTXLUHV!!

��LQFRPSDWLEOH!!

SHQW�,
��&RPSRQHQW7\SH!!

SHQW�,,
��&RPSRQHQW7\SH!!

��UHTXLUHV!!

��UHTXLUHV!!

��� ���

YDOXH ����
��SURGXFHV!!

FSX

��&RPSRQHQW7\SH!!

IORSS\�XQLW

��&RPSRQHQW7\SH!!

KG�XQLW
��&RPSRQHQW7\SH!!

PRWKHUERDUG
��&RPSRQHQW7\SH!!

��������

URRW
��5RRW&RPSRQHQW7\SH!!

YDOXH ���

��FRQVXPHV!!

��UHTXLUHV!!

SF
��&RPSRQHQW7\SH!!

��������

��������
��������

VHUYHU�RV

EXLOW���'DWH

��&RPSRQHQW7\SH!!

1..11..1

Figure 3 Conceptual product model

Connections and ports. In addition to the amount and types of the
different components also the product topology may be of interest in a final
configuration, i.e. how the components are interconnected with each other
(e.g. a pci-connector is connected to a pci-slot).

Compatibility relations. Some types of components (functions) cannot be
used together in the same final configuration, because they are incompatible
(e.g. motherboard-2 is incompatible with cpu-586). In other cases, the
existence of one component (function) requires the existence of another
special type in the configuration (e.g. server-os-2 requires motherboard-1).

Additional modeling concepts and constraints. Constraints on the product
model, which cannot be expressed graphically, are formulated using the
language OCL (Object Constraint Language), which is an integral part of
UML. As it is done for the graphical modeling concepts, OCL expressions
are translated into a logical representation executable by the configuration
engine [9].

As an example an OCL constraint on the product model could be:

context PC inv:
self.hd.isOclTypeOf(scsi-unit) implies

self.floppy-unit->size = 1.

The constraint states that if the connected hard disk unit is of type scsi-unit
then the number of connected floppies must be equal 1. The Object
Constraint Language shows to be applicable to describe constraints on legal
product constellations in a standardized declarative manner. The main
features of the language are attribute access, navigation over associations
(e.g., self.floppy-unit) resulting in collections of the connected
instances, predefined operations on all types (isOclTypeOf), operations on
collections (size), as well as logical (implies) and arithmetical operators.

The discussed modeling concepts have shown to cover a wide range of
application areas for configuration [19]. Despite this, some application areas
may have a need for special modeling concepts not covered so far. In order
to introduce a new modeling concept a new stereotype has to be defined. Its
semantics for the configuration domain must be defined by stating the facts
and constraints induced to the logic theory when using the concept.

Functional configuration knowledge. Typical configuration knowledge
incorporates a structural and a functional product architecture which are
interrelated through a mapping from functions to components as described
in [18]. While the structural architecture resembles partonomies and
taxonomies of physical components, in many situations we want to have
another more customer and functionality oriented view on the configurable
artifact: The product is therefore modeled in terms of functionality or
features that can be offered to and selected by the customer. Consequently,
the language for the conceptual models is extended with capabilities
(function types) to model this structure called the functional architecture
[18]. Accordingly, the product can be described through a partonomy and
taxonomy of functions that can again be characterized by attributes. The two
views on the product (structural and functional) are interrelated through a
"many-to-many" mapping between functions and physical components,
whereby this mapping can be expressed through dependencies (requires) or
additional constraints. Figure 4 shows the functional structure (with dimmed
fill color) and the relations to the physical components of the structural
model.

LGH�XQLW

��&RPSRQHQW7\SH!!

VFVL�XQLW

��&RPSRQHQW7\SH!!
FSX����

��&RPSRQHQW7\SH!!

FSX����

��&RPSRQHQW7\SH!!

FSX

��&RPSRQHQW7\SH!!

KG�XQLW

��&RPSRQHQW7\SH!!

High-Capacity storage
<<FunctionTy pe>>

Low-capacity storage
<FunctionTy pe>>

Data storage Function
<FunctionTy pe>>

PC-Functions
<<FunctionTy pe>>

1..11..1

Mulitmedia-Capability
<<FunctionTy pe>>

0..10..1

<<requires>>

<<requires>>

<<requires>>

Figure 4 Functional product model

Structuring mechanisms. In case the conceptual models of the product
(both structural and functional) are large and complex we utilize different
mechanisms to cope with this complexity: First, the built-in packaging
mechanism of the UML can be used to partition the model. Second, we can
define different views (graphical depictions) on the underlying model beside
the functional view, e.g., a connection-oriented view or a view on a certain
substructure of the product. Finally, the usage of contextual diagrams can
reduce the complexity of those complex product models (see [10]).

