
A Model for a Temporal Data Warehouse

Johann Eder
University of Klagenfurt

Dep. of Informatics-Systems
eder@isys.uni-klu.ac.at

Christian Koncilia
University of Klagenfurt

Dep. of Informatics-Systems
koncilia@isys.uni-klu.ac.at

Tadeusz Morzy
Poznan University of Technology
Institute of Computing Science

morzy@sol.put.poznan.pl

July 2001

Abstract
Data warehouses are a primary means for a consoli-
dated view on the data within an enterprise and fre-
quently a �rst step in integrating enterprise informa-
tion systems. Above all, data warehouses are used for
analyzing enterprise data online, giving the possibility
to aggregate and compare data along dimensions rele-
vant in the application domain. Typically time is one
of the dimensions we �nd in data warehouses allow-
ing comparisons of di�erent periods. The instances
of dimensions, however, change over time � countries
unite and separate, products emerge and vanish, or-
ganizational structures evolve. In current data ware-
house technology these changes cannot be represented
adequately since all dimensions are (implicitly) con-
sidered as orthogonal, putting heavy restrictions on the
validity of OLAP queries spanning several periods.
In this paper we brie�y propose an architecture for

temporal data warehouse systems which allows the reg-
istration of temporal versions of dimension data and
the transfer of data between di�erent temporal ver-
sions.

1 Introduction and Motivation
The integration of enterprise information systems is
frequently a cumbersome and long-lasting activity.
Examples for such situations are cooperate informa-
tion systems after mergers and acquisitions, or if dif-
ferent software products are employed, which were de-
veloped independently, or which were purchased for

speci�c purposes and cannot be replaced so easily. A
�rst step to obtain full integration of enterprise in-
formation is to integrate data stemming from various
sources, and make these data available for supporting
management decisions.
Such an integration of data, where the operational

data is left with heterogeneous, partly incompatible
information systems, but the data needed for steering
the enterprise is extracted from the operational data
sources, integrated and puri�ed can be achieved with
data warehousing technology. The data kept in data
warehouses provides the information in a way that is
suitable for steering enterprise processes. And as a
result of decision making processes data can be fed
back to the operational information systems.
Data warehouses or data marts are usually de-

�ned as integrated materialized views over several
data sources which can be conventionally structured
or semi-structured data. Hence, data warehouses are
often used to integrate data.
They do frequently serve as a basis for CRM-

Systems, ERP-Systems and other information sys-
tems. The most important usage of data warehouses is
On-Line Analytical Processing (OLAP) typically us-
ing a multi-dimensional view of the data. OLAP tools
then allow to aggregate and compare data along di-
mensions relevant to the application domain. Typical
dimensions found frequently in business data ware-
houses are time, organizational structure (divisions,
departments, etc.), space (cities, regions, countries)
and product data.
This multi-dimensional view provides long term

1

katja
published in: Proceedings of OES-SEO 2001 Workshop, ISBN 88-88047-21-2, pp 48-54

data that can be analyzed along the time axis, whereas
most OLTP systems only supply snapshots of data
at one point of time. Available OLAP systems are
therefore prepared to deal with changing values, e. g. ,
changing pro�t or turnover. Surprisingly, they are not
able to deal with modi�cations in dimensions, e. g. , if a
new branch or division is established, although time is
usually explicitly represented as a dimension in data
warehouses. Neither did this problem attract much
research so far, rare examples are [3, 10].
The reason for this disturbing property of current

data warehouse technology is the implicitly underlying
assumptions that the dimensions are orthogonal. Or-
thogonality with respect to the dimension time means
the other dimensions ought to be time-invariant. This
silent assumptions inhibits the proper treatment of
changes in dimension data.
Naturally, it is vital for the correctness of results of

OLAP queries that modi�cations of dimension data is
correctly taken into account. E.g. when the economic
�gures of European countries over the last 20 years
are compared on a country level, it is essential to be
aware of the re-uni�cation of Germany, the separation
of Czechoslovakia, etc. Business structures and even
structures in public administration are nowadays sub-
ject to highly direct changes. Comparisons of data
over several periods, computation of trends, compu-
tation of benchmark values from data of previous pe-
riods have the necessity to correctly and adequately
treat changes in dimension data. Otherwise we face
meaningless �gures and wrong conclusions triggering
bad decisions. From our experience we could cite too
many such cases.

