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Abstract. The development and maintenance of product configuration 
systems is faced with increasing challenges caused by the growing 
complexity of the underlying knowledge bases. Effective knowledge 
acquisition is needed since the product and the corresponding configuration 
system have to be developed in parallel. In this paper we show how to 
employ a standard design language (Unified Modeling Language - UML) 
for modeling configuration knowledge bases. The two constituent parts of 
the configuration model are the component model and a set of 
corresponding functional architectures defining which requirements can be 
imposed on the product. The conceptual configuration model is 
automatically translated into an executable logic representation. Using this 
representation we show how to employ model-based diagnosis techniques 
for debugging faulty configuration knowledge bases, detecting infeasible 
requirements, and for reconfiguring old configurations. 

Keywords. Product Configuration, Conceptual Modeling, Knowledge 
Acquisition, Diagnosis. 

Introduction 

Product configuration systems play an important role in the support of the 
mass customization paradigm [20]. The increasing complexity and size of 
configuration knowledge bases requires the provision of advanced methods 
supporting the configurator development process as well as the actual 
configuration process. Informally, configuration can be seen as a design 
activity, where the configured product is built from a predefined set of 
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component types that can be parameterized and interconnected on pre-
enumerated connection points. Additional constraints are used to restrict the 
number of legal product constellations. 

There exists a variety of application areas for product configuration systems, 
e.g., in the computer industry (PC configuration), telecommunication 
industry (configuration of switching systems), or automotive industry (car 
sales configuration). 

Figure 1 shows the three main components of our proposed configuration 
environment. Knowledge acquisition is done using configuration domain 
specific modeling concepts represented as UML stereotypes [8]. UML [24] 
is a conceptual modeling language, which is widely applied in industrial 
software development processes. This notation is similar to OMT diagrams 
(Object Modeling Technique) [23] and is easy to understand and 
communicate to domain experts. The resulting models are automatically 
translated into a logical representation executable by a configuration engine. 
After having designed and translated the configuration model (knowledge 
acquisition), the resulting configuration knowledge base has to be validated. 
We support this task in our framework using model-based diagnosis 
techniques: Given positive and negative configuration examples (that can in 
turn be modeled on the conceptual level and transformed to a logical 
representation) we identify parts of the resulting knowledge base causing an 
unexpected behavior of the configuration system. The outcome of this 
validation phase is a set of logical sentences from the generated knowledge 
base that have to be revised in order to correct the knowledge base. Note, 
that these results can be easily related to the pieces of knowledge from the 
(graphical) conceptual model. Therefore, the adaptation of the configuration 
knowledge can be done again on the conceptual level. 
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Figure 1 Configuration environment 

Once the knowledge base is validated and deployed in productive use, there 
may be situations where no solutions can be computed for a set of actual 
customer requirements. In such situations, our configuration and diagnosis 



framework helps us to identify those parts of the user requirements 
prohibiting the successful configuration of the product. Finally, when given 
an already installed system and changed user requirements, the diagnosis 
techniques help us insofar that we are able reconfigure the system such that 
the new customer requirements can be satisfied.  

Note that we defined a clear correspondence between the conceptual model 
and the logical representation. Therefore the inputs for the diagnostic 
reasoning can be mostly defined on the conceptual level, i.e., as UML 
diagrams containing configurations that are represented as instance 
diagrams. In addition, also the outcomes of the diagnostic reasoning can be 
traced back to those conceptual models. 

The paper is organized as follows. Based on the modeling concepts 
presented in [8] we give an example for the construction of a conceptual PC 
product model. We extend the set of modeling concepts by introducing the 
notion of functional architectures from Mittal and Frayman [18] in order to 
explicitly design functional structures [2], which are relevant for the 
specification of (customer) requirements. In most cases customers are not 
interested in the detailed product topology but rather specify a set of 
functions the product must provide. In the line of [8] functional 
architectures are represented as UML stereotypes in the conceptual 
configuration model in the next section. Afterwards, we give a formal 
definition of a configuration task based on the definitions of [12] which is 
the formal foundation for knowledge acquisition and the integration of the 
diagnosis techniques. The final sections show how the different pieces of 
knowledge involved in the configuration task (product model, user 
requirements, and configuration results) can be analyzed using consistency-
based diagnosis techniques. The paper ends with related work in the field 
and conclusions. 

Concepts for modeling configuration knowledge bases 

For presentation purposes we introduce a simplified (partial) UML model of 
a configurable personal computer (PC) as a working example. This model 
represents the generic product structure, i.e. all possible variants of the 
product. The set of possible products is restricted through a set of 
constraints which are related to (customer) requirements, technical 
restrictions, economic factors, and restrictions according to the production 
process. 

