
Changes of Dimension Data in Temporal Data

Warehouses

Johann Eder and Christian Koncilia

University of Klagenfurt
Dep. of Informatics-Systems

feder,konciliag@isys.uni-klu.ac.at

Abstract. Time is one of the dimensions we frequently �nd in data
warehouses allowing comparisons of data in di�erent periods. In cur-
rent multi-dimensional data warehouse technology changes of dimension
data cannot be represented adequately since all dimensions are (implic-
itly) considered as orthogonal. We propose an extension of the multi-
dimensional data model employed in data warehouses allowing to cope
correctly with changes in dimension data: a temporal multi-dimensional
data model allows the registration of temporal versions of dimension
data. Mappings are provided to transfer data between di�erent temporal
versions of the instances of dimensions and enable the system to correctly
answer queries spanning multiple periods and thus di�erent versions of
dimension data.

1 Introduction and Motivation

Data warehouses or data marts are integrated materialized views over several
often heterogeneous data sources. Their most important usage is On-Line Ana-
lytical Processing (OLAP) typically using a multi-dimensional view of the data.
OLAP tools then allow to aggregate and compare data along dimensions relevant
to the application domain. Typical examples of dimensions found frequently in
business data warehouses include time, organizational structure (divisions, de-
partments, etc.), space (cities, regions, countries) and product data.

This multi-dimensional view provides long term data that can be analyzed
along the time axis, in contrast to snapshot-based OLTP systems. Available
OLAP systems are therefore prepared to deal with changing values of fact data,
e. g. , changing pro�t or turnover but surprisingly not for modi�cations in di-
mension data, e. g. , if a new branch or division is established, although time is
usually explicitly represented as a dimension in data warehouses.

The reason for this disturbing property of current data warehouse technology
is the implicitly underlying assumptions that the dimensions are orthogonal.
Orthogonality with respect to the dimension time means the other dimensions
ought to be time-invariant. This silent assumptions inhibits the proper treatment
of changes in dimension data.

Naturally, it is vital for the correctness of results of OLAP queries that
modi�cations of dimension data is correctly taken into account. E. g. , when the

katja
Proceedings of 3rd International Conference on Data Warehousing and Knowledge Discovery - DaWaK 2001, Springer Verlag, ISBN 3-540-42553-5, pp 284-293

economic �gures of European countries over the last 20 years are compared on a
country level, it is essential to be aware of the re-uni�cation of Germany, the sep-
aration of Czechoslovakia, etc. Business structures and even structures in public
administration are nowadays subject to highly dynamic changes. Comparisons
of data over several periods, computation of trends, etc. have the necessity to
correctly and adequately treat changes in dimension data. Otherwise we face
meaningless �gures and wrong conclusions triggering bad decisions. From our
experience we could cite too much such cases.

The following extensions to a data warehouse are therefore necessary:

� Temporal extension: dimension data has to be time stamped in order to
represent their valid time.

� Structure versions: by providing time stamps for dimension data the need
arises that our system is able to cope with di�erent versions of structures.

� Transformation functions: Our system has to support functions to trans-
form data from one structure version into another.

In contrast to temporal databases, which have been well studied, e. g. , [3, 7,
8], few approaches are known in literature for temporal data warehouses, e. g. ,
[4, 13]. The same holds for schema evolution of databases, e. g. , [11, 5] vs. schema
evolution of data warehouses, e. g. , [2].

[4] present necessary extensions to a data warehouse to cover temporal as-
pects, in particular to keep track of the history of hierarchical assignments. [2, 1]
deal with schema evolution and schema versioning for data warehouse systems,
transfering changes of the conceptual schema can be automatically into the log-
ical and internal schema. However, these papers do not address the inevitable
consequences of these scheme evolutions for analytical queries.

A formal de�nition of a temporal OLAP system and a temporal query lan-
guage (TOLAP) is proposed in [12], however, without transformation of data
between structural versions the system is not able to cope with changes in the
time and fact dimensions.

In another proposal [13], the schema is extended with time stamps to enable
the user to analyze data for di�erent scenarios. However, this approach is limited
to some basic operations on dimension data (e. g. , insert/delete a dimension
member; change the \parent" of dimension member).