2 Temporal Data Warehouse
For obtaining correct results of OLAP queries it is es-
sential to keep track of the modi�cations of dimension
data.
Therefore, it is necessary to introduce a temporal

extension to the well known data warehouse architec-
ture, e. g. [8, 6, 1]. Hence, all dimension members and
all hierarchical links between these dimension mem-
bers have to be time stamped with a time interval
[Ts, Te] representing the valid time whereTs is the be-
ginning of the valid time, Te is the end of the valid
time and Te ≥ Ts.

Using temporal projection and temporal selection
as de�ned in the Consensus Glossary of Temporal
Database Concepts [7] we are now able to create what
we call Structure Versions (SV) out of the temporal
data warehouse. A structure version represents a view
on the temporal data warehouse, that holds a struc-
ture valid for a certain time interval. Each modi�ca-
tion of a dimension member or a hierarchical relation
leads to a new structure version, if a structure version
for the given time interval does not already exist. Such
modi�cations can be done with the three basic opera-
tions INSERT, UPDATE and DELETE and some complex
operations, e. g. , SPLIT and MERGE.
A �rst defensive approach to query such a tem-

poral data warehouse can now be accomplished. The
idea of the defensive approach is that for each stated
query the systems checks whether or not the query
crosses the boundaries of a structure version. If the
boundaries between structure versions are crossed the
system has two alternatives: (a) it could reject the
query or (b) it could issue a warning.
Nevertheless, the defensive approach cannot answer

all queries correctly although they might be (at least
approximatively) answerable. Consider for example
that from March 2000 onwards a departmentA splits
up into A1 and A2. If we want to analyze all months
of the year 2000, we will, for divisionA, only have the
data for January and February, whereas from March
onwards we will only have the data for divisions A1

and A2. It is therefore taken for granted that the
user of the analysis is in possession of an adequate
knowledge of the domain and that he/she knows that
the divisions A, A1 and A2 are related and how they
are related.
Hence, we have to introduce a mechanism to inform

the system about dependencies and relations between
dimension members in di�erent structure versions.
In the example just given we could de�ne that it

is possible to represent the turnover of the division
A1 for the periods before March 2000 as a function
turnover(A1, period) = 30% of turnover(A, period).
We could also show that for all periods from
March 2000 onwards the number of employees
M# of the division A corresponds to the function
M#(A, period) = M#(A1, period)+M#(A2, period).
Using such functions, it is possible to assure that a suc-
cessful analysis can be made even though there might

2

*

ParentLevel

1..*

1

*

ChildLevel

 t
s
: Date

 t
e
: Date

 new()
 modify()
 delete()

HierarchicalLevelAssignment

 name: String
 UDAs:

 ts: Date
 t

e
: Date

 new()
 modify()
 delete()

DimensionLevel

 name: String
 UDAs:

 ts: Date
 te: Date

 new()
 modify()
 delete()
 split()
 merge()

DimensionMember

 uda_value: Void

CellData

 t
s
: Date

 te: Date

 new()
 modify()
 delete()

HierarchicalMemberAssignment

*

ParentMember

*

ChildMember

 uda_description: String
 ts: Date
 t

e
: Date

 new()
 modify()

StructureVersion

 uda_value: Float
 ts: Date
 t

e
: Date

 new()
 modify()
 delete()

TransFunction

 name: String
 UDAs:

 ts: Date
 t

e
: Date

 new()
 modify()
 delete()

Dimension

SET of
UDAs

SET of
UDAs

SET of
UDAs

1..*

1

1..*

0..*

0..*

2

0..*

2

Figure 1: Generic meta-model for a temporal data warehouse system

be changes in the structure.
We call these functions transformation functions

and introduce an operation MapF to de�ne such
transformation functions.
Our temporal data warehouse model proposed in [4]

enables us to deal with changes on the instance level.
It mainly consists of three parts (see Fig. 3):

• Structure Data: Holds the necessary informa-
tion regarding all structures of our data ware-
house, i. e. , it stores all dimension data and their
hierarchical structure time stamped.