Figure 2 shows how UML is embedded into a four-layer architecture. The 
UML metamodel, i.e. the modeling concepts provided in UML are defined 
in MOF (Meta Object Facility) [5], which provides the concepts for 
designing metamodels in general. Using the concepts provided by UML, 
concrete schemas such as the configuration model in Figure 3 can be 
designed. A concrete configuration (result of the configuration process) 
represents an instance of a schema. 
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Figure 2 Integration of UML in a metamodel architecture 

The basic means for defining additional modeling concepts inside UML is 
the introduction of a profile. A profile specializes the basic UML concepts 
(e.g. classes, associations, dependencies) for a specific domain by defining 
constraints on these concepts (definition of stereotypes). For the 
configuration domain we define special sets of classes (component types, 
resource types, function types, and port types are specializations of the UML 
concept ‘class’), associations (incompatible, is_connected), and 
dependencies (requires, produces, consumes), which are useful for 
designing configuration models. 

In order to make the resulting configuration models executable, we propose 
a translation into the component port representation ([7], [12], [18]), which 
is well established for representing and solving configuration problems. The 
semantics of the different modeling concepts are formally defined by the 
mapping of the graphical notation to logical sentences based on the 
component port model. In general, consistency-based tools based on this 
component-port model can use the logic theory derived from the UML 
model although some transformation to the proprietary notation of a specific 
tool may have to be done. The following concepts are the basic parts of the 
ontology employed for designing configuration models (compare, e.g., 
[25]). Note, that we interpret ontologies in the sense of [3], i.e., ontologies 
are theories about the sorts of objects, properties of objects, and relations 
between objects that are possible in a specified domain of knowledge. 
Component types. They represent parts the final product can be built of. 
Component types (e.g., component type server-os in Figure 3) are 
characterized by attributes that have a predefined domain of possible values. 

Function types. They are used to model the functional architecture of an 
artifact. Similar to component types they can be characterized by attributes 
(see Figure 4). 



Resources.  Parts of a configuration problem can be seen as a resource-
balancing task, where some of the component (function) types produce 
some resource and others are consumers (e.g. the hd-capacity is a resource 
produced by hard-disks and consumed by software units). 

Generalization. Component (function) types with a similar structure are 
arranged in a generalization hierarchy (e.g. a server-os is either a server-os-
1 or a server-os-2). 

Aggregation. Aggregations between components (functions) represented by 
part-of structures describe a range of how many subparts an aggregate can 
consist of (e.g. cpu is part of motherboard). 
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Figure 3 Conceptual product model 

Connections and ports.  In addition to the amount and types of the 
different components also the product topology may be of interest in a final 
configuration, i.e. how the components are interconnected with each other 
(e.g. a pci-connector is connected to a pci-slot). 

Compatibility relations. Some types of components (functions) cannot be 
used together in the same final configuration, because they are incompatible 
(e.g. motherboard-2 is incompatible with cpu-586). In other cases, the 
existence of one component (function) requires the existence of another 
special type in the configuration (e.g. server-os-2 requires motherboard-1). 



Additional modeling concepts and constraints. Constraints on the product 
model, which cannot be expressed graphically, are formulated using the 
language OCL (Object Constraint Language), which is an integral part of 
UML. As it is done for the graphical modeling concepts, OCL expressions 
are translated into a logical representation executable by the configuration 
engine [9].  

As an example an OCL constraint on the product model could be: 

context PC inv:  
self.hd.isOclTypeOf(scsi-unit) implies  

self.floppy-unit->size = 1. 

The constraint states that if the connected hard disk unit is of type scsi-unit 
then the number of connected floppies must be equal 1. The Object 
Constraint Language shows to be applicable to describe constraints on legal 
product constellations in a standardized declarative manner. The main 
features of the language are attribute access, navigation over associations 
(e.g., self.floppy-unit) resulting in collections of the connected 
instances, predefined operations on all types (isOclTypeOf), operations on 
collections (size), as well as logical (implies) and arithmetical operators. 

The discussed modeling concepts have shown to cover a wide range of 
application areas for configuration [19]. Despite this, some application areas 
may have a need for special modeling concepts not covered so far. In order 
to introduce a new modeling concept a new stereotype has to be defined. Its 
semantics for the configuration domain must be defined by stating the facts 
and constraints induced to the logic theory when using the concept. 