2 Temporal Multidimensional Systems

A multidimensional view on data consists of a set of dimensions. de�ning an
n-dimensional data cube [14, 10]. Usually, a data cube is de�ned by a dimension
Time, a dimension Facts and by several dimensions describing the managerial
structures such as divisions, products, or branches.

A dimension is a set of dimension members and their hierarchical structure.
For example \VCR X-25", \VCRs" and \All Products" are dimension members
of the dimension \Products" and are in the hierarchical relation All Products

! VCRs ! VCR X-25. The hierarchical structure of all dimensions de�nes all

2

possible consolidation paths, i. e. , it de�nes all possible aggregation and disag-
gregation paths.

We will now extend this description of a multi-dimensional system to de�ne
a temporal data warehouse supporting valid time relations:

� Chronons: A chronon Q is de�ned as \a non-decomposable time interval
of some �xed, minimal duration" [9]. This means a chronon is the �nest
dimension member in the dimension time and the time axis de�ned through
the dimension time is a series of chronons.

� Time Intervals: All dimension members and all hierarchical links between
these dimension members are associated with a time interval [Ts; Te] repre-
senting the valid time beginning at Ts and ending at Te (with Te � Ts).

More formally, a temporal multidimensional system consists of:

i.) A number of dimensions N + 1.

ii.) A set of dimensions D = fD1, :::, DN ; Fg where F is the dimension de-
scribing the required facts and Di are all other dimensions including a time
dimension if required.

iii.) A number of dimension members M .

iv.) A set of dimension members DM = DMD1
[:::[DMDN [DMF = fDM1,

:::, DMMg where DMF is the set of all facts, DMDi is the set of all dimen-
sion members which belong to dimension Di. A dimension member DMi is
de�ned as DMi =< DMid, Key, Di, UDA, [Ts; Te] >. DMid is a unique
identi�er for each dimension member that cannot be changed (similar to
Oid0s in object-oriented database systems). [Ts; Te] represents the valid time
of the dimension member. Di is the dimension identi�er to which the di-
mension member belongs. Key is a user de�ned key (e. g. , the number of a
product) which is unique within Di for each timepoint Ts � T � Te. UDA is
a set of user de�ned attributes (e. g. , the name and/or color of a product).

v.) A set of hierarchical assignments H = fH1; :::; HOg where Hi =< DMC
id ,

DMP
id, Level, [Ts; Te] >. DM

C
id is the identi�er of a dimension member,

DMP
id is the dimension member identi�er of the parent of DMC

id or ; if the
dimension member is a top-level dimension member. Level is a value 0:::L
where L is the number of layers and Level is the level of DMC

id. All \leaves"
(dimension members without successors) are at level 0. [Ts; Te] is the time
stamp representing the valid time for the relation between DMC

id and DM
P
id.

No dimension member may be its own parent/child and cycles within H are
not admissible.

vi.) A function cval : (DMD1
; :::; DMDN ; DMF)! value which uniquely assigns

a value to each vector (DMD1
, :::, DMDN , DMF) where (DMD1

, :::, DMDN ,
DMF) 2 DMD1

� :::�DMDN �DMF . Therefore, a cube (or n-cube) C is
de�ned by this function cval. The domain of this cube dom(C) is the set of
all cell references. The range of this cube ran(C) are all cell values.

3

Divisions
<M1, ∞>

Div.A
<M1, ∞>

Div.B
<M1, ∞>

SubDiv. D
<M4, ∞>

SubDiv. E
<M4, ∞>

<M4,∞><M1,∞>
<M1,∞>

<M1,∞> <M4,∞>

Div.C
<M1, ∞>

<M1,Μ3>

<M1,Μ3>

Fig. 1. A Dimension Divisions with time stamps

3 Structure Versions

Temporal projection and selection [9] allows us to de�ne a Structure Version

(SV) of a temporal data warehouse. Intuitively, a structure version is a view on
a multidimensional structure that is valid for a given time interval [Ts; Te]. All
dimension members and all hierarchical relations are also valid for the given time
interval. In other words: within one structure version no dimension member is
changed nor a hierarchical relation. Vice versa each modi�cation of a dimension
member or a hierarchical relation leads to a new structure version.