• Structural Mappings Data: Stores all de�ned
MapF functions, i. e. , all transformation func-
tions that are necessary to map data from one

structure version into another.
• Fact Data: Consists of all fact data, i. e. , mea-
sures, in our data warehouse. In other words, it
stores all cell values.

Using this information we are able to query data
with two di�erent o�ensive approaches that will
be discussed in Sect. 3.
We are currently working on an extension to our

temporal data warehouse model that enables us to
deal with changes on both the instance and the schema
level. We denote the dimensions and dimension levels
of a data warehouse as its schema and the dimension
members of a data warehouse as its instance.
The main goal of this UML model was to de�ne a

3

Figure 2: Result of a query with a) SV2 or SV3 and b) SV1 as base structure version

meta-model that allows us to describe data warehouse
applications in an evolving environment. The meta-
model for a generic, temporal data warehouse is given
in Fig. 1.
We de�ne our temporal data warehouse as a set of

dimensions, for example the dimensions Time, Facts
and Products. It should be emphasized that in con-
trast to most publications in the �eld of data ware-
housing, e.g. [9] and [2], we do not distinguish between
dimension and facts. In fact, we claim that facts can
be simply described using one dimensionFacts. Hence
we are able to deal with facts that are in a hierarchi-
cal order. Just as we are able to describe a dimension
Market where stores belong to regions and regions to
states we are able to similarly describe a dimension
Facts where there exists a hierarchical order between
Pro�t, Turnover and Costs.
Each dimension is a composition of dimension lev-

els, e. g. the dimension levels Day, Month and Year
belong to the dimensionTime. The hierarchical struc-
ture between these dimension levels is de�ned through
a set of hierarchical assignments (HierarchicalLe-
velAssignment), e. g. the dimension levels for the di-
mension Time are in the hierarchical order Day →
Month → Year. The instance of a dimension level is
called dimension member, e. g. June is an instance of
the dimension levelMonth. These dimension members
are again in a hierarchical order (HierarchicalMem-
berAssignment). Each measure, i. e. cell data is ref-
erenced by a set of dimension members. Further-
more our system manages transformation functions
and structure version as detailed above. Of course,

the shown meta-model also consists of some integrity
constraints which can not be discussed in this work
for sake of limited space.

3 Querying a Temporal Data
Warehouse

In [4] we brie�y discussed how a user can state queries
in our temporal data warehouse model. The basic idea
is that he/she �rst speci�es a certain base structure.
This base structure version determines which struc-
ture has to be used for the analysis. In most cases
this will be the current structure version. However, in
some cases it will be of interest to use an �older� struc-
ture version. Suppose a temporal data warehouse that
holds measures since 1988 about all countries of the
European Union. Within this temporal data ware-
house two modi�cations of structure happened: the
re-uni�cation of Germany in 1990 and the participa-
tion of Sweden, Austria and Finland in 1995. There-
fore, we can distinguish three structure versions that
are valid for the time periods as shown in the follow-
ing table (Ts is the beginning of the valid time and
Te is the end of the valid time of the corresponding
structure version):

Structure Version Ts Te

SV1 1988 1989
SV2 1990 1994
SV3 1995 ∞

4

DM 1 DM 2 DM 3 DM n

Transformer

Query Analyzer

UserUser

Admin Tool

Fact Data

Structure Data

Structural
Mappings Data

(Valid) Time

SV 1 SV 2 SV 3 SV 4

Result Analyzer

Transformer

Admin Tool

Fact Data

Structure Data

Structural
Mappings Data

(Valid) Time

SV 1 SV 2 SV 3 SV 4

Triggers
Transformer

a) b)