Functional configuration knowledge. Typical configuration knowledge 
incorporates a structural and a functional product architecture which are 
interrelated through a mapping from functions to components as described 
in [18]. While the structural architecture resembles partonomies and 
taxonomies of physical components, in many situations we want to have 
another more customer and functionality oriented view on the configurable 
artifact: The product is therefore modeled in terms of functionality or 
features that can be offered to and selected by the customer. Consequently, 
the language for the conceptual models is extended with capabilities 
(function types) to model this structure called the functional architecture 
[18]. Accordingly, the product can be described through a partonomy and 
taxonomy of functions that can again be characterized by attributes. The two 
views on the product (structural and functional) are interrelated through a 
"many-to-many" mapping between functions and physical components, 
whereby this mapping can be expressed through dependencies (requires) or 
additional constraints. Figure 4 shows the functional structure (with dimmed 
fill color) and the relations to the physical components of the structural 
model. 
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Figure 4 Functional product model 

Structuring mechanisms. In case the conceptual models of the product 
(both structural and functional) are large and complex we utilize different 
mechanisms to cope with this complexity: First, the built-in packaging 
mechanism of the UML can be used to partition the model. Second, we can 
define different views (graphical depictions) on the underlying model beside 
the functional view, e.g., a connection-oriented view or a view on a certain 
substructure of the product. Finally, the usage of contextual diagrams can 
reduce the complexity of those complex product models (see [10]). 

Automated knowledge base construction 
Our framework of knowledge acquisition of configuration knowledge and 
the integration of diagnosis techniques relies on a general logical model of 
the configuration problem. This formalization allows us to define the 
semantics of the individual concepts of our modeling notation (UML) by 
giving translation rules from the conceptual level to the logic representation. 
In addition, the precise semantics that are provided by using first-order 
predicate logic as representation mechanism allows us to transform the 
conceptual models into the representation of other existing commercial 
configuration tools. Finally, basing on the analogy of the logic theory of 
configuration and a logic theory of the diagnosis task [21], we can easily 
integrate those techniques within our framework. 

In practice, configurations are built from a predefined catalog of component 
types of a given application domain. Furthermore, the configuration task is 
characterized by a set of functional architectures, which specify the 
functional composition of the configurable artifact [12]. The set of function 
types can be seen as a special form of component types; from the viewpoint 
of the computation of configurations, the discrimination of function types 



and component types is not relevant. Component types as well as function 
types are described through a set of properties (attributes) with a predefined 
domain, and connection points (ports) representing logical or physical 
connections to other components.  

We describe a configuration problem in terms of a set of logical sentences:  

• A domain description (DD) containing information about the 
component types, their properties, ports and constraints on legal 
product constellations; 

• a description of the specific user requirements (SRS), whereby the 
configuration problem has to be solved to conform to these 
requirements, and 

• a set of predicate symbols (CONL) that can be used within the 
constraints from DD and are employed to describe configuration 
results. In our examples we will use the predicates type/2, conn/4, 
and val/3 to describe the individual components, the attribute 
valuations and the connections between the component instances. 

In our example, the predicate symbols in CONL are the type, conn, and val 
predicates. A fact type(c,t) assigns one of the given types to a component 
identification c, conn(c1,p1,c2,p2) represents a connection between 
components c1 and c2 via the ports p1 and p2, and the fact val(c,a,v) 
describes the valuations of attribute a of a component c with the value v. 

Definition (Configuration Problem): In general we assume a configuration 
problem is described by a triple (DD, SRS, CONL) where DD and SRS are 
sets of logical sentences and CONL is a set of predicate symbols. 

DD represents the domain description (or configuration knowledge base), 
and SRS specifies the particular system requirements, which define an 
individual configuration problem instance. A configuration CONF is 
described by a set of positive ground literals whose predicate symbols are in 
the set CONL. �  

Definition (Consistent Configuration): Given a configuration problem 
(DD, SRS, CONL), a configuration CONF is consistent iff DD ∪  SRS ∪  
CONF is satisfiable. � 

These definitions allow for determining the consistency of configurations, 
but in order to ensure the completeness, we have to add specific 
completeness axioms for each predicate symbol in CONL, e.g.: 

type(X,Y) ⇒  ∨ Z∈ CONF  type(X,Y) = Z. 
conn(V,W,X,Y) ⇒  ∨ Z∈ CONF  conn(V,W,X,Y) = Z. 
val(V,A,C) ⇒  ∨ Z∈ CONF  val(C,A,V) = Z. 

We will denote a configuration CONF fulfilling these completeness axioms 
by CONF .  



Definition (Valid Configuration):  Let (DD, SRS, CONL) be a 
configuration problem. A configuration CONF is valid iff DD ∪  SRS ∪  
CONF is satisfiable. � 

Furthermore, the domain description DD contains a set of application-
independent axioms CBasic, ensuring that e.g., connections are symmetric 
and one port can only be connected to one other port. For a formal 
exposition, see e.g., [12] or [7].  