Automated knowledge base construction
Our framework of knowledge acquisition of configuration knowledge and
the integration of diagnosis techniques relies on a general logical model of
the configuration problem. This formalization allows us to define the
semantics of the individual concepts of our modeling notation (UML) by
giving translation rules from the conceptual level to the logic representation.
In addition, the precise semantics that are provided by using first-order
predicate logic as representation mechanism allows us to transform the
conceptual models into the representation of other existing commercial
configuration tools. Finally, basing on the analogy of the logic theory of
configuration and a logic theory of the diagnosis task [21], we can easily
integrate those techniques within our framework.

In practice, configurations are built from a predefined catalog of component
types of a given application domain. Furthermore, the configuration task is
characterized by a set of functional architectures, which specify the
functional composition of the configurable artifact [12]. The set of function
types can be seen as a special form of component types; from the viewpoint
of the computation of configurations, the discrimination of function types

and component types is not relevant. Component types as well as function
types are described through a set of properties (attributes) with a predefined
domain, and connection points (ports) representing logical or physical
connections to other components.

We describe a configuration problem in terms of a set of logical sentences:

• A domain description (DD) containing information about the
component types, their properties, ports and constraints on legal
product constellations;

• a description of the specific user requirements (SRS), whereby the
configuration problem has to be solved to conform to these
requirements, and

• a set of predicate symbols (CONL) that can be used within the
constraints from DD and are employed to describe configuration
results. In our examples we will use the predicates type/2, conn/4,
and val/3 to describe the individual components, the attribute
valuations and the connections between the component instances.

In our example, the predicate symbols in CONL are the type, conn, and val
predicates. A fact type(c,t) assigns one of the given types to a component
identification c, conn(c1,p1,c2,p2) represents a connection between
components c1 and c2 via the ports p1 and p2, and the fact val(c,a,v)
describes the valuations of attribute a of a component c with the value v.

Definition (Configuration Problem): In general we assume a configuration
problem is described by a triple (DD, SRS, CONL) where DD and SRS are
sets of logical sentences and CONL is a set of predicate symbols.

DD represents the domain description (or configuration knowledge base),
and SRS specifies the particular system requirements, which define an
individual configuration problem instance. A configuration CONF is
described by a set of positive ground literals whose predicate symbols are in
the set CONL. �

Definition (Consistent Configuration): Given a configuration problem
(DD, SRS, CONL), a configuration CONF is consistent iff DD ∪ SRS ∪
CONF is satisfiable. �

These definitions allow for determining the consistency of configurations,
but in order to ensure the completeness, we have to add specific
completeness axioms for each predicate symbol in CONL, e.g.:

type(X,Y) ⇒ ∨ Z∈ CONF type(X,Y) = Z.
conn(V,W,X,Y) ⇒ ∨ Z∈ CONF conn(V,W,X,Y) = Z.
val(V,A,C) ⇒ ∨ Z∈ CONF val(C,A,V) = Z.

We will denote a configuration CONF fulfilling these completeness axioms
by CONF .

Definition (Valid Configuration): Let (DD, SRS, CONL) be a
configuration problem. A configuration CONF is valid iff DD ∪ SRS ∪
CONF is satisfiable. �

Furthermore, the domain description DD contains a set of application-
independent axioms CBasic, ensuring that e.g., connections are symmetric
and one port can only be connected to one other port. For a formal
exposition, see e.g., [12] or [7].

Having defined a logical model of configuration and given a notation for
representing configuration knowledge on a conceptual level, we can derive
the configurator knowledge base (DD) automatically by providing
deterministic transformation rules.

The part of the knowledge base describing the product structure can be
derived from the part-of structure of the conceptual model whereby the
aggregate associations are mapped to the component-port representation.
The available types, their attributes and connections are described by the
types, ports, and attrs functions in DD (see below).

Furthermore, the additional constraints (like the requires) relations can be
transformed and added to DD. As an example the constraint "motherboard-2
incompatible with CPU-586" from Figure 3 is represented in the domain
description as named constraint:

Constraint C1: "cpu-586 incompatible motherboard-2"

type(ID1, CPU-586) ∧ type (ID2, motherboard-2) ∧
 conn(ID1, motherboard-port, ID2, cpu-port) ⇒ false.

The next listing contains a part of the (generated) knowledge base for our
PC example:

DD = {
types = {pc, floppy-unit, hd-unit, scsi-unit, multimedia-
 capability, ... }.
ports(pc)={floppy-unit-1, floppy-unit-2, hd-unit,
 motherboard}.
ports(floppy-unit) = {pc}.
ports(motherboard) = {pc,cpu}.
attrs(server-os) = {built}.
...