Temporal Data WarehouseTemporal Data Warehouse

Figure 3: Architectures of a) the Indirect Approach and b) the Direct Approach

We might assume the user choosesSV3 as his or her
base structure version and requests data for 1995 and
1994 for his analysis. In this case the system needs
functions to map data which is valid for the structure
version SV2 into the structure version SV3. The same
analysis however could also be made withSV2 as base
structure version. For this query the system needs
functions to map data from SV3 to SV2.

Our system should not only be able to correctly an-
swer queries spanning multiple periods and perhaps
di�erent versions of dimension data, but also to in-
form the user what kind of structural modi�cations
took place. E. g. , if a user states the query �return
the number of inhabitants for Germany for 1998, 1999
and 1990� we could inform the user that a modi�cation
of the structure for the dimension State happened in
1990, namely the re-uni�cation of Germany. Depend-
ing on the chosen base structure version the result of
the query could look like shown in Fig. 2.

We are currently working on two di�erent ap-
proaches to accomplish this. Both approaches have
three parts in common:
Admin Tool : The Admin Tool allows an adminis-

trator to import new cell data into the temporal
data warehouse and, of course, to perform mod-
i�cations of the multidimensional structure. The
Admin Tool is implemented with the Java pro-
gramming language.

Temporal Data Warehouse : The Temporal Data
Warehouse holds the required information about
structure versions, cell data and transformation
functions as described in Sect. 2. We use Oracle
8. 1 as basis for our temporal data warehouse.

Transformer : The Transformer transforms all re-
quired cell values from all required structure ver-
sions into the chosen base structure version by us-
ing the de�ned transformation functions, i. e. , by

5

using all necessary MapF functions. The Trans-
former is implemented with the Java program-
ming language.

3.1 Indirect Approach
As a �rst step we will implement the indirect ap-
proach. This approach is easier to implement as the
direct approach due to the fact that it requires no im-
plementation of an front end for analyses.
The main idea of the indirect approach is, as shown

in Fig. 3 a), that the Transformer generates one data
mart for each structure version needed by the user. In
most cases, this will only be the actual structure ver-
sion. Each data mart consists of all fact data that are
valid for the same time interval as the corresponding
structure version plus it consists of all fact data that
could be transformed by the de�nedMapF functions
from all other structure versions.
Therefore, the user de�nes his/her base structure

version by selecting a speci�c data mart.
We call this approach indirect because the Trans-

former is triggered by the Admin Tool and not (di-
rectly) by the user. Or, in other words, the Trans-
former starts to generate data marts only after a new
structure version has been generated or new measures
have been imported. In both cases the Transformer
has to recalculate all existing data marts in order to
return consistent information.
We are implementing this approach with Oracle 8.1i

as basis for our temporal data warehouse and Hype-
rion Essbase (Release 6) as front end that holds our
data marts.
As we use a standard OLAP database for each data

mart, the main advantage of the indirect approach is
that each data mart o�ers the whole OLAP function-
ality, e.g., drill-down, roll-up, slice, dice, etc.

3.2 Direct Approach
The indirect approach has its limitations. The main
drawback is that beside of giving the user a tool to
state queries even after structural changes we would
also like to inform the user about what kind of struc-
tural changes had an impact on the stated query.
Hence, we have to enrich the result of a query with
some query information as shown in Fig. 2.

The architecture of the direct approach consists of
�ve parts as shown in Fig. 3 b):

Query Analyzer : The Query Analyzer takes a
query stated by the user as input and analyzes
which data out of which structure version is nec-
essary to answer the query. The result of this
analysis is passed to the Transformer and to the
Result Analyzer.

Transformer : The Transformer works as described
in Sect. 3. In contrast to the indirect approach,
the Transformer is triggered by the user or, in
other words, for each stated query the Trans-
former transforms all required cell values to an-
swer the query.