Having defined a logical model of configuration and given a notation for 
representing configuration knowledge on a conceptual level, we can derive 
the configurator knowledge base (DD) automatically by providing 
deterministic transformation rules. 

The part of the knowledge base describing the product structure can be 
derived from the part-of structure of the conceptual model whereby the 
aggregate associations are mapped to the component-port representation. 
The available types, their attributes and connections are described by the 
types, ports, and attrs functions in DD (see below). 

Furthermore, the additional constraints (like the requires) relations can be 
transformed and added to DD. As an example the constraint "motherboard-2 
incompatible with CPU-586" from Figure 3 is represented in the domain 
description as named constraint: 

Constraint C1: "cpu-586 incompatible motherboard-2" 
 

type(ID1, CPU-586) ∧  type (ID2, motherboard-2) ∧   
 conn(ID1, motherboard-port, ID2, cpu-port) ⇒  false. 

The next listing contains a part of the (generated) knowledge base for our 
PC example: 

DD = { 
types = {pc, floppy-unit, hd-unit, scsi-unit, multimedia- 
    capability, ... }. 
ports(pc)={floppy-unit-1, floppy-unit-2, hd-unit,  
         motherboard}. 
ports(floppy-unit) = {pc}. 
ports(motherboard) = {pc,cpu}. 
attrs(server-os) = {built}. 
...  

     } ∪  CBasic ∪  {C1} 

For a detailed exposition on the transformation rules, see [8] and [9]. 

For the calculation of a configuration problem, the specific user 
requirements can be given in terms of a listing of key components or in 
terms of a set of additional constraints (logical sentences) that have to hold 
for the configuration. As an example, the user might specify the requirement 
of having a CPU of type cpu-586 in the configuration by the following 
sentence: 



SRS = { ∃  P,M,C: type(P,pc) ∧  type(C,cpu-586) ∧  type(M,motherboard-1  
   ∧  conn(P,motherboard,C,pc) ∧  conn(C,motherboard,M,cpu)) 
} 

A configuration result CONF can be expressed as a set of ground literals 
using the predicates from CONL. A part of the configuration result for our 
example problem could be 

CONF = { 
type(p1, pc). 
type(f1, floppy-unit). 
type(f2, floppy-unit). 
type(m1, motherboard-1). 
type(c1, cpu-586). 
type(s1, server-os-1). 
... 
conn(p1,floppy-unit-1,f1,pc). 
conn(p1,floppy-unit-2,f2,pc). 
conn(p1,motherboard,m1,pc). 
conn(m1,cpu,c1,motherboard). 
... 
val(s1,built,"01-02-2000"). } 

 
One additional important point of the automatic generation of the 
knowledge base (DD) is the tight correspondence to the original conceptual 
model by e.g., using the same names for component types and attributes and 
the naming for the generated constraints. 

Note, that we can represent the both partial configurations, which may 
represent the user requirements in terms of key components [18] and the 
configuration result in terms of UML diagrams, i.e., configurations 
correspond to object diagrams (instance models, see Figure 2). 

p1:pcf1:floppy-unit

c1:cpu-586

m1:motherboard-1 s1:server-os-1

built=01-10-2000

f2:floppy-unit

 
Figure 5 UML Instance diagram 

Figure 5 shows a partial configuration expressed in terms of an UML object 
diagram. Using the transformation rules we can derive sets of logical 
sentences for SRS and CONF respectively, whereby this transformation is 
fairly straightforward because only simple type, conn and val facts have to 
be generated. 



In the next section we will show how we can utilize consistency-based 
diagnosis techniques for validation and debugging purposes as well as a 
supporting mechanism during the deployment phase of the configuration 
system. 

Diagnosing the knowledge base 
In order to validate the knowledge base generated from the UML 
configuration model after the initial setup or after modifications, the domain 
expert or the knowledge engineer provides positive and negative examples, 
i.e., examples for configurations, which should be accepted by the 
knowledge base resp. not accepted by the knowledge base (see Figure 6). 
These example configurations play the role of "test cases" in standard 
Software Engineering validation processes. We denote the set of positive 
examples as E+ , the set of negative examples as E−. All e+  ∈  E+ must be 
consistent with the knowledge base, all e− ∈  E− must be inconsistent with 
the knowledge base. Note that examples can be partial configurations (e.g. 
some components, connections, or attributes are missing) and complete 
configurations as well. 

If some e+  are inconsistent with the knowledge base, the question must be 
answered, which set of constraints must be eliminated for making the 
knowledge base accepting those e+. Additionally we have to find an 
extension EX such that the knowledge base does not accept any e−

 ∈  E−. 