 } ∪ CBasic ∪ {C1}

For a detailed exposition on the transformation rules, see [8] and [9].

For the calculation of a configuration problem, the specific user
requirements can be given in terms of a listing of key components or in
terms of a set of additional constraints (logical sentences) that have to hold
for the configuration. As an example, the user might specify the requirement
of having a CPU of type cpu-586 in the configuration by the following
sentence:

SRS = { ∃ P,M,C: type(P,pc) ∧ type(C,cpu-586) ∧ type(M,motherboard-1
 ∧ conn(P,motherboard,C,pc) ∧ conn(C,motherboard,M,cpu))
}

A configuration result CONF can be expressed as a set of ground literals
using the predicates from CONL. A part of the configuration result for our
example problem could be

CONF = {
type(p1, pc).
type(f1, floppy-unit).
type(f2, floppy-unit).
type(m1, motherboard-1).
type(c1, cpu-586).
type(s1, server-os-1).
...
conn(p1,floppy-unit-1,f1,pc).
conn(p1,floppy-unit-2,f2,pc).
conn(p1,motherboard,m1,pc).
conn(m1,cpu,c1,motherboard).
...
val(s1,built,"01-02-2000"). }

One additional important point of the automatic generation of the
knowledge base (DD) is the tight correspondence to the original conceptual
model by e.g., using the same names for component types and attributes and
the naming for the generated constraints.

Note, that we can represent the both partial configurations, which may
represent the user requirements in terms of key components [18] and the
configuration result in terms of UML diagrams, i.e., configurations
correspond to object diagrams (instance models, see Figure 2).

p1:pcf1:floppy-unit

c1:cpu-586

m1:motherboard-1 s1:server-os-1

built=01-10-2000

f2:floppy-unit

Figure 5 UML Instance diagram

Figure 5 shows a partial configuration expressed in terms of an UML object
diagram. Using the transformation rules we can derive sets of logical
sentences for SRS and CONF respectively, whereby this transformation is
fairly straightforward because only simple type, conn and val facts have to
be generated.

In the next section we will show how we can utilize consistency-based
diagnosis techniques for validation and debugging purposes as well as a
supporting mechanism during the deployment phase of the configuration
system.

Diagnosing the knowledge base
In order to validate the knowledge base generated from the UML
configuration model after the initial setup or after modifications, the domain
expert or the knowledge engineer provides positive and negative examples,
i.e., examples for configurations, which should be accepted by the
knowledge base resp. not accepted by the knowledge base (see Figure 6).
These example configurations play the role of "test cases" in standard
Software Engineering validation processes. We denote the set of positive
examples as E+ , the set of negative examples as E−. All e+ ∈ E+ must be
consistent with the knowledge base, all e− ∈ E− must be inconsistent with
the knowledge base. Note that examples can be partial configurations (e.g.
some components, connections, or attributes are missing) and complete
configurations as well.

If some e+ are inconsistent with the knowledge base, the question must be
answered, which set of constraints must be eliminated for making the
knowledge base accepting those e+. Additionally we have to find an
extension EX such that the knowledge base does not accept any e−

 ∈ E−.

The two example sets serve complementary purposes. The goal of the
positive examples in E+ is to check that the knowledge base will accept
correct configurations; if it does not, i.e. a particular positive example e+
leads to an inconsistency, we know that the knowledge base currently is too
restrictive. Conversely, a negative example serves for checking the
restrictiveness of the knowledge base; negative examples correspond to real-
world cases that are configured incorrectly, and therefore a negative
example that is accepted means that a relevant condition is missing in the
knowledge base.

In the line of consistency-based diagnosis, an inconsistency between DD
and the positive examples means that a diagnosis corresponds to the
removal of possibly faulty sentences from DD such that the consistency is
restored. Conversely, if that removal leads to a negative example e−
becoming consistent with the knowledge base, we have to find an extension
that, when added to DD, restores the inconsistency for all such e−. Figure 6
shows an overview of the approach of consistency-based diagnosis of the
configurator knowledge base.