Formally, each structure version is a 4-tuple < SVid, T , fDMD1;SVid , :::,
DMDN ;SVid , DMF;SVidg,HSVid > where SVid is a unique identi�er and T repre-
sent the valid time of that structure version as a time interval [Ts; Te].DMDi;SVid

(DMDi;SVid � DMDi) is a set of all dimension members which belong to dimen-
sion Di and which are valid at each timepoint P with Ts � P � Te. DMF;SVid

(DMF;SVid � DMF) is the set of all facts which are valid at each timepoint P
with Ts � P � Te. HSVid (HSVid � H) is a set of hierarchical assignments valid
at each timepoint P with Ts � P � Te.

Conceptually each structure version SV has a corresponding cube with the
same valid time interval. Fig. 1 shows an example for the consolidation tree of
the dimension \Divisions" including time intervals. Each node and each edge in
this �gure has a time interval [Ts; Te]. An attribute of \SubDiv:D" was modi�ed
at M4, a new subdivision \SubDiv:E" was introduced at M4 and Div:C was a
subdivision of Div:B from M1 until M3 (dotted line). Two structure versions
can be identi�ed in this example:

i.) < SV1; [M1;M3]; ffDivisions,Div:A,Div:B,Div:C, SubDiv:Dg, fSalesgg;
fDiv:A! Divisions; SubDiv:D! Div:A; :::g >

ii.) < SV2; [M4;1]; ffDivisions,Div:A,Div:B,Div:C, SubDiv:D, SubDiv:Eg,
fSalesgg, fDiv:A! Divisions; SubDiv:D! Div:A, :::g >.

In this example we have two di�erent structure versions SV1 and SV2. SV1
and all given dimension members (Divisions,Div:A,Div:B, :::) and hierarchical
assignments (Div:A! Divisions; :::) are valid fromM1 toM3. SV2 is valid from
M4 to 1, i. e. , until now.

4

4 Structural Changes

We de�ne the structure of a data warehouse (DWH) as a non-empty, �nite set
of structure versions DWH = fSV1; :::; SVng, where each structure version SVi
is a 4-tuple < SVid; T;DMSVid ;HSVid > (see above) forming a dense sequence
of tuples < SVid, Ti, DMSVid , HSVid > with respect to chronon Q, i. e. , Ti =
[Ti;s; Ti;e] such that Ti;s = T(i�1);e +Q.

We provide three basic operations INSERT, UPDATE and DELETE to modify
the structure of a temporal data warehouse, i. e. , the dimension data within
the granularity de�ned through the chronon Q. Key, Di, UDA and DMP

id are
de�ned as described in Sect. 2

INSERT(DM, Ts): inserts the new dimension member DM as < Key, Di,
UDA, DMP

id >. Ts de�nes that DM is valid for the time interval [Ts;1]. A
unique DMid is assigned to the new element.

UPDATE(Key,Di, DM 0, Ts): changes an existing dimension member identi-
�ed by Key and Di to a new dimension member DM 0 as < Key; UDA,
DMP

id >. An UPDATE operation consists of two actions: set the ending time
of an existing dimension member to Ts � Q, and insert a new dimension
member, with the valid time interval [Ts;1].

DELETE(DM, Te): changes the end time of the dimension member DM to Te.

Using these basic operations we can modify the structural dimensions of the
multidimensional cube. We distinguish among the following modi�cations:

i.) SPLIT: One dimension member splits into n dimension members.
ii.) MERGE: n dimension members are merged into one dimension member.
iii.) CHANGE: An attribute, e. g. the product number, of a dimension member

changes.
iv.) MOVE: Modify the hierarchical position of a dimension member.
v.) NEW-MEMBER: Insert a new dimension member.
vi.) DELETE-MEMBER: Delete a dimension member.

5 Mappings between Structure Versions

We will now extend the temporal model of a data warehouse presented in chapter
2 with the de�nition of mapping functions between structure versions.

A structure version is a view on a temporal data warehouse valid for a given
time period [Ts; Te]. We distinguish between the structure of a structure ver-
sion (the set of all valid dimension members of the structure version together
with their hierarchies) and the data of a structure version (the cube de�ned by
mapping the structure to the value domain).

For answering queries on the data warehouse the user always has to de�ne
which structure version should be used. The data returned by the query can,
however, originate in several (di�erent) temporal versions of the cube. There-
fore, it is necessary to provide transformation functions mapping data from one
structure version to a di�erent structure version.