The two example sets serve complementary purposes. The goal of the 
positive examples in E+  is to check that the knowledge base will accept 
correct configurations; if it does not, i.e. a particular positive example e+  
leads to an inconsistency, we know that the knowledge base currently is too 
restrictive. Conversely, a negative example serves for checking the 
restrictiveness of the knowledge base; negative examples correspond to real-
world cases that are configured incorrectly, and therefore a negative 
example that is accepted means that a relevant condition is missing in the 
knowledge base. 

In the line of consistency-based diagnosis, an inconsistency between DD 
and the positive examples means that a diagnosis corresponds to the 
removal of possibly faulty sentences from DD such that the consistency is 
restored. Conversely, if that removal leads to a negative example e− 
becoming consistent with the knowledge base, we have to find an extension 
that, when added to DD, restores the inconsistency for all such e−. Figure 6 
shows an overview of the approach of consistency-based diagnosis of the 
configurator knowledge base. 
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Figure 6 Consistency-based diagnosis of the knowledge base 

Definition (CKB Diagnosis Problem): A CKB-Diagnosis Problem 
(Diagnosis Problem for a Configuration Knowledge Base) is a triple (DD, 
E+ , E−) where DD is a configuration knowledge base, E+  is a set of positive 
and E− a set of negative examples. The examples are given as sets of logical 
sentences.  We assume that each example on its own is consistent.  � 

Definition (CKB Diagnosis): A CKB diagnosis for a CKB-Diagnosis 
Problem (DD, E+, E−) is a set S ⊆  DD of sentences such that there exists an 
extension EX, where EX is a set of logical sentences, such that   
  DD - S ∪  EX ∪  e−  is consistent ∀  e+ ∈  E+ ,  
  DD - S ∪  EX ∪  e−  inconsistent ∀  e− ∈  E−  . � 

A diagnosis S will always exist under the reasonable assumption that the 
positive and the negative examples do not interfere with each other. 

Proposition: Given a CKB-Diagnosis Problem (DD, E+, E−), a diagnosis S 

for (DD, E+, E−) exists iff  

   ∀  e+ ∈  E+ : e+ ∪  ∧  e− ∈  E− (¬  e−) is consistent. � 

From here on, we will refer to the conjunction of negated negative examples 
as NE, i.e.,  NE = ∧  e− ∈  E− (¬  e−) 

The last proposition however, lets us find a characterization of diagnoses 
without the explicit specification of these extensions. 

Corollary: S is a diagnosis iff ∀  e+ ∈  E+ : DD −  S ∪  e+ ∪  NE is consistent. 

For the computation of such diagnoses (explanations of unexpected 
behavior of the configurator) we can adapt the standard hitting set algorithm 
from model-based diagnosis [21]. For focusing purposes, the concept of 
conflict sets is defined as follows: 

Definition (Conflict set): A conflict set CS for (DD, E+, E−) is a set of 
elements of DD such that ∃  e+ ∈  E: CS ∪  e+ ∪  NE is inconsistent. We say 
that, if e+ ∈  E+ : CS ∪  e+ ∪  NE is inconsistent, that e+ induces CS. � 



For the collection F of conflict sets for (DD, E+, E−) a directed acyclic graph 
for the computation of the minimal hitting sets (HS-DAG) is constructed in 
breadth-first manner [21]. The nodes are labeled with conflict sets from F 
(containing conflicting constraints), edges leading away are labeled with 
elements from the conflict set of the node. At each node, the theorem prover 
(in our case the configuration engine) is called to test whether the positive 
examples are consistent with the examples and can be completed to working 
configurations, if we eliminate all constraints on the path from the root node 
to the current node from the knowledge base (DD) and add the negated 
negative examples. The breadth-first construction leads to the effect that 
diagnosis are computed in order of their cardinality and additional tree 
pruning techniques can be employed to reduce the search complexity. 

For a detailed exposition of the computation of CKB-diagnoses, see [7]. 

The outcome of the diagnostic processes is a set of diagnoses that explain 
the unexpected behavior of the configurator. Each diagnosis contains a set 
of constraints from DD that have possibly to be revised (or to be canceled) 
in order to repair the knowledge base. 

Note, that these constraints from DD were automatically generated and were 
given appropriate names. Therefore, these results are strongly related to the 
original conceptual product model. One can imagine that when a tool for 
graphical knowledge acquisition is used, we could highlight those faulty 
chunks of knowledge in the graphical depiction and repair can be done on 
this level in the best case. At least, the name and the description of the 
involved constraints, e.g., "Constraint C1 : cpu-586 incompatible 
motherboard-2" can be returned to the test engineer as a hint where to focus 
his/her debugging efforts. 