�����
�

���
�
��

���
�����
��
� �������!"�#

����$
�

�����
��

���
�����
��
� �������!"�#

%��������
&����!��#FRQVLVWHQW

EXW��LQFRQVLVWHQW

LQFRQVLVWHQW

EXW��FRQVLVWHQW

�
� �

�
'''

�(�(('''

�
�������)
�

�
*�'''

GHOHWH

� ����
���)
�(*��((DGG

Figure 6 Consistency-based diagnosis of the knowledge base

Definition (CKB Diagnosis Problem): A CKB-Diagnosis Problem
(Diagnosis Problem for a Configuration Knowledge Base) is a triple (DD,
E+ , E−) where DD is a configuration knowledge base, E+ is a set of positive
and E− a set of negative examples. The examples are given as sets of logical
sentences. We assume that each example on its own is consistent. �

Definition (CKB Diagnosis): A CKB diagnosis for a CKB-Diagnosis
Problem (DD, E+, E−) is a set S ⊆ DD of sentences such that there exists an
extension EX, where EX is a set of logical sentences, such that
 DD - S ∪ EX ∪ e− is consistent ∀ e+ ∈ E+ ,
 DD - S ∪ EX ∪ e− inconsistent ∀ e− ∈ E− . �

A diagnosis S will always exist under the reasonable assumption that the
positive and the negative examples do not interfere with each other.

Proposition: Given a CKB-Diagnosis Problem (DD, E+, E−), a diagnosis S

for (DD, E+, E−) exists iff

 ∀ e+ ∈ E+ : e+ ∪ ∧ e− ∈ E− (¬ e−) is consistent. �

From here on, we will refer to the conjunction of negated negative examples
as NE, i.e., NE = ∧ e− ∈ E− (¬ e−)

The last proposition however, lets us find a characterization of diagnoses
without the explicit specification of these extensions.

Corollary: S is a diagnosis iff ∀ e+ ∈ E+ : DD − S ∪ e+ ∪ NE is consistent.

For the computation of such diagnoses (explanations of unexpected
behavior of the configurator) we can adapt the standard hitting set algorithm
from model-based diagnosis [21]. For focusing purposes, the concept of
conflict sets is defined as follows:

Definition (Conflict set): A conflict set CS for (DD, E+, E−) is a set of
elements of DD such that ∃ e+ ∈ E: CS ∪ e+ ∪ NE is inconsistent. We say
that, if e+ ∈ E+ : CS ∪ e+ ∪ NE is inconsistent, that e+ induces CS. �

For the collection F of conflict sets for (DD, E+, E−) a directed acyclic graph
for the computation of the minimal hitting sets (HS-DAG) is constructed in
breadth-first manner [21]. The nodes are labeled with conflict sets from F
(containing conflicting constraints), edges leading away are labeled with
elements from the conflict set of the node. At each node, the theorem prover
(in our case the configuration engine) is called to test whether the positive
examples are consistent with the examples and can be completed to working
configurations, if we eliminate all constraints on the path from the root node
to the current node from the knowledge base (DD) and add the negated
negative examples. The breadth-first construction leads to the effect that
diagnosis are computed in order of their cardinality and additional tree
pruning techniques can be employed to reduce the search complexity.

For a detailed exposition of the computation of CKB-diagnoses, see [7].

The outcome of the diagnostic processes is a set of diagnoses that explain
the unexpected behavior of the configurator. Each diagnosis contains a set
of constraints from DD that have possibly to be revised (or to be canceled)
in order to repair the knowledge base.

Note, that these constraints from DD were automatically generated and were
given appropriate names. Therefore, these results are strongly related to the
original conceptual product model. One can imagine that when a tool for
graphical knowledge acquisition is used, we could highlight those faulty
chunks of knowledge in the graphical depiction and repair can be done on
this level in the best case. At least, the name and the description of the
involved constraints, e.g., "Constraint C1 : cpu-586 incompatible
motherboard-2" can be returned to the test engineer as a hint where to focus
his/her debugging efforts.

For the definition of the positive and negative examples we can also use
instance diagrams that represent partial or complete configurations.
Consequently, these examples are easy to understand and communicate to
domain experts. Finally, the positive examples do not need to be specified
by hand but can be existing configurations from former configuration runs
that still have to be consistent with the altered knowledge base.

Diagnosis of requirements and reconfiguration
support

Diagnosing user requirements
Even once the knowledge base has been tested and corrected, diagnosis
techniques can play a significant role in the configuration process. Instead of
an engineer testing an altered (extended or updated) knowledge base, we are
now dealing with an end user (customer or sales representative) who is
using the tested knowledge base for configuring actual products. Such users
frequently face the problem of requirements being inconsistent because they
exceed the feasible capabilities of the system to be configured. In such a
situation, the diagnosis approach presented here can now support the user in

finding which of his/her requirements produces the inconsistency. Formally,
the altered situation can be easily accommodated by swapping requirements
and domain description in the definition of CKB diagnosis. Formerly, we
were interested in finding particular sentences from DD that contradicted the
set of examples. Now we have the user’s system requirements SRS, which
contradict the domain description (see Figure 7). The domain description is
used in the role of an all-encompassing partial example for correct
configurations.