5

mapping function for Facts F1, ..., Fn

 Legend

Div. E

SV1

Subdiv. C

Subdiv. D

Div. E

SV2

Subdiv. X

Subdiv. D

Div. A

Div. E

SV3

Subdiv. X

Subdiv. D

Div. A1

Div. A2

Div. E

SV4

Subdiv. D

Div. F

Insert new Div. A and
Change Name of SubDiv. C

Split Div. A into
A1 and A2

Initial Outline
Merge Div. A1 and A2
Delete SubDiv. X

Fig. 2. An example for structural changes and mapping functions

In the rest of the paper we make the following assumptions: Relations be-
tween di�erent structure versions depend on the contemplated fact. For sake of
simplicity and understandability we only consider the cube for a single fact. Fur-
thermore, the cell values of upper-level dimension members are always computed
from their subordinate lower level dimension members. Therefore, without loss
of generality, we do not consider the upper levels here and assume that the di-
mensions are at. Or, in other terms: before we transform the data we select the
cube of the dimension members at level-0 and transform only this subset of cell
values and compute the upper-levels of the resulting cube bottom-up as usual.

5.1 De�nition of Inter-Structure Relationships

Mapping functions are employed to map data (cell values) for numeric facts and
a particular dimension member from one structure version into another using a
weighting factor. MapF is de�ned as MapF (SVj , SVk, DMid, DM

0

id, fM
1
id, :::,

Mn
idg; w) where SVj and SVk are di�erent structure versions. DMid and DM 0

id

are unique IDs for dimension members for which DMid 2 SVj and DM
0

id 2 SVk
is true. DMid and DM 0

id must be dimension members of the same dimension.
fM1

id; :::;M
n
idg is a non-empty, �nite set of fact IDs and 9f : f 2 F ^ fid =M i

id.
w is the weighting factor to map data from one structure version into another.

We implicitly introduce a mapping function for each dimension member
which does not change from one structure version into another with w = 1.

Mapping functions may be applied to map data between contiguous or non
contiguous structure versions. Two structure versions SVi and SVk are contigu-
ous if Ts;i = Te;k +Q or if Ts;k = Te;i +Q.

For a split or a merge operation we need several mapping functions, e. g. , if
department A splits up into A1, A2 and A3 we would need three functions to map
data from A to An and three functions to map data from An to A. We do not
restrict the user regarding the weighting factor w. This means that the sum of
all weighting factors for all functions A! An (split) does not have to be 1, i. e. ,
100%. Vice versa not all weighting factors of the functions A1 ! A; :::; An ! A

(merge) need to be 1.

6

The example given in Fig. 2 shows several structural changes in a dimension
\Divisions", e. g. , \Div.A" splits up into \Div.A1" and \Div.A2" from SV2 to
SV3 and that for the fact \Turnover" \Div.A1" in SV3 corresponds to 30% of
the \Div.A" in SV2 (see function 1). Or vice versa that the \Div.A" in SV2 is
equal to the sum of A1 and A2 in SV3 (see functions 3 and 4). This example
would result in the following mapping functions for the fact \Turnover":

1.) MapF (SV2; SV3; Div:A;Div:A1; fTurnoverg; 0:3)
2.) MapF (SV2; SV3; Div:A;Div:A2; fTurnoverg; 0:7)
3.) MapF (SV3; SV2; Div:A1; Div:A; fTurnoverg; 1)
4.) MapF (SV3; SV2; Div:A2; Div:A; fTurnoverg; 1), and so on...

5.2 Transformation Matrices

On a conceptual level we can represent each multidimensional cube and the rela-
tionships between dimension members of di�erent structure versions as matrices.

Let SVi be a structure version with N dimensions. Each dimension DN con-
sists of a set DML0

N which represents all Level-0 dimension members of that
dimension. We can represent this structure version as a DML0

1 �DML0
2 � : : :�

DML0
N matrix.
Let SV1 and SV2 be two structure versions. We de�ne a transformation ma-

trix TSV1;SV2;Di;F for each dimension Di and each fact F . Where T (di; dj) is
a number representing the weighting factor for mapping a fact F of dimension
member di of structure version SV1 to a fact of dimension member dj of structure
version SV2.