For the definition of the positive and negative examples we can also use 
instance diagrams that represent partial or complete configurations. 
Consequently, these examples are easy to understand and communicate to 
domain experts. Finally, the positive examples do not need to be specified 
by hand but can be existing configurations from former configuration runs 
that still have to be consistent with the altered knowledge base. 

Diagnosis of requirements and reconfiguration 
support 

Diagnosing user requirements 
Even once the knowledge base has been tested and corrected, diagnosis 
techniques can play a significant role in the configuration process. Instead of 
an engineer testing an altered (extended or updated) knowledge base, we are 
now dealing with an end user (customer or sales representative) who is 
using the tested knowledge base for configuring actual products. Such users 
frequently face the problem of requirements being inconsistent because they 
exceed the feasible capabilities of the system to be configured.  In such a 
situation, the diagnosis approach presented here can now support the user in 



finding which of his/her requirements produces the inconsistency. Formally, 
the altered situation can be easily accommodated by swapping requirements 
and domain description in the definition of CKB diagnosis. Formerly, we 
were interested in finding particular sentences from DD that contradicted the 
set of examples. Now we have the user’s system requirements SRS, which 
contradict the domain description (see Figure 7). The domain description is 
used in the role of an all-encompassing partial example for correct 
configurations. 
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Figure 7 Diagnosing user requirements 

Definition (CREQ Diagnosis Problem): A configuration requirements 
diagnosis (CREQ-Diagnosis) problem is a tuple (SRS,DD), where SRS is a 
set of system requirements and DD a configuration domain description. A 
CREQ Diagnosis is a subset S ⊆  SRS such that SRS− S ∪  DD is consistent. 
� 

Definition (CREQ Conflict Set): A conflict set CS ⊆  SRS for (SRS, DD) is a 
set, such that CS ∪  DD is inconsistent. � 

Reconfiguration support 
There is an increasing demand for software supporting after-sales activities 
in various application domains [16]. Especially the need for supporting 
reconfiguration of product individuals, i.e., the modification of a concrete 
product instance in order to meet the new requirements, is an open research 
area. These new requirements arise e.g., when a customer wants to upgrade 
the existing system to provide new or altered functionality or when parts of 
the existing system are broken and have to be replaced by a newer version 
of that component, because the original components are no more available. 

When comparing reconfiguration with configuration, the main difference 
lies in an existing product which mainly influences the process of 
reconfiguration. Given that the customer requirements have changed (or 
there are new regulations defined in the knowledge base), the goal of the 
reconfiguration process is to compute a configuration, where most parts of 
the existing configuration can be preserved, i.e., the number of needed 
changes (changes of parameters and connections or removal of components) 
is minimized. Beside the minimization of the number of needed changes the 
reconfiguration process can be guided by other optimization functions, e.g., 
the different types of changes may be associated with different costs, i.e., a 
change in the parameters may be cheaper than exchanging a whole 



component. Finally, an optimization criterion may lie in the number (and the 
associated costs) of the components that have to be added in order to 
provide the additional functionality. 

Within our framework we can utilize diagnosis techniques to support the 
reconfiguration process as follows: Typically, a description of the existing 
configuration (CONF) is given that is not consistent with the altered user 
requirements (SRS) and the domain description (DD). Reconfiguration is 
performed as follows: If we cannot extend the existing configuration to cope 
with the new requirements, we search for a set of parts of the existing 
configuration that have to be removed (or exchanged) such that the 
remaining existing configuration can be completed in a way the new 
requirements are fulfilled. Since we are trying to find "minimal" or 
"suitable" (with respect to the objective function) sets of parts to be 
removed, we have the effect that in the reconfiguration process we try to 
preserve most of the existing system. Obviously, we could start a new 
configuration from scratch with the new requirements, but this would 
possibly lead to a complete different configuration where none of the 
existing parts can be reused. 

Figure 8 depicts the integration of diagnosis for the reconfiguration support 
schematically. 
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Figure 8 Diagnosis for reconfiguration 

Within our logical framework for configuration and diagnosis, we can 
define the reconfiguration problem as follows. 

Definition (Reconfiguration Problem): A reconfiguration problem is a 
quadruple (DD, SRS, CONL, CONF), where (DD, SRS, CONL) is a 
configuration problem, whereby SRS contains the altered requirements, and  
CONF represents the existing configuration using the predicates from 
CONL. A reconfiguration problem arises if DD ∪  SRS ∪  CONF is 
inconsistent. � 

Note, that SRS may not only contain the new customer requirements but in 
addition those parts of the existing configuration that should definitely not 
be changed. This situation may be given, if it is known before the 
reconfiguration process, that the exchange of certain parts will definitely not 



result in a suitable reconfiguration, e.g., exchanging some key parts which 
would cause too high costs. 