�����
�

����
�������
!���#

���
�����
%��������
&����!��#FRQVLVWHQW�

EXW��LQFRQVLVWHQW �
�
*
�
�

�
*�'''

�
�������) �
�
*�'''

GHOHWH

Figure 7 Diagnosing user requirements

Definition (CREQ Diagnosis Problem): A configuration requirements
diagnosis (CREQ-Diagnosis) problem is a tuple (SRS,DD), where SRS is a
set of system requirements and DD a configuration domain description. A
CREQ Diagnosis is a subset S ⊆ SRS such that SRS− S ∪ DD is consistent.
�

Definition (CREQ Conflict Set): A conflict set CS ⊆ SRS for (SRS, DD) is a
set, such that CS ∪ DD is inconsistent. �

Reconfiguration support
There is an increasing demand for software supporting after-sales activities
in various application domains [16]. Especially the need for supporting
reconfiguration of product individuals, i.e., the modification of a concrete
product instance in order to meet the new requirements, is an open research
area. These new requirements arise e.g., when a customer wants to upgrade
the existing system to provide new or altered functionality or when parts of
the existing system are broken and have to be replaced by a newer version
of that component, because the original components are no more available.

When comparing reconfiguration with configuration, the main difference
lies in an existing product which mainly influences the process of
reconfiguration. Given that the customer requirements have changed (or
there are new regulations defined in the knowledge base), the goal of the
reconfiguration process is to compute a configuration, where most parts of
the existing configuration can be preserved, i.e., the number of needed
changes (changes of parameters and connections or removal of components)
is minimized. Beside the minimization of the number of needed changes the
reconfiguration process can be guided by other optimization functions, e.g.,
the different types of changes may be associated with different costs, i.e., a
change in the parameters may be cheaper than exchanging a whole

component. Finally, an optimization criterion may lie in the number (and the
associated costs) of the components that have to be added in order to
provide the additional functionality.

Within our framework we can utilize diagnosis techniques to support the
reconfiguration process as follows: Typically, a description of the existing
configuration (CONF) is given that is not consistent with the altered user
requirements (SRS) and the domain description (DD). Reconfiguration is
performed as follows: If we cannot extend the existing configuration to cope
with the new requirements, we search for a set of parts of the existing
configuration that have to be removed (or exchanged) such that the
remaining existing configuration can be completed in a way the new
requirements are fulfilled. Since we are trying to find "minimal" or
"suitable" (with respect to the objective function) sets of parts to be
removed, we have the effect that in the reconfiguration process we try to
preserve most of the existing system. Obviously, we could start a new
configuration from scratch with the new requirements, but this would
possibly lead to a complete different configuration where none of the
existing parts can be reused.

Figure 8 depicts the integration of diagnosis for the reconfiguration support
schematically.

�����(
�

���
����
�������

!���(#

���
�����
%��������
&����!��#
�

�
* �

�
'''

�
�������)
+�
�

�
*�'''

���

���
�����
��

!�,$+#
+�
�

�
*�+�
�

�
*�'''

FRQVLVWHQW�

EXW��LQFRQVLVWHQW

GHOHWH

Figure 8 Diagnosis for reconfiguration

Within our logical framework for configuration and diagnosis, we can
define the reconfiguration problem as follows.

Definition (Reconfiguration Problem): A reconfiguration problem is a
quadruple (DD, SRS, CONL, CONF), where (DD, SRS, CONL) is a
configuration problem, whereby SRS contains the altered requirements, and
CONF represents the existing configuration using the predicates from
CONL. A reconfiguration problem arises if DD ∪ SRS ∪ CONF is
inconsistent. �

Note, that SRS may not only contain the new customer requirements but in
addition those parts of the existing configuration that should definitely not
be changed. This situation may be given, if it is known before the
reconfiguration process, that the exchange of certain parts will definitely not

result in a suitable reconfiguration, e.g., exchanging some key parts which
would cause too high costs.

We define the concept of Reconfiguration Diagnosis and Reconfiguration
Solution as follows.

Definition (Reconfiguration Diagnosis): Given a Reconfiguration Problem
RP (DD, SRS, CONL, CONF), a Reconfiguration Diagnosis is a set S ⊆
CONF, such that CONF− S ∪ DD ∪ SRS is consistent.

Every solution to the configuration problem (DD, SRS ∪ (CONF − S),
CONL) is a reconfiguration solution for RP. �

Given this definition, in principle every solution to the configuration
problem (DD, SRS, CONL) is a valid reconfiguration solution. Therefore, a
reconfiguration solution will always exist under the assumption that in the
worst case all elements from CONF are contained in the reconfiguration
diagnosis.