These transformation matrices are merely another way of representing the
information contained in theMapF relation described above.We want to empha-
size that the construction of these matrices is a conceptual view on the trans-
formation. Any meaningful implementation will take into account that these
matrices are usually sparse and will not implement the matrices in a naive way.

Example: Consider a cube C representing the structure de�ned through a
structure version SV1 with the dimensions A = fa1; a2; a3g and B = fb1; b2; b3g
(ai and bj are dimension members). We represent the cell values for a speci�c
fact in this cube as a matrix. Therefore, a value in this matrix represents a cell
value in the given 2-dimensional cube.

C =

0
@
a1 a2 a3

b1 3 7 5
b2 10 8 6
b3 20 13 5

1
A

As mentioned above we need one transformation matrix for each dimension
Di to map data from structure version SV1 into structure version SV2. In the
following example we split the dimension member a1 into a11 and a12 and we
merge b1 and b2 into b12. The functions between SV1 and SV2 for a fact \Fact"
are de�ned by the following operations:

7

� MapF (SV1; SV2; a1; a11; Fact; 0:3) � MapF (SV1; SV2; a1; a12; Fact; 0:7)
� MapF (SV1; SV2; b1; b12; Fact; 1) � MapF (SV1; SV2; b2; b12; Fact; 1)

To represent these functions we de�ne two transformation matrices. TA for
dimension A, and TB for dimension B:

TA =

0
@
a11 a12 a2 a3

a1 0:3 0:7 0 0
a2 0 0 1 0
a3 0 0 0 1

1
A TB =

� b1 b2 b3

b12 1 1 0
b3 0 0 1

�

5.3 Transformation of Warehouse Data

The goal of the transformation is to map the warehouse data (cube) of a certain
structure version SV1 to the structure of a di�erent structure version SV2. We
�rst de�ne a function to transform the cube in one dimension:

fSV1;SV2;D;F transforms the values of fact F of structure version SV1 to the
structure version SV2 in the dimension D as follows:

fSV1;SV2;D;F (CD=j) =
X

j2DMD;SV1

TSV1;SV2;D;F (i; j) �CD=j for all i 2 DMD;SV2

where C is a cube with the dimension members of SV1 in dimension D and
C 0 is the transformed cube where all values in the cube have been transformed
to the members of the dimension D in the structure version SV2 according to
the transformation matrix T . CD=j is the (n-1) dimensional sub-cube of an n-
dimensional cube associated with the member j in dimension D.

It is easy to see, that transforming a cube in dimension Dx �rst, and then
in dimension Dy yields the same result as the transformation in the reverse
sequence. The transformation of a fact F in a cube C from structure version SV1
to structure version SV2 is now de�ned as a sequence of functions successively
transforming the cube in all dimensions Di:

fSV1;SV2;F = fSV1;SV2;D1;F (fSV1;SV2;D2;F (: : : fSV1;SV2;Dn;F (CSV1) : : :))

As seen from the observation above the result does not depend on the se-
quence of transformation used. Again, we emphasize that this is the speci�cation
of a transformation function, and the actual implementation will eÆciently make
use of the sparseness of the involved matrices, etc.

Example: By using the de�ned transformation functions we are now able to
transform data from SV1 into SV2. The cube C and the transformation matrices
TA and TB are given in the example in Sect. 5.2.

C 0 = fSV1;SV2;DA;F (fSV1;SV2;DB ;F (C))

=

� a11 a12 a2 a3

b12 3:9 9:1 15 11
b3 6 14 13 5

�

8

The matrix C 0 represents the cube with the structure de�ned through struc-
ture version SV2 and the values of structure version SV1.

6 Queries

When a user issues a query within such a system, he/she has to de�ne a timepoint
Tq. This timepoint speci�es a certain base structure version where Ts � Tq � Te
and [Ts; Te] de�nes the valid time interval of the base structure version.