We define the concept of Reconfiguration Diagnosis and Reconfiguration 
Solution as follows. 

Definition (Reconfiguration Diagnosis): Given a Reconfiguration Problem 
RP (DD, SRS, CONL, CONF), a Reconfiguration Diagnosis is a set S ⊆  
CONF, such that CONF− S ∪  DD ∪  SRS is consistent.  

Every solution to the configuration problem (DD, SRS ∪  (CONF − S ), 
CONL) is a reconfiguration solution for RP. � 

Given this definition, in principle every solution to the configuration 
problem (DD, SRS, CONL) is a valid reconfiguration solution. Therefore, a 
reconfiguration solution will always exist under the assumption that in the 
worst case all elements from CONF are contained in the reconfiguration 
diagnosis. 

For the computation of reconfiguration diagnosis, we can again use the 
adapted hitting set algorithm from [21]. Conflict sets are (minimal) subsets 
from CONF that together with DD ∪  SRS cause a contradiction. During the 
HS-DAG construction it is tested whether the remaining parts of the existing 
configuration can be completed to a working configuration that satisfies the 
user requirements. Depending on the application domain, each time a 
reconfiguration diagnosis is identified we can store one, all, or the "optimal" 
reconfiguration solution (with respect to some objective function) and apply 
e.g., a branch-and-bound optimization algorithm.  

In many application domains of configuration where the products are very 
complex (e.g., telecommunication switches [11]) it is not always feasible to 
compute "optimal" solutions, but the goal is to come up (possibly guided by 
heuristics) with a "good" or "suitable" solution. Accordingly, when 
searching for reconfiguration alternatives the user may be satisfied, when a 
set of "suitable" alternative configurations is calculated. The search space 
for reconfiguration alternatives can be reduced by limiting the search depth 
or by reducing the search for reconfiguration diagnosis to parameters and 
connections; Furthermore we assume that in typical reconfiguration 
problems only a small part of the existing configuration has to be revised, 
i.e., the cardinality of the diagnoses is rather small compared to the size of 
CONF. However, in cases the reconfiguration diagnoses will have a higher 
cardinality, additional techniques like hierarchical abstraction to reduce the 
search complexity may be applied. Finally, we can employ a heuristics-
driven search algorithm where the diagnoses are not generated in order of 
their cardinality which is the effect of the breadth-first construction of the 
HS-DAG in [21]. Having in mind that in many cases we are only interested 
in suitable diagnoses and solutions, the side effect of having non-minimal 
diagnoses will be tolerable, since these solutions can be computed 
efficiently. 



Related work 
The formalization of the semantics of conceptual design languages like 
UML is an actual research topic. Automated generation of logic-based 
descriptions through the translation of domain-specific modeling concepts 
expressed using the concepts of a standard design language has not been 
discussed so far. The focus of automated and knowledge-based software 
engineering [15] is automated software reuse, where program construction is 
realized reusing existing software libraries. In [1] a formal semantics for 
object model diagrams based on OMT [23] is defined in order to support the 
assessment of requirement specifications. 

Architecture description languages (ADLs) provide basic concepts for 
software development focused on one or more high level models of the 
system (components, external systems, source modules etc.). The major 
challenge in this area is to integrate proprietary ADLs into the industrial 
development process. In [22], an integration of two ADLs (C2 and Wright) 
is proposed using the extension mechanisms provided in UML. We view 
our work as complementary since our goal is the generation of executable 
logic descriptions.  

An overview on aspects and applications of functional representations is 
given in [2], where the functional representation of a device is divided into 
three parts: the intended function, the structure of the device, and a 
description of how a device achieves a function (represented through a 
process description). Mittal and Frayman [18] propose the integration of 
functional architectures into the configuration model by defining a matching 
from functions to key components, which must be part of the configuration 
if the function should be provided. This interpretation for the achievement 
of functions is used in our framework.  

There is a broad spectrum of representation formalisms employed in 
knowledge-based configuration systems [26]. The increasing complexity of 
configuration knowledge bases demands the provision of advanced concepts 
supporting the knowledge acquisition task. In this paper we have shown 
how to employ a standard design language (UML) in order to design 
executable conceptual configuration models. Furthermore, the integration of 
conceptual modeling techniques and model-based diagnosis techniques 
tackles open issues in the area of development environments for knowledge-
based configuration systems. 