For the computation of reconfiguration diagnosis, we can again use the
adapted hitting set algorithm from [21]. Conflict sets are (minimal) subsets
from CONF that together with DD ∪ SRS cause a contradiction. During the
HS-DAG construction it is tested whether the remaining parts of the existing
configuration can be completed to a working configuration that satisfies the
user requirements. Depending on the application domain, each time a
reconfiguration diagnosis is identified we can store one, all, or the "optimal"
reconfiguration solution (with respect to some objective function) and apply
e.g., a branch-and-bound optimization algorithm.

In many application domains of configuration where the products are very
complex (e.g., telecommunication switches [11]) it is not always feasible to
compute "optimal" solutions, but the goal is to come up (possibly guided by
heuristics) with a "good" or "suitable" solution. Accordingly, when
searching for reconfiguration alternatives the user may be satisfied, when a
set of "suitable" alternative configurations is calculated. The search space
for reconfiguration alternatives can be reduced by limiting the search depth
or by reducing the search for reconfiguration diagnosis to parameters and
connections; Furthermore we assume that in typical reconfiguration
problems only a small part of the existing configuration has to be revised,
i.e., the cardinality of the diagnoses is rather small compared to the size of
CONF. However, in cases the reconfiguration diagnoses will have a higher
cardinality, additional techniques like hierarchical abstraction to reduce the
search complexity may be applied. Finally, we can employ a heuristics-
driven search algorithm where the diagnoses are not generated in order of
their cardinality which is the effect of the breadth-first construction of the
HS-DAG in [21]. Having in mind that in many cases we are only interested
in suitable diagnoses and solutions, the side effect of having non-minimal
diagnoses will be tolerable, since these solutions can be computed
efficiently.

Related work
The formalization of the semantics of conceptual design languages like
UML is an actual research topic. Automated generation of logic-based
descriptions through the translation of domain-specific modeling concepts
expressed using the concepts of a standard design language has not been
discussed so far. The focus of automated and knowledge-based software
engineering [15] is automated software reuse, where program construction is
realized reusing existing software libraries. In [1] a formal semantics for
object model diagrams based on OMT [23] is defined in order to support the
assessment of requirement specifications.

Architecture description languages (ADLs) provide basic concepts for
software development focused on one or more high level models of the
system (components, external systems, source modules etc.). The major
challenge in this area is to integrate proprietary ADLs into the industrial
development process. In [22], an integration of two ADLs (C2 and Wright)
is proposed using the extension mechanisms provided in UML. We view
our work as complementary since our goal is the generation of executable
logic descriptions.

An overview on aspects and applications of functional representations is
given in [2], where the functional representation of a device is divided into
three parts: the intended function, the structure of the device, and a
description of how a device achieves a function (represented through a
process description). Mittal and Frayman [18] propose the integration of
functional architectures into the configuration model by defining a matching
from functions to key components, which must be part of the configuration
if the function should be provided. This interpretation for the achievement
of functions is used in our framework.

There is a broad spectrum of representation formalisms employed in
knowledge-based configuration systems [26]. The increasing complexity of
configuration knowledge bases demands the provision of advanced concepts
supporting the knowledge acquisition task. In this paper we have shown
how to employ a standard design language (UML) in order to design
executable conceptual configuration models. Furthermore, the integration of
conceptual modeling techniques and model-based diagnosis techniques
tackles open issues in the area of development environments for knowledge-
based configuration systems.

Model-based diagnosis techniques were initially developed to identify faults
in physical devices, e.g., electronic circuits. Later on, these techniques were
also applied for diagnosis and debugging of software systems. The
application fields of software diagnosis range from diagnosis of logic
programs using expected and unexpected query results to identify incorrect
clauses [4], diagnosis of constraint violations in databases [14], or diagnosis
of hardware designs defined in VHDL [13]. Our work of diagnosing
configurator knowledge bases is in the line of software diagnosis, where test
cases (examples) are used to validate the software system.