Result Analyzer : The Result Analyzer takes its in-
put from the Query Analyzer and from the Trans-
former. It enriches the result of the Transformer
with further user information, i. e. , with informa-
tion about what structural modi�cations had an
impact on the stated query. The Result Analyzer
is a subject of ongoing research.

Temporal Data Warehouse & Admin Tool:
Both as described in Sect. 3.

We expect that the model we prosed for the di-
rect approach improves not only the correctness of
OLAP queries after modi�cations of the multidimen-
sional structure, but also the interpretation of answers
to OLAP queries.

4 Conclusion
We presented a sketch of a temporal data warehouse
model designed to represent changes in the instances
of dimension data of data warehouses, by introducing
temporal extension, structure-versioning and transfor-
mation functions.
Furthermore, we extended this model to represent

not only modi�cations on the instance level but also
on the schema level. Thus, our system is able to return
correct results to OLAP queries even after dimension
levels have changed (e.g., if the dimension levelQuar-
ter is inserted between Month and Year) or a whole
dimension changed (e.g., if a new dimensionBranches
becomes part of the schema).

6

We propose two architectures to implement this
temporal data warehouse model. Both have an un-
derlying temporal data warehouse - they di�er in the
way of answering queries. The direct approach uses
a query analyzer and a result analyzer to enrich the
result of each stated query with information about the
impact of structural modi�cations on the query. The
indirect approach generates a data mart for a particu-
lar structure version and transforms the data from all
other structure versions into this data mart using the
given speci�cation of transformation functions. While
the direct approach o�ers greater �exibility, the indi-
rect approach is superior in terms of response time,
once the data mart has been generated.
Further research will compare both approaches re-

garding performance, space requirements, etc. An-
other important research area will be to provide trans-
formation functions not only between dimension mem-
bers, but also between dimensions and dimension lev-
els. Of course, introducing transformation functions
on the schema level is far more complex than intro-
ducing transformation functions on the instance level
of a temporal data warehouse.
We expect that the model we prosed here improves

the correctness of interpretation of answers to OLAP
queries and relieves the user from the need to have
detailed knowledge about the change history of di-
mension data. In particular, our approach provides
for multi-period comparisons of facts which currently
requires stability in dimension data.

References
[1] C. Adamson and M. Venerable. Data Warehous-

ing Design Solutions. Wiley, New York, 1 edition,
1998.

[2] M. Blaschka, C. Sapia, and G. Hö�ing.
On Schema Evolution in Multidimensional
Databases. In Proc. of the DaWak99 Conference,
Florence, Italy, 1999.

[3] P. Chamoni and S. Stock. Temporal Structures
in Data Warehousing. InData Warehousing and
Knowledge Discovery (DaWaK) 1999, pages 353�
358, Italy, 1999.

[4] J. Eder and C. Koncilia. Changes of Dimension
Data in Temporal Data Warehouses. InProc. of
the DaWak 2001 Conference, Munich, Germany,
2001.

[5] O. Etzion, S. Jajodia, and S. Sripada, edi-
tors. Temporal Databases: Research and Practise.
Number LNCS 1399. Springer-Verlag, 1998.

[6] W. Inmon. Building the Data Warehouse. John
Wiley and Sons, New York, 2 edition, 1996.

[7] C. S. Jensen and C. E. Dyreson, editors. A con-
sensus Glossary of Temporal Database Concepts
- Feb. 1998 Version, pages 367�405. Springer-
Verlag, 1998. in [EJS98].

[8] W. Martin, editor. Data Warehousing - Data
Mining - OLAP. Thomson Publishing, Bonn, 1
edition, 1998.

[9] A. Mendelzon and A. Vaisman. Temporal Queries
in OLAP. InProc. of the 26th VLDB Conference,
Egypt, 2000.

[10] SAP America, Inc. and SAP AG. Data Modelling
with BW - ASAP for BW Accelerator. 1998.
White Paper: URL: http://www.sap.com.

7