Model-based diagnosis techniques were initially developed to identify faults 
in physical devices, e.g., electronic circuits. Later on, these techniques were 
also applied for diagnosis and debugging of software systems. The 
application fields of software diagnosis range from diagnosis of logic 
programs using expected and unexpected query results to identify incorrect 
clauses [4], diagnosis of constraint violations in databases [14], or diagnosis 
of hardware designs defined in VHDL [13]. Our work of diagnosing 
configurator knowledge bases is in the line of software diagnosis, where test 
cases (examples) are used to validate the software system. 



Crow and Rushby [6] extend Reiter’s [21] framework of model-based 
diagnosis in order to integrate repair (reconfiguration) functionality, 
claiming that the real goal of the diagnosis task is not only to detect causes 
for unexpected behavior but also to repair the system. Following a diagnose-
and-repair approach they first diagnose the faulty behavior and then try to 
reconfigure the system in order to re-establish the desired functionality. 
Their approach mainly relies on the notion of having pre-enumerated spare 
parts or redundant elements within a system, and they associate a special 
predicate for each component that describes if the component is 
reconfigured or not and what the effects of the reconfiguration are. After 
identification of causes of the unexpected behavior, a consistency-based 
approach is employed in order to find a (minimal) set of components that 
have to be reconfigured in order to re-establish the system’s functionality. In 
their work, this reconfiguration knowledge has to be explicitly modeled 
within the knowledge base, which causes additional knowledge acquisition 
and maintenance efforts. However, although the search space for 
reconfiguration alternatives is reduced, their approach does not in general 
apply to the area of reconfiguration of products in our sense, because in our 
domain the set of alternative or newly added components cannot be pre-
enumerated. 

Männistö et al. [16] propose a reconfiguration approach, where 
reconfiguration knowledge is explicitly represented through a set 
reconfiguration operations, where an optimal reconfiguration can be 
calculated by evaluating the generated reconfiguration sequence. In the 
approach described in [16], the knowledge that is needed to configure 
product individuals from scratch is enriched with additional reconfiguration 
knowledge. This explicit reconfiguration knowledge consists of two basic 
parts. First, a set of reconfiguration operations defining possible changes to 
the existing product, whereby these operations consist of a precondition and 
an action.  Typical actions include addition or removal of parts. Second, a 
set of reconfiguration invariants that have to hold are defined as the other 
part of the reconfiguration knowledge. Different alternatives for 
reconfiguring the system can be discriminated according to a value function 
that takes the needed change operations and the resulting reconfigured 
system into account. This conceptual model for reconfiguration is related to 
our model of reconfiguration in terms of being independent from a special 
problem solving mechanism. However, compared to the model-based 
reconfiguration model described in previous sections, the reconfiguration 
knowledge is modeled explicitly and only the pre-defined reconfiguration 
actions can be performed. 

Conclusions 
In this paper we have shown how to employ techniques from software 
engineering and knowledge-based systems for the design of knowledge-
based configuration systems. With the increasing size and complexity of 
knowledge bases the usefulness of these techniques is likewise growing. We 
have presented an approach for representing configuration knowledge bases 



on a conceptual level where the resulting models are automatically 
translated into a representation formalism widely used in the configuration 
domain. Extensible standard design methods (like UML) are able to provide 
a basis for introducing and applying rigorous formal descriptions of 
application domains. This approach helps us to reduce the development time 
and effort significantly because these high-level descriptions are directly 
executable. Second, standard design techniques like the UML are far more 
comprehensible and are widely adopted in the industrial software 
development process. 

In order to support the validation of configuration knowledge bases as well 
as the diagnosis of unfeasible (customer) requirements and old 
configurations we have proposed the application of model-based diagnosis 
techniques. In particular, due to its conceptual similarity to configuration, 
consistency-based diagnosis is a highly suitable technique to aid in the 
debugging of configurators. The proposed definition enables us to clearly 
identify the causes that explain misbehavior of the configurator and the 
unfeasibility of (customer) requirements. Furthermore, we can utilize the 
same techniques to support the reconfiguration process. 

The concepts presented in this paper are currently implemented in a 
prototype configuration environment. For the knowledge acquisition phase, 
any CASE tool supporting the UML can be used because the resulting 
models can be stored in a standardized XML representation. The conceptual 
product models are then translated (according to the defined semantics) into 
the representation of a constraint-based commercial configuration tool 
(ILOG Configurator [17]) that is used to solve the actual configuration task. 
Finally, we have implemented a general diagnosis component that interacts 
with the configurator software and can be used to diagnose the knowledge 
base, the user requirements and existing configurations as described in this 
paper. 
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