Crow and Rushby [6] extend Reiter’s [21] framework of model-based
diagnosis in order to integrate repair (reconfiguration) functionality,
claiming that the real goal of the diagnosis task is not only to detect causes
for unexpected behavior but also to repair the system. Following a diagnose-
and-repair approach they first diagnose the faulty behavior and then try to
reconfigure the system in order to re-establish the desired functionality.
Their approach mainly relies on the notion of having pre-enumerated spare
parts or redundant elements within a system, and they associate a special
predicate for each component that describes if the component is
reconfigured or not and what the effects of the reconfiguration are. After
identification of causes of the unexpected behavior, a consistency-based
approach is employed in order to find a (minimal) set of components that
have to be reconfigured in order to re-establish the system’s functionality. In
their work, this reconfiguration knowledge has to be explicitly modeled
within the knowledge base, which causes additional knowledge acquisition
and maintenance efforts. However, although the search space for
reconfiguration alternatives is reduced, their approach does not in general
apply to the area of reconfiguration of products in our sense, because in our
domain the set of alternative or newly added components cannot be pre-
enumerated.

Männistö et al. [16] propose a reconfiguration approach, where
reconfiguration knowledge is explicitly represented through a set
reconfiguration operations, where an optimal reconfiguration can be
calculated by evaluating the generated reconfiguration sequence. In the
approach described in [16], the knowledge that is needed to configure
product individuals from scratch is enriched with additional reconfiguration
knowledge. This explicit reconfiguration knowledge consists of two basic
parts. First, a set of reconfiguration operations defining possible changes to
the existing product, whereby these operations consist of a precondition and
an action. Typical actions include addition or removal of parts. Second, a
set of reconfiguration invariants that have to hold are defined as the other
part of the reconfiguration knowledge. Different alternatives for
reconfiguring the system can be discriminated according to a value function
that takes the needed change operations and the resulting reconfigured
system into account. This conceptual model for reconfiguration is related to
our model of reconfiguration in terms of being independent from a special
problem solving mechanism. However, compared to the model-based
reconfiguration model described in previous sections, the reconfiguration
knowledge is modeled explicitly and only the pre-defined reconfiguration
actions can be performed.

Conclusions
In this paper we have shown how to employ techniques from software
engineering and knowledge-based systems for the design of knowledge-
based configuration systems. With the increasing size and complexity of
knowledge bases the usefulness of these techniques is likewise growing. We
have presented an approach for representing configuration knowledge bases

on a conceptual level where the resulting models are automatically
translated into a representation formalism widely used in the configuration
domain. Extensible standard design methods (like UML) are able to provide
a basis for introducing and applying rigorous formal descriptions of
application domains. This approach helps us to reduce the development time
and effort significantly because these high-level descriptions are directly
executable. Second, standard design techniques like the UML are far more
comprehensible and are widely adopted in the industrial software
development process.

In order to support the validation of configuration knowledge bases as well
as the diagnosis of unfeasible (customer) requirements and old
configurations we have proposed the application of model-based diagnosis
techniques. In particular, due to its conceptual similarity to configuration,
consistency-based diagnosis is a highly suitable technique to aid in the
debugging of configurators. The proposed definition enables us to clearly
identify the causes that explain misbehavior of the configurator and the
unfeasibility of (customer) requirements. Furthermore, we can utilize the
same techniques to support the reconfiguration process.

The concepts presented in this paper are currently implemented in a
prototype configuration environment. For the knowledge acquisition phase,
any CASE tool supporting the UML can be used because the resulting
models can be stored in a standardized XML representation. The conceptual
product models are then translated (according to the defined semantics) into
the representation of a constraint-based commercial configuration tool
(ILOG Configurator [17]) that is used to solve the actual configuration task.
Finally, we have implemented a general diagnosis component that interacts
with the configurator software and can be used to diagnose the knowledge
base, the user requirements and existing configurations as described in this
paper.

References
[1] Bourdeau, R.H., Cheng, B.H.C.: A Formal Semantics for Object

Model Diagrams, IEEE Transactions on Software Engineering,
1995, Vol. 21, No. 10, pp. 799-821.

[2] Chandrasekaran, B., Goel, A., Iwasaki, Y.: Functional
Representation as Design Rationale. IEEE Computer, Special Issue
on Concurrent Engineering, 1993, pp. 48-56.

[3] Chandrasekaran, B., Josephson, J., and Benjamins, R.: What are
ontologies, and why do we need them? IEEE Intelligent Systems,
1999, 14(1), pp. 20-26.

[4] Console, L., Friedrich, G., and Dupré, D.T.: Model-based diagnosis
meets error diagnosis in logic programs. In Proceedings
International Joint Conference on Artificial Intelligence,
Chambery, Morgan Kaufmann, August 1993, pp. 1494-1501.

[5] Crawley, S., Davis, S., Indulska, J., McBride, S., Raymond, K.:
Meta Information Management, In Proceedings 2nd IFIP
International Conference on Formal Methods for Open Object-
based Distributed Systems (FMOODS’97), Canterbury, UK, July,
1997.