This base structure version determines which structure has to be used for
the analysis. In most cases this will be the current structure version. However,
in some cases it will be of interest to use an \older" structure version. Suppose
the structure versions given in Fig. 2 are valid for the following time periods and
the chronon is a month:

Table 1. Valid time periods

Version Ts Te

SV1 Jan. 1998 Mar. 1998
SV2 Apr. 1998 Jan. 1999
SV3 Feb. 1999 Dec. 1999
SV4 Jan. 2000 1

We might assume the user chooses SV4 as base structure version and requests
data for March 2000 and March 1999 for the analysis. In this case the system
needs functions to map data which is valid for the structure version SV3 into
the structure version SV4. The same analysis however could also be made with
SV3 as base structure version. For this query the system needs functions to map
data from SV4 to SV3.

For each query, the systems checks which structure versions are necessary
to answer the query. E. g. , for SV4 as base structure version and the valid time
intervals according to Tab. 1, the structure versions SV4, SV2 and SV1 are nec-
essary to answer the query \return costs for all divisions for January 1999 and
January 1998". For each fact the system checks for a mapping function from SV1
to SV4 and from SV2 to SV4.

7 Conclusion

We presented a novel approach for representing changes in dimension data of
multi-dimensional data warehouses, by introducing temporal extension, struc-
ture versioning and transformation functions. This representation can then be
used to pose queries (analysis) against the structure valid at a given point in
time and correctly admit data from other periods into the computation of the
result.

This e�ort is necessary as changes in these data have the combined charac-
teristics of temporal databases and schema evolution, as these dimension data

9

serve in multi-dimensional systems as data as well as schema elements. Our ap-
proach thus overcomes the implicit orthogonality assumption underlying multi-
dimensional data warehouses.

The transformation function we propose here can only be seen as a �rst step
and will be elaborated in the future. The simple transformation matrices however
proved themselves surprisingly powerful. We were able to represent several cases
of structural changes with these data (at least approximatively). Changes which
can be covered by our model comprise:

� Changes in the organizational structure of enterprises, of the regional struc-
ture of distribution systems, of product portfolios, etc.

� Changes of Units, like actually the changes from ATS to EURO.
� Changes in the way economic �gures like unemployment rate, consumer price
index, etc. are computed.

We also expect that our approach improves the correctness of interpretation of
answers to OLAP queries and relieves the user from the need to have detailed
knowledge about the change history of dimension data. In particular, our ap-
proach provides for multi-period comparisons of facts which currently requires
stability in dimension data.

References

[1] M. Blaschka. FIESTA: A Framework for Schema Evolution in Multidimensional
Information Systems. In Proc. of 6th Doctoral Consortium, Germany, 1999.

[2] M. Blaschka, C. Sapia, and G. H�oing. On Schema Evolution in Multidimensional
Databases. In Proc. of the DaWak99 Conference, Florence, Italy, 1999.

[3] M. B�ohlen. Temporal Database System Implementations. SIGMOD, 24(4), 1995.
[4] P. Chamoni and S. Stock. Temporal Structures in Data Warehousing. In Data

Warehousing and Knowledge Discovery (DaWaK) 1999, p. 353{358, Italy, 1999.
[5] S. M. Clamen. Schema Evolution and Integration. In Distributed and Parallel

Databases: An International Journal, p. 2(1):101{126.
[6] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research and

Practise. LNCS 1399. Springer-Verlag, 1998.
[7] Goralwalla, Tansel, and Zsu. Experimenting with Temporal Relational Databases.

ACM, CIKM95, 1995.
[8] Gregersen and Jensen. Temporal Entity-Relationship Models - a Survey. Time-

Center, 1997.
[9] C. S. Jensen and C. E. Dyreson, editors. A consensus Glossary of Temporal

Database Concepts - Feb. 1998 Version. Springer-Verlag, 1998. In [6].
[10] C. Li and X. Wang. A Data Model for Supporting On-Line Analytical Processing.

ACM, CIKM 96, 1996.
[11] C. Liu, S. Chang, and P. Chrysanthis. Database Schema Evolution using EVER

Diagrams. In Proc. of the Workshop on Advanced Visual Interfaces, 1994.
[12] A. Mendelzon and A. Vaisman. Temporal Queries in OLAP. In Proc. of the 26th

VLDB Conference, Egypt, 2000.
[13] SAP America, Inc. and SAP AG. Data Modelling with BW - ASAP for BW

Accelerator. 1998. White Paper: URL: http://www.sap.com.
[14] P. Vassiliadis and T. Sellis. A Survey of Logical Models for OLAP Databases. In

SIGMOD Record 28, 1999.

10