[6] Crow, J., Rushby, J.: Model-Based Reconfiguration: Toward an
Integration with Diagnosis, Proceedings National Conference on
Artificial Intelligence AAAI, 1991, Vol.2, pp. 836-841.

[7] Felfernig, A., Friedrich, G., Jannach, D., and Stumptner, M.:
Consistency-based diagnosis of configuration knowledge bases, In
Proceedings 14th European Conference on Artificial Intelligence
(ECAI’2000), Berlin, Germany, 2000, pp. 146-150.

[8] Felfernig, A., Friedrich, G., and Jannach , D., UML as domain
specific language for the construction of knowledge-based
configuration systems, In: International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Vol. 10(4),
2000, pp. 449-470.

[9] Felfernig, A., Friedrich, G., and Jannach , D., Generating product
configuration knowledge bases from precise domain extended
UML models, 12th International Conference on Software
Engineering and Knowledge Engineering (SEKE'00), Chicago,
USA, 2000, pp. 284-293.

[10] Felfernig, A., Jannach, D., and Zanker, M.: Contextual diagrams as
structuring mechanism for designing configuration knowledge
bases defined in UML, Proceedings 3rd Intl. Conference on the
Unified Modeling Language (UML’2000), York, UK, 2000, pp.
240-254.

[11] Fleischanderl G., Friedrich, G., Haselböck, A., Schreiner, H., and
Stumptner, M.: Configuring Large Systems Using Generative
Constraint Satisfaction. IEEE Intelligent Systems, Vol. 13(4),
July/August 1998, pp. 59−68.

[12] Friedrich, G. and Stumptner, M.: Consistency-Based
Configuration, AAAI'99 Workshop on Configuration, AAAI Press
Technical Report WS-99-05, Orlando, Florida, 1999, pp. 35-40.

[13] Friedrich, G., Stumptner, M., and Wotawa, F.: Model-Based
Diagnosis of Hardware Designs, in: Artificial Intelligence, Vol.
111(2), 1999, pp 3-39.

[14] Gertz, M. and Lipeck, U.W.: A Diagnostic Approach to Repairing
Constraint Violations in Databases. In Proceedings DX'95
Workshop on Principles of Diagnosis, Goslar, October 1995.

[15] Lowry, M., Philpot, A., Pressburger, T., and Underwood, I., A
Formal Approach to Domain-Oriented Software Design
Environments, in Proc. 9th Knowledge-Based Software Engineering
Conference, Monterey, CA, September 1994, pp. 48-57.

[16] Männistö, T., Soininen, T., Tiihonen, J., and Sulonen, R.:
Framework and Conceptual Model for Reconfiguration, AAAI
Workshop on Configuration, AAAI Press Technical Report WS-
99-05, Orlando, Florida, 1999, pp. 59-64.

[17] Mailharro, D.: A classification and constraint-based framework for
configuration, AIEDAM, special issue: Configuration Design, Vol.
12(4), 1998, pp. 383-397.

[18] Mittal, S. and Frayman, F.: Towards a generic model of
configuration tasks, Proc. Intl. Joint Conference on Artificial
Intelligence (IJCAI'89), Detroit, Morgan Kaufmann, 1989, pp.
1395-1401.

[19] Peltonen, H., Männistö, T., Soininen, T., Tiihonen, J., Martio, A.,
and Sulonen, R.: Concepts for Modeling Configurable Products. In
Proceedings of European Conference Product Data Technology
Days 1998, Quality Marketing Services, Sandhurst, UK, 1998, pp.
189-196.

[20] Pine II, B.J., Victor, B., Boynton, A.C.: Making Mass
Customization Work. Harvard Business Review, Sep./Oct. 1993,
pp. 109-119.

[21] Reiter, R.: A theory of diagnosis from first principles. Artificial
Intelligence, Vol. 32(1), 1987, pp. 57−95.

[22] Robbins, J.E., Medvidovic, N., Redmiles, D.F., and Rosenblum,
D.S.: Integrating Architecture Description Languages with a
Standard Design Method, Proc. 20th Intl. Conference on Software
Engineering, Kyoto, Japan, 1998, pp. 209-218.

[23] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W.: Object-Oriented Modeling and Design. Prentice-Hall
International Editions, New Jersey, 1991.

[24] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling
Language Reference Manual, Addison-Wesley, 1998.

[25] Soininen, T., Tiihonen, J., Männistö, T., and Sulonen, R.: Towards
a general ontology of configuration, AIEDAM, special issue:
Configuration Design, Vol. 12(4), 1998, pp. 357-372.

[26] Stumptner, M.: An overview of knowledge-based configuration, AI
Communications 10(2), 1997, pp. 111-126.